1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25 }
26
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29 {
30 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32 }
33
ksz9477_cfg32(struct ksz_device * dev,u32 addr,u32 bits,bool set)34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37 }
38
ksz9477_port_cfg32(struct ksz_device * dev,int port,int offset,u32 bits,bool set)39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41 {
42 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44 }
45
ksz9477_change_mtu(struct ksz_device * dev,int port,int mtu)46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 u16 frame_size, max_frame = 0;
49 int i;
50
51 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
52
53 /* Cache the per-port MTU setting */
54 dev->ports[port].max_frame = frame_size;
55
56 for (i = 0; i < dev->info->port_cnt; i++)
57 max_frame = max(max_frame, dev->ports[i].max_frame);
58
59 return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
60 REG_SW_MTU_MASK, max_frame);
61 }
62
ksz9477_max_mtu(struct ksz_device * dev,int port)63 int ksz9477_max_mtu(struct ksz_device *dev, int port)
64 {
65 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
66 }
67
ksz9477_wait_vlan_ctrl_ready(struct ksz_device * dev)68 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
69 {
70 unsigned int val;
71
72 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
73 val, !(val & VLAN_START), 10, 1000);
74 }
75
ksz9477_get_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)76 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
77 u32 *vlan_table)
78 {
79 int ret;
80
81 mutex_lock(&dev->vlan_mutex);
82
83 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
84 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
85
86 /* wait to be cleared */
87 ret = ksz9477_wait_vlan_ctrl_ready(dev);
88 if (ret) {
89 dev_dbg(dev->dev, "Failed to read vlan table\n");
90 goto exit;
91 }
92
93 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
94 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
95 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
96
97 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
98
99 exit:
100 mutex_unlock(&dev->vlan_mutex);
101
102 return ret;
103 }
104
ksz9477_set_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)105 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
106 u32 *vlan_table)
107 {
108 int ret;
109
110 mutex_lock(&dev->vlan_mutex);
111
112 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
113 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
114 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
115
116 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
117 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
118
119 /* wait to be cleared */
120 ret = ksz9477_wait_vlan_ctrl_ready(dev);
121 if (ret) {
122 dev_dbg(dev->dev, "Failed to write vlan table\n");
123 goto exit;
124 }
125
126 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
127
128 /* update vlan cache table */
129 dev->vlan_cache[vid].table[0] = vlan_table[0];
130 dev->vlan_cache[vid].table[1] = vlan_table[1];
131 dev->vlan_cache[vid].table[2] = vlan_table[2];
132
133 exit:
134 mutex_unlock(&dev->vlan_mutex);
135
136 return ret;
137 }
138
ksz9477_read_table(struct ksz_device * dev,u32 * table)139 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
140 {
141 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
142 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
143 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
144 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
145 }
146
ksz9477_write_table(struct ksz_device * dev,u32 * table)147 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
148 {
149 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
150 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
151 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
152 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
153 }
154
ksz9477_wait_alu_ready(struct ksz_device * dev)155 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
156 {
157 unsigned int val;
158
159 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
160 val, !(val & ALU_START), 10, 1000);
161 }
162
ksz9477_wait_alu_sta_ready(struct ksz_device * dev)163 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
164 {
165 unsigned int val;
166
167 return regmap_read_poll_timeout(dev->regmap[2],
168 REG_SW_ALU_STAT_CTRL__4,
169 val, !(val & ALU_STAT_START),
170 10, 1000);
171 }
172
ksz9477_reset_switch(struct ksz_device * dev)173 int ksz9477_reset_switch(struct ksz_device *dev)
174 {
175 u8 data8;
176 u32 data32;
177
178 /* reset switch */
179 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
180
181 /* turn off SPI DO Edge select */
182 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
183 SPI_AUTO_EDGE_DETECTION, 0);
184
185 /* default configuration */
186 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
187 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
188 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
189 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
190
191 /* disable interrupts */
192 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
193 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
194 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
195
196 /* KSZ9893 compatible chips do not support refclk configuration */
197 if (dev->chip_id == KSZ9893_CHIP_ID ||
198 dev->chip_id == KSZ8563_CHIP_ID)
199 return 0;
200
201 data8 = SW_ENABLE_REFCLKO;
202 if (dev->synclko_disable)
203 data8 = 0;
204 else if (dev->synclko_125)
205 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
206 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
207
208 return 0;
209 }
210
ksz9477_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)211 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
212 {
213 struct ksz_port *p = &dev->ports[port];
214 unsigned int val;
215 u32 data;
216 int ret;
217
218 /* retain the flush/freeze bit */
219 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
220 data |= MIB_COUNTER_READ;
221 data |= (addr << MIB_COUNTER_INDEX_S);
222 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
223
224 ret = regmap_read_poll_timeout(dev->regmap[2],
225 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
226 val, !(val & MIB_COUNTER_READ), 10, 1000);
227 /* failed to read MIB. get out of loop */
228 if (ret) {
229 dev_dbg(dev->dev, "Failed to get MIB\n");
230 return;
231 }
232
233 /* count resets upon read */
234 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
235 *cnt += data;
236 }
237
ksz9477_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)238 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
239 u64 *dropped, u64 *cnt)
240 {
241 addr = dev->info->mib_names[addr].index;
242 ksz9477_r_mib_cnt(dev, port, addr, cnt);
243 }
244
ksz9477_freeze_mib(struct ksz_device * dev,int port,bool freeze)245 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
246 {
247 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
248 struct ksz_port *p = &dev->ports[port];
249
250 /* enable/disable the port for flush/freeze function */
251 mutex_lock(&p->mib.cnt_mutex);
252 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
253
254 /* used by MIB counter reading code to know freeze is enabled */
255 p->freeze = freeze;
256 mutex_unlock(&p->mib.cnt_mutex);
257 }
258
ksz9477_port_init_cnt(struct ksz_device * dev,int port)259 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
260 {
261 struct ksz_port_mib *mib = &dev->ports[port].mib;
262
263 /* flush all enabled port MIB counters */
264 mutex_lock(&mib->cnt_mutex);
265 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
266 MIB_COUNTER_FLUSH_FREEZE);
267 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
268 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
269 mutex_unlock(&mib->cnt_mutex);
270 }
271
ksz9477_r_phy_quirks(struct ksz_device * dev,u16 addr,u16 reg,u16 * data)272 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
273 u16 *data)
274 {
275 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
276 * BMSR_ERCAP bits are set.
277 */
278 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
279 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
280 }
281
ksz9477_r_phy(struct ksz_device * dev,u16 addr,u16 reg,u16 * data)282 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
283 {
284 u16 val = 0xffff;
285 int ret;
286
287 /* No real PHY after this. Simulate the PHY.
288 * A fixed PHY can be setup in the device tree, but this function is
289 * still called for that port during initialization.
290 * For RGMII PHY there is no way to access it so the fixed PHY should
291 * be used. For SGMII PHY the supporting code will be added later.
292 */
293 if (!dev->info->internal_phy[addr]) {
294 struct ksz_port *p = &dev->ports[addr];
295
296 switch (reg) {
297 case MII_BMCR:
298 val = 0x1140;
299 break;
300 case MII_BMSR:
301 val = 0x796d;
302 break;
303 case MII_PHYSID1:
304 val = 0x0022;
305 break;
306 case MII_PHYSID2:
307 val = 0x1631;
308 break;
309 case MII_ADVERTISE:
310 val = 0x05e1;
311 break;
312 case MII_LPA:
313 val = 0xc5e1;
314 break;
315 case MII_CTRL1000:
316 val = 0x0700;
317 break;
318 case MII_STAT1000:
319 if (p->phydev.speed == SPEED_1000)
320 val = 0x3800;
321 else
322 val = 0;
323 break;
324 }
325 } else {
326 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
327 if (ret)
328 return ret;
329
330 ksz9477_r_phy_quirks(dev, addr, reg, &val);
331 }
332
333 *data = val;
334
335 return 0;
336 }
337
ksz9477_w_phy(struct ksz_device * dev,u16 addr,u16 reg,u16 val)338 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
339 {
340 /* No real PHY after this. */
341 if (!dev->info->internal_phy[addr])
342 return 0;
343
344 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
345 }
346
ksz9477_cfg_port_member(struct ksz_device * dev,int port,u8 member)347 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
348 {
349 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
350 }
351
ksz9477_flush_dyn_mac_table(struct ksz_device * dev,int port)352 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
353 {
354 const u16 *regs = dev->info->regs;
355 u8 data;
356
357 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
358 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
359 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
360
361 if (port < dev->info->port_cnt) {
362 /* flush individual port */
363 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
364 if (!(data & PORT_LEARN_DISABLE))
365 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
366 data | PORT_LEARN_DISABLE);
367 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
368 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
369 } else {
370 /* flush all */
371 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
372 }
373 }
374
ksz9477_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)375 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
376 bool flag, struct netlink_ext_ack *extack)
377 {
378 if (flag) {
379 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
380 PORT_VLAN_LOOKUP_VID_0, true);
381 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
382 } else {
383 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
384 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
385 PORT_VLAN_LOOKUP_VID_0, false);
386 }
387
388 return 0;
389 }
390
ksz9477_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)391 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
392 const struct switchdev_obj_port_vlan *vlan,
393 struct netlink_ext_ack *extack)
394 {
395 u32 vlan_table[3];
396 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
397 int err;
398
399 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
400 if (err) {
401 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
402 return err;
403 }
404
405 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
406 if (untagged)
407 vlan_table[1] |= BIT(port);
408 else
409 vlan_table[1] &= ~BIT(port);
410 vlan_table[1] &= ~(BIT(dev->cpu_port));
411
412 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
413
414 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
415 if (err) {
416 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
417 return err;
418 }
419
420 /* change PVID */
421 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
422 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
423
424 return 0;
425 }
426
ksz9477_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)427 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
428 const struct switchdev_obj_port_vlan *vlan)
429 {
430 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
431 u32 vlan_table[3];
432 u16 pvid;
433
434 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
435 pvid = pvid & 0xFFF;
436
437 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
438 dev_dbg(dev->dev, "Failed to get vlan table\n");
439 return -ETIMEDOUT;
440 }
441
442 vlan_table[2] &= ~BIT(port);
443
444 if (pvid == vlan->vid)
445 pvid = 1;
446
447 if (untagged)
448 vlan_table[1] &= ~BIT(port);
449
450 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
451 dev_dbg(dev->dev, "Failed to set vlan table\n");
452 return -ETIMEDOUT;
453 }
454
455 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
456
457 return 0;
458 }
459
ksz9477_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)460 int ksz9477_fdb_add(struct ksz_device *dev, int port,
461 const unsigned char *addr, u16 vid, struct dsa_db db)
462 {
463 u32 alu_table[4];
464 u32 data;
465 int ret = 0;
466
467 mutex_lock(&dev->alu_mutex);
468
469 /* find any entry with mac & vid */
470 data = vid << ALU_FID_INDEX_S;
471 data |= ((addr[0] << 8) | addr[1]);
472 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
473
474 data = ((addr[2] << 24) | (addr[3] << 16));
475 data |= ((addr[4] << 8) | addr[5]);
476 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
477
478 /* start read operation */
479 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
480
481 /* wait to be finished */
482 ret = ksz9477_wait_alu_ready(dev);
483 if (ret) {
484 dev_dbg(dev->dev, "Failed to read ALU\n");
485 goto exit;
486 }
487
488 /* read ALU entry */
489 ksz9477_read_table(dev, alu_table);
490
491 /* update ALU entry */
492 alu_table[0] = ALU_V_STATIC_VALID;
493 alu_table[1] |= BIT(port);
494 if (vid)
495 alu_table[1] |= ALU_V_USE_FID;
496 alu_table[2] = (vid << ALU_V_FID_S);
497 alu_table[2] |= ((addr[0] << 8) | addr[1]);
498 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
499 alu_table[3] |= ((addr[4] << 8) | addr[5]);
500
501 ksz9477_write_table(dev, alu_table);
502
503 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
504
505 /* wait to be finished */
506 ret = ksz9477_wait_alu_ready(dev);
507 if (ret)
508 dev_dbg(dev->dev, "Failed to write ALU\n");
509
510 exit:
511 mutex_unlock(&dev->alu_mutex);
512
513 return ret;
514 }
515
ksz9477_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)516 int ksz9477_fdb_del(struct ksz_device *dev, int port,
517 const unsigned char *addr, u16 vid, struct dsa_db db)
518 {
519 u32 alu_table[4];
520 u32 data;
521 int ret = 0;
522
523 mutex_lock(&dev->alu_mutex);
524
525 /* read any entry with mac & vid */
526 data = vid << ALU_FID_INDEX_S;
527 data |= ((addr[0] << 8) | addr[1]);
528 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
529
530 data = ((addr[2] << 24) | (addr[3] << 16));
531 data |= ((addr[4] << 8) | addr[5]);
532 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
533
534 /* start read operation */
535 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
536
537 /* wait to be finished */
538 ret = ksz9477_wait_alu_ready(dev);
539 if (ret) {
540 dev_dbg(dev->dev, "Failed to read ALU\n");
541 goto exit;
542 }
543
544 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
545 if (alu_table[0] & ALU_V_STATIC_VALID) {
546 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
547 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
548 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
549
550 /* clear forwarding port */
551 alu_table[2] &= ~BIT(port);
552
553 /* if there is no port to forward, clear table */
554 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
555 alu_table[0] = 0;
556 alu_table[1] = 0;
557 alu_table[2] = 0;
558 alu_table[3] = 0;
559 }
560 } else {
561 alu_table[0] = 0;
562 alu_table[1] = 0;
563 alu_table[2] = 0;
564 alu_table[3] = 0;
565 }
566
567 ksz9477_write_table(dev, alu_table);
568
569 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
570
571 /* wait to be finished */
572 ret = ksz9477_wait_alu_ready(dev);
573 if (ret)
574 dev_dbg(dev->dev, "Failed to write ALU\n");
575
576 exit:
577 mutex_unlock(&dev->alu_mutex);
578
579 return ret;
580 }
581
ksz9477_convert_alu(struct alu_struct * alu,u32 * alu_table)582 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
583 {
584 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
585 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
586 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
587 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
588 ALU_V_PRIO_AGE_CNT_M;
589 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
590
591 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
592 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
593 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
594
595 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
596
597 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
598 alu->mac[1] = alu_table[2] & 0xFF;
599 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
600 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
601 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
602 alu->mac[5] = alu_table[3] & 0xFF;
603 }
604
ksz9477_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)605 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
606 dsa_fdb_dump_cb_t *cb, void *data)
607 {
608 int ret = 0;
609 u32 ksz_data;
610 u32 alu_table[4];
611 struct alu_struct alu;
612 int timeout;
613
614 mutex_lock(&dev->alu_mutex);
615
616 /* start ALU search */
617 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
618
619 do {
620 timeout = 1000;
621 do {
622 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
623 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
624 break;
625 usleep_range(1, 10);
626 } while (timeout-- > 0);
627
628 if (!timeout) {
629 dev_dbg(dev->dev, "Failed to search ALU\n");
630 ret = -ETIMEDOUT;
631 goto exit;
632 }
633
634 if (!(ksz_data & ALU_VALID))
635 continue;
636
637 /* read ALU table */
638 ksz9477_read_table(dev, alu_table);
639
640 ksz9477_convert_alu(&alu, alu_table);
641
642 if (alu.port_forward & BIT(port)) {
643 ret = cb(alu.mac, alu.fid, alu.is_static, data);
644 if (ret)
645 goto exit;
646 }
647 } while (ksz_data & ALU_START);
648
649 exit:
650
651 /* stop ALU search */
652 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
653
654 mutex_unlock(&dev->alu_mutex);
655
656 return ret;
657 }
658
ksz9477_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)659 int ksz9477_mdb_add(struct ksz_device *dev, int port,
660 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
661 {
662 u32 static_table[4];
663 const u8 *shifts;
664 const u32 *masks;
665 u32 data;
666 int index;
667 u32 mac_hi, mac_lo;
668 int err = 0;
669
670 shifts = dev->info->shifts;
671 masks = dev->info->masks;
672
673 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
674 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
675 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
676
677 mutex_lock(&dev->alu_mutex);
678
679 for (index = 0; index < dev->info->num_statics; index++) {
680 /* find empty slot first */
681 data = (index << shifts[ALU_STAT_INDEX]) |
682 masks[ALU_STAT_READ] | ALU_STAT_START;
683 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
684
685 /* wait to be finished */
686 err = ksz9477_wait_alu_sta_ready(dev);
687 if (err) {
688 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
689 goto exit;
690 }
691
692 /* read ALU static table */
693 ksz9477_read_table(dev, static_table);
694
695 if (static_table[0] & ALU_V_STATIC_VALID) {
696 /* check this has same vid & mac address */
697 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
698 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
699 static_table[3] == mac_lo) {
700 /* found matching one */
701 break;
702 }
703 } else {
704 /* found empty one */
705 break;
706 }
707 }
708
709 /* no available entry */
710 if (index == dev->info->num_statics) {
711 err = -ENOSPC;
712 goto exit;
713 }
714
715 /* add entry */
716 static_table[0] = ALU_V_STATIC_VALID;
717 static_table[1] |= BIT(port);
718 if (mdb->vid)
719 static_table[1] |= ALU_V_USE_FID;
720 static_table[2] = (mdb->vid << ALU_V_FID_S);
721 static_table[2] |= mac_hi;
722 static_table[3] = mac_lo;
723
724 ksz9477_write_table(dev, static_table);
725
726 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
727 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
728
729 /* wait to be finished */
730 if (ksz9477_wait_alu_sta_ready(dev))
731 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
732
733 exit:
734 mutex_unlock(&dev->alu_mutex);
735 return err;
736 }
737
ksz9477_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)738 int ksz9477_mdb_del(struct ksz_device *dev, int port,
739 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
740 {
741 u32 static_table[4];
742 const u8 *shifts;
743 const u32 *masks;
744 u32 data;
745 int index;
746 int ret = 0;
747 u32 mac_hi, mac_lo;
748
749 shifts = dev->info->shifts;
750 masks = dev->info->masks;
751
752 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
753 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
754 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
755
756 mutex_lock(&dev->alu_mutex);
757
758 for (index = 0; index < dev->info->num_statics; index++) {
759 /* find empty slot first */
760 data = (index << shifts[ALU_STAT_INDEX]) |
761 masks[ALU_STAT_READ] | ALU_STAT_START;
762 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
763
764 /* wait to be finished */
765 ret = ksz9477_wait_alu_sta_ready(dev);
766 if (ret) {
767 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
768 goto exit;
769 }
770
771 /* read ALU static table */
772 ksz9477_read_table(dev, static_table);
773
774 if (static_table[0] & ALU_V_STATIC_VALID) {
775 /* check this has same vid & mac address */
776
777 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
778 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
779 static_table[3] == mac_lo) {
780 /* found matching one */
781 break;
782 }
783 }
784 }
785
786 /* no available entry */
787 if (index == dev->info->num_statics)
788 goto exit;
789
790 /* clear port */
791 static_table[1] &= ~BIT(port);
792
793 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
794 /* delete entry */
795 static_table[0] = 0;
796 static_table[1] = 0;
797 static_table[2] = 0;
798 static_table[3] = 0;
799 }
800
801 ksz9477_write_table(dev, static_table);
802
803 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
804 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
805
806 /* wait to be finished */
807 ret = ksz9477_wait_alu_sta_ready(dev);
808 if (ret)
809 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
810
811 exit:
812 mutex_unlock(&dev->alu_mutex);
813
814 return ret;
815 }
816
ksz9477_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)817 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
818 struct dsa_mall_mirror_tc_entry *mirror,
819 bool ingress, struct netlink_ext_ack *extack)
820 {
821 u8 data;
822 int p;
823
824 /* Limit to one sniffer port
825 * Check if any of the port is already set for sniffing
826 * If yes, instruct the user to remove the previous entry & exit
827 */
828 for (p = 0; p < dev->info->port_cnt; p++) {
829 /* Skip the current sniffing port */
830 if (p == mirror->to_local_port)
831 continue;
832
833 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
834
835 if (data & PORT_MIRROR_SNIFFER) {
836 NL_SET_ERR_MSG_MOD(extack,
837 "Sniffer port is already configured, delete existing rules & retry");
838 return -EBUSY;
839 }
840 }
841
842 if (ingress)
843 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
844 else
845 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
846
847 /* configure mirror port */
848 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
849 PORT_MIRROR_SNIFFER, true);
850
851 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
852
853 return 0;
854 }
855
ksz9477_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)856 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
857 struct dsa_mall_mirror_tc_entry *mirror)
858 {
859 bool in_use = false;
860 u8 data;
861 int p;
862
863 if (mirror->ingress)
864 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
865 else
866 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
867
868
869 /* Check if any of the port is still referring to sniffer port */
870 for (p = 0; p < dev->info->port_cnt; p++) {
871 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
872
873 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
874 in_use = true;
875 break;
876 }
877 }
878
879 /* delete sniffing if there are no other mirroring rules */
880 if (!in_use)
881 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
882 PORT_MIRROR_SNIFFER, false);
883 }
884
ksz9477_get_interface(struct ksz_device * dev,int port)885 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
886 {
887 phy_interface_t interface;
888 bool gbit;
889
890 if (dev->info->internal_phy[port])
891 return PHY_INTERFACE_MODE_NA;
892
893 gbit = ksz_get_gbit(dev, port);
894
895 interface = ksz_get_xmii(dev, port, gbit);
896
897 return interface;
898 }
899
ksz9477_port_mmd_write(struct ksz_device * dev,int port,u8 dev_addr,u16 reg_addr,u16 val)900 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
901 u8 dev_addr, u16 reg_addr, u16 val)
902 {
903 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
904 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
905 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
906 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
907 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
908 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
909 }
910
ksz9477_phy_errata_setup(struct ksz_device * dev,int port)911 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
912 {
913 /* Apply PHY settings to address errata listed in
914 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
915 * Silicon Errata and Data Sheet Clarification documents:
916 *
917 * Register settings are needed to improve PHY receive performance
918 */
919 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
920 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
921 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
922 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
923 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
924 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
925 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
926
927 /* Transmit waveform amplitude can be improved
928 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
929 */
930 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
931
932 /* Energy Efficient Ethernet (EEE) feature select must
933 * be manually disabled (except on KSZ8565 which is 100Mbit)
934 */
935 if (dev->info->gbit_capable[port])
936 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
937
938 /* Register settings are required to meet data sheet
939 * supply current specifications
940 */
941 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
942 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
943 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
944 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
945 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
946 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
947 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
948 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
949 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
950 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
951 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
952 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
953 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
954 }
955
ksz9477_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)956 void ksz9477_get_caps(struct ksz_device *dev, int port,
957 struct phylink_config *config)
958 {
959 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
960 MAC_SYM_PAUSE;
961
962 if (dev->info->gbit_capable[port])
963 config->mac_capabilities |= MAC_1000FD;
964 }
965
ksz9477_set_ageing_time(struct ksz_device * dev,unsigned int msecs)966 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
967 {
968 u32 secs = msecs / 1000;
969 u8 value;
970 u8 data;
971 int ret;
972
973 value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
974
975 ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
976 if (ret < 0)
977 return ret;
978
979 data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
980
981 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
982 if (ret < 0)
983 return ret;
984
985 value &= ~SW_AGE_CNT_M;
986 value |= FIELD_PREP(SW_AGE_CNT_M, data);
987
988 return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
989 }
990
ksz9477_port_setup(struct ksz_device * dev,int port,bool cpu_port)991 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
992 {
993 struct dsa_switch *ds = dev->ds;
994 u16 data16;
995 u8 member;
996
997 /* enable tag tail for host port */
998 if (cpu_port)
999 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1000 true);
1001
1002 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1003
1004 /* set back pressure */
1005 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1006
1007 /* enable broadcast storm limit */
1008 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1009
1010 /* disable DiffServ priority */
1011 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1012
1013 /* replace priority */
1014 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1015 false);
1016 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1017 MTI_PVID_REPLACE, false);
1018
1019 /* enable 802.1p priority */
1020 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1021
1022 if (dev->info->internal_phy[port]) {
1023 /* do not force flow control */
1024 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1025 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1026 false);
1027
1028 if (dev->info->phy_errata_9477)
1029 ksz9477_phy_errata_setup(dev, port);
1030 } else {
1031 /* force flow control */
1032 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1033 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1034 true);
1035 }
1036
1037 if (cpu_port)
1038 member = dsa_user_ports(ds);
1039 else
1040 member = BIT(dsa_upstream_port(ds, port));
1041
1042 ksz9477_cfg_port_member(dev, port, member);
1043
1044 /* clear pending interrupts */
1045 if (dev->info->internal_phy[port])
1046 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1047 }
1048
ksz9477_config_cpu_port(struct dsa_switch * ds)1049 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1050 {
1051 struct ksz_device *dev = ds->priv;
1052 struct ksz_port *p;
1053 int i;
1054
1055 for (i = 0; i < dev->info->port_cnt; i++) {
1056 if (dsa_is_cpu_port(ds, i) &&
1057 (dev->info->cpu_ports & (1 << i))) {
1058 phy_interface_t interface;
1059 const char *prev_msg;
1060 const char *prev_mode;
1061
1062 dev->cpu_port = i;
1063 p = &dev->ports[i];
1064
1065 /* Read from XMII register to determine host port
1066 * interface. If set specifically in device tree
1067 * note the difference to help debugging.
1068 */
1069 interface = ksz9477_get_interface(dev, i);
1070 if (!p->interface) {
1071 if (dev->compat_interface) {
1072 dev_warn(dev->dev,
1073 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1074 "Please update your device tree.\n",
1075 i);
1076 p->interface = dev->compat_interface;
1077 } else {
1078 p->interface = interface;
1079 }
1080 }
1081 if (interface && interface != p->interface) {
1082 prev_msg = " instead of ";
1083 prev_mode = phy_modes(interface);
1084 } else {
1085 prev_msg = "";
1086 prev_mode = "";
1087 }
1088 dev_info(dev->dev,
1089 "Port%d: using phy mode %s%s%s\n",
1090 i,
1091 phy_modes(p->interface),
1092 prev_msg,
1093 prev_mode);
1094
1095 /* enable cpu port */
1096 ksz9477_port_setup(dev, i, true);
1097 }
1098 }
1099
1100 for (i = 0; i < dev->info->port_cnt; i++) {
1101 if (i == dev->cpu_port)
1102 continue;
1103 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1104 }
1105 }
1106
ksz9477_enable_stp_addr(struct ksz_device * dev)1107 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1108 {
1109 const u32 *masks;
1110 u32 data;
1111 int ret;
1112
1113 masks = dev->info->masks;
1114
1115 /* Enable Reserved multicast table */
1116 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1117
1118 /* Set the Override bit for forwarding BPDU packet to CPU */
1119 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1120 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1121 if (ret < 0)
1122 return ret;
1123
1124 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1125
1126 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1127 if (ret < 0)
1128 return ret;
1129
1130 /* wait to be finished */
1131 ret = ksz9477_wait_alu_sta_ready(dev);
1132 if (ret < 0) {
1133 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1134 return ret;
1135 }
1136
1137 return 0;
1138 }
1139
ksz9477_setup(struct dsa_switch * ds)1140 int ksz9477_setup(struct dsa_switch *ds)
1141 {
1142 struct ksz_device *dev = ds->priv;
1143 int ret = 0;
1144
1145 /* Required for port partitioning. */
1146 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1147 true);
1148
1149 /* Do not work correctly with tail tagging. */
1150 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1151
1152 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1153 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1154
1155 /* Now we can configure default MTU value */
1156 ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1157 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1158 if (ret)
1159 return ret;
1160
1161 /* queue based egress rate limit */
1162 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1163
1164 /* enable global MIB counter freeze function */
1165 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1166
1167 return 0;
1168 }
1169
ksz9477_get_port_addr(int port,int offset)1170 u32 ksz9477_get_port_addr(int port, int offset)
1171 {
1172 return PORT_CTRL_ADDR(port, offset);
1173 }
1174
ksz9477_switch_init(struct ksz_device * dev)1175 int ksz9477_switch_init(struct ksz_device *dev)
1176 {
1177 u8 data8;
1178 int ret;
1179
1180 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1181
1182 /* turn off SPI DO Edge select */
1183 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1184 if (ret)
1185 return ret;
1186
1187 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1188 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1189 if (ret)
1190 return ret;
1191
1192 return 0;
1193 }
1194
ksz9477_switch_exit(struct ksz_device * dev)1195 void ksz9477_switch_exit(struct ksz_device *dev)
1196 {
1197 ksz9477_reset_switch(dev);
1198 }
1199
1200 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1201 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1202 MODULE_LICENSE("GPL");
1203