1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // mcp251xfd - Microchip MCP251xFD Family CAN controller driver
4 //
5 // Copyright (c) 2019, 2020, 2021 Pengutronix,
6 // Marc Kleine-Budde <kernel@pengutronix.de>
7 //
8 // Based on:
9 //
10 // CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
11 //
12 // Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
13 //
14
15 #include <asm/unaligned.h>
16
17 #include "mcp251xfd.h"
18 #include "mcp251xfd-ram.h"
19
20 static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv * priv,union mcp251xfd_write_reg_buf * write_reg_buf,const u16 reg,const u32 mask,const u32 val)21 mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
22 union mcp251xfd_write_reg_buf *write_reg_buf,
23 const u16 reg, const u32 mask, const u32 val)
24 {
25 u8 first_byte, last_byte, len;
26 u8 *data;
27 __le32 val_le32;
28
29 first_byte = mcp251xfd_first_byte_set(mask);
30 last_byte = mcp251xfd_last_byte_set(mask);
31 len = last_byte - first_byte + 1;
32
33 data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
34 val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
35 memcpy(data, &val_le32, len);
36
37 if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
38 u16 crc;
39
40 mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
41 len);
42 /* CRC */
43 len += sizeof(write_reg_buf->crc.cmd);
44 crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
45 put_unaligned_be16(crc, (void *)write_reg_buf + len);
46
47 /* Total length */
48 len += sizeof(write_reg_buf->crc.crc);
49 } else {
50 len += sizeof(write_reg_buf->nocrc.cmd);
51 }
52
53 return len;
54 }
55
56 static void
mcp251xfd_ring_init_tef(struct mcp251xfd_priv * priv,u16 * base)57 mcp251xfd_ring_init_tef(struct mcp251xfd_priv *priv, u16 *base)
58 {
59 struct mcp251xfd_tef_ring *tef_ring;
60 struct spi_transfer *xfer;
61 u32 val;
62 u16 addr;
63 u8 len;
64 int i;
65
66 /* TEF */
67 tef_ring = priv->tef;
68 tef_ring->head = 0;
69 tef_ring->tail = 0;
70
71 /* TEF- and TX-FIFO have same number of objects */
72 *base = mcp251xfd_get_tef_obj_addr(priv->tx->obj_num);
73
74 /* FIFO IRQ enable */
75 addr = MCP251XFD_REG_TEFCON;
76 val = MCP251XFD_REG_TEFCON_TEFOVIE | MCP251XFD_REG_TEFCON_TEFNEIE;
77
78 len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->irq_enable_buf,
79 addr, val, val);
80 tef_ring->irq_enable_xfer.tx_buf = &tef_ring->irq_enable_buf;
81 tef_ring->irq_enable_xfer.len = len;
82 spi_message_init_with_transfers(&tef_ring->irq_enable_msg,
83 &tef_ring->irq_enable_xfer, 1);
84
85 /* FIFO increment TEF tail pointer */
86 addr = MCP251XFD_REG_TEFCON;
87 val = MCP251XFD_REG_TEFCON_UINC;
88 len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
89 addr, val, val);
90
91 for (i = 0; i < ARRAY_SIZE(tef_ring->uinc_xfer); i++) {
92 xfer = &tef_ring->uinc_xfer[i];
93 xfer->tx_buf = &tef_ring->uinc_buf;
94 xfer->len = len;
95 xfer->cs_change = 1;
96 xfer->cs_change_delay.value = 0;
97 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
98 }
99
100 /* "cs_change == 1" on the last transfer results in an active
101 * chip select after the complete SPI message. This causes the
102 * controller to interpret the next register access as
103 * data. Set "cs_change" of the last transfer to "0" to
104 * properly deactivate the chip select at the end of the
105 * message.
106 */
107 xfer->cs_change = 0;
108
109 if (priv->tx_coalesce_usecs_irq || priv->tx_obj_num_coalesce_irq) {
110 val = MCP251XFD_REG_TEFCON_UINC |
111 MCP251XFD_REG_TEFCON_TEFOVIE |
112 MCP251XFD_REG_TEFCON_TEFHIE;
113
114 len = mcp251xfd_cmd_prepare_write_reg(priv,
115 &tef_ring->uinc_irq_disable_buf,
116 addr, val, val);
117 xfer->tx_buf = &tef_ring->uinc_irq_disable_buf;
118 xfer->len = len;
119 }
120 }
121
122 static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv * priv,const struct mcp251xfd_tx_ring * ring,struct mcp251xfd_tx_obj * tx_obj,const u8 rts_buf_len,const u8 n)123 mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
124 const struct mcp251xfd_tx_ring *ring,
125 struct mcp251xfd_tx_obj *tx_obj,
126 const u8 rts_buf_len,
127 const u8 n)
128 {
129 struct spi_transfer *xfer;
130 u16 addr;
131
132 /* FIFO load */
133 addr = mcp251xfd_get_tx_obj_addr(ring, n);
134 if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
135 mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
136 addr);
137 else
138 mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
139 addr);
140
141 xfer = &tx_obj->xfer[0];
142 xfer->tx_buf = &tx_obj->buf;
143 xfer->len = 0; /* actual len is assigned on the fly */
144 xfer->cs_change = 1;
145 xfer->cs_change_delay.value = 0;
146 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
147
148 /* FIFO request to send */
149 xfer = &tx_obj->xfer[1];
150 xfer->tx_buf = &ring->rts_buf;
151 xfer->len = rts_buf_len;
152
153 /* SPI message */
154 spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
155 ARRAY_SIZE(tx_obj->xfer));
156 }
157
158 static void
mcp251xfd_ring_init_tx(struct mcp251xfd_priv * priv,u16 * base,u8 * fifo_nr)159 mcp251xfd_ring_init_tx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
160 {
161 struct mcp251xfd_tx_ring *tx_ring;
162 struct mcp251xfd_tx_obj *tx_obj;
163 u32 val;
164 u16 addr;
165 u8 len;
166 int i;
167
168 tx_ring = priv->tx;
169 tx_ring->head = 0;
170 tx_ring->tail = 0;
171 tx_ring->base = *base;
172 tx_ring->nr = 0;
173 tx_ring->fifo_nr = *fifo_nr;
174
175 *base = mcp251xfd_get_tx_obj_addr(tx_ring, tx_ring->obj_num);
176 *fifo_nr += 1;
177
178 /* FIFO request to send */
179 addr = MCP251XFD_REG_FIFOCON(tx_ring->fifo_nr);
180 val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
181 len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
182 addr, val, val);
183
184 mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
185 mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
186 }
187
188 static void
mcp251xfd_ring_init_rx(struct mcp251xfd_priv * priv,u16 * base,u8 * fifo_nr)189 mcp251xfd_ring_init_rx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
190 {
191 struct mcp251xfd_rx_ring *rx_ring;
192 struct spi_transfer *xfer;
193 u32 val;
194 u16 addr;
195 u8 len;
196 int i, j;
197
198 mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
199 rx_ring->head = 0;
200 rx_ring->tail = 0;
201 rx_ring->base = *base;
202 rx_ring->nr = i;
203 rx_ring->fifo_nr = *fifo_nr;
204
205 *base = mcp251xfd_get_rx_obj_addr(rx_ring, rx_ring->obj_num);
206 *fifo_nr += 1;
207
208 /* FIFO IRQ enable */
209 addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
210 val = MCP251XFD_REG_FIFOCON_RXOVIE |
211 MCP251XFD_REG_FIFOCON_TFNRFNIE;
212 len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->irq_enable_buf,
213 addr, val, val);
214 rx_ring->irq_enable_xfer.tx_buf = &rx_ring->irq_enable_buf;
215 rx_ring->irq_enable_xfer.len = len;
216 spi_message_init_with_transfers(&rx_ring->irq_enable_msg,
217 &rx_ring->irq_enable_xfer, 1);
218
219 /* FIFO increment RX tail pointer */
220 val = MCP251XFD_REG_FIFOCON_UINC;
221 len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
222 addr, val, val);
223
224 for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
225 xfer = &rx_ring->uinc_xfer[j];
226 xfer->tx_buf = &rx_ring->uinc_buf;
227 xfer->len = len;
228 xfer->cs_change = 1;
229 xfer->cs_change_delay.value = 0;
230 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
231 }
232
233 /* "cs_change == 1" on the last transfer results in an
234 * active chip select after the complete SPI
235 * message. This causes the controller to interpret
236 * the next register access as data. Set "cs_change"
237 * of the last transfer to "0" to properly deactivate
238 * the chip select at the end of the message.
239 */
240 xfer->cs_change = 0;
241
242 /* Use 1st RX-FIFO for IRQ coalescing. If enabled
243 * (rx_coalesce_usecs_irq or rx_max_coalesce_frames_irq
244 * is activated), use the last transfer to disable:
245 *
246 * - TFNRFNIE (Receive FIFO Not Empty Interrupt)
247 *
248 * and enable:
249 *
250 * - TFHRFHIE (Receive FIFO Half Full Interrupt)
251 * - or -
252 * - TFERFFIE (Receive FIFO Full Interrupt)
253 *
254 * depending on rx_max_coalesce_frames_irq.
255 *
256 * The RXOVIE (Overflow Interrupt) is always enabled.
257 */
258 if (rx_ring->nr == 0 && (priv->rx_coalesce_usecs_irq ||
259 priv->rx_obj_num_coalesce_irq)) {
260 val = MCP251XFD_REG_FIFOCON_UINC |
261 MCP251XFD_REG_FIFOCON_RXOVIE;
262
263 if (priv->rx_obj_num_coalesce_irq == rx_ring->obj_num)
264 val |= MCP251XFD_REG_FIFOCON_TFERFFIE;
265 else if (priv->rx_obj_num_coalesce_irq)
266 val |= MCP251XFD_REG_FIFOCON_TFHRFHIE;
267
268 len = mcp251xfd_cmd_prepare_write_reg(priv,
269 &rx_ring->uinc_irq_disable_buf,
270 addr, val, val);
271 xfer->tx_buf = &rx_ring->uinc_irq_disable_buf;
272 xfer->len = len;
273 }
274 }
275 }
276
mcp251xfd_ring_init(struct mcp251xfd_priv * priv)277 int mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
278 {
279 const struct mcp251xfd_rx_ring *rx_ring;
280 u16 base = 0, ram_used;
281 u8 fifo_nr = 1;
282 int i;
283
284 netdev_reset_queue(priv->ndev);
285
286 mcp251xfd_ring_init_tef(priv, &base);
287 mcp251xfd_ring_init_rx(priv, &base, &fifo_nr);
288 mcp251xfd_ring_init_tx(priv, &base, &fifo_nr);
289
290 /* mcp251xfd_handle_rxif() will iterate over all RX rings.
291 * Rings with their corresponding bit set in
292 * priv->regs_status.rxif are read out.
293 *
294 * If the chip is configured for only 1 RX-FIFO, and if there
295 * is an RX interrupt pending (RXIF in INT register is set),
296 * it must be the 1st RX-FIFO.
297 *
298 * We mark the RXIF of the 1st FIFO as pending here, so that
299 * we can skip the read of the RXIF register in
300 * mcp251xfd_read_regs_status() for the 1 RX-FIFO only case.
301 *
302 * If we use more than 1 RX-FIFO, this value gets overwritten
303 * in mcp251xfd_read_regs_status(), so set it unconditionally
304 * here.
305 */
306 priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr);
307
308 if (priv->tx_obj_num_coalesce_irq) {
309 netdev_dbg(priv->ndev,
310 "FIFO setup: TEF: 0x%03x: %2d*%zu bytes = %4zu bytes (coalesce)\n",
311 mcp251xfd_get_tef_obj_addr(0),
312 priv->tx_obj_num_coalesce_irq,
313 sizeof(struct mcp251xfd_hw_tef_obj),
314 priv->tx_obj_num_coalesce_irq *
315 sizeof(struct mcp251xfd_hw_tef_obj));
316
317 netdev_dbg(priv->ndev,
318 " 0x%03x: %2d*%zu bytes = %4zu bytes\n",
319 mcp251xfd_get_tef_obj_addr(priv->tx_obj_num_coalesce_irq),
320 priv->tx->obj_num - priv->tx_obj_num_coalesce_irq,
321 sizeof(struct mcp251xfd_hw_tef_obj),
322 (priv->tx->obj_num - priv->tx_obj_num_coalesce_irq) *
323 sizeof(struct mcp251xfd_hw_tef_obj));
324 } else {
325 netdev_dbg(priv->ndev,
326 "FIFO setup: TEF: 0x%03x: %2d*%zu bytes = %4zu bytes\n",
327 mcp251xfd_get_tef_obj_addr(0),
328 priv->tx->obj_num, sizeof(struct mcp251xfd_hw_tef_obj),
329 priv->tx->obj_num * sizeof(struct mcp251xfd_hw_tef_obj));
330 }
331
332 mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
333 if (rx_ring->nr == 0 && priv->rx_obj_num_coalesce_irq) {
334 netdev_dbg(priv->ndev,
335 "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes (coalesce)\n",
336 rx_ring->nr, rx_ring->fifo_nr,
337 mcp251xfd_get_rx_obj_addr(rx_ring, 0),
338 priv->rx_obj_num_coalesce_irq, rx_ring->obj_size,
339 priv->rx_obj_num_coalesce_irq * rx_ring->obj_size);
340
341 if (priv->rx_obj_num_coalesce_irq == MCP251XFD_FIFO_DEPTH)
342 continue;
343
344 netdev_dbg(priv->ndev,
345 " 0x%03x: %2u*%u bytes = %4u bytes\n",
346 mcp251xfd_get_rx_obj_addr(rx_ring,
347 priv->rx_obj_num_coalesce_irq),
348 rx_ring->obj_num - priv->rx_obj_num_coalesce_irq,
349 rx_ring->obj_size,
350 (rx_ring->obj_num - priv->rx_obj_num_coalesce_irq) *
351 rx_ring->obj_size);
352 } else {
353 netdev_dbg(priv->ndev,
354 "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
355 rx_ring->nr, rx_ring->fifo_nr,
356 mcp251xfd_get_rx_obj_addr(rx_ring, 0),
357 rx_ring->obj_num, rx_ring->obj_size,
358 rx_ring->obj_num * rx_ring->obj_size);
359 }
360 }
361
362 netdev_dbg(priv->ndev,
363 "FIFO setup: TX: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
364 priv->tx->fifo_nr,
365 mcp251xfd_get_tx_obj_addr(priv->tx, 0),
366 priv->tx->obj_num, priv->tx->obj_size,
367 priv->tx->obj_num * priv->tx->obj_size);
368
369 netdev_dbg(priv->ndev,
370 "FIFO setup: free: %4d bytes\n",
371 MCP251XFD_RAM_SIZE - (base - MCP251XFD_RAM_START));
372
373 ram_used = base - MCP251XFD_RAM_START;
374 if (ram_used > MCP251XFD_RAM_SIZE) {
375 netdev_err(priv->ndev,
376 "Error during ring configuration, using more RAM (%u bytes) than available (%u bytes).\n",
377 ram_used, MCP251XFD_RAM_SIZE);
378 return -ENOMEM;
379 }
380
381 return 0;
382 }
383
mcp251xfd_ring_free(struct mcp251xfd_priv * priv)384 void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
385 {
386 int i;
387
388 for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
389 kfree(priv->rx[i]);
390 priv->rx[i] = NULL;
391 }
392 }
393
mcp251xfd_rx_irq_timer(struct hrtimer * t)394 static enum hrtimer_restart mcp251xfd_rx_irq_timer(struct hrtimer *t)
395 {
396 struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv,
397 rx_irq_timer);
398 struct mcp251xfd_rx_ring *ring = priv->rx[0];
399
400 if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags))
401 return HRTIMER_NORESTART;
402
403 spi_async(priv->spi, &ring->irq_enable_msg);
404
405 return HRTIMER_NORESTART;
406 }
407
mcp251xfd_tx_irq_timer(struct hrtimer * t)408 static enum hrtimer_restart mcp251xfd_tx_irq_timer(struct hrtimer *t)
409 {
410 struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv,
411 tx_irq_timer);
412 struct mcp251xfd_tef_ring *ring = priv->tef;
413
414 if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags))
415 return HRTIMER_NORESTART;
416
417 spi_async(priv->spi, &ring->irq_enable_msg);
418
419 return HRTIMER_NORESTART;
420 }
421
422 const struct can_ram_config mcp251xfd_ram_config = {
423 .rx = {
424 .size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_rx_obj_can),
425 .size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_rx_obj_canfd),
426 .min = MCP251XFD_RX_OBJ_NUM_MIN,
427 .max = MCP251XFD_RX_OBJ_NUM_MAX,
428 .def[CAN_RAM_MODE_CAN] = CAN_RAM_NUM_MAX,
429 .def[CAN_RAM_MODE_CANFD] = CAN_RAM_NUM_MAX,
430 .fifo_num = MCP251XFD_FIFO_RX_NUM,
431 .fifo_depth_min = MCP251XFD_RX_FIFO_DEPTH_MIN,
432 .fifo_depth_coalesce_min = MCP251XFD_RX_FIFO_DEPTH_COALESCE_MIN,
433 },
434 .tx = {
435 .size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_tef_obj) +
436 sizeof(struct mcp251xfd_hw_tx_obj_can),
437 .size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_tef_obj) +
438 sizeof(struct mcp251xfd_hw_tx_obj_canfd),
439 .min = MCP251XFD_TX_OBJ_NUM_MIN,
440 .max = MCP251XFD_TX_OBJ_NUM_MAX,
441 .def[CAN_RAM_MODE_CAN] = MCP251XFD_TX_OBJ_NUM_CAN_DEFAULT,
442 .def[CAN_RAM_MODE_CANFD] = MCP251XFD_TX_OBJ_NUM_CANFD_DEFAULT,
443 .fifo_num = MCP251XFD_FIFO_TX_NUM,
444 .fifo_depth_min = MCP251XFD_TX_FIFO_DEPTH_MIN,
445 .fifo_depth_coalesce_min = MCP251XFD_TX_FIFO_DEPTH_COALESCE_MIN,
446 },
447 .size = MCP251XFD_RAM_SIZE,
448 .fifo_depth = MCP251XFD_FIFO_DEPTH,
449 };
450
mcp251xfd_ring_alloc(struct mcp251xfd_priv * priv)451 int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
452 {
453 const bool fd_mode = mcp251xfd_is_fd_mode(priv);
454 struct mcp251xfd_tx_ring *tx_ring = priv->tx;
455 struct mcp251xfd_rx_ring *rx_ring;
456 u8 tx_obj_size, rx_obj_size;
457 u8 rem, i;
458
459 /* switching from CAN-2.0 to CAN-FD mode or vice versa */
460 if (fd_mode != test_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags)) {
461 struct can_ram_layout layout;
462
463 can_ram_get_layout(&layout, &mcp251xfd_ram_config, NULL, NULL, fd_mode);
464 priv->rx_obj_num = layout.default_rx;
465 tx_ring->obj_num = layout.default_tx;
466 }
467
468 if (fd_mode) {
469 tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
470 rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
471 set_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags);
472 } else {
473 tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
474 rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
475 clear_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags);
476 }
477
478 tx_ring->obj_size = tx_obj_size;
479
480 rem = priv->rx_obj_num;
481 for (i = 0; i < ARRAY_SIZE(priv->rx) && rem; i++) {
482 u8 rx_obj_num;
483
484 if (i == 0 && priv->rx_obj_num_coalesce_irq)
485 rx_obj_num = min_t(u8, priv->rx_obj_num_coalesce_irq * 2,
486 MCP251XFD_FIFO_DEPTH);
487 else
488 rx_obj_num = min_t(u8, rounddown_pow_of_two(rem),
489 MCP251XFD_FIFO_DEPTH);
490 rem -= rx_obj_num;
491
492 rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
493 GFP_KERNEL);
494 if (!rx_ring) {
495 mcp251xfd_ring_free(priv);
496 return -ENOMEM;
497 }
498
499 rx_ring->obj_num = rx_obj_num;
500 rx_ring->obj_size = rx_obj_size;
501 priv->rx[i] = rx_ring;
502 }
503 priv->rx_ring_num = i;
504
505 hrtimer_init(&priv->rx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
506 priv->rx_irq_timer.function = mcp251xfd_rx_irq_timer;
507
508 hrtimer_init(&priv->tx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
509 priv->tx_irq_timer.function = mcp251xfd_tx_irq_timer;
510
511 return 0;
512 }
513