1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28 * This is a device driver for the NAND flash controller found on the
29 * various DaVinci family chips. It handles up to four SoC chipselects,
30 * and some flavors of secondary chipselect (e.g. based on A12) as used
31 * with multichip packages.
32 *
33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 * available on chips like the DM355 and OMAP-L137 and needed with the
35 * more error-prone MLC NAND chips.
36 *
37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38 * outputs in a "wire-AND" configuration, with no per-chip signals.
39 */
40 struct davinci_nand_info {
41 struct nand_controller controller;
42 struct nand_chip chip;
43
44 struct platform_device *pdev;
45
46 bool is_readmode;
47
48 void __iomem *base;
49 void __iomem *vaddr;
50
51 void __iomem *current_cs;
52
53 uint32_t mask_chipsel;
54 uint32_t mask_ale;
55 uint32_t mask_cle;
56
57 uint32_t core_chipsel;
58
59 struct davinci_aemif_timing *timing;
60 };
61
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
64
to_davinci_nand(struct mtd_info * mtd)65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66 {
67 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68 }
69
davinci_nand_readl(struct davinci_nand_info * info,int offset)70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71 int offset)
72 {
73 return __raw_readl(info->base + offset);
74 }
75
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77 int offset, unsigned long value)
78 {
79 __raw_writel(value, info->base + offset);
80 }
81
82 /*----------------------------------------------------------------------*/
83
84 /*
85 * 1-bit hardware ECC ... context maintained for each core chipselect
86 */
87
nand_davinci_readecc_1bit(struct mtd_info * mtd)88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89 {
90 struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92 return davinci_nand_readl(info, NANDF1ECC_OFFSET
93 + 4 * info->core_chipsel);
94 }
95
nand_davinci_hwctl_1bit(struct nand_chip * chip,int mode)96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 {
98 struct davinci_nand_info *info;
99 uint32_t nandcfr;
100 unsigned long flags;
101
102 info = to_davinci_nand(nand_to_mtd(chip));
103
104 /* Reset ECC hardware */
105 nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107 spin_lock_irqsave(&davinci_nand_lock, flags);
108
109 /* Restart ECC hardware */
110 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111 nandcfr |= BIT(8 + info->core_chipsel);
112 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114 spin_unlock_irqrestore(&davinci_nand_lock, flags);
115 }
116
117 /*
118 * Read hardware ECC value and pack into three bytes
119 */
nand_davinci_calculate_1bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121 const u_char *dat, u_char *ecc_code)
122 {
123 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126 /* invert so that erased block ecc is correct */
127 ecc24 = ~ecc24;
128 ecc_code[0] = (u_char)(ecc24);
129 ecc_code[1] = (u_char)(ecc24 >> 8);
130 ecc_code[2] = (u_char)(ecc24 >> 16);
131
132 return 0;
133 }
134
nand_davinci_correct_1bit(struct nand_chip * chip,u_char * dat,u_char * read_ecc,u_char * calc_ecc)135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136 u_char *read_ecc, u_char *calc_ecc)
137 {
138 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139 (read_ecc[2] << 16);
140 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141 (calc_ecc[2] << 16);
142 uint32_t diff = eccCalc ^ eccNand;
143
144 if (diff) {
145 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146 /* Correctable error */
147 if ((diff >> (12 + 3)) < chip->ecc.size) {
148 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149 return 1;
150 } else {
151 return -EBADMSG;
152 }
153 } else if (!(diff & (diff - 1))) {
154 /* Single bit ECC error in the ECC itself,
155 * nothing to fix */
156 return 1;
157 } else {
158 /* Uncorrectable error */
159 return -EBADMSG;
160 }
161
162 }
163 return 0;
164 }
165
166 /*----------------------------------------------------------------------*/
167
168 /*
169 * 4-bit hardware ECC ... context maintained over entire AEMIF
170 *
171 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172 * since that forces use of a problematic "infix OOB" layout.
173 * Among other things, it trashes manufacturer bad block markers.
174 * Also, and specific to this hardware, it ECC-protects the "prepad"
175 * in the OOB ... while having ECC protection for parts of OOB would
176 * seem useful, the current MTD stack sometimes wants to update the
177 * OOB without recomputing ECC.
178 */
179
nand_davinci_hwctl_4bit(struct nand_chip * chip,int mode)180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181 {
182 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183 unsigned long flags;
184 u32 val;
185
186 /* Reset ECC hardware */
187 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189 spin_lock_irqsave(&davinci_nand_lock, flags);
190
191 /* Start 4-bit ECC calculation for read/write */
192 val = davinci_nand_readl(info, NANDFCR_OFFSET);
193 val &= ~(0x03 << 4);
194 val |= (info->core_chipsel << 4) | BIT(12);
195 davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197 info->is_readmode = (mode == NAND_ECC_READ);
198
199 spin_unlock_irqrestore(&davinci_nand_lock, flags);
200 }
201
202 /* Read raw ECC code after writing to NAND. */
203 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205 {
206 const u32 mask = 0x03ff03ff;
207
208 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212 }
213
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216 const u_char *dat, u_char *ecc_code)
217 {
218 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219 u32 raw_ecc[4], *p;
220 unsigned i;
221
222 /* After a read, terminate ECC calculation by a dummy read
223 * of some 4-bit ECC register. ECC covers everything that
224 * was read; correct() just uses the hardware state, so
225 * ecc_code is not needed.
226 */
227 if (info->is_readmode) {
228 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229 return 0;
230 }
231
232 /* Pack eight raw 10-bit ecc values into ten bytes, making
233 * two passes which each convert four values (in upper and
234 * lower halves of two 32-bit words) into five bytes. The
235 * ROM boot loader uses this same packing scheme.
236 */
237 nand_davinci_readecc_4bit(info, raw_ecc);
238 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239 *ecc_code++ = p[0] & 0xff;
240 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
241 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
242 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243 *ecc_code++ = (p[1] >> 18) & 0xff;
244 }
245
246 return 0;
247 }
248
249 /* Correct up to 4 bits in data we just read, using state left in the
250 * hardware plus the ecc_code computed when it was first written.
251 */
nand_davinci_correct_4bit(struct nand_chip * chip,u_char * data,u_char * ecc_code,u_char * null)252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253 u_char *ecc_code, u_char *null)
254 {
255 int i;
256 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257 unsigned short ecc10[8];
258 unsigned short *ecc16;
259 u32 syndrome[4];
260 u32 ecc_state;
261 unsigned num_errors, corrected;
262 unsigned long timeo;
263
264 /* Unpack ten bytes into eight 10 bit values. We know we're
265 * little-endian, and use type punning for less shifting/masking.
266 */
267 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268 return -EINVAL;
269 ecc16 = (unsigned short *)ecc_code;
270
271 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
272 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
274 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
275 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
276 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
277 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
278 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
279
280 /* Tell ECC controller about the expected ECC codes. */
281 for (i = 7; i >= 0; i--)
282 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284 /* Allow time for syndrome calculation ... then read it.
285 * A syndrome of all zeroes 0 means no detected errors.
286 */
287 davinci_nand_readl(info, NANDFSR_OFFSET);
288 nand_davinci_readecc_4bit(info, syndrome);
289 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290 return 0;
291
292 /*
293 * Clear any previous address calculation by doing a dummy read of an
294 * error address register.
295 */
296 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298 /* Start address calculation, and wait for it to complete.
299 * We _could_ start reading more data while this is working,
300 * to speed up the overall page read.
301 */
302 davinci_nand_writel(info, NANDFCR_OFFSET,
303 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305 /*
306 * ECC_STATE field reads 0x3 (Error correction complete) immediately
307 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308 * begin trying to poll for the state, you may fall right out of your
309 * loop without any of the correction calculations having taken place.
310 * The recommendation from the hardware team is to initially delay as
311 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312 * correction state.
313 */
314 timeo = jiffies + usecs_to_jiffies(100);
315 do {
316 ecc_state = (davinci_nand_readl(info,
317 NANDFSR_OFFSET) >> 8) & 0x0f;
318 cpu_relax();
319 } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321 for (;;) {
322 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324 switch ((fsr >> 8) & 0x0f) {
325 case 0: /* no error, should not happen */
326 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327 return 0;
328 case 1: /* five or more errors detected */
329 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330 return -EBADMSG;
331 case 2: /* error addresses computed */
332 case 3:
333 num_errors = 1 + ((fsr >> 16) & 0x03);
334 goto correct;
335 default: /* still working on it */
336 cpu_relax();
337 continue;
338 }
339 }
340
341 correct:
342 /* correct each error */
343 for (i = 0, corrected = 0; i < num_errors; i++) {
344 int error_address, error_value;
345
346 if (i > 1) {
347 error_address = davinci_nand_readl(info,
348 NAND_ERR_ADD2_OFFSET);
349 error_value = davinci_nand_readl(info,
350 NAND_ERR_ERRVAL2_OFFSET);
351 } else {
352 error_address = davinci_nand_readl(info,
353 NAND_ERR_ADD1_OFFSET);
354 error_value = davinci_nand_readl(info,
355 NAND_ERR_ERRVAL1_OFFSET);
356 }
357
358 if (i & 1) {
359 error_address >>= 16;
360 error_value >>= 16;
361 }
362 error_address &= 0x3ff;
363 error_address = (512 + 7) - error_address;
364
365 if (error_address < 512) {
366 data[error_address] ^= error_value;
367 corrected++;
368 }
369 }
370
371 return corrected;
372 }
373
374 /*----------------------------------------------------------------------*/
375
376 /* An ECC layout for using 4-bit ECC with small-page flash, storing
377 * ten ECC bytes plus the manufacturer's bad block marker byte, and
378 * and not overlapping the default BBT markers.
379 */
hwecc4_ooblayout_small_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)380 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
381 struct mtd_oob_region *oobregion)
382 {
383 if (section > 2)
384 return -ERANGE;
385
386 if (!section) {
387 oobregion->offset = 0;
388 oobregion->length = 5;
389 } else if (section == 1) {
390 oobregion->offset = 6;
391 oobregion->length = 2;
392 } else {
393 oobregion->offset = 13;
394 oobregion->length = 3;
395 }
396
397 return 0;
398 }
399
hwecc4_ooblayout_small_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)400 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
401 struct mtd_oob_region *oobregion)
402 {
403 if (section > 1)
404 return -ERANGE;
405
406 if (!section) {
407 oobregion->offset = 8;
408 oobregion->length = 5;
409 } else {
410 oobregion->offset = 16;
411 oobregion->length = mtd->oobsize - 16;
412 }
413
414 return 0;
415 }
416
417 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
418 .ecc = hwecc4_ooblayout_small_ecc,
419 .free = hwecc4_ooblayout_small_free,
420 };
421
422 #if defined(CONFIG_OF)
423 static const struct of_device_id davinci_nand_of_match[] = {
424 {.compatible = "ti,davinci-nand", },
425 {.compatible = "ti,keystone-nand", },
426 {},
427 };
428 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
429
430 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)431 *nand_davinci_get_pdata(struct platform_device *pdev)
432 {
433 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
434 struct davinci_nand_pdata *pdata;
435 const char *mode;
436 u32 prop;
437
438 pdata = devm_kzalloc(&pdev->dev,
439 sizeof(struct davinci_nand_pdata),
440 GFP_KERNEL);
441 pdev->dev.platform_data = pdata;
442 if (!pdata)
443 return ERR_PTR(-ENOMEM);
444 if (!of_property_read_u32(pdev->dev.of_node,
445 "ti,davinci-chipselect", &prop))
446 pdata->core_chipsel = prop;
447 else
448 return ERR_PTR(-EINVAL);
449
450 if (!of_property_read_u32(pdev->dev.of_node,
451 "ti,davinci-mask-ale", &prop))
452 pdata->mask_ale = prop;
453 if (!of_property_read_u32(pdev->dev.of_node,
454 "ti,davinci-mask-cle", &prop))
455 pdata->mask_cle = prop;
456 if (!of_property_read_u32(pdev->dev.of_node,
457 "ti,davinci-mask-chipsel", &prop))
458 pdata->mask_chipsel = prop;
459 if (!of_property_read_string(pdev->dev.of_node,
460 "ti,davinci-ecc-mode", &mode)) {
461 if (!strncmp("none", mode, 4))
462 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
463 if (!strncmp("soft", mode, 4))
464 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
465 if (!strncmp("hw", mode, 2))
466 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
467 }
468 if (!of_property_read_u32(pdev->dev.of_node,
469 "ti,davinci-ecc-bits", &prop))
470 pdata->ecc_bits = prop;
471
472 if (!of_property_read_u32(pdev->dev.of_node,
473 "ti,davinci-nand-buswidth", &prop) && prop == 16)
474 pdata->options |= NAND_BUSWIDTH_16;
475
476 if (of_property_read_bool(pdev->dev.of_node,
477 "ti,davinci-nand-use-bbt"))
478 pdata->bbt_options = NAND_BBT_USE_FLASH;
479
480 /*
481 * Since kernel v4.8, this driver has been fixed to enable
482 * use of 4-bit hardware ECC with subpages and verified on
483 * TI's keystone EVMs (K2L, K2HK and K2E).
484 * However, in the interest of not breaking systems using
485 * existing UBI partitions, sub-page writes are not being
486 * (re)enabled. If you want to use subpage writes on Keystone
487 * platforms (i.e. do not have any existing UBI partitions),
488 * then use "ti,davinci-nand" as the compatible in your
489 * device-tree file.
490 */
491 if (of_device_is_compatible(pdev->dev.of_node,
492 "ti,keystone-nand")) {
493 pdata->options |= NAND_NO_SUBPAGE_WRITE;
494 }
495 }
496
497 return dev_get_platdata(&pdev->dev);
498 }
499 #else
500 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)501 *nand_davinci_get_pdata(struct platform_device *pdev)
502 {
503 return dev_get_platdata(&pdev->dev);
504 }
505 #endif
506
davinci_nand_attach_chip(struct nand_chip * chip)507 static int davinci_nand_attach_chip(struct nand_chip *chip)
508 {
509 struct mtd_info *mtd = nand_to_mtd(chip);
510 struct davinci_nand_info *info = to_davinci_nand(mtd);
511 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
512 int ret = 0;
513
514 if (IS_ERR(pdata))
515 return PTR_ERR(pdata);
516
517 /* Use board-specific ECC config */
518 chip->ecc.engine_type = pdata->engine_type;
519 chip->ecc.placement = pdata->ecc_placement;
520
521 switch (chip->ecc.engine_type) {
522 case NAND_ECC_ENGINE_TYPE_NONE:
523 pdata->ecc_bits = 0;
524 break;
525 case NAND_ECC_ENGINE_TYPE_SOFT:
526 pdata->ecc_bits = 0;
527 /*
528 * This driver expects Hamming based ECC when engine_type is set
529 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
530 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
531 * field to davinci_nand_pdata.
532 */
533 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
534 break;
535 case NAND_ECC_ENGINE_TYPE_ON_HOST:
536 if (pdata->ecc_bits == 4) {
537 int chunks = mtd->writesize / 512;
538
539 if (!chunks || mtd->oobsize < 16) {
540 dev_dbg(&info->pdev->dev, "too small\n");
541 return -EINVAL;
542 }
543
544 /*
545 * No sanity checks: CPUs must support this,
546 * and the chips may not use NAND_BUSWIDTH_16.
547 */
548
549 /* No sharing 4-bit hardware between chipselects yet */
550 spin_lock_irq(&davinci_nand_lock);
551 if (ecc4_busy)
552 ret = -EBUSY;
553 else
554 ecc4_busy = true;
555 spin_unlock_irq(&davinci_nand_lock);
556
557 if (ret == -EBUSY)
558 return ret;
559
560 chip->ecc.calculate = nand_davinci_calculate_4bit;
561 chip->ecc.correct = nand_davinci_correct_4bit;
562 chip->ecc.hwctl = nand_davinci_hwctl_4bit;
563 chip->ecc.bytes = 10;
564 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
565 chip->ecc.algo = NAND_ECC_ALGO_BCH;
566
567 /*
568 * Update ECC layout if needed ... for 1-bit HW ECC, the
569 * default is OK, but it allocates 6 bytes when only 3
570 * are needed (for each 512 bytes). For 4-bit HW ECC,
571 * the default is not usable: 10 bytes needed, not 6.
572 *
573 * For small page chips, preserve the manufacturer's
574 * badblock marking data ... and make sure a flash BBT
575 * table marker fits in the free bytes.
576 */
577 if (chunks == 1) {
578 mtd_set_ooblayout(mtd,
579 &hwecc4_small_ooblayout_ops);
580 } else if (chunks == 4 || chunks == 8) {
581 mtd_set_ooblayout(mtd,
582 nand_get_large_page_ooblayout());
583 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
584 } else {
585 return -EIO;
586 }
587 } else {
588 /* 1bit ecc hamming */
589 chip->ecc.calculate = nand_davinci_calculate_1bit;
590 chip->ecc.correct = nand_davinci_correct_1bit;
591 chip->ecc.hwctl = nand_davinci_hwctl_1bit;
592 chip->ecc.bytes = 3;
593 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
594 }
595 chip->ecc.size = 512;
596 chip->ecc.strength = pdata->ecc_bits;
597 break;
598 default:
599 return -EINVAL;
600 }
601
602 return ret;
603 }
604
nand_davinci_data_in(struct davinci_nand_info * info,void * buf,unsigned int len,bool force_8bit)605 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
606 unsigned int len, bool force_8bit)
607 {
608 u32 alignment = ((uintptr_t)buf | len) & 3;
609
610 if (force_8bit || (alignment & 1))
611 ioread8_rep(info->current_cs, buf, len);
612 else if (alignment & 3)
613 ioread16_rep(info->current_cs, buf, len >> 1);
614 else
615 ioread32_rep(info->current_cs, buf, len >> 2);
616 }
617
nand_davinci_data_out(struct davinci_nand_info * info,const void * buf,unsigned int len,bool force_8bit)618 static void nand_davinci_data_out(struct davinci_nand_info *info,
619 const void *buf, unsigned int len,
620 bool force_8bit)
621 {
622 u32 alignment = ((uintptr_t)buf | len) & 3;
623
624 if (force_8bit || (alignment & 1))
625 iowrite8_rep(info->current_cs, buf, len);
626 else if (alignment & 3)
627 iowrite16_rep(info->current_cs, buf, len >> 1);
628 else
629 iowrite32_rep(info->current_cs, buf, len >> 2);
630 }
631
davinci_nand_exec_instr(struct davinci_nand_info * info,const struct nand_op_instr * instr)632 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
633 const struct nand_op_instr *instr)
634 {
635 unsigned int i, timeout_us;
636 u32 status;
637 int ret;
638
639 switch (instr->type) {
640 case NAND_OP_CMD_INSTR:
641 iowrite8(instr->ctx.cmd.opcode,
642 info->current_cs + info->mask_cle);
643 break;
644
645 case NAND_OP_ADDR_INSTR:
646 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
647 iowrite8(instr->ctx.addr.addrs[i],
648 info->current_cs + info->mask_ale);
649 }
650 break;
651
652 case NAND_OP_DATA_IN_INSTR:
653 nand_davinci_data_in(info, instr->ctx.data.buf.in,
654 instr->ctx.data.len,
655 instr->ctx.data.force_8bit);
656 break;
657
658 case NAND_OP_DATA_OUT_INSTR:
659 nand_davinci_data_out(info, instr->ctx.data.buf.out,
660 instr->ctx.data.len,
661 instr->ctx.data.force_8bit);
662 break;
663
664 case NAND_OP_WAITRDY_INSTR:
665 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
666 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
667 status, status & BIT(0), 100,
668 timeout_us);
669 if (ret)
670 return ret;
671
672 break;
673 }
674
675 if (instr->delay_ns)
676 ndelay(instr->delay_ns);
677
678 return 0;
679 }
680
davinci_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)681 static int davinci_nand_exec_op(struct nand_chip *chip,
682 const struct nand_operation *op,
683 bool check_only)
684 {
685 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
686 unsigned int i;
687
688 if (check_only)
689 return 0;
690
691 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
692
693 for (i = 0; i < op->ninstrs; i++) {
694 int ret;
695
696 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
697 if (ret)
698 return ret;
699 }
700
701 return 0;
702 }
703
704 static const struct nand_controller_ops davinci_nand_controller_ops = {
705 .attach_chip = davinci_nand_attach_chip,
706 .exec_op = davinci_nand_exec_op,
707 };
708
nand_davinci_probe(struct platform_device * pdev)709 static int nand_davinci_probe(struct platform_device *pdev)
710 {
711 struct davinci_nand_pdata *pdata;
712 struct davinci_nand_info *info;
713 struct resource *res1;
714 struct resource *res2;
715 void __iomem *vaddr;
716 void __iomem *base;
717 int ret;
718 uint32_t val;
719 struct mtd_info *mtd;
720
721 pdata = nand_davinci_get_pdata(pdev);
722 if (IS_ERR(pdata))
723 return PTR_ERR(pdata);
724
725 /* insist on board-specific configuration */
726 if (!pdata)
727 return -ENODEV;
728
729 /* which external chipselect will we be managing? */
730 if (pdata->core_chipsel > 3)
731 return -ENODEV;
732
733 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
734 if (!info)
735 return -ENOMEM;
736
737 platform_set_drvdata(pdev, info);
738
739 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
740 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
741 if (!res1 || !res2) {
742 dev_err(&pdev->dev, "resource missing\n");
743 return -EINVAL;
744 }
745
746 vaddr = devm_ioremap_resource(&pdev->dev, res1);
747 if (IS_ERR(vaddr))
748 return PTR_ERR(vaddr);
749
750 /*
751 * This registers range is used to setup NAND settings. In case with
752 * TI AEMIF driver, the same memory address range is requested already
753 * by AEMIF, so we cannot request it twice, just ioremap.
754 * The AEMIF and NAND drivers not use the same registers in this range.
755 */
756 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
757 if (!base) {
758 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
759 return -EADDRNOTAVAIL;
760 }
761
762 info->pdev = pdev;
763 info->base = base;
764 info->vaddr = vaddr;
765
766 mtd = nand_to_mtd(&info->chip);
767 mtd->dev.parent = &pdev->dev;
768 nand_set_flash_node(&info->chip, pdev->dev.of_node);
769
770 /* options such as NAND_BBT_USE_FLASH */
771 info->chip.bbt_options = pdata->bbt_options;
772 /* options such as 16-bit widths */
773 info->chip.options = pdata->options;
774 info->chip.bbt_td = pdata->bbt_td;
775 info->chip.bbt_md = pdata->bbt_md;
776 info->timing = pdata->timing;
777
778 info->current_cs = info->vaddr;
779 info->core_chipsel = pdata->core_chipsel;
780 info->mask_chipsel = pdata->mask_chipsel;
781
782 /* use nandboot-capable ALE/CLE masks by default */
783 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
784 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
785
786 spin_lock_irq(&davinci_nand_lock);
787
788 /* put CSxNAND into NAND mode */
789 val = davinci_nand_readl(info, NANDFCR_OFFSET);
790 val |= BIT(info->core_chipsel);
791 davinci_nand_writel(info, NANDFCR_OFFSET, val);
792
793 spin_unlock_irq(&davinci_nand_lock);
794
795 /* Scan to find existence of the device(s) */
796 nand_controller_init(&info->controller);
797 info->controller.ops = &davinci_nand_controller_ops;
798 info->chip.controller = &info->controller;
799 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
800 if (ret < 0) {
801 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
802 return ret;
803 }
804
805 if (pdata->parts)
806 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
807 else
808 ret = mtd_device_register(mtd, NULL, 0);
809 if (ret < 0)
810 goto err_cleanup_nand;
811
812 val = davinci_nand_readl(info, NRCSR_OFFSET);
813 dev_info(&pdev->dev, "controller rev. %d.%d\n",
814 (val >> 8) & 0xff, val & 0xff);
815
816 return 0;
817
818 err_cleanup_nand:
819 nand_cleanup(&info->chip);
820
821 return ret;
822 }
823
nand_davinci_remove(struct platform_device * pdev)824 static int nand_davinci_remove(struct platform_device *pdev)
825 {
826 struct davinci_nand_info *info = platform_get_drvdata(pdev);
827 struct nand_chip *chip = &info->chip;
828 int ret;
829
830 spin_lock_irq(&davinci_nand_lock);
831 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
832 ecc4_busy = false;
833 spin_unlock_irq(&davinci_nand_lock);
834
835 ret = mtd_device_unregister(nand_to_mtd(chip));
836 WARN_ON(ret);
837 nand_cleanup(chip);
838
839 return 0;
840 }
841
842 static struct platform_driver nand_davinci_driver = {
843 .probe = nand_davinci_probe,
844 .remove = nand_davinci_remove,
845 .driver = {
846 .name = "davinci_nand",
847 .of_match_table = of_match_ptr(davinci_nand_of_match),
848 },
849 };
850 MODULE_ALIAS("platform:davinci_nand");
851
852 module_platform_driver(nand_davinci_driver);
853
854 MODULE_LICENSE("GPL");
855 MODULE_AUTHOR("Texas Instruments");
856 MODULE_DESCRIPTION("Davinci NAND flash driver");
857
858