1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI Camera Access Layer (CAL) - Driver
4 *
5 * Copyright (c) 2015-2020 Texas Instruments Inc.
6 *
7 * Authors:
8 * Benoit Parrot <bparrot@ti.com>
9 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 */
11
12 #include <linux/clk.h>
13 #include <linux/interrupt.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 #include <linux/videodev2.h>
22
23 #include <media/media-device.h>
24 #include <media/v4l2-async.h>
25 #include <media/v4l2-common.h>
26 #include <media/v4l2-device.h>
27 #include <media/videobuf2-core.h>
28 #include <media/videobuf2-dma-contig.h>
29
30 #include "cal.h"
31 #include "cal_regs.h"
32
33 MODULE_DESCRIPTION("TI CAL driver");
34 MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>");
35 MODULE_LICENSE("GPL v2");
36 MODULE_VERSION("0.1.0");
37
38 int cal_video_nr = -1;
39 module_param_named(video_nr, cal_video_nr, uint, 0644);
40 MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect");
41
42 unsigned int cal_debug;
43 module_param_named(debug, cal_debug, uint, 0644);
44 MODULE_PARM_DESC(debug, "activates debug info");
45
46 #ifdef CONFIG_VIDEO_TI_CAL_MC
47 #define CAL_MC_API_DEFAULT 1
48 #else
49 #define CAL_MC_API_DEFAULT 0
50 #endif
51
52 bool cal_mc_api = CAL_MC_API_DEFAULT;
53 module_param_named(mc_api, cal_mc_api, bool, 0444);
54 MODULE_PARM_DESC(mc_api, "activates the MC API");
55
56 /* ------------------------------------------------------------------
57 * Format Handling
58 * ------------------------------------------------------------------
59 */
60
61 const struct cal_format_info cal_formats[] = {
62 {
63 .fourcc = V4L2_PIX_FMT_YUYV,
64 .code = MEDIA_BUS_FMT_YUYV8_2X8,
65 .bpp = 16,
66 }, {
67 .fourcc = V4L2_PIX_FMT_UYVY,
68 .code = MEDIA_BUS_FMT_UYVY8_2X8,
69 .bpp = 16,
70 }, {
71 .fourcc = V4L2_PIX_FMT_YVYU,
72 .code = MEDIA_BUS_FMT_YVYU8_2X8,
73 .bpp = 16,
74 }, {
75 .fourcc = V4L2_PIX_FMT_VYUY,
76 .code = MEDIA_BUS_FMT_VYUY8_2X8,
77 .bpp = 16,
78 }, {
79 .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
80 .code = MEDIA_BUS_FMT_RGB565_2X8_LE,
81 .bpp = 16,
82 }, {
83 .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
84 .code = MEDIA_BUS_FMT_RGB565_2X8_BE,
85 .bpp = 16,
86 }, {
87 .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
88 .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
89 .bpp = 16,
90 }, {
91 .fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
92 .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
93 .bpp = 16,
94 }, {
95 .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
96 .code = MEDIA_BUS_FMT_RGB888_2X12_LE,
97 .bpp = 24,
98 }, {
99 .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
100 .code = MEDIA_BUS_FMT_RGB888_2X12_BE,
101 .bpp = 24,
102 }, {
103 .fourcc = V4L2_PIX_FMT_RGB32, /* argb */
104 .code = MEDIA_BUS_FMT_ARGB8888_1X32,
105 .bpp = 32,
106 }, {
107 .fourcc = V4L2_PIX_FMT_SBGGR8,
108 .code = MEDIA_BUS_FMT_SBGGR8_1X8,
109 .bpp = 8,
110 }, {
111 .fourcc = V4L2_PIX_FMT_SGBRG8,
112 .code = MEDIA_BUS_FMT_SGBRG8_1X8,
113 .bpp = 8,
114 }, {
115 .fourcc = V4L2_PIX_FMT_SGRBG8,
116 .code = MEDIA_BUS_FMT_SGRBG8_1X8,
117 .bpp = 8,
118 }, {
119 .fourcc = V4L2_PIX_FMT_SRGGB8,
120 .code = MEDIA_BUS_FMT_SRGGB8_1X8,
121 .bpp = 8,
122 }, {
123 .fourcc = V4L2_PIX_FMT_SBGGR10,
124 .code = MEDIA_BUS_FMT_SBGGR10_1X10,
125 .bpp = 10,
126 }, {
127 .fourcc = V4L2_PIX_FMT_SGBRG10,
128 .code = MEDIA_BUS_FMT_SGBRG10_1X10,
129 .bpp = 10,
130 }, {
131 .fourcc = V4L2_PIX_FMT_SGRBG10,
132 .code = MEDIA_BUS_FMT_SGRBG10_1X10,
133 .bpp = 10,
134 }, {
135 .fourcc = V4L2_PIX_FMT_SRGGB10,
136 .code = MEDIA_BUS_FMT_SRGGB10_1X10,
137 .bpp = 10,
138 }, {
139 .fourcc = V4L2_PIX_FMT_SBGGR12,
140 .code = MEDIA_BUS_FMT_SBGGR12_1X12,
141 .bpp = 12,
142 }, {
143 .fourcc = V4L2_PIX_FMT_SGBRG12,
144 .code = MEDIA_BUS_FMT_SGBRG12_1X12,
145 .bpp = 12,
146 }, {
147 .fourcc = V4L2_PIX_FMT_SGRBG12,
148 .code = MEDIA_BUS_FMT_SGRBG12_1X12,
149 .bpp = 12,
150 }, {
151 .fourcc = V4L2_PIX_FMT_SRGGB12,
152 .code = MEDIA_BUS_FMT_SRGGB12_1X12,
153 .bpp = 12,
154 },
155 };
156
157 const unsigned int cal_num_formats = ARRAY_SIZE(cal_formats);
158
cal_format_by_fourcc(u32 fourcc)159 const struct cal_format_info *cal_format_by_fourcc(u32 fourcc)
160 {
161 unsigned int i;
162
163 for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) {
164 if (cal_formats[i].fourcc == fourcc)
165 return &cal_formats[i];
166 }
167
168 return NULL;
169 }
170
cal_format_by_code(u32 code)171 const struct cal_format_info *cal_format_by_code(u32 code)
172 {
173 unsigned int i;
174
175 for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) {
176 if (cal_formats[i].code == code)
177 return &cal_formats[i];
178 }
179
180 return NULL;
181 }
182
183 /* ------------------------------------------------------------------
184 * Platform Data
185 * ------------------------------------------------------------------
186 */
187
188 static const struct cal_camerarx_data dra72x_cal_camerarx[] = {
189 {
190 .fields = {
191 [F_CTRLCLKEN] = { 10, 10 },
192 [F_CAMMODE] = { 11, 12 },
193 [F_LANEENABLE] = { 13, 16 },
194 [F_CSI_MODE] = { 17, 17 },
195 },
196 .num_lanes = 4,
197 },
198 {
199 .fields = {
200 [F_CTRLCLKEN] = { 0, 0 },
201 [F_CAMMODE] = { 1, 2 },
202 [F_LANEENABLE] = { 3, 4 },
203 [F_CSI_MODE] = { 5, 5 },
204 },
205 .num_lanes = 2,
206 },
207 };
208
209 static const struct cal_data dra72x_cal_data = {
210 .camerarx = dra72x_cal_camerarx,
211 .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
212 };
213
214 static const struct cal_data dra72x_es1_cal_data = {
215 .camerarx = dra72x_cal_camerarx,
216 .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
217 .flags = DRA72_CAL_PRE_ES2_LDO_DISABLE,
218 };
219
220 static const struct cal_camerarx_data dra76x_cal_csi_phy[] = {
221 {
222 .fields = {
223 [F_CTRLCLKEN] = { 8, 8 },
224 [F_CAMMODE] = { 9, 10 },
225 [F_CSI_MODE] = { 11, 11 },
226 [F_LANEENABLE] = { 27, 31 },
227 },
228 .num_lanes = 5,
229 },
230 {
231 .fields = {
232 [F_CTRLCLKEN] = { 0, 0 },
233 [F_CAMMODE] = { 1, 2 },
234 [F_CSI_MODE] = { 3, 3 },
235 [F_LANEENABLE] = { 24, 26 },
236 },
237 .num_lanes = 3,
238 },
239 };
240
241 static const struct cal_data dra76x_cal_data = {
242 .camerarx = dra76x_cal_csi_phy,
243 .num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy),
244 };
245
246 static const struct cal_camerarx_data am654_cal_csi_phy[] = {
247 {
248 .fields = {
249 [F_CTRLCLKEN] = { 15, 15 },
250 [F_CAMMODE] = { 24, 25 },
251 [F_LANEENABLE] = { 0, 4 },
252 },
253 .num_lanes = 5,
254 },
255 };
256
257 static const struct cal_data am654_cal_data = {
258 .camerarx = am654_cal_csi_phy,
259 .num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy),
260 };
261
262 /* ------------------------------------------------------------------
263 * I/O Register Accessors
264 * ------------------------------------------------------------------
265 */
266
cal_quickdump_regs(struct cal_dev * cal)267 void cal_quickdump_regs(struct cal_dev *cal)
268 {
269 unsigned int i;
270
271 cal_info(cal, "CAL Registers @ 0x%pa:\n", &cal->res->start);
272 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
273 (__force const void *)cal->base,
274 resource_size(cal->res), false);
275
276 for (i = 0; i < cal->data->num_csi2_phy; ++i) {
277 struct cal_camerarx *phy = cal->phy[i];
278
279 cal_info(cal, "CSI2 Core %u Registers @ %pa:\n", i,
280 &phy->res->start);
281 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
282 (__force const void *)phy->base,
283 resource_size(phy->res),
284 false);
285 }
286 }
287
288 /* ------------------------------------------------------------------
289 * Context Management
290 * ------------------------------------------------------------------
291 */
292
293 #define CAL_MAX_PIX_PROC 4
294
cal_reserve_pix_proc(struct cal_dev * cal)295 static int cal_reserve_pix_proc(struct cal_dev *cal)
296 {
297 unsigned long ret;
298
299 spin_lock(&cal->v4l2_dev.lock);
300
301 ret = find_first_zero_bit(&cal->reserved_pix_proc_mask, CAL_MAX_PIX_PROC);
302
303 if (ret == CAL_MAX_PIX_PROC) {
304 spin_unlock(&cal->v4l2_dev.lock);
305 return -ENOSPC;
306 }
307
308 cal->reserved_pix_proc_mask |= BIT(ret);
309
310 spin_unlock(&cal->v4l2_dev.lock);
311
312 return ret;
313 }
314
cal_release_pix_proc(struct cal_dev * cal,unsigned int pix_proc_num)315 static void cal_release_pix_proc(struct cal_dev *cal, unsigned int pix_proc_num)
316 {
317 spin_lock(&cal->v4l2_dev.lock);
318
319 cal->reserved_pix_proc_mask &= ~BIT(pix_proc_num);
320
321 spin_unlock(&cal->v4l2_dev.lock);
322 }
323
cal_ctx_csi2_config(struct cal_ctx * ctx)324 static void cal_ctx_csi2_config(struct cal_ctx *ctx)
325 {
326 u32 val;
327
328 val = cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx));
329 cal_set_field(&val, ctx->cport, CAL_CSI2_CTX_CPORT_MASK);
330 /*
331 * DT type: MIPI CSI-2 Specs
332 * 0x1: All - DT filter is disabled
333 * 0x24: RGB888 1 pixel = 3 bytes
334 * 0x2B: RAW10 4 pixels = 5 bytes
335 * 0x2A: RAW8 1 pixel = 1 byte
336 * 0x1E: YUV422 2 pixels = 4 bytes
337 */
338 cal_set_field(&val, ctx->datatype, CAL_CSI2_CTX_DT_MASK);
339 cal_set_field(&val, ctx->vc, CAL_CSI2_CTX_VC_MASK);
340 cal_set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_CSI2_CTX_LINES_MASK);
341 cal_set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK);
342 cal_set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE,
343 CAL_CSI2_CTX_PACK_MODE_MASK);
344 cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), val);
345 ctx_dbg(3, ctx, "CAL_CSI2_CTX(%u, %u) = 0x%08x\n",
346 ctx->phy->instance, ctx->csi2_ctx,
347 cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx)));
348 }
349
cal_ctx_pix_proc_config(struct cal_ctx * ctx)350 static void cal_ctx_pix_proc_config(struct cal_ctx *ctx)
351 {
352 u32 val, extract, pack;
353
354 switch (ctx->fmtinfo->bpp) {
355 case 8:
356 extract = CAL_PIX_PROC_EXTRACT_B8;
357 pack = CAL_PIX_PROC_PACK_B8;
358 break;
359 case 10:
360 extract = CAL_PIX_PROC_EXTRACT_B10_MIPI;
361 pack = CAL_PIX_PROC_PACK_B16;
362 break;
363 case 12:
364 extract = CAL_PIX_PROC_EXTRACT_B12_MIPI;
365 pack = CAL_PIX_PROC_PACK_B16;
366 break;
367 case 16:
368 extract = CAL_PIX_PROC_EXTRACT_B16_LE;
369 pack = CAL_PIX_PROC_PACK_B16;
370 break;
371 default:
372 /*
373 * If you see this warning then it means that you added
374 * some new entry in the cal_formats[] array with a different
375 * bit per pixel values then the one supported below.
376 * Either add support for the new bpp value below or adjust
377 * the new entry to use one of the value below.
378 *
379 * Instead of failing here just use 8 bpp as a default.
380 */
381 dev_warn_once(ctx->cal->dev,
382 "%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n",
383 __FILE__, __LINE__, __func__, ctx->fmtinfo->bpp);
384 extract = CAL_PIX_PROC_EXTRACT_B8;
385 pack = CAL_PIX_PROC_PACK_B8;
386 break;
387 }
388
389 val = cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc));
390 cal_set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK);
391 cal_set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK);
392 cal_set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK);
393 cal_set_field(&val, pack, CAL_PIX_PROC_PACK_MASK);
394 cal_set_field(&val, ctx->cport, CAL_PIX_PROC_CPORT_MASK);
395 cal_set_field(&val, 1, CAL_PIX_PROC_EN_MASK);
396 cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), val);
397 ctx_dbg(3, ctx, "CAL_PIX_PROC(%u) = 0x%08x\n", ctx->pix_proc,
398 cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc)));
399 }
400
cal_ctx_wr_dma_config(struct cal_ctx * ctx)401 static void cal_ctx_wr_dma_config(struct cal_ctx *ctx)
402 {
403 unsigned int stride = ctx->v_fmt.fmt.pix.bytesperline;
404 u32 val;
405
406 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
407 cal_set_field(&val, ctx->cport, CAL_WR_DMA_CTRL_CPORT_MASK);
408 cal_set_field(&val, ctx->v_fmt.fmt.pix.height,
409 CAL_WR_DMA_CTRL_YSIZE_MASK);
410 cal_set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT,
411 CAL_WR_DMA_CTRL_DTAG_MASK);
412 cal_set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR,
413 CAL_WR_DMA_CTRL_PATTERN_MASK);
414 cal_set_field(&val, 1, CAL_WR_DMA_CTRL_STALL_RD_MASK);
415 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
416 ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->dma_ctx,
417 cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)));
418
419 cal_write_field(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx),
420 stride / 16, CAL_WR_DMA_OFST_MASK);
421 ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->dma_ctx,
422 cal_read(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx)));
423
424 val = cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx));
425 /* 64 bit word means no skipping */
426 cal_set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK);
427 /*
428 * The XSIZE field is expressed in 64-bit units and prevents overflows
429 * in case of synchronization issues by limiting the number of bytes
430 * written per line.
431 */
432 cal_set_field(&val, stride / 8, CAL_WR_DMA_XSIZE_MASK);
433 cal_write(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx), val);
434 ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->dma_ctx,
435 cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx)));
436 }
437
cal_ctx_set_dma_addr(struct cal_ctx * ctx,dma_addr_t addr)438 void cal_ctx_set_dma_addr(struct cal_ctx *ctx, dma_addr_t addr)
439 {
440 cal_write(ctx->cal, CAL_WR_DMA_ADDR(ctx->dma_ctx), addr);
441 }
442
cal_ctx_wr_dma_enable(struct cal_ctx * ctx)443 static void cal_ctx_wr_dma_enable(struct cal_ctx *ctx)
444 {
445 u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
446
447 cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST,
448 CAL_WR_DMA_CTRL_MODE_MASK);
449 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
450 }
451
cal_ctx_wr_dma_disable(struct cal_ctx * ctx)452 static void cal_ctx_wr_dma_disable(struct cal_ctx *ctx)
453 {
454 u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
455
456 cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_DIS,
457 CAL_WR_DMA_CTRL_MODE_MASK);
458 cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
459 }
460
cal_ctx_wr_dma_stopped(struct cal_ctx * ctx)461 static bool cal_ctx_wr_dma_stopped(struct cal_ctx *ctx)
462 {
463 bool stopped;
464
465 spin_lock_irq(&ctx->dma.lock);
466 stopped = ctx->dma.state == CAL_DMA_STOPPED;
467 spin_unlock_irq(&ctx->dma.lock);
468
469 return stopped;
470 }
471
472 static int
cal_get_remote_frame_desc_entry(struct cal_camerarx * phy,struct v4l2_mbus_frame_desc_entry * entry)473 cal_get_remote_frame_desc_entry(struct cal_camerarx *phy,
474 struct v4l2_mbus_frame_desc_entry *entry)
475 {
476 struct v4l2_mbus_frame_desc fd;
477 int ret;
478
479 ret = cal_camerarx_get_remote_frame_desc(phy, &fd);
480 if (ret) {
481 if (ret != -ENOIOCTLCMD)
482 dev_err(phy->cal->dev,
483 "Failed to get remote frame desc: %d\n", ret);
484 return ret;
485 }
486
487 if (fd.num_entries == 0) {
488 dev_err(phy->cal->dev,
489 "No streams found in the remote frame descriptor\n");
490
491 return -ENODEV;
492 }
493
494 if (fd.num_entries > 1)
495 dev_dbg(phy->cal->dev,
496 "Multiple streams not supported in remote frame descriptor, using the first one\n");
497
498 *entry = fd.entry[0];
499
500 return 0;
501 }
502
cal_ctx_prepare(struct cal_ctx * ctx)503 int cal_ctx_prepare(struct cal_ctx *ctx)
504 {
505 struct v4l2_mbus_frame_desc_entry entry;
506 int ret;
507
508 ret = cal_get_remote_frame_desc_entry(ctx->phy, &entry);
509
510 if (ret == -ENOIOCTLCMD) {
511 ctx->vc = 0;
512 ctx->datatype = CAL_CSI2_CTX_DT_ANY;
513 } else if (!ret) {
514 ctx_dbg(2, ctx, "Framedesc: len %u, vc %u, dt %#x\n",
515 entry.length, entry.bus.csi2.vc, entry.bus.csi2.dt);
516
517 ctx->vc = entry.bus.csi2.vc;
518 ctx->datatype = entry.bus.csi2.dt;
519 } else {
520 return ret;
521 }
522
523 ctx->use_pix_proc = !ctx->fmtinfo->meta;
524
525 if (ctx->use_pix_proc) {
526 ret = cal_reserve_pix_proc(ctx->cal);
527 if (ret < 0) {
528 ctx_err(ctx, "Failed to reserve pix proc: %d\n", ret);
529 return ret;
530 }
531
532 ctx->pix_proc = ret;
533 }
534
535 return 0;
536 }
537
cal_ctx_unprepare(struct cal_ctx * ctx)538 void cal_ctx_unprepare(struct cal_ctx *ctx)
539 {
540 if (ctx->use_pix_proc)
541 cal_release_pix_proc(ctx->cal, ctx->pix_proc);
542 }
543
cal_ctx_start(struct cal_ctx * ctx)544 void cal_ctx_start(struct cal_ctx *ctx)
545 {
546 struct cal_camerarx *phy = ctx->phy;
547
548 /*
549 * Reset the frame number & sequence number, but only if the
550 * virtual channel is not already in use.
551 */
552
553 spin_lock(&phy->vc_lock);
554
555 if (phy->vc_enable_count[ctx->vc]++ == 0) {
556 phy->vc_frame_number[ctx->vc] = 0;
557 phy->vc_sequence[ctx->vc] = 0;
558 }
559
560 spin_unlock(&phy->vc_lock);
561
562 ctx->dma.state = CAL_DMA_RUNNING;
563
564 /* Configure the CSI-2, pixel processing and write DMA contexts. */
565 cal_ctx_csi2_config(ctx);
566 if (ctx->use_pix_proc)
567 cal_ctx_pix_proc_config(ctx);
568 cal_ctx_wr_dma_config(ctx);
569
570 /* Enable IRQ_WDMA_END and IRQ_WDMA_START. */
571 cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(1),
572 CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx));
573 cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(2),
574 CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx));
575
576 cal_ctx_wr_dma_enable(ctx);
577 }
578
cal_ctx_stop(struct cal_ctx * ctx)579 void cal_ctx_stop(struct cal_ctx *ctx)
580 {
581 struct cal_camerarx *phy = ctx->phy;
582 long timeout;
583
584 WARN_ON(phy->vc_enable_count[ctx->vc] == 0);
585
586 spin_lock(&phy->vc_lock);
587 phy->vc_enable_count[ctx->vc]--;
588 spin_unlock(&phy->vc_lock);
589
590 /*
591 * Request DMA stop and wait until it completes. If completion times
592 * out, forcefully disable the DMA.
593 */
594 spin_lock_irq(&ctx->dma.lock);
595 ctx->dma.state = CAL_DMA_STOP_REQUESTED;
596 spin_unlock_irq(&ctx->dma.lock);
597
598 timeout = wait_event_timeout(ctx->dma.wait, cal_ctx_wr_dma_stopped(ctx),
599 msecs_to_jiffies(500));
600 if (!timeout) {
601 ctx_err(ctx, "failed to disable dma cleanly\n");
602 cal_ctx_wr_dma_disable(ctx);
603 }
604
605 /* Disable IRQ_WDMA_END and IRQ_WDMA_START. */
606 cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(1),
607 CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx));
608 cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(2),
609 CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx));
610
611 ctx->dma.state = CAL_DMA_STOPPED;
612
613 /* Disable CSI2 context */
614 cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), 0);
615
616 /* Disable pix proc */
617 if (ctx->use_pix_proc)
618 cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), 0);
619 }
620
621 /* ------------------------------------------------------------------
622 * IRQ Handling
623 * ------------------------------------------------------------------
624 */
625
626 /*
627 * Track a sequence number for each virtual channel, which is shared by
628 * all contexts using the same virtual channel. This is done using the
629 * CSI-2 frame number as a base.
630 */
cal_update_seq_number(struct cal_ctx * ctx)631 static void cal_update_seq_number(struct cal_ctx *ctx)
632 {
633 struct cal_dev *cal = ctx->cal;
634 struct cal_camerarx *phy = ctx->phy;
635 u16 prev_frame_num, frame_num;
636 u8 vc = ctx->vc;
637
638 frame_num =
639 cal_read(cal, CAL_CSI2_STATUS(phy->instance, ctx->csi2_ctx)) &
640 0xffff;
641
642 if (phy->vc_frame_number[vc] != frame_num) {
643 prev_frame_num = phy->vc_frame_number[vc];
644
645 if (prev_frame_num >= frame_num)
646 phy->vc_sequence[vc] += 1;
647 else
648 phy->vc_sequence[vc] += frame_num - prev_frame_num;
649
650 phy->vc_frame_number[vc] = frame_num;
651 }
652 }
653
cal_irq_wdma_start(struct cal_ctx * ctx)654 static inline void cal_irq_wdma_start(struct cal_ctx *ctx)
655 {
656 spin_lock(&ctx->dma.lock);
657
658 if (ctx->dma.state == CAL_DMA_STOP_REQUESTED) {
659 /*
660 * If a stop is requested, disable the write DMA context
661 * immediately. The CAL_WR_DMA_CTRL_j.MODE field is shadowed,
662 * the current frame will complete and the DMA will then stop.
663 */
664 cal_ctx_wr_dma_disable(ctx);
665 ctx->dma.state = CAL_DMA_STOP_PENDING;
666 } else if (!list_empty(&ctx->dma.queue) && !ctx->dma.pending) {
667 /*
668 * Otherwise, if a new buffer is available, queue it to the
669 * hardware.
670 */
671 struct cal_buffer *buf;
672 dma_addr_t addr;
673
674 buf = list_first_entry(&ctx->dma.queue, struct cal_buffer,
675 list);
676 addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
677 cal_ctx_set_dma_addr(ctx, addr);
678
679 ctx->dma.pending = buf;
680 list_del(&buf->list);
681 }
682
683 spin_unlock(&ctx->dma.lock);
684
685 cal_update_seq_number(ctx);
686 }
687
cal_irq_wdma_end(struct cal_ctx * ctx)688 static inline void cal_irq_wdma_end(struct cal_ctx *ctx)
689 {
690 struct cal_buffer *buf = NULL;
691
692 spin_lock(&ctx->dma.lock);
693
694 /* If the DMA context was stopping, it is now stopped. */
695 if (ctx->dma.state == CAL_DMA_STOP_PENDING) {
696 ctx->dma.state = CAL_DMA_STOPPED;
697 wake_up(&ctx->dma.wait);
698 }
699
700 /* If a new buffer was queued, complete the current buffer. */
701 if (ctx->dma.pending) {
702 buf = ctx->dma.active;
703 ctx->dma.active = ctx->dma.pending;
704 ctx->dma.pending = NULL;
705 }
706
707 spin_unlock(&ctx->dma.lock);
708
709 if (buf) {
710 buf->vb.vb2_buf.timestamp = ktime_get_ns();
711 buf->vb.field = ctx->v_fmt.fmt.pix.field;
712 buf->vb.sequence = ctx->phy->vc_sequence[ctx->vc];
713
714 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
715 }
716 }
717
cal_irq_handle_wdma(struct cal_ctx * ctx,bool start,bool end)718 static void cal_irq_handle_wdma(struct cal_ctx *ctx, bool start, bool end)
719 {
720 /*
721 * CAL HW interrupts are inherently racy. If we get both start and end
722 * interrupts, we don't know what has happened: did the DMA for a single
723 * frame start and end, or did one frame end and a new frame start?
724 *
725 * Usually for normal pixel frames we get the interrupts separately. If
726 * we do get both, we have to guess. The assumption in the code below is
727 * that the active vertical area is larger than the blanking vertical
728 * area, and thus it is more likely that we get the end of the old frame
729 * and the start of a new frame.
730 *
731 * However, for embedded data, which is only a few lines high, we always
732 * get both interrupts. Here the assumption is that we get both for the
733 * same frame.
734 */
735 if (ctx->v_fmt.fmt.pix.height < 10) {
736 if (start)
737 cal_irq_wdma_start(ctx);
738
739 if (end)
740 cal_irq_wdma_end(ctx);
741 } else {
742 if (end)
743 cal_irq_wdma_end(ctx);
744
745 if (start)
746 cal_irq_wdma_start(ctx);
747 }
748 }
749
cal_irq(int irq_cal,void * data)750 static irqreturn_t cal_irq(int irq_cal, void *data)
751 {
752 struct cal_dev *cal = data;
753 u32 status[3];
754 unsigned int i;
755
756 for (i = 0; i < 3; ++i) {
757 status[i] = cal_read(cal, CAL_HL_IRQSTATUS(i));
758 if (status[i])
759 cal_write(cal, CAL_HL_IRQSTATUS(i), status[i]);
760 }
761
762 if (status[0]) {
763 if (status[0] & CAL_HL_IRQ_OCPO_ERR_MASK)
764 dev_err_ratelimited(cal->dev, "OCPO ERROR\n");
765
766 for (i = 0; i < cal->data->num_csi2_phy; ++i) {
767 if (status[0] & CAL_HL_IRQ_CIO_MASK(i)) {
768 u32 cio_stat = cal_read(cal,
769 CAL_CSI2_COMPLEXIO_IRQSTATUS(i));
770
771 dev_err_ratelimited(cal->dev,
772 "CIO%u error: %#08x\n", i, cio_stat);
773
774 cal_write(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i),
775 cio_stat);
776 }
777
778 if (status[0] & CAL_HL_IRQ_VC_MASK(i)) {
779 u32 vc_stat = cal_read(cal, CAL_CSI2_VC_IRQSTATUS(i));
780
781 dev_err_ratelimited(cal->dev,
782 "CIO%u VC error: %#08x\n",
783 i, vc_stat);
784
785 cal_write(cal, CAL_CSI2_VC_IRQSTATUS(i), vc_stat);
786 }
787 }
788 }
789
790 for (i = 0; i < cal->num_contexts; ++i) {
791 bool end = !!(status[1] & CAL_HL_IRQ_WDMA_END_MASK(i));
792 bool start = !!(status[2] & CAL_HL_IRQ_WDMA_START_MASK(i));
793
794 if (start || end)
795 cal_irq_handle_wdma(cal->ctx[i], start, end);
796 }
797
798 return IRQ_HANDLED;
799 }
800
801 /* ------------------------------------------------------------------
802 * Asynchronous V4L2 subdev binding
803 * ------------------------------------------------------------------
804 */
805
806 struct cal_v4l2_async_subdev {
807 struct v4l2_async_subdev asd; /* Must be first */
808 struct cal_camerarx *phy;
809 };
810
811 static inline struct cal_v4l2_async_subdev *
to_cal_asd(struct v4l2_async_subdev * asd)812 to_cal_asd(struct v4l2_async_subdev *asd)
813 {
814 return container_of(asd, struct cal_v4l2_async_subdev, asd);
815 }
816
cal_async_notifier_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)817 static int cal_async_notifier_bound(struct v4l2_async_notifier *notifier,
818 struct v4l2_subdev *subdev,
819 struct v4l2_async_subdev *asd)
820 {
821 struct cal_camerarx *phy = to_cal_asd(asd)->phy;
822 int pad;
823 int ret;
824
825 if (phy->source) {
826 phy_info(phy, "Rejecting subdev %s (Already set!!)",
827 subdev->name);
828 return 0;
829 }
830
831 phy->source = subdev;
832 phy_dbg(1, phy, "Using source %s for capture\n", subdev->name);
833
834 pad = media_entity_get_fwnode_pad(&subdev->entity,
835 of_fwnode_handle(phy->source_ep_node),
836 MEDIA_PAD_FL_SOURCE);
837 if (pad < 0) {
838 phy_err(phy, "Source %s has no connected source pad\n",
839 subdev->name);
840 return pad;
841 }
842
843 ret = media_create_pad_link(&subdev->entity, pad,
844 &phy->subdev.entity, CAL_CAMERARX_PAD_SINK,
845 MEDIA_LNK_FL_IMMUTABLE |
846 MEDIA_LNK_FL_ENABLED);
847 if (ret) {
848 phy_err(phy, "Failed to create media link for source %s\n",
849 subdev->name);
850 return ret;
851 }
852
853 return 0;
854 }
855
cal_async_notifier_complete(struct v4l2_async_notifier * notifier)856 static int cal_async_notifier_complete(struct v4l2_async_notifier *notifier)
857 {
858 struct cal_dev *cal = container_of(notifier, struct cal_dev, notifier);
859 unsigned int i;
860 int ret;
861
862 for (i = 0; i < cal->num_contexts; ++i) {
863 ret = cal_ctx_v4l2_register(cal->ctx[i]);
864 if (ret)
865 goto err_ctx_unreg;
866 }
867
868 if (!cal_mc_api)
869 return 0;
870
871 ret = v4l2_device_register_subdev_nodes(&cal->v4l2_dev);
872 if (ret)
873 goto err_ctx_unreg;
874
875 return 0;
876
877 err_ctx_unreg:
878 for (; i > 0; --i) {
879 if (!cal->ctx[i - 1])
880 continue;
881
882 cal_ctx_v4l2_unregister(cal->ctx[i - 1]);
883 }
884
885 return ret;
886 }
887
888 static const struct v4l2_async_notifier_operations cal_async_notifier_ops = {
889 .bound = cal_async_notifier_bound,
890 .complete = cal_async_notifier_complete,
891 };
892
cal_async_notifier_register(struct cal_dev * cal)893 static int cal_async_notifier_register(struct cal_dev *cal)
894 {
895 unsigned int i;
896 int ret;
897
898 v4l2_async_nf_init(&cal->notifier);
899 cal->notifier.ops = &cal_async_notifier_ops;
900
901 for (i = 0; i < cal->data->num_csi2_phy; ++i) {
902 struct cal_camerarx *phy = cal->phy[i];
903 struct cal_v4l2_async_subdev *casd;
904 struct fwnode_handle *fwnode;
905
906 if (!phy->source_node)
907 continue;
908
909 fwnode = of_fwnode_handle(phy->source_node);
910 casd = v4l2_async_nf_add_fwnode(&cal->notifier,
911 fwnode,
912 struct cal_v4l2_async_subdev);
913 if (IS_ERR(casd)) {
914 phy_err(phy, "Failed to add subdev to notifier\n");
915 ret = PTR_ERR(casd);
916 goto error;
917 }
918
919 casd->phy = phy;
920 }
921
922 ret = v4l2_async_nf_register(&cal->v4l2_dev, &cal->notifier);
923 if (ret) {
924 cal_err(cal, "Error registering async notifier\n");
925 goto error;
926 }
927
928 return 0;
929
930 error:
931 v4l2_async_nf_cleanup(&cal->notifier);
932 return ret;
933 }
934
cal_async_notifier_unregister(struct cal_dev * cal)935 static void cal_async_notifier_unregister(struct cal_dev *cal)
936 {
937 v4l2_async_nf_unregister(&cal->notifier);
938 v4l2_async_nf_cleanup(&cal->notifier);
939 }
940
941 /* ------------------------------------------------------------------
942 * Media and V4L2 device handling
943 * ------------------------------------------------------------------
944 */
945
946 /*
947 * Register user-facing devices. To be called at the end of the probe function
948 * when all resources are initialized and ready.
949 */
cal_media_register(struct cal_dev * cal)950 static int cal_media_register(struct cal_dev *cal)
951 {
952 int ret;
953
954 ret = media_device_register(&cal->mdev);
955 if (ret) {
956 cal_err(cal, "Failed to register media device\n");
957 return ret;
958 }
959
960 /*
961 * Register the async notifier. This may trigger registration of the
962 * V4L2 video devices if all subdevs are ready.
963 */
964 ret = cal_async_notifier_register(cal);
965 if (ret) {
966 media_device_unregister(&cal->mdev);
967 return ret;
968 }
969
970 return 0;
971 }
972
973 /*
974 * Unregister the user-facing devices, but don't free memory yet. To be called
975 * at the beginning of the remove function, to disallow access from userspace.
976 */
cal_media_unregister(struct cal_dev * cal)977 static void cal_media_unregister(struct cal_dev *cal)
978 {
979 unsigned int i;
980
981 /* Unregister all the V4L2 video devices. */
982 for (i = 0; i < cal->num_contexts; i++)
983 cal_ctx_v4l2_unregister(cal->ctx[i]);
984
985 cal_async_notifier_unregister(cal);
986 media_device_unregister(&cal->mdev);
987 }
988
989 /*
990 * Initialize the in-kernel objects. To be called at the beginning of the probe
991 * function, before the V4L2 device is used by the driver.
992 */
cal_media_init(struct cal_dev * cal)993 static int cal_media_init(struct cal_dev *cal)
994 {
995 struct media_device *mdev = &cal->mdev;
996 int ret;
997
998 mdev->dev = cal->dev;
999 mdev->hw_revision = cal->revision;
1000 strscpy(mdev->model, "CAL", sizeof(mdev->model));
1001 media_device_init(mdev);
1002
1003 /*
1004 * Initialize the V4L2 device (despite the function name, this performs
1005 * initialization, not registration).
1006 */
1007 cal->v4l2_dev.mdev = mdev;
1008 ret = v4l2_device_register(cal->dev, &cal->v4l2_dev);
1009 if (ret) {
1010 cal_err(cal, "Failed to register V4L2 device\n");
1011 return ret;
1012 }
1013
1014 vb2_dma_contig_set_max_seg_size(cal->dev, DMA_BIT_MASK(32));
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * Cleanup the in-kernel objects, freeing memory. To be called at the very end
1021 * of the remove sequence, when nothing (including userspace) can access the
1022 * objects anymore.
1023 */
cal_media_cleanup(struct cal_dev * cal)1024 static void cal_media_cleanup(struct cal_dev *cal)
1025 {
1026 v4l2_device_unregister(&cal->v4l2_dev);
1027 media_device_cleanup(&cal->mdev);
1028
1029 vb2_dma_contig_clear_max_seg_size(cal->dev);
1030 }
1031
1032 /* ------------------------------------------------------------------
1033 * Initialization and module stuff
1034 * ------------------------------------------------------------------
1035 */
1036
cal_ctx_create(struct cal_dev * cal,int inst)1037 static struct cal_ctx *cal_ctx_create(struct cal_dev *cal, int inst)
1038 {
1039 struct cal_ctx *ctx;
1040 int ret;
1041
1042 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1043 if (!ctx)
1044 return NULL;
1045
1046 ctx->cal = cal;
1047 ctx->phy = cal->phy[inst];
1048 ctx->dma_ctx = inst;
1049 ctx->csi2_ctx = inst;
1050 ctx->cport = inst;
1051
1052 ret = cal_ctx_v4l2_init(ctx);
1053 if (ret)
1054 return NULL;
1055
1056 return ctx;
1057 }
1058
cal_ctx_destroy(struct cal_ctx * ctx)1059 static void cal_ctx_destroy(struct cal_ctx *ctx)
1060 {
1061 cal_ctx_v4l2_cleanup(ctx);
1062
1063 kfree(ctx);
1064 }
1065
1066 static const struct of_device_id cal_of_match[] = {
1067 {
1068 .compatible = "ti,dra72-cal",
1069 .data = (void *)&dra72x_cal_data,
1070 },
1071 {
1072 .compatible = "ti,dra72-pre-es2-cal",
1073 .data = (void *)&dra72x_es1_cal_data,
1074 },
1075 {
1076 .compatible = "ti,dra76-cal",
1077 .data = (void *)&dra76x_cal_data,
1078 },
1079 {
1080 .compatible = "ti,am654-cal",
1081 .data = (void *)&am654_cal_data,
1082 },
1083 {},
1084 };
1085 MODULE_DEVICE_TABLE(of, cal_of_match);
1086
1087 /* Get hardware revision and info. */
1088
1089 #define CAL_HL_HWINFO_VALUE 0xa3c90469
1090
cal_get_hwinfo(struct cal_dev * cal)1091 static void cal_get_hwinfo(struct cal_dev *cal)
1092 {
1093 u32 hwinfo;
1094
1095 cal->revision = cal_read(cal, CAL_HL_REVISION);
1096 switch (FIELD_GET(CAL_HL_REVISION_SCHEME_MASK, cal->revision)) {
1097 case CAL_HL_REVISION_SCHEME_H08:
1098 cal_dbg(3, cal, "CAL HW revision %lu.%lu.%lu (0x%08x)\n",
1099 FIELD_GET(CAL_HL_REVISION_MAJOR_MASK, cal->revision),
1100 FIELD_GET(CAL_HL_REVISION_MINOR_MASK, cal->revision),
1101 FIELD_GET(CAL_HL_REVISION_RTL_MASK, cal->revision),
1102 cal->revision);
1103 break;
1104
1105 case CAL_HL_REVISION_SCHEME_LEGACY:
1106 default:
1107 cal_info(cal, "Unexpected CAL HW revision 0x%08x\n",
1108 cal->revision);
1109 break;
1110 }
1111
1112 hwinfo = cal_read(cal, CAL_HL_HWINFO);
1113 if (hwinfo != CAL_HL_HWINFO_VALUE)
1114 cal_info(cal, "CAL_HL_HWINFO = 0x%08x, expected 0x%08x\n",
1115 hwinfo, CAL_HL_HWINFO_VALUE);
1116 }
1117
cal_init_camerarx_regmap(struct cal_dev * cal)1118 static int cal_init_camerarx_regmap(struct cal_dev *cal)
1119 {
1120 struct platform_device *pdev = to_platform_device(cal->dev);
1121 struct device_node *np = cal->dev->of_node;
1122 struct regmap_config config = { };
1123 struct regmap *syscon;
1124 struct resource *res;
1125 unsigned int offset;
1126 void __iomem *base;
1127
1128 syscon = syscon_regmap_lookup_by_phandle_args(np, "ti,camerrx-control",
1129 1, &offset);
1130 if (!IS_ERR(syscon)) {
1131 cal->syscon_camerrx = syscon;
1132 cal->syscon_camerrx_offset = offset;
1133 return 0;
1134 }
1135
1136 dev_warn(cal->dev, "failed to get ti,camerrx-control: %ld\n",
1137 PTR_ERR(syscon));
1138
1139 /*
1140 * Backward DTS compatibility. If syscon entry is not present then
1141 * check if the camerrx_control resource is present.
1142 */
1143 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1144 "camerrx_control");
1145 base = devm_ioremap_resource(cal->dev, res);
1146 if (IS_ERR(base)) {
1147 cal_err(cal, "failed to ioremap camerrx_control\n");
1148 return PTR_ERR(base);
1149 }
1150
1151 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
1152 res->name, &res->start, &res->end);
1153
1154 config.reg_bits = 32;
1155 config.reg_stride = 4;
1156 config.val_bits = 32;
1157 config.max_register = resource_size(res) - 4;
1158
1159 syscon = regmap_init_mmio(NULL, base, &config);
1160 if (IS_ERR(syscon)) {
1161 pr_err("regmap init failed\n");
1162 return PTR_ERR(syscon);
1163 }
1164
1165 /*
1166 * In this case the base already point to the direct CM register so no
1167 * need for an offset.
1168 */
1169 cal->syscon_camerrx = syscon;
1170 cal->syscon_camerrx_offset = 0;
1171
1172 return 0;
1173 }
1174
cal_probe(struct platform_device * pdev)1175 static int cal_probe(struct platform_device *pdev)
1176 {
1177 struct cal_dev *cal;
1178 bool connected = false;
1179 unsigned int i;
1180 int ret;
1181 int irq;
1182
1183 cal = devm_kzalloc(&pdev->dev, sizeof(*cal), GFP_KERNEL);
1184 if (!cal)
1185 return -ENOMEM;
1186
1187 cal->data = of_device_get_match_data(&pdev->dev);
1188 if (!cal->data) {
1189 dev_err(&pdev->dev, "Could not get feature data based on compatible version\n");
1190 return -ENODEV;
1191 }
1192
1193 cal->dev = &pdev->dev;
1194 platform_set_drvdata(pdev, cal);
1195
1196 /* Acquire resources: clocks, CAMERARX regmap, I/O memory and IRQ. */
1197 cal->fclk = devm_clk_get(&pdev->dev, "fck");
1198 if (IS_ERR(cal->fclk)) {
1199 dev_err(&pdev->dev, "cannot get CAL fclk\n");
1200 return PTR_ERR(cal->fclk);
1201 }
1202
1203 ret = cal_init_camerarx_regmap(cal);
1204 if (ret < 0)
1205 return ret;
1206
1207 cal->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1208 "cal_top");
1209 cal->base = devm_ioremap_resource(&pdev->dev, cal->res);
1210 if (IS_ERR(cal->base))
1211 return PTR_ERR(cal->base);
1212
1213 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
1214 cal->res->name, &cal->res->start, &cal->res->end);
1215
1216 irq = platform_get_irq(pdev, 0);
1217 cal_dbg(1, cal, "got irq# %d\n", irq);
1218 ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME,
1219 cal);
1220 if (ret)
1221 return ret;
1222
1223 /* Read the revision and hardware info to verify hardware access. */
1224 pm_runtime_enable(&pdev->dev);
1225 ret = pm_runtime_resume_and_get(&pdev->dev);
1226 if (ret)
1227 goto error_pm_runtime;
1228
1229 cal_get_hwinfo(cal);
1230 pm_runtime_put_sync(&pdev->dev);
1231
1232 /* Initialize the media device. */
1233 ret = cal_media_init(cal);
1234 if (ret < 0)
1235 goto error_pm_runtime;
1236
1237 /* Create CAMERARX PHYs. */
1238 for (i = 0; i < cal->data->num_csi2_phy; ++i) {
1239 cal->phy[i] = cal_camerarx_create(cal, i);
1240 if (IS_ERR(cal->phy[i])) {
1241 ret = PTR_ERR(cal->phy[i]);
1242 cal->phy[i] = NULL;
1243 goto error_camerarx;
1244 }
1245
1246 if (cal->phy[i]->source_node)
1247 connected = true;
1248 }
1249
1250 if (!connected) {
1251 cal_err(cal, "Neither port is configured, no point in staying up\n");
1252 ret = -ENODEV;
1253 goto error_camerarx;
1254 }
1255
1256 /* Create contexts. */
1257 for (i = 0; i < cal->data->num_csi2_phy; ++i) {
1258 if (!cal->phy[i]->source_node)
1259 continue;
1260
1261 cal->ctx[cal->num_contexts] = cal_ctx_create(cal, i);
1262 if (!cal->ctx[cal->num_contexts]) {
1263 cal_err(cal, "Failed to create context %u\n", cal->num_contexts);
1264 ret = -ENODEV;
1265 goto error_context;
1266 }
1267
1268 cal->num_contexts++;
1269 }
1270
1271 /* Register the media device. */
1272 ret = cal_media_register(cal);
1273 if (ret)
1274 goto error_context;
1275
1276 return 0;
1277
1278 error_context:
1279 for (i = 0; i < cal->num_contexts; i++)
1280 cal_ctx_destroy(cal->ctx[i]);
1281
1282 error_camerarx:
1283 for (i = 0; i < cal->data->num_csi2_phy; i++)
1284 cal_camerarx_destroy(cal->phy[i]);
1285
1286 cal_media_cleanup(cal);
1287
1288 error_pm_runtime:
1289 pm_runtime_disable(&pdev->dev);
1290
1291 return ret;
1292 }
1293
cal_remove(struct platform_device * pdev)1294 static int cal_remove(struct platform_device *pdev)
1295 {
1296 struct cal_dev *cal = platform_get_drvdata(pdev);
1297 unsigned int i;
1298 int ret;
1299
1300 cal_dbg(1, cal, "Removing %s\n", CAL_MODULE_NAME);
1301
1302 ret = pm_runtime_resume_and_get(&pdev->dev);
1303
1304 cal_media_unregister(cal);
1305
1306 for (i = 0; i < cal->data->num_csi2_phy; i++)
1307 cal_camerarx_disable(cal->phy[i]);
1308
1309 for (i = 0; i < cal->num_contexts; i++)
1310 cal_ctx_destroy(cal->ctx[i]);
1311
1312 for (i = 0; i < cal->data->num_csi2_phy; i++)
1313 cal_camerarx_destroy(cal->phy[i]);
1314
1315 cal_media_cleanup(cal);
1316
1317 if (ret >= 0)
1318 pm_runtime_put_sync(&pdev->dev);
1319 pm_runtime_disable(&pdev->dev);
1320
1321 return 0;
1322 }
1323
cal_runtime_resume(struct device * dev)1324 static int cal_runtime_resume(struct device *dev)
1325 {
1326 struct cal_dev *cal = dev_get_drvdata(dev);
1327 unsigned int i;
1328 u32 val;
1329
1330 if (cal->data->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) {
1331 /*
1332 * Apply errata on both port everytime we (re-)enable
1333 * the clock
1334 */
1335 for (i = 0; i < cal->data->num_csi2_phy; i++)
1336 cal_camerarx_i913_errata(cal->phy[i]);
1337 }
1338
1339 /*
1340 * Enable global interrupts that are not related to a particular
1341 * CAMERARAX or context.
1342 */
1343 cal_write(cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK);
1344
1345 val = cal_read(cal, CAL_CTRL);
1346 cal_set_field(&val, CAL_CTRL_BURSTSIZE_BURST128,
1347 CAL_CTRL_BURSTSIZE_MASK);
1348 cal_set_field(&val, 0xf, CAL_CTRL_TAGCNT_MASK);
1349 cal_set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED,
1350 CAL_CTRL_POSTED_WRITES_MASK);
1351 cal_set_field(&val, 0xff, CAL_CTRL_MFLAGL_MASK);
1352 cal_set_field(&val, 0xff, CAL_CTRL_MFLAGH_MASK);
1353 cal_write(cal, CAL_CTRL, val);
1354 cal_dbg(3, cal, "CAL_CTRL = 0x%08x\n", cal_read(cal, CAL_CTRL));
1355
1356 return 0;
1357 }
1358
1359 static const struct dev_pm_ops cal_pm_ops = {
1360 .runtime_resume = cal_runtime_resume,
1361 };
1362
1363 static struct platform_driver cal_pdrv = {
1364 .probe = cal_probe,
1365 .remove = cal_remove,
1366 .driver = {
1367 .name = CAL_MODULE_NAME,
1368 .pm = &cal_pm_ops,
1369 .of_match_table = cal_of_match,
1370 },
1371 };
1372
1373 module_platform_driver(cal_pdrv);
1374