1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI Camera Access Layer (CAL) - CAMERARX
4 *
5 * Copyright (c) 2015-2020 Texas Instruments Inc.
6 *
7 * Authors:
8 * Benoit Parrot <bparrot@ti.com>
9 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-subdev.h>
24
25 #include "cal.h"
26 #include "cal_regs.h"
27
28 /* ------------------------------------------------------------------
29 * I/O Register Accessors
30 * ------------------------------------------------------------------
31 */
32
camerarx_read(struct cal_camerarx * phy,u32 offset)33 static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
34 {
35 return ioread32(phy->base + offset);
36 }
37
camerarx_write(struct cal_camerarx * phy,u32 offset,u32 val)38 static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
39 {
40 iowrite32(val, phy->base + offset);
41 }
42
43 /* ------------------------------------------------------------------
44 * CAMERARX Management
45 * ------------------------------------------------------------------
46 */
47
cal_camerarx_get_ext_link_freq(struct cal_camerarx * phy)48 static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
49 {
50 struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
51 u32 num_lanes = mipi_csi2->num_data_lanes;
52 const struct cal_format_info *fmtinfo;
53 u32 bpp;
54 s64 freq;
55
56 fmtinfo = cal_format_by_code(phy->formats[CAL_CAMERARX_PAD_SINK].code);
57 if (!fmtinfo)
58 return -EINVAL;
59
60 bpp = fmtinfo->bpp;
61
62 freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
63 if (freq < 0) {
64 phy_err(phy, "failed to get link freq for subdev '%s'\n",
65 phy->source->name);
66 return freq;
67 }
68
69 phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
70
71 return freq;
72 }
73
cal_camerarx_lane_config(struct cal_camerarx * phy)74 static void cal_camerarx_lane_config(struct cal_camerarx *phy)
75 {
76 u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
77 u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
78 u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
79 struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 =
80 &phy->endpoint.bus.mipi_csi2;
81 int lane;
82
83 cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
84 cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
85 for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
86 /*
87 * Every lane are one nibble apart starting with the
88 * clock followed by the data lanes so shift masks by 4.
89 */
90 lane_mask <<= 4;
91 polarity_mask <<= 4;
92 cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
93 cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
94 polarity_mask);
95 }
96
97 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
98 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
99 phy->instance, val);
100 }
101
cal_camerarx_enable(struct cal_camerarx * phy)102 static void cal_camerarx_enable(struct cal_camerarx *phy)
103 {
104 u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
105
106 regmap_field_write(phy->fields[F_CAMMODE], 0);
107 /* Always enable all lanes at the phy control level */
108 regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
109 /* F_CSI_MODE is not present on every architecture */
110 if (phy->fields[F_CSI_MODE])
111 regmap_field_write(phy->fields[F_CSI_MODE], 1);
112 regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
113 }
114
cal_camerarx_disable(struct cal_camerarx * phy)115 void cal_camerarx_disable(struct cal_camerarx *phy)
116 {
117 regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
118 }
119
120 /*
121 * TCLK values are OK at their reset values
122 */
123 #define TCLK_TERM 0
124 #define TCLK_MISS 1
125 #define TCLK_SETTLE 14
126
cal_camerarx_config(struct cal_camerarx * phy,s64 link_freq)127 static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
128 {
129 unsigned int reg0, reg1;
130 unsigned int ths_term, ths_settle;
131
132 /* DPHY timing configuration */
133
134 /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
135 ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
136 phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
137
138 /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
139 ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
140 phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
141
142 reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
143 cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
144 CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
145 cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
146 cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
147
148 phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
149 camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
150
151 reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
152 cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
153 cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
154 cal_set_field(®1, TCLK_MISS,
155 CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
156 cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
157
158 phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
159 camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
160 }
161
cal_camerarx_power(struct cal_camerarx * phy,bool enable)162 static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
163 {
164 u32 target_state;
165 unsigned int i;
166
167 target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
168 CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
169
170 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
171 target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
172
173 for (i = 0; i < 10; i++) {
174 u32 current_state;
175
176 current_state = cal_read_field(phy->cal,
177 CAL_CSI2_COMPLEXIO_CFG(phy->instance),
178 CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
179
180 if (current_state == target_state)
181 break;
182
183 usleep_range(1000, 1100);
184 }
185
186 if (i == 10)
187 phy_err(phy, "Failed to power %s complexio\n",
188 enable ? "up" : "down");
189 }
190
cal_camerarx_wait_reset(struct cal_camerarx * phy)191 static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
192 {
193 unsigned long timeout;
194
195 timeout = jiffies + msecs_to_jiffies(750);
196 while (time_before(jiffies, timeout)) {
197 if (cal_read_field(phy->cal,
198 CAL_CSI2_COMPLEXIO_CFG(phy->instance),
199 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
200 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
201 break;
202 usleep_range(500, 5000);
203 }
204
205 if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
206 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
207 CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
208 phy_err(phy, "Timeout waiting for Complex IO reset done\n");
209 }
210
cal_camerarx_wait_stop_state(struct cal_camerarx * phy)211 static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
212 {
213 unsigned long timeout;
214
215 timeout = jiffies + msecs_to_jiffies(750);
216 while (time_before(jiffies, timeout)) {
217 if (cal_read_field(phy->cal,
218 CAL_CSI2_TIMING(phy->instance),
219 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
220 break;
221 usleep_range(500, 5000);
222 }
223
224 if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
225 CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
226 phy_err(phy, "Timeout waiting for stop state\n");
227 }
228
cal_camerarx_enable_irqs(struct cal_camerarx * phy)229 static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
230 {
231 const u32 cio_err_mask =
232 CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
233 CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
234 CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
235 CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
236 const u32 vc_err_mask =
237 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
238 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
239 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
240 CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
241 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
242 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
243 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
244 CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
245
246 /* Enable CIO & VC error IRQs. */
247 cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
248 CAL_HL_IRQ_CIO_MASK(phy->instance) |
249 CAL_HL_IRQ_VC_MASK(phy->instance));
250 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
251 cio_err_mask);
252 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
253 vc_err_mask);
254 }
255
cal_camerarx_disable_irqs(struct cal_camerarx * phy)256 static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
257 {
258 /* Disable CIO error irqs */
259 cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
260 CAL_HL_IRQ_CIO_MASK(phy->instance) |
261 CAL_HL_IRQ_VC_MASK(phy->instance));
262 cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
263 cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
264 }
265
cal_camerarx_ppi_enable(struct cal_camerarx * phy)266 static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
267 {
268 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
269 1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
270
271 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
272 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
273 }
274
cal_camerarx_ppi_disable(struct cal_camerarx * phy)275 static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
276 {
277 cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
278 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
279 }
280
cal_camerarx_start(struct cal_camerarx * phy)281 static int cal_camerarx_start(struct cal_camerarx *phy)
282 {
283 s64 link_freq;
284 u32 sscounter;
285 u32 val;
286 int ret;
287
288 if (phy->enable_count > 0) {
289 phy->enable_count++;
290 return 0;
291 }
292
293 link_freq = cal_camerarx_get_ext_link_freq(phy);
294 if (link_freq < 0)
295 return link_freq;
296
297 ret = v4l2_subdev_call(phy->source, core, s_power, 1);
298 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
299 phy_err(phy, "power on failed in subdev\n");
300 return ret;
301 }
302
303 cal_camerarx_enable_irqs(phy);
304
305 /*
306 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
307 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
308 * DRA80xM TRMs have a slightly simplified sequence.
309 */
310
311 /*
312 * 1. Configure all CSI-2 low level protocol registers to be ready to
313 * receive signals/data from the CSI-2 PHY.
314 *
315 * i.-v. Configure the lanes position and polarity.
316 */
317 cal_camerarx_lane_config(phy);
318
319 /*
320 * vi.-vii. Configure D-PHY mode, enable the required lanes and
321 * enable the CAMERARX clock.
322 */
323 cal_camerarx_enable(phy);
324
325 /*
326 * 2. CSI PHY and link initialization sequence.
327 *
328 * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
329 * at this point, as it requires the external source to send the
330 * CSI-2 HS clock.
331 */
332 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
333 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
334 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
335 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
336 phy->instance,
337 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
338
339 /* Dummy read to allow SCP reset to complete. */
340 camerarx_read(phy, CAL_CSI2_PHY_REG0);
341
342 /* Program the PHY timing parameters. */
343 cal_camerarx_config(phy, link_freq);
344
345 /*
346 * b. Assert the FORCERXMODE signal.
347 *
348 * The stop-state-counter is based on fclk cycles, and we always use
349 * the x16 and x4 settings, so stop-state-timeout =
350 * fclk-cycle * 16 * 4 * counter.
351 *
352 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
353 * calculate a timeout that's 100us (rounding up).
354 */
355 sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
356
357 val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
358 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
359 cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
360 cal_set_field(&val, sscounter,
361 CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
362 cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
363 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
364 phy->instance,
365 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
366
367 /* Assert the FORCERXMODE signal. */
368 cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
369 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
370 phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
371 phy->instance,
372 cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
373
374 /*
375 * c. Connect pull-down on CSI-2 PHY link (using pad control).
376 *
377 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
378 * implemented.
379 */
380
381 /*
382 * d. Power up the CSI-2 PHY.
383 * e. Check whether the state status reaches the ON state.
384 */
385 cal_camerarx_power(phy, true);
386
387 /*
388 * Start the source to enable the CSI-2 HS clock. We can now wait for
389 * CSI-2 PHY reset to complete.
390 */
391 ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
392 if (ret) {
393 v4l2_subdev_call(phy->source, core, s_power, 0);
394 cal_camerarx_disable_irqs(phy);
395 phy_err(phy, "stream on failed in subdev\n");
396 return ret;
397 }
398
399 cal_camerarx_wait_reset(phy);
400
401 /* f. Wait for STOPSTATE=1 for all enabled lane modules. */
402 cal_camerarx_wait_stop_state(phy);
403
404 phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
405 phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
406
407 /*
408 * g. Disable pull-down on CSI-2 PHY link (using pad control).
409 *
410 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
411 * implemented.
412 */
413
414 /* Finally, enable the PHY Protocol Interface (PPI). */
415 cal_camerarx_ppi_enable(phy);
416
417 phy->enable_count++;
418
419 return 0;
420 }
421
cal_camerarx_stop(struct cal_camerarx * phy)422 static void cal_camerarx_stop(struct cal_camerarx *phy)
423 {
424 int ret;
425
426 if (--phy->enable_count > 0)
427 return;
428
429 cal_camerarx_ppi_disable(phy);
430
431 cal_camerarx_disable_irqs(phy);
432
433 cal_camerarx_power(phy, false);
434
435 /* Assert Complex IO Reset */
436 cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
437 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
438 CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
439
440 phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
441 phy->instance,
442 cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
443
444 /* Disable the phy */
445 cal_camerarx_disable(phy);
446
447 if (v4l2_subdev_call(phy->source, video, s_stream, 0))
448 phy_err(phy, "stream off failed in subdev\n");
449
450 ret = v4l2_subdev_call(phy->source, core, s_power, 0);
451 if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
452 phy_err(phy, "power off failed in subdev\n");
453 }
454
455 /*
456 * Errata i913: CSI2 LDO Needs to be disabled when module is powered on
457 *
458 * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
459 * LDOs on the device are disabled if CSI-2 module is powered on
460 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
461 * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
462 * current draw on the module supply in active mode.
463 *
464 * Errata does not apply when CSI-2 module is powered off
465 * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
466 *
467 * SW Workaround:
468 * Set the following register bits to disable the LDO,
469 * which is essentially CSI2 REG10 bit 6:
470 *
471 * Core 0: 0x4845 B828 = 0x0000 0040
472 * Core 1: 0x4845 B928 = 0x0000 0040
473 */
cal_camerarx_i913_errata(struct cal_camerarx * phy)474 void cal_camerarx_i913_errata(struct cal_camerarx *phy)
475 {
476 u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
477
478 cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
479
480 phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
481 camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
482 }
483
cal_camerarx_regmap_init(struct cal_dev * cal,struct cal_camerarx * phy)484 static int cal_camerarx_regmap_init(struct cal_dev *cal,
485 struct cal_camerarx *phy)
486 {
487 const struct cal_camerarx_data *phy_data;
488 unsigned int i;
489
490 if (!cal->data)
491 return -EINVAL;
492
493 phy_data = &cal->data->camerarx[phy->instance];
494
495 for (i = 0; i < F_MAX_FIELDS; i++) {
496 struct reg_field field = {
497 .reg = cal->syscon_camerrx_offset,
498 .lsb = phy_data->fields[i].lsb,
499 .msb = phy_data->fields[i].msb,
500 };
501
502 /*
503 * Here we update the reg offset with the
504 * value found in DT
505 */
506 phy->fields[i] = devm_regmap_field_alloc(cal->dev,
507 cal->syscon_camerrx,
508 field);
509 if (IS_ERR(phy->fields[i])) {
510 cal_err(cal, "Unable to allocate regmap fields\n");
511 return PTR_ERR(phy->fields[i]);
512 }
513 }
514
515 return 0;
516 }
517
cal_camerarx_parse_dt(struct cal_camerarx * phy)518 static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
519 {
520 struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
521 char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2];
522 struct device_node *ep_node;
523 unsigned int i;
524 int ret;
525
526 /*
527 * Find the endpoint node for the port corresponding to the PHY
528 * instance, and parse its CSI-2-related properties.
529 */
530 ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
531 phy->instance, 0);
532 if (!ep_node) {
533 /*
534 * The endpoint is not mandatory, not all PHY instances need to
535 * be connected in DT.
536 */
537 phy_dbg(3, phy, "Port has no endpoint\n");
538 return 0;
539 }
540
541 endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
542 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
543 if (ret < 0) {
544 phy_err(phy, "Failed to parse endpoint\n");
545 goto done;
546 }
547
548 for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
549 unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
550
551 if (lane > 4) {
552 phy_err(phy, "Invalid position %u for data lane %u\n",
553 lane, i);
554 ret = -EINVAL;
555 goto done;
556 }
557
558 data_lanes[i*2] = '0' + lane;
559 data_lanes[i*2+1] = ' ';
560 }
561
562 data_lanes[i*2-1] = '\0';
563
564 phy_dbg(3, phy,
565 "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
566 endpoint->bus.mipi_csi2.clock_lane, data_lanes,
567 endpoint->bus.mipi_csi2.flags);
568
569 /* Retrieve the connected device and store it for later use. */
570 phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
571 phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
572 if (!phy->source_node) {
573 phy_dbg(3, phy, "Can't get remote parent\n");
574 of_node_put(phy->source_ep_node);
575 ret = -EINVAL;
576 goto done;
577 }
578
579 phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
580
581 done:
582 of_node_put(ep_node);
583 return ret;
584 }
585
cal_camerarx_get_remote_frame_desc(struct cal_camerarx * phy,struct v4l2_mbus_frame_desc * desc)586 int cal_camerarx_get_remote_frame_desc(struct cal_camerarx *phy,
587 struct v4l2_mbus_frame_desc *desc)
588 {
589 struct media_pad *pad;
590 int ret;
591
592 if (!phy->source)
593 return -EPIPE;
594
595 pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]);
596 if (!pad)
597 return -EPIPE;
598
599 ret = v4l2_subdev_call(phy->source, pad, get_frame_desc, pad->index,
600 desc);
601 if (ret)
602 return ret;
603
604 if (desc->type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
605 dev_err(phy->cal->dev,
606 "Frame descriptor does not describe CSI-2 link");
607 return -EINVAL;
608 }
609
610 return 0;
611 }
612
613 /* ------------------------------------------------------------------
614 * V4L2 Subdev Operations
615 * ------------------------------------------------------------------
616 */
617
to_cal_camerarx(struct v4l2_subdev * sd)618 static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
619 {
620 return container_of(sd, struct cal_camerarx, subdev);
621 }
622
623 static struct v4l2_mbus_framefmt *
cal_camerarx_get_pad_format(struct cal_camerarx * phy,struct v4l2_subdev_state * state,unsigned int pad,u32 which)624 cal_camerarx_get_pad_format(struct cal_camerarx *phy,
625 struct v4l2_subdev_state *state,
626 unsigned int pad, u32 which)
627 {
628 switch (which) {
629 case V4L2_SUBDEV_FORMAT_TRY:
630 return v4l2_subdev_get_try_format(&phy->subdev, state, pad);
631 case V4L2_SUBDEV_FORMAT_ACTIVE:
632 return &phy->formats[pad];
633 default:
634 return NULL;
635 }
636 }
637
cal_camerarx_sd_s_stream(struct v4l2_subdev * sd,int enable)638 static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
639 {
640 struct cal_camerarx *phy = to_cal_camerarx(sd);
641 int ret = 0;
642
643 mutex_lock(&phy->mutex);
644
645 if (enable)
646 ret = cal_camerarx_start(phy);
647 else
648 cal_camerarx_stop(phy);
649
650 mutex_unlock(&phy->mutex);
651
652 return ret;
653 }
654
cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,struct v4l2_subdev_mbus_code_enum * code)655 static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
656 struct v4l2_subdev_state *state,
657 struct v4l2_subdev_mbus_code_enum *code)
658 {
659 struct cal_camerarx *phy = to_cal_camerarx(sd);
660 int ret = 0;
661
662 mutex_lock(&phy->mutex);
663
664 /* No transcoding, source and sink codes must match. */
665 if (cal_rx_pad_is_source(code->pad)) {
666 struct v4l2_mbus_framefmt *fmt;
667
668 if (code->index > 0) {
669 ret = -EINVAL;
670 goto out;
671 }
672
673 fmt = cal_camerarx_get_pad_format(phy, state,
674 CAL_CAMERARX_PAD_SINK,
675 code->which);
676 code->code = fmt->code;
677 } else {
678 if (code->index >= cal_num_formats) {
679 ret = -EINVAL;
680 goto out;
681 }
682
683 code->code = cal_formats[code->index].code;
684 }
685
686 out:
687 mutex_unlock(&phy->mutex);
688
689 return ret;
690 }
691
cal_camerarx_sd_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,struct v4l2_subdev_frame_size_enum * fse)692 static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
693 struct v4l2_subdev_state *state,
694 struct v4l2_subdev_frame_size_enum *fse)
695 {
696 struct cal_camerarx *phy = to_cal_camerarx(sd);
697 const struct cal_format_info *fmtinfo;
698 int ret = 0;
699
700 if (fse->index > 0)
701 return -EINVAL;
702
703 mutex_lock(&phy->mutex);
704
705 /* No transcoding, source and sink formats must match. */
706 if (cal_rx_pad_is_source(fse->pad)) {
707 struct v4l2_mbus_framefmt *fmt;
708
709 fmt = cal_camerarx_get_pad_format(phy, state,
710 CAL_CAMERARX_PAD_SINK,
711 fse->which);
712 if (fse->code != fmt->code) {
713 ret = -EINVAL;
714 goto out;
715 }
716
717 fse->min_width = fmt->width;
718 fse->max_width = fmt->width;
719 fse->min_height = fmt->height;
720 fse->max_height = fmt->height;
721 } else {
722 fmtinfo = cal_format_by_code(fse->code);
723 if (!fmtinfo) {
724 ret = -EINVAL;
725 goto out;
726 }
727
728 fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
729 fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
730 fse->min_height = CAL_MIN_HEIGHT_LINES;
731 fse->max_height = CAL_MAX_HEIGHT_LINES;
732 }
733
734 out:
735 mutex_unlock(&phy->mutex);
736
737 return ret;
738 }
739
cal_camerarx_sd_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,struct v4l2_subdev_format * format)740 static int cal_camerarx_sd_get_fmt(struct v4l2_subdev *sd,
741 struct v4l2_subdev_state *state,
742 struct v4l2_subdev_format *format)
743 {
744 struct cal_camerarx *phy = to_cal_camerarx(sd);
745 struct v4l2_mbus_framefmt *fmt;
746
747 mutex_lock(&phy->mutex);
748
749 fmt = cal_camerarx_get_pad_format(phy, state, format->pad,
750 format->which);
751 format->format = *fmt;
752
753 mutex_unlock(&phy->mutex);
754
755 return 0;
756 }
757
cal_camerarx_sd_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,struct v4l2_subdev_format * format)758 static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
759 struct v4l2_subdev_state *state,
760 struct v4l2_subdev_format *format)
761 {
762 struct cal_camerarx *phy = to_cal_camerarx(sd);
763 const struct cal_format_info *fmtinfo;
764 struct v4l2_mbus_framefmt *fmt;
765 unsigned int bpp;
766
767 /* No transcoding, source and sink formats must match. */
768 if (cal_rx_pad_is_source(format->pad))
769 return cal_camerarx_sd_get_fmt(sd, state, format);
770
771 /*
772 * Default to the first format if the requested media bus code isn't
773 * supported.
774 */
775 fmtinfo = cal_format_by_code(format->format.code);
776 if (!fmtinfo)
777 fmtinfo = &cal_formats[0];
778
779 /* Clamp the size, update the code. The colorspace is accepted as-is. */
780 bpp = ALIGN(fmtinfo->bpp, 8);
781
782 format->format.width = clamp_t(unsigned int, format->format.width,
783 CAL_MIN_WIDTH_BYTES * 8 / bpp,
784 CAL_MAX_WIDTH_BYTES * 8 / bpp);
785 format->format.height = clamp_t(unsigned int, format->format.height,
786 CAL_MIN_HEIGHT_LINES,
787 CAL_MAX_HEIGHT_LINES);
788 format->format.code = fmtinfo->code;
789 format->format.field = V4L2_FIELD_NONE;
790
791 /* Store the format and propagate it to the source pad. */
792
793 mutex_lock(&phy->mutex);
794
795 fmt = cal_camerarx_get_pad_format(phy, state,
796 CAL_CAMERARX_PAD_SINK,
797 format->which);
798 *fmt = format->format;
799
800 fmt = cal_camerarx_get_pad_format(phy, state,
801 CAL_CAMERARX_PAD_FIRST_SOURCE,
802 format->which);
803 *fmt = format->format;
804
805 mutex_unlock(&phy->mutex);
806
807 return 0;
808 }
809
cal_camerarx_sd_init_cfg(struct v4l2_subdev * sd,struct v4l2_subdev_state * state)810 static int cal_camerarx_sd_init_cfg(struct v4l2_subdev *sd,
811 struct v4l2_subdev_state *state)
812 {
813 struct v4l2_subdev_format format = {
814 .which = state ? V4L2_SUBDEV_FORMAT_TRY
815 : V4L2_SUBDEV_FORMAT_ACTIVE,
816 .pad = CAL_CAMERARX_PAD_SINK,
817 .format = {
818 .width = 640,
819 .height = 480,
820 .code = MEDIA_BUS_FMT_UYVY8_2X8,
821 .field = V4L2_FIELD_NONE,
822 .colorspace = V4L2_COLORSPACE_SRGB,
823 .ycbcr_enc = V4L2_YCBCR_ENC_601,
824 .quantization = V4L2_QUANTIZATION_LIM_RANGE,
825 .xfer_func = V4L2_XFER_FUNC_SRGB,
826 },
827 };
828
829 return cal_camerarx_sd_set_fmt(sd, state, &format);
830 }
831
832 static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
833 .s_stream = cal_camerarx_sd_s_stream,
834 };
835
836 static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
837 .init_cfg = cal_camerarx_sd_init_cfg,
838 .enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
839 .enum_frame_size = cal_camerarx_sd_enum_frame_size,
840 .get_fmt = cal_camerarx_sd_get_fmt,
841 .set_fmt = cal_camerarx_sd_set_fmt,
842 };
843
844 static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
845 .video = &cal_camerarx_video_ops,
846 .pad = &cal_camerarx_pad_ops,
847 };
848
849 static struct media_entity_operations cal_camerarx_media_ops = {
850 .link_validate = v4l2_subdev_link_validate,
851 };
852
853 /* ------------------------------------------------------------------
854 * Create and Destroy
855 * ------------------------------------------------------------------
856 */
857
cal_camerarx_create(struct cal_dev * cal,unsigned int instance)858 struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
859 unsigned int instance)
860 {
861 struct platform_device *pdev = to_platform_device(cal->dev);
862 struct cal_camerarx *phy;
863 struct v4l2_subdev *sd;
864 unsigned int i;
865 int ret;
866
867 phy = kzalloc(sizeof(*phy), GFP_KERNEL);
868 if (!phy)
869 return ERR_PTR(-ENOMEM);
870
871 phy->cal = cal;
872 phy->instance = instance;
873
874 spin_lock_init(&phy->vc_lock);
875 mutex_init(&phy->mutex);
876
877 phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
878 (instance == 0) ?
879 "cal_rx_core0" :
880 "cal_rx_core1");
881 phy->base = devm_ioremap_resource(cal->dev, phy->res);
882 if (IS_ERR(phy->base)) {
883 cal_err(cal, "failed to ioremap\n");
884 ret = PTR_ERR(phy->base);
885 goto error;
886 }
887
888 cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
889 phy->res->name, &phy->res->start, &phy->res->end);
890
891 ret = cal_camerarx_regmap_init(cal, phy);
892 if (ret)
893 goto error;
894
895 ret = cal_camerarx_parse_dt(phy);
896 if (ret)
897 goto error;
898
899 /* Initialize the V4L2 subdev and media entity. */
900 sd = &phy->subdev;
901 v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
902 sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
903 sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
904 snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
905 sd->dev = cal->dev;
906
907 phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
908 for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
909 phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
910 sd->entity.ops = &cal_camerarx_media_ops;
911 ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
912 phy->pads);
913 if (ret)
914 goto error;
915
916 ret = cal_camerarx_sd_init_cfg(sd, NULL);
917 if (ret)
918 goto error;
919
920 ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
921 if (ret)
922 goto error;
923
924 return phy;
925
926 error:
927 media_entity_cleanup(&phy->subdev.entity);
928 kfree(phy);
929 return ERR_PTR(ret);
930 }
931
cal_camerarx_destroy(struct cal_camerarx * phy)932 void cal_camerarx_destroy(struct cal_camerarx *phy)
933 {
934 if (!phy)
935 return;
936
937 v4l2_device_unregister_subdev(&phy->subdev);
938 media_entity_cleanup(&phy->subdev.entity);
939 of_node_put(phy->source_ep_node);
940 of_node_put(phy->source_node);
941 mutex_destroy(&phy->mutex);
942 kfree(phy);
943 }
944