1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
throttle_init(struct throttle * t)151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
throttle_work_start(struct throttle * t)157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
throttle_work_update(struct throttle * t)162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
throttle_work_complete(struct throttle * t)170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
throttle_lock(struct throttle * t)178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
throttle_unlock(struct throttle * t)183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211 };
212
213 struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285 };
286
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288
get_pool_mode(struct pool * pool)289 static enum pool_mode get_pool_mode(struct pool *pool)
290 {
291 return pool->pf.mode;
292 }
293
notify_of_pool_mode_change(struct pool * pool)294 static void notify_of_pool_mode_change(struct pool *pool)
295 {
296 const char *descs[] = {
297 "write",
298 "out-of-data-space",
299 "read-only",
300 "read-only",
301 "fail"
302 };
303 const char *extra_desc = NULL;
304 enum pool_mode mode = get_pool_mode(pool);
305
306 if (mode == PM_OUT_OF_DATA_SPACE) {
307 if (!pool->pf.error_if_no_space)
308 extra_desc = " (queue IO)";
309 else
310 extra_desc = " (error IO)";
311 }
312
313 dm_table_event(pool->ti->table);
314 DMINFO("%s: switching pool to %s%s mode",
315 dm_device_name(pool->pool_md),
316 descs[(int)mode], extra_desc ? : "");
317 }
318
319 /*
320 * Target context for a pool.
321 */
322 struct pool_c {
323 struct dm_target *ti;
324 struct pool *pool;
325 struct dm_dev *data_dev;
326 struct dm_dev *metadata_dev;
327
328 dm_block_t low_water_blocks;
329 struct pool_features requested_pf; /* Features requested during table load */
330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334 * Target context for a thin.
335 */
336 struct thin_c {
337 struct list_head list;
338 struct dm_dev *pool_dev;
339 struct dm_dev *origin_dev;
340 sector_t origin_size;
341 dm_thin_id dev_id;
342
343 struct pool *pool;
344 struct dm_thin_device *td;
345 struct mapped_device *thin_md;
346
347 bool requeue_mode:1;
348 spinlock_t lock;
349 struct list_head deferred_cells;
350 struct bio_list deferred_bio_list;
351 struct bio_list retry_on_resume_list;
352 struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354 /*
355 * Ensures the thin is not destroyed until the worker has finished
356 * iterating the active_thins list.
357 */
358 refcount_t refcount;
359 struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
block_size_is_power_of_two(struct pool * pool)364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366 return pool->sectors_per_block_shift >= 0;
367 }
368
block_to_sectors(struct pool * pool,dm_block_t b)369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371 return block_size_is_power_of_two(pool) ?
372 (b << pool->sectors_per_block_shift) :
373 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379 struct thin_c *tc;
380 struct blk_plug plug;
381 struct bio *parent_bio;
382 struct bio *bio;
383 };
384
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387 BUG_ON(!parent);
388
389 op->tc = tc;
390 blk_start_plug(&op->plug);
391 op->parent_bio = parent;
392 op->bio = NULL;
393 }
394
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397 struct thin_c *tc = op->tc;
398 sector_t s = block_to_sectors(tc->pool, data_b);
399 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
402 &op->bio);
403 }
404
end_discard(struct discard_op * op,int r)405 static void end_discard(struct discard_op *op, int r)
406 {
407 if (op->bio) {
408 /*
409 * Even if one of the calls to issue_discard failed, we
410 * need to wait for the chain to complete.
411 */
412 bio_chain(op->bio, op->parent_bio);
413 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414 submit_bio(op->bio);
415 }
416
417 blk_finish_plug(&op->plug);
418
419 /*
420 * Even if r is set, there could be sub discards in flight that we
421 * need to wait for.
422 */
423 if (r && !op->parent_bio->bi_status)
424 op->parent_bio->bi_status = errno_to_blk_status(r);
425 bio_endio(op->parent_bio);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 /*
431 * wake_worker() is used when new work is queued and when pool_resume is
432 * ready to continue deferred IO processing.
433 */
wake_worker(struct pool * pool)434 static void wake_worker(struct pool *pool)
435 {
436 queue_work(pool->wq, &pool->worker);
437 }
438
439 /*----------------------------------------------------------------*/
440
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442 struct dm_bio_prison_cell **cell_result)
443 {
444 int r;
445 struct dm_bio_prison_cell *cell_prealloc;
446
447 /*
448 * Allocate a cell from the prison's mempool.
449 * This might block but it can't fail.
450 */
451 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452
453 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454 if (r)
455 /*
456 * We reused an old cell; we can get rid of
457 * the new one.
458 */
459 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460
461 return r;
462 }
463
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)464 static void cell_release(struct pool *pool,
465 struct dm_bio_prison_cell *cell,
466 struct bio_list *bios)
467 {
468 dm_cell_release(pool->prison, cell, bios);
469 dm_bio_prison_free_cell(pool->prison, cell);
470 }
471
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)472 static void cell_visit_release(struct pool *pool,
473 void (*fn)(void *, struct dm_bio_prison_cell *),
474 void *context,
475 struct dm_bio_prison_cell *cell)
476 {
477 dm_cell_visit_release(pool->prison, fn, context, cell);
478 dm_bio_prison_free_cell(pool->prison, cell);
479 }
480
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)481 static void cell_release_no_holder(struct pool *pool,
482 struct dm_bio_prison_cell *cell,
483 struct bio_list *bios)
484 {
485 dm_cell_release_no_holder(pool->prison, cell, bios);
486 dm_bio_prison_free_cell(pool->prison, cell);
487 }
488
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)489 static void cell_error_with_code(struct pool *pool,
490 struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492 dm_cell_error(pool->prison, cell, error_code);
493 dm_bio_prison_free_cell(pool->prison, cell);
494 }
495
get_pool_io_error_code(struct pool * pool)496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508 cell_error_with_code(pool, cell, 0);
509 }
510
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515
516 /*----------------------------------------------------------------*/
517
518 /*
519 * A global list of pools that uses a struct mapped_device as a key.
520 */
521 static struct dm_thin_pool_table {
522 struct mutex mutex;
523 struct list_head pools;
524 } dm_thin_pool_table;
525
pool_table_init(void)526 static void pool_table_init(void)
527 {
528 mutex_init(&dm_thin_pool_table.mutex);
529 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531
pool_table_exit(void)532 static void pool_table_exit(void)
533 {
534 mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536
__pool_table_insert(struct pool * pool)537 static void __pool_table_insert(struct pool *pool)
538 {
539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540 list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542
__pool_table_remove(struct pool * pool)543 static void __pool_table_remove(struct pool *pool)
544 {
545 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546 list_del(&pool->list);
547 }
548
__pool_table_lookup(struct mapped_device * md)549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551 struct pool *pool = NULL, *tmp;
552
553 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554
555 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556 if (tmp->pool_md == md) {
557 pool = tmp;
558 break;
559 }
560 }
561
562 return pool;
563 }
564
__pool_table_lookup_metadata_dev(struct block_device * md_dev)565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567 struct pool *pool = NULL, *tmp;
568
569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 if (tmp->md_dev == md_dev) {
573 pool = tmp;
574 break;
575 }
576 }
577
578 return pool;
579 }
580
581 /*----------------------------------------------------------------*/
582
583 struct dm_thin_endio_hook {
584 struct thin_c *tc;
585 struct dm_deferred_entry *shared_read_entry;
586 struct dm_deferred_entry *all_io_entry;
587 struct dm_thin_new_mapping *overwrite_mapping;
588 struct rb_node rb_node;
589 struct dm_bio_prison_cell *cell;
590 };
591
__merge_bio_list(struct bio_list * bios,struct bio_list * master)592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594 bio_list_merge(bios, master);
595 bio_list_init(master);
596 }
597
error_bio_list(struct bio_list * bios,blk_status_t error)598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600 struct bio *bio;
601
602 while ((bio = bio_list_pop(bios))) {
603 bio->bi_status = error;
604 bio_endio(bio);
605 }
606 }
607
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609 blk_status_t error)
610 {
611 struct bio_list bios;
612
613 bio_list_init(&bios);
614
615 spin_lock_irq(&tc->lock);
616 __merge_bio_list(&bios, master);
617 spin_unlock_irq(&tc->lock);
618
619 error_bio_list(&bios, error);
620 }
621
requeue_deferred_cells(struct thin_c * tc)622 static void requeue_deferred_cells(struct thin_c *tc)
623 {
624 struct pool *pool = tc->pool;
625 struct list_head cells;
626 struct dm_bio_prison_cell *cell, *tmp;
627
628 INIT_LIST_HEAD(&cells);
629
630 spin_lock_irq(&tc->lock);
631 list_splice_init(&tc->deferred_cells, &cells);
632 spin_unlock_irq(&tc->lock);
633
634 list_for_each_entry_safe(cell, tmp, &cells, user_list)
635 cell_requeue(pool, cell);
636 }
637
requeue_io(struct thin_c * tc)638 static void requeue_io(struct thin_c *tc)
639 {
640 struct bio_list bios;
641
642 bio_list_init(&bios);
643
644 spin_lock_irq(&tc->lock);
645 __merge_bio_list(&bios, &tc->deferred_bio_list);
646 __merge_bio_list(&bios, &tc->retry_on_resume_list);
647 spin_unlock_irq(&tc->lock);
648
649 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
650 requeue_deferred_cells(tc);
651 }
652
error_retry_list_with_code(struct pool * pool,blk_status_t error)653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
654 {
655 struct thin_c *tc;
656
657 rcu_read_lock();
658 list_for_each_entry_rcu(tc, &pool->active_thins, list)
659 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
660 rcu_read_unlock();
661 }
662
error_retry_list(struct pool * pool)663 static void error_retry_list(struct pool *pool)
664 {
665 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
666 }
667
668 /*
669 * This section of code contains the logic for processing a thin device's IO.
670 * Much of the code depends on pool object resources (lists, workqueues, etc)
671 * but most is exclusively called from the thin target rather than the thin-pool
672 * target.
673 */
674
get_bio_block(struct thin_c * tc,struct bio * bio)675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
676 {
677 struct pool *pool = tc->pool;
678 sector_t block_nr = bio->bi_iter.bi_sector;
679
680 if (block_size_is_power_of_two(pool))
681 block_nr >>= pool->sectors_per_block_shift;
682 else
683 (void) sector_div(block_nr, pool->sectors_per_block);
684
685 return block_nr;
686 }
687
688 /*
689 * Returns the _complete_ blocks that this bio covers.
690 */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
692 dm_block_t *begin, dm_block_t *end)
693 {
694 struct pool *pool = tc->pool;
695 sector_t b = bio->bi_iter.bi_sector;
696 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
697
698 b += pool->sectors_per_block - 1ull; /* so we round up */
699
700 if (block_size_is_power_of_two(pool)) {
701 b >>= pool->sectors_per_block_shift;
702 e >>= pool->sectors_per_block_shift;
703 } else {
704 (void) sector_div(b, pool->sectors_per_block);
705 (void) sector_div(e, pool->sectors_per_block);
706 }
707
708 if (e < b)
709 /* Can happen if the bio is within a single block. */
710 e = b;
711
712 *begin = b;
713 *end = e;
714 }
715
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718 struct pool *pool = tc->pool;
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720
721 bio_set_dev(bio, tc->pool_dev->bdev);
722 if (block_size_is_power_of_two(pool))
723 bio->bi_iter.bi_sector =
724 (block << pool->sectors_per_block_shift) |
725 (bi_sector & (pool->sectors_per_block - 1));
726 else
727 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
728 sector_div(bi_sector, pool->sectors_per_block);
729 }
730
remap_to_origin(struct thin_c * tc,struct bio * bio)731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733 bio_set_dev(bio, tc->origin_dev->bdev);
734 }
735
bio_triggers_commit(struct thin_c * tc,struct bio * bio)736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738 return op_is_flush(bio->bi_opf) &&
739 dm_thin_changed_this_transaction(tc->td);
740 }
741
inc_all_io_entry(struct pool * pool,struct bio * bio)742 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
743 {
744 struct dm_thin_endio_hook *h;
745
746 if (bio_op(bio) == REQ_OP_DISCARD)
747 return;
748
749 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
750 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
751 }
752
issue(struct thin_c * tc,struct bio * bio)753 static void issue(struct thin_c *tc, struct bio *bio)
754 {
755 struct pool *pool = tc->pool;
756
757 if (!bio_triggers_commit(tc, bio)) {
758 dm_submit_bio_remap(bio, NULL);
759 return;
760 }
761
762 /*
763 * Complete bio with an error if earlier I/O caused changes to
764 * the metadata that can't be committed e.g, due to I/O errors
765 * on the metadata device.
766 */
767 if (dm_thin_aborted_changes(tc->td)) {
768 bio_io_error(bio);
769 return;
770 }
771
772 /*
773 * Batch together any bios that trigger commits and then issue a
774 * single commit for them in process_deferred_bios().
775 */
776 spin_lock_irq(&pool->lock);
777 bio_list_add(&pool->deferred_flush_bios, bio);
778 spin_unlock_irq(&pool->lock);
779 }
780
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
782 {
783 remap_to_origin(tc, bio);
784 issue(tc, bio);
785 }
786
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)787 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
788 dm_block_t block)
789 {
790 remap(tc, bio, block);
791 issue(tc, bio);
792 }
793
794 /*----------------------------------------------------------------*/
795
796 /*
797 * Bio endio functions.
798 */
799 struct dm_thin_new_mapping {
800 struct list_head list;
801
802 bool pass_discard:1;
803 bool maybe_shared:1;
804
805 /*
806 * Track quiescing, copying and zeroing preparation actions. When this
807 * counter hits zero the block is prepared and can be inserted into the
808 * btree.
809 */
810 atomic_t prepare_actions;
811
812 blk_status_t status;
813 struct thin_c *tc;
814 dm_block_t virt_begin, virt_end;
815 dm_block_t data_block;
816 struct dm_bio_prison_cell *cell;
817
818 /*
819 * If the bio covers the whole area of a block then we can avoid
820 * zeroing or copying. Instead this bio is hooked. The bio will
821 * still be in the cell, so care has to be taken to avoid issuing
822 * the bio twice.
823 */
824 struct bio *bio;
825 bio_end_io_t *saved_bi_end_io;
826 };
827
__complete_mapping_preparation(struct dm_thin_new_mapping * m)828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
829 {
830 struct pool *pool = m->tc->pool;
831
832 if (atomic_dec_and_test(&m->prepare_actions)) {
833 list_add_tail(&m->list, &pool->prepared_mappings);
834 wake_worker(pool);
835 }
836 }
837
complete_mapping_preparation(struct dm_thin_new_mapping * m)838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
839 {
840 unsigned long flags;
841 struct pool *pool = m->tc->pool;
842
843 spin_lock_irqsave(&pool->lock, flags);
844 __complete_mapping_preparation(m);
845 spin_unlock_irqrestore(&pool->lock, flags);
846 }
847
copy_complete(int read_err,unsigned long write_err,void * context)848 static void copy_complete(int read_err, unsigned long write_err, void *context)
849 {
850 struct dm_thin_new_mapping *m = context;
851
852 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
853 complete_mapping_preparation(m);
854 }
855
overwrite_endio(struct bio * bio)856 static void overwrite_endio(struct bio *bio)
857 {
858 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
859 struct dm_thin_new_mapping *m = h->overwrite_mapping;
860
861 bio->bi_end_io = m->saved_bi_end_io;
862
863 m->status = bio->bi_status;
864 complete_mapping_preparation(m);
865 }
866
867 /*----------------------------------------------------------------*/
868
869 /*
870 * Workqueue.
871 */
872
873 /*
874 * Prepared mapping jobs.
875 */
876
877 /*
878 * This sends the bios in the cell, except the original holder, back
879 * to the deferred_bios list.
880 */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
882 {
883 struct pool *pool = tc->pool;
884 unsigned long flags;
885 int has_work;
886
887 spin_lock_irqsave(&tc->lock, flags);
888 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
889 has_work = !bio_list_empty(&tc->deferred_bio_list);
890 spin_unlock_irqrestore(&tc->lock, flags);
891
892 if (has_work)
893 wake_worker(pool);
894 }
895
896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
897
898 struct remap_info {
899 struct thin_c *tc;
900 struct bio_list defer_bios;
901 struct bio_list issue_bios;
902 };
903
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)904 static void __inc_remap_and_issue_cell(void *context,
905 struct dm_bio_prison_cell *cell)
906 {
907 struct remap_info *info = context;
908 struct bio *bio;
909
910 while ((bio = bio_list_pop(&cell->bios))) {
911 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
912 bio_list_add(&info->defer_bios, bio);
913 else {
914 inc_all_io_entry(info->tc->pool, bio);
915
916 /*
917 * We can't issue the bios with the bio prison lock
918 * held, so we add them to a list to issue on
919 * return from this function.
920 */
921 bio_list_add(&info->issue_bios, bio);
922 }
923 }
924 }
925
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)926 static void inc_remap_and_issue_cell(struct thin_c *tc,
927 struct dm_bio_prison_cell *cell,
928 dm_block_t block)
929 {
930 struct bio *bio;
931 struct remap_info info;
932
933 info.tc = tc;
934 bio_list_init(&info.defer_bios);
935 bio_list_init(&info.issue_bios);
936
937 /*
938 * We have to be careful to inc any bios we're about to issue
939 * before the cell is released, and avoid a race with new bios
940 * being added to the cell.
941 */
942 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
943 &info, cell);
944
945 while ((bio = bio_list_pop(&info.defer_bios)))
946 thin_defer_bio(tc, bio);
947
948 while ((bio = bio_list_pop(&info.issue_bios)))
949 remap_and_issue(info.tc, bio, block);
950 }
951
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
953 {
954 cell_error(m->tc->pool, m->cell);
955 list_del(&m->list);
956 mempool_free(m, &m->tc->pool->mapping_pool);
957 }
958
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
960 {
961 struct pool *pool = tc->pool;
962
963 /*
964 * If the bio has the REQ_FUA flag set we must commit the metadata
965 * before signaling its completion.
966 */
967 if (!bio_triggers_commit(tc, bio)) {
968 bio_endio(bio);
969 return;
970 }
971
972 /*
973 * Complete bio with an error if earlier I/O caused changes to the
974 * metadata that can't be committed, e.g, due to I/O errors on the
975 * metadata device.
976 */
977 if (dm_thin_aborted_changes(tc->td)) {
978 bio_io_error(bio);
979 return;
980 }
981
982 /*
983 * Batch together any bios that trigger commits and then issue a
984 * single commit for them in process_deferred_bios().
985 */
986 spin_lock_irq(&pool->lock);
987 bio_list_add(&pool->deferred_flush_completions, bio);
988 spin_unlock_irq(&pool->lock);
989 }
990
process_prepared_mapping(struct dm_thin_new_mapping * m)991 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
992 {
993 struct thin_c *tc = m->tc;
994 struct pool *pool = tc->pool;
995 struct bio *bio = m->bio;
996 int r;
997
998 if (m->status) {
999 cell_error(pool, m->cell);
1000 goto out;
1001 }
1002
1003 /*
1004 * Commit the prepared block into the mapping btree.
1005 * Any I/O for this block arriving after this point will get
1006 * remapped to it directly.
1007 */
1008 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1009 if (r) {
1010 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1011 cell_error(pool, m->cell);
1012 goto out;
1013 }
1014
1015 /*
1016 * Release any bios held while the block was being provisioned.
1017 * If we are processing a write bio that completely covers the block,
1018 * we already processed it so can ignore it now when processing
1019 * the bios in the cell.
1020 */
1021 if (bio) {
1022 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1023 complete_overwrite_bio(tc, bio);
1024 } else {
1025 inc_all_io_entry(tc->pool, m->cell->holder);
1026 remap_and_issue(tc, m->cell->holder, m->data_block);
1027 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028 }
1029
1030 out:
1031 list_del(&m->list);
1032 mempool_free(m, &pool->mapping_pool);
1033 }
1034
1035 /*----------------------------------------------------------------*/
1036
free_discard_mapping(struct dm_thin_new_mapping * m)1037 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1038 {
1039 struct thin_c *tc = m->tc;
1040 if (m->cell)
1041 cell_defer_no_holder(tc, m->cell);
1042 mempool_free(m, &tc->pool->mapping_pool);
1043 }
1044
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1046 {
1047 bio_io_error(m->bio);
1048 free_discard_mapping(m);
1049 }
1050
process_prepared_discard_success(struct dm_thin_new_mapping * m)1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1052 {
1053 bio_endio(m->bio);
1054 free_discard_mapping(m);
1055 }
1056
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1058 {
1059 int r;
1060 struct thin_c *tc = m->tc;
1061
1062 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1063 if (r) {
1064 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1065 bio_io_error(m->bio);
1066 } else
1067 bio_endio(m->bio);
1068
1069 cell_defer_no_holder(tc, m->cell);
1070 mempool_free(m, &tc->pool->mapping_pool);
1071 }
1072
1073 /*----------------------------------------------------------------*/
1074
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1076 struct bio *discard_parent)
1077 {
1078 /*
1079 * We've already unmapped this range of blocks, but before we
1080 * passdown we have to check that these blocks are now unused.
1081 */
1082 int r = 0;
1083 bool shared = true;
1084 struct thin_c *tc = m->tc;
1085 struct pool *pool = tc->pool;
1086 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1087 struct discard_op op;
1088
1089 begin_discard(&op, tc, discard_parent);
1090 while (b != end) {
1091 /* find start of unmapped run */
1092 for (; b < end; b++) {
1093 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1094 if (r)
1095 goto out;
1096
1097 if (!shared)
1098 break;
1099 }
1100
1101 if (b == end)
1102 break;
1103
1104 /* find end of run */
1105 for (e = b + 1; e != end; e++) {
1106 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1107 if (r)
1108 goto out;
1109
1110 if (shared)
1111 break;
1112 }
1113
1114 r = issue_discard(&op, b, e);
1115 if (r)
1116 goto out;
1117
1118 b = e;
1119 }
1120 out:
1121 end_discard(&op, r);
1122 }
1123
queue_passdown_pt2(struct dm_thin_new_mapping * m)1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126 unsigned long flags;
1127 struct pool *pool = m->tc->pool;
1128
1129 spin_lock_irqsave(&pool->lock, flags);
1130 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131 spin_unlock_irqrestore(&pool->lock, flags);
1132 wake_worker(pool);
1133 }
1134
passdown_endio(struct bio * bio)1135 static void passdown_endio(struct bio *bio)
1136 {
1137 /*
1138 * It doesn't matter if the passdown discard failed, we still want
1139 * to unmap (we ignore err).
1140 */
1141 queue_passdown_pt2(bio->bi_private);
1142 bio_put(bio);
1143 }
1144
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147 int r;
1148 struct thin_c *tc = m->tc;
1149 struct pool *pool = tc->pool;
1150 struct bio *discard_parent;
1151 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153 /*
1154 * Only this thread allocates blocks, so we can be sure that the
1155 * newly unmapped blocks will not be allocated before the end of
1156 * the function.
1157 */
1158 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159 if (r) {
1160 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161 bio_io_error(m->bio);
1162 cell_defer_no_holder(tc, m->cell);
1163 mempool_free(m, &pool->mapping_pool);
1164 return;
1165 }
1166
1167 /*
1168 * Increment the unmapped blocks. This prevents a race between the
1169 * passdown io and reallocation of freed blocks.
1170 */
1171 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172 if (r) {
1173 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174 bio_io_error(m->bio);
1175 cell_defer_no_holder(tc, m->cell);
1176 mempool_free(m, &pool->mapping_pool);
1177 return;
1178 }
1179
1180 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181 discard_parent->bi_end_io = passdown_endio;
1182 discard_parent->bi_private = m;
1183 if (m->maybe_shared)
1184 passdown_double_checking_shared_status(m, discard_parent);
1185 else {
1186 struct discard_op op;
1187
1188 begin_discard(&op, tc, discard_parent);
1189 r = issue_discard(&op, m->data_block, data_end);
1190 end_discard(&op, r);
1191 }
1192 }
1193
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196 int r;
1197 struct thin_c *tc = m->tc;
1198 struct pool *pool = tc->pool;
1199
1200 /*
1201 * The passdown has completed, so now we can decrement all those
1202 * unmapped blocks.
1203 */
1204 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205 m->data_block + (m->virt_end - m->virt_begin));
1206 if (r) {
1207 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208 bio_io_error(m->bio);
1209 } else
1210 bio_endio(m->bio);
1211
1212 cell_defer_no_holder(tc, m->cell);
1213 mempool_free(m, &pool->mapping_pool);
1214 }
1215
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217 process_mapping_fn *fn)
1218 {
1219 struct list_head maps;
1220 struct dm_thin_new_mapping *m, *tmp;
1221
1222 INIT_LIST_HEAD(&maps);
1223 spin_lock_irq(&pool->lock);
1224 list_splice_init(head, &maps);
1225 spin_unlock_irq(&pool->lock);
1226
1227 list_for_each_entry_safe(m, tmp, &maps, list)
1228 (*fn)(m);
1229 }
1230
1231 /*
1232 * Deferred bio jobs.
1233 */
io_overlaps_block(struct pool * pool,struct bio * bio)1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236 return bio->bi_iter.bi_size ==
1237 (pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239
io_overwrites_block(struct pool * pool,struct bio * bio)1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242 return (bio_data_dir(bio) == WRITE) &&
1243 io_overlaps_block(pool, bio);
1244 }
1245
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247 bio_end_io_t *fn)
1248 {
1249 *save = bio->bi_end_io;
1250 bio->bi_end_io = fn;
1251 }
1252
ensure_next_mapping(struct pool * pool)1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255 if (pool->next_mapping)
1256 return 0;
1257
1258 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260 return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262
get_next_mapping(struct pool * pool)1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265 struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267 BUG_ON(!pool->next_mapping);
1268
1269 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270 INIT_LIST_HEAD(&m->list);
1271 m->bio = NULL;
1272
1273 pool->next_mapping = NULL;
1274
1275 return m;
1276 }
1277
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279 sector_t begin, sector_t end)
1280 {
1281 struct dm_io_region to;
1282
1283 to.bdev = tc->pool_dev->bdev;
1284 to.sector = begin;
1285 to.count = end - begin;
1286
1287 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291 dm_block_t data_begin,
1292 struct dm_thin_new_mapping *m)
1293 {
1294 struct pool *pool = tc->pool;
1295 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297 h->overwrite_mapping = m;
1298 m->bio = bio;
1299 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300 inc_all_io_entry(pool, bio);
1301 remap_and_issue(tc, bio, data_begin);
1302 }
1303
1304 /*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308 struct dm_dev *origin, dm_block_t data_origin,
1309 dm_block_t data_dest,
1310 struct dm_bio_prison_cell *cell, struct bio *bio,
1311 sector_t len)
1312 {
1313 struct pool *pool = tc->pool;
1314 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316 m->tc = tc;
1317 m->virt_begin = virt_block;
1318 m->virt_end = virt_block + 1u;
1319 m->data_block = data_dest;
1320 m->cell = cell;
1321
1322 /*
1323 * quiesce action + copy action + an extra reference held for the
1324 * duration of this function (we may need to inc later for a
1325 * partial zero).
1326 */
1327 atomic_set(&m->prepare_actions, 3);
1328
1329 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330 complete_mapping_preparation(m); /* already quiesced */
1331
1332 /*
1333 * IO to pool_dev remaps to the pool target's data_dev.
1334 *
1335 * If the whole block of data is being overwritten, we can issue the
1336 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337 */
1338 if (io_overwrites_block(pool, bio))
1339 remap_and_issue_overwrite(tc, bio, data_dest, m);
1340 else {
1341 struct dm_io_region from, to;
1342
1343 from.bdev = origin->bdev;
1344 from.sector = data_origin * pool->sectors_per_block;
1345 from.count = len;
1346
1347 to.bdev = tc->pool_dev->bdev;
1348 to.sector = data_dest * pool->sectors_per_block;
1349 to.count = len;
1350
1351 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352 0, copy_complete, m);
1353
1354 /*
1355 * Do we need to zero a tail region?
1356 */
1357 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358 atomic_inc(&m->prepare_actions);
1359 ll_zero(tc, m,
1360 data_dest * pool->sectors_per_block + len,
1361 (data_dest + 1) * pool->sectors_per_block);
1362 }
1363 }
1364
1365 complete_mapping_preparation(m); /* drop our ref */
1366 }
1367
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369 dm_block_t data_origin, dm_block_t data_dest,
1370 struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372 schedule_copy(tc, virt_block, tc->pool_dev,
1373 data_origin, data_dest, cell, bio,
1374 tc->pool->sectors_per_block);
1375 }
1376
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379 struct bio *bio)
1380 {
1381 struct pool *pool = tc->pool;
1382 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385 m->tc = tc;
1386 m->virt_begin = virt_block;
1387 m->virt_end = virt_block + 1u;
1388 m->data_block = data_block;
1389 m->cell = cell;
1390
1391 /*
1392 * If the whole block of data is being overwritten or we are not
1393 * zeroing pre-existing data, we can issue the bio immediately.
1394 * Otherwise we use kcopyd to zero the data first.
1395 */
1396 if (pool->pf.zero_new_blocks) {
1397 if (io_overwrites_block(pool, bio))
1398 remap_and_issue_overwrite(tc, bio, data_block, m);
1399 else
1400 ll_zero(tc, m, data_block * pool->sectors_per_block,
1401 (data_block + 1) * pool->sectors_per_block);
1402 } else
1403 process_prepared_mapping(m);
1404 }
1405
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1406 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1407 dm_block_t data_dest,
1408 struct dm_bio_prison_cell *cell, struct bio *bio)
1409 {
1410 struct pool *pool = tc->pool;
1411 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1412 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1413
1414 if (virt_block_end <= tc->origin_size)
1415 schedule_copy(tc, virt_block, tc->origin_dev,
1416 virt_block, data_dest, cell, bio,
1417 pool->sectors_per_block);
1418
1419 else if (virt_block_begin < tc->origin_size)
1420 schedule_copy(tc, virt_block, tc->origin_dev,
1421 virt_block, data_dest, cell, bio,
1422 tc->origin_size - virt_block_begin);
1423
1424 else
1425 schedule_zero(tc, virt_block, data_dest, cell, bio);
1426 }
1427
1428 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1429
1430 static void requeue_bios(struct pool *pool);
1431
is_read_only_pool_mode(enum pool_mode mode)1432 static bool is_read_only_pool_mode(enum pool_mode mode)
1433 {
1434 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1435 }
1436
is_read_only(struct pool * pool)1437 static bool is_read_only(struct pool *pool)
1438 {
1439 return is_read_only_pool_mode(get_pool_mode(pool));
1440 }
1441
check_for_metadata_space(struct pool * pool)1442 static void check_for_metadata_space(struct pool *pool)
1443 {
1444 int r;
1445 const char *ooms_reason = NULL;
1446 dm_block_t nr_free;
1447
1448 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1449 if (r)
1450 ooms_reason = "Could not get free metadata blocks";
1451 else if (!nr_free)
1452 ooms_reason = "No free metadata blocks";
1453
1454 if (ooms_reason && !is_read_only(pool)) {
1455 DMERR("%s", ooms_reason);
1456 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1457 }
1458 }
1459
check_for_data_space(struct pool * pool)1460 static void check_for_data_space(struct pool *pool)
1461 {
1462 int r;
1463 dm_block_t nr_free;
1464
1465 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1466 return;
1467
1468 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1469 if (r)
1470 return;
1471
1472 if (nr_free) {
1473 set_pool_mode(pool, PM_WRITE);
1474 requeue_bios(pool);
1475 }
1476 }
1477
1478 /*
1479 * A non-zero return indicates read_only or fail_io mode.
1480 * Many callers don't care about the return value.
1481 */
commit(struct pool * pool)1482 static int commit(struct pool *pool)
1483 {
1484 int r;
1485
1486 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1487 return -EINVAL;
1488
1489 r = dm_pool_commit_metadata(pool->pmd);
1490 if (r)
1491 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1492 else {
1493 check_for_metadata_space(pool);
1494 check_for_data_space(pool);
1495 }
1496
1497 return r;
1498 }
1499
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1500 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1501 {
1502 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1503 DMWARN("%s: reached low water mark for data device: sending event.",
1504 dm_device_name(pool->pool_md));
1505 spin_lock_irq(&pool->lock);
1506 pool->low_water_triggered = true;
1507 spin_unlock_irq(&pool->lock);
1508 dm_table_event(pool->ti->table);
1509 }
1510 }
1511
alloc_data_block(struct thin_c * tc,dm_block_t * result)1512 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1513 {
1514 int r;
1515 dm_block_t free_blocks;
1516 struct pool *pool = tc->pool;
1517
1518 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1519 return -EINVAL;
1520
1521 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1522 if (r) {
1523 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1524 return r;
1525 }
1526
1527 check_low_water_mark(pool, free_blocks);
1528
1529 if (!free_blocks) {
1530 /*
1531 * Try to commit to see if that will free up some
1532 * more space.
1533 */
1534 r = commit(pool);
1535 if (r)
1536 return r;
1537
1538 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1539 if (r) {
1540 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1541 return r;
1542 }
1543
1544 if (!free_blocks) {
1545 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1546 return -ENOSPC;
1547 }
1548 }
1549
1550 r = dm_pool_alloc_data_block(pool->pmd, result);
1551 if (r) {
1552 if (r == -ENOSPC)
1553 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1554 else
1555 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1556 return r;
1557 }
1558
1559 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1560 if (r) {
1561 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1562 return r;
1563 }
1564
1565 if (!free_blocks) {
1566 /* Let's commit before we use up the metadata reserve. */
1567 r = commit(pool);
1568 if (r)
1569 return r;
1570 }
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * If we have run out of space, queue bios until the device is
1577 * resumed, presumably after having been reloaded with more space.
1578 */
retry_on_resume(struct bio * bio)1579 static void retry_on_resume(struct bio *bio)
1580 {
1581 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1582 struct thin_c *tc = h->tc;
1583
1584 spin_lock_irq(&tc->lock);
1585 bio_list_add(&tc->retry_on_resume_list, bio);
1586 spin_unlock_irq(&tc->lock);
1587 }
1588
should_error_unserviceable_bio(struct pool * pool)1589 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1590 {
1591 enum pool_mode m = get_pool_mode(pool);
1592
1593 switch (m) {
1594 case PM_WRITE:
1595 /* Shouldn't get here */
1596 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1597 return BLK_STS_IOERR;
1598
1599 case PM_OUT_OF_DATA_SPACE:
1600 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1601
1602 case PM_OUT_OF_METADATA_SPACE:
1603 case PM_READ_ONLY:
1604 case PM_FAIL:
1605 return BLK_STS_IOERR;
1606 default:
1607 /* Shouldn't get here */
1608 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1609 return BLK_STS_IOERR;
1610 }
1611 }
1612
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1614 {
1615 blk_status_t error = should_error_unserviceable_bio(pool);
1616
1617 if (error) {
1618 bio->bi_status = error;
1619 bio_endio(bio);
1620 } else
1621 retry_on_resume(bio);
1622 }
1623
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1625 {
1626 struct bio *bio;
1627 struct bio_list bios;
1628 blk_status_t error;
1629
1630 error = should_error_unserviceable_bio(pool);
1631 if (error) {
1632 cell_error_with_code(pool, cell, error);
1633 return;
1634 }
1635
1636 bio_list_init(&bios);
1637 cell_release(pool, cell, &bios);
1638
1639 while ((bio = bio_list_pop(&bios)))
1640 retry_on_resume(bio);
1641 }
1642
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1643 static void process_discard_cell_no_passdown(struct thin_c *tc,
1644 struct dm_bio_prison_cell *virt_cell)
1645 {
1646 struct pool *pool = tc->pool;
1647 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1648
1649 /*
1650 * We don't need to lock the data blocks, since there's no
1651 * passdown. We only lock data blocks for allocation and breaking sharing.
1652 */
1653 m->tc = tc;
1654 m->virt_begin = virt_cell->key.block_begin;
1655 m->virt_end = virt_cell->key.block_end;
1656 m->cell = virt_cell;
1657 m->bio = virt_cell->holder;
1658
1659 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1660 pool->process_prepared_discard(m);
1661 }
1662
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1664 struct bio *bio)
1665 {
1666 struct pool *pool = tc->pool;
1667
1668 int r;
1669 bool maybe_shared;
1670 struct dm_cell_key data_key;
1671 struct dm_bio_prison_cell *data_cell;
1672 struct dm_thin_new_mapping *m;
1673 dm_block_t virt_begin, virt_end, data_begin;
1674
1675 while (begin != end) {
1676 r = ensure_next_mapping(pool);
1677 if (r)
1678 /* we did our best */
1679 return;
1680
1681 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1682 &data_begin, &maybe_shared);
1683 if (r)
1684 /*
1685 * Silently fail, letting any mappings we've
1686 * created complete.
1687 */
1688 break;
1689
1690 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1691 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1692 /* contention, we'll give up with this range */
1693 begin = virt_end;
1694 continue;
1695 }
1696
1697 /*
1698 * IO may still be going to the destination block. We must
1699 * quiesce before we can do the removal.
1700 */
1701 m = get_next_mapping(pool);
1702 m->tc = tc;
1703 m->maybe_shared = maybe_shared;
1704 m->virt_begin = virt_begin;
1705 m->virt_end = virt_end;
1706 m->data_block = data_begin;
1707 m->cell = data_cell;
1708 m->bio = bio;
1709
1710 /*
1711 * The parent bio must not complete before sub discard bios are
1712 * chained to it (see end_discard's bio_chain)!
1713 *
1714 * This per-mapping bi_remaining increment is paired with
1715 * the implicit decrement that occurs via bio_endio() in
1716 * end_discard().
1717 */
1718 bio_inc_remaining(bio);
1719 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1720 pool->process_prepared_discard(m);
1721
1722 begin = virt_end;
1723 }
1724 }
1725
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1727 {
1728 struct bio *bio = virt_cell->holder;
1729 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730
1731 /*
1732 * The virt_cell will only get freed once the origin bio completes.
1733 * This means it will remain locked while all the individual
1734 * passdown bios are in flight.
1735 */
1736 h->cell = virt_cell;
1737 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1738
1739 /*
1740 * We complete the bio now, knowing that the bi_remaining field
1741 * will prevent completion until the sub range discards have
1742 * completed.
1743 */
1744 bio_endio(bio);
1745 }
1746
process_discard_bio(struct thin_c * tc,struct bio * bio)1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1748 {
1749 dm_block_t begin, end;
1750 struct dm_cell_key virt_key;
1751 struct dm_bio_prison_cell *virt_cell;
1752
1753 get_bio_block_range(tc, bio, &begin, &end);
1754 if (begin == end) {
1755 /*
1756 * The discard covers less than a block.
1757 */
1758 bio_endio(bio);
1759 return;
1760 }
1761
1762 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1763 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1764 /*
1765 * Potential starvation issue: We're relying on the
1766 * fs/application being well behaved, and not trying to
1767 * send IO to a region at the same time as discarding it.
1768 * If they do this persistently then it's possible this
1769 * cell will never be granted.
1770 */
1771 return;
1772
1773 tc->pool->process_discard_cell(tc, virt_cell);
1774 }
1775
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1777 struct dm_cell_key *key,
1778 struct dm_thin_lookup_result *lookup_result,
1779 struct dm_bio_prison_cell *cell)
1780 {
1781 int r;
1782 dm_block_t data_block;
1783 struct pool *pool = tc->pool;
1784
1785 r = alloc_data_block(tc, &data_block);
1786 switch (r) {
1787 case 0:
1788 schedule_internal_copy(tc, block, lookup_result->block,
1789 data_block, cell, bio);
1790 break;
1791
1792 case -ENOSPC:
1793 retry_bios_on_resume(pool, cell);
1794 break;
1795
1796 default:
1797 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1798 __func__, r);
1799 cell_error(pool, cell);
1800 break;
1801 }
1802 }
1803
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1804 static void __remap_and_issue_shared_cell(void *context,
1805 struct dm_bio_prison_cell *cell)
1806 {
1807 struct remap_info *info = context;
1808 struct bio *bio;
1809
1810 while ((bio = bio_list_pop(&cell->bios))) {
1811 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1812 bio_op(bio) == REQ_OP_DISCARD)
1813 bio_list_add(&info->defer_bios, bio);
1814 else {
1815 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1816
1817 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1818 inc_all_io_entry(info->tc->pool, bio);
1819 bio_list_add(&info->issue_bios, bio);
1820 }
1821 }
1822 }
1823
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1824 static void remap_and_issue_shared_cell(struct thin_c *tc,
1825 struct dm_bio_prison_cell *cell,
1826 dm_block_t block)
1827 {
1828 struct bio *bio;
1829 struct remap_info info;
1830
1831 info.tc = tc;
1832 bio_list_init(&info.defer_bios);
1833 bio_list_init(&info.issue_bios);
1834
1835 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1836 &info, cell);
1837
1838 while ((bio = bio_list_pop(&info.defer_bios)))
1839 thin_defer_bio(tc, bio);
1840
1841 while ((bio = bio_list_pop(&info.issue_bios)))
1842 remap_and_issue(tc, bio, block);
1843 }
1844
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1845 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1846 dm_block_t block,
1847 struct dm_thin_lookup_result *lookup_result,
1848 struct dm_bio_prison_cell *virt_cell)
1849 {
1850 struct dm_bio_prison_cell *data_cell;
1851 struct pool *pool = tc->pool;
1852 struct dm_cell_key key;
1853
1854 /*
1855 * If cell is already occupied, then sharing is already in the process
1856 * of being broken so we have nothing further to do here.
1857 */
1858 build_data_key(tc->td, lookup_result->block, &key);
1859 if (bio_detain(pool, &key, bio, &data_cell)) {
1860 cell_defer_no_holder(tc, virt_cell);
1861 return;
1862 }
1863
1864 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1865 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1866 cell_defer_no_holder(tc, virt_cell);
1867 } else {
1868 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1869
1870 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1871 inc_all_io_entry(pool, bio);
1872 remap_and_issue(tc, bio, lookup_result->block);
1873
1874 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1875 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1876 }
1877 }
1878
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1879 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1880 struct dm_bio_prison_cell *cell)
1881 {
1882 int r;
1883 dm_block_t data_block;
1884 struct pool *pool = tc->pool;
1885
1886 /*
1887 * Remap empty bios (flushes) immediately, without provisioning.
1888 */
1889 if (!bio->bi_iter.bi_size) {
1890 inc_all_io_entry(pool, bio);
1891 cell_defer_no_holder(tc, cell);
1892
1893 remap_and_issue(tc, bio, 0);
1894 return;
1895 }
1896
1897 /*
1898 * Fill read bios with zeroes and complete them immediately.
1899 */
1900 if (bio_data_dir(bio) == READ) {
1901 zero_fill_bio(bio);
1902 cell_defer_no_holder(tc, cell);
1903 bio_endio(bio);
1904 return;
1905 }
1906
1907 r = alloc_data_block(tc, &data_block);
1908 switch (r) {
1909 case 0:
1910 if (tc->origin_dev)
1911 schedule_external_copy(tc, block, data_block, cell, bio);
1912 else
1913 schedule_zero(tc, block, data_block, cell, bio);
1914 break;
1915
1916 case -ENOSPC:
1917 retry_bios_on_resume(pool, cell);
1918 break;
1919
1920 default:
1921 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1922 __func__, r);
1923 cell_error(pool, cell);
1924 break;
1925 }
1926 }
1927
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1928 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1929 {
1930 int r;
1931 struct pool *pool = tc->pool;
1932 struct bio *bio = cell->holder;
1933 dm_block_t block = get_bio_block(tc, bio);
1934 struct dm_thin_lookup_result lookup_result;
1935
1936 if (tc->requeue_mode) {
1937 cell_requeue(pool, cell);
1938 return;
1939 }
1940
1941 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1942 switch (r) {
1943 case 0:
1944 if (lookup_result.shared)
1945 process_shared_bio(tc, bio, block, &lookup_result, cell);
1946 else {
1947 inc_all_io_entry(pool, bio);
1948 remap_and_issue(tc, bio, lookup_result.block);
1949 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1950 }
1951 break;
1952
1953 case -ENODATA:
1954 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1955 inc_all_io_entry(pool, bio);
1956 cell_defer_no_holder(tc, cell);
1957
1958 if (bio_end_sector(bio) <= tc->origin_size)
1959 remap_to_origin_and_issue(tc, bio);
1960
1961 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1962 zero_fill_bio(bio);
1963 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1964 remap_to_origin_and_issue(tc, bio);
1965
1966 } else {
1967 zero_fill_bio(bio);
1968 bio_endio(bio);
1969 }
1970 } else
1971 provision_block(tc, bio, block, cell);
1972 break;
1973
1974 default:
1975 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1976 __func__, r);
1977 cell_defer_no_holder(tc, cell);
1978 bio_io_error(bio);
1979 break;
1980 }
1981 }
1982
process_bio(struct thin_c * tc,struct bio * bio)1983 static void process_bio(struct thin_c *tc, struct bio *bio)
1984 {
1985 struct pool *pool = tc->pool;
1986 dm_block_t block = get_bio_block(tc, bio);
1987 struct dm_bio_prison_cell *cell;
1988 struct dm_cell_key key;
1989
1990 /*
1991 * If cell is already occupied, then the block is already
1992 * being provisioned so we have nothing further to do here.
1993 */
1994 build_virtual_key(tc->td, block, &key);
1995 if (bio_detain(pool, &key, bio, &cell))
1996 return;
1997
1998 process_cell(tc, cell);
1999 }
2000
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2001 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2002 struct dm_bio_prison_cell *cell)
2003 {
2004 int r;
2005 int rw = bio_data_dir(bio);
2006 dm_block_t block = get_bio_block(tc, bio);
2007 struct dm_thin_lookup_result lookup_result;
2008
2009 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2010 switch (r) {
2011 case 0:
2012 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2013 handle_unserviceable_bio(tc->pool, bio);
2014 if (cell)
2015 cell_defer_no_holder(tc, cell);
2016 } else {
2017 inc_all_io_entry(tc->pool, bio);
2018 remap_and_issue(tc, bio, lookup_result.block);
2019 if (cell)
2020 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2021 }
2022 break;
2023
2024 case -ENODATA:
2025 if (cell)
2026 cell_defer_no_holder(tc, cell);
2027 if (rw != READ) {
2028 handle_unserviceable_bio(tc->pool, bio);
2029 break;
2030 }
2031
2032 if (tc->origin_dev) {
2033 inc_all_io_entry(tc->pool, bio);
2034 remap_to_origin_and_issue(tc, bio);
2035 break;
2036 }
2037
2038 zero_fill_bio(bio);
2039 bio_endio(bio);
2040 break;
2041
2042 default:
2043 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2044 __func__, r);
2045 if (cell)
2046 cell_defer_no_holder(tc, cell);
2047 bio_io_error(bio);
2048 break;
2049 }
2050 }
2051
process_bio_read_only(struct thin_c * tc,struct bio * bio)2052 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2053 {
2054 __process_bio_read_only(tc, bio, NULL);
2055 }
2056
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2057 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058 {
2059 __process_bio_read_only(tc, cell->holder, cell);
2060 }
2061
process_bio_success(struct thin_c * tc,struct bio * bio)2062 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2063 {
2064 bio_endio(bio);
2065 }
2066
process_bio_fail(struct thin_c * tc,struct bio * bio)2067 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2068 {
2069 bio_io_error(bio);
2070 }
2071
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2072 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2073 {
2074 cell_success(tc->pool, cell);
2075 }
2076
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2077 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2078 {
2079 cell_error(tc->pool, cell);
2080 }
2081
2082 /*
2083 * FIXME: should we also commit due to size of transaction, measured in
2084 * metadata blocks?
2085 */
need_commit_due_to_time(struct pool * pool)2086 static int need_commit_due_to_time(struct pool *pool)
2087 {
2088 return !time_in_range(jiffies, pool->last_commit_jiffies,
2089 pool->last_commit_jiffies + COMMIT_PERIOD);
2090 }
2091
2092 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2093 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2094
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2095 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2096 {
2097 struct rb_node **rbp, *parent;
2098 struct dm_thin_endio_hook *pbd;
2099 sector_t bi_sector = bio->bi_iter.bi_sector;
2100
2101 rbp = &tc->sort_bio_list.rb_node;
2102 parent = NULL;
2103 while (*rbp) {
2104 parent = *rbp;
2105 pbd = thin_pbd(parent);
2106
2107 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2108 rbp = &(*rbp)->rb_left;
2109 else
2110 rbp = &(*rbp)->rb_right;
2111 }
2112
2113 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2114 rb_link_node(&pbd->rb_node, parent, rbp);
2115 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2116 }
2117
__extract_sorted_bios(struct thin_c * tc)2118 static void __extract_sorted_bios(struct thin_c *tc)
2119 {
2120 struct rb_node *node;
2121 struct dm_thin_endio_hook *pbd;
2122 struct bio *bio;
2123
2124 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2125 pbd = thin_pbd(node);
2126 bio = thin_bio(pbd);
2127
2128 bio_list_add(&tc->deferred_bio_list, bio);
2129 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2130 }
2131
2132 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2133 }
2134
__sort_thin_deferred_bios(struct thin_c * tc)2135 static void __sort_thin_deferred_bios(struct thin_c *tc)
2136 {
2137 struct bio *bio;
2138 struct bio_list bios;
2139
2140 bio_list_init(&bios);
2141 bio_list_merge(&bios, &tc->deferred_bio_list);
2142 bio_list_init(&tc->deferred_bio_list);
2143
2144 /* Sort deferred_bio_list using rb-tree */
2145 while ((bio = bio_list_pop(&bios)))
2146 __thin_bio_rb_add(tc, bio);
2147
2148 /*
2149 * Transfer the sorted bios in sort_bio_list back to
2150 * deferred_bio_list to allow lockless submission of
2151 * all bios.
2152 */
2153 __extract_sorted_bios(tc);
2154 }
2155
process_thin_deferred_bios(struct thin_c * tc)2156 static void process_thin_deferred_bios(struct thin_c *tc)
2157 {
2158 struct pool *pool = tc->pool;
2159 struct bio *bio;
2160 struct bio_list bios;
2161 struct blk_plug plug;
2162 unsigned count = 0;
2163
2164 if (tc->requeue_mode) {
2165 error_thin_bio_list(tc, &tc->deferred_bio_list,
2166 BLK_STS_DM_REQUEUE);
2167 return;
2168 }
2169
2170 bio_list_init(&bios);
2171
2172 spin_lock_irq(&tc->lock);
2173
2174 if (bio_list_empty(&tc->deferred_bio_list)) {
2175 spin_unlock_irq(&tc->lock);
2176 return;
2177 }
2178
2179 __sort_thin_deferred_bios(tc);
2180
2181 bio_list_merge(&bios, &tc->deferred_bio_list);
2182 bio_list_init(&tc->deferred_bio_list);
2183
2184 spin_unlock_irq(&tc->lock);
2185
2186 blk_start_plug(&plug);
2187 while ((bio = bio_list_pop(&bios))) {
2188 /*
2189 * If we've got no free new_mapping structs, and processing
2190 * this bio might require one, we pause until there are some
2191 * prepared mappings to process.
2192 */
2193 if (ensure_next_mapping(pool)) {
2194 spin_lock_irq(&tc->lock);
2195 bio_list_add(&tc->deferred_bio_list, bio);
2196 bio_list_merge(&tc->deferred_bio_list, &bios);
2197 spin_unlock_irq(&tc->lock);
2198 break;
2199 }
2200
2201 if (bio_op(bio) == REQ_OP_DISCARD)
2202 pool->process_discard(tc, bio);
2203 else
2204 pool->process_bio(tc, bio);
2205
2206 if ((count++ & 127) == 0) {
2207 throttle_work_update(&pool->throttle);
2208 dm_pool_issue_prefetches(pool->pmd);
2209 }
2210 }
2211 blk_finish_plug(&plug);
2212 }
2213
cmp_cells(const void * lhs,const void * rhs)2214 static int cmp_cells(const void *lhs, const void *rhs)
2215 {
2216 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219 BUG_ON(!lhs_cell->holder);
2220 BUG_ON(!rhs_cell->holder);
2221
2222 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223 return -1;
2224
2225 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226 return 1;
2227
2228 return 0;
2229 }
2230
sort_cells(struct pool * pool,struct list_head * cells)2231 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2232 {
2233 unsigned count = 0;
2234 struct dm_bio_prison_cell *cell, *tmp;
2235
2236 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237 if (count >= CELL_SORT_ARRAY_SIZE)
2238 break;
2239
2240 pool->cell_sort_array[count++] = cell;
2241 list_del(&cell->user_list);
2242 }
2243
2244 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246 return count;
2247 }
2248
process_thin_deferred_cells(struct thin_c * tc)2249 static void process_thin_deferred_cells(struct thin_c *tc)
2250 {
2251 struct pool *pool = tc->pool;
2252 struct list_head cells;
2253 struct dm_bio_prison_cell *cell;
2254 unsigned i, j, count;
2255
2256 INIT_LIST_HEAD(&cells);
2257
2258 spin_lock_irq(&tc->lock);
2259 list_splice_init(&tc->deferred_cells, &cells);
2260 spin_unlock_irq(&tc->lock);
2261
2262 if (list_empty(&cells))
2263 return;
2264
2265 do {
2266 count = sort_cells(tc->pool, &cells);
2267
2268 for (i = 0; i < count; i++) {
2269 cell = pool->cell_sort_array[i];
2270 BUG_ON(!cell->holder);
2271
2272 /*
2273 * If we've got no free new_mapping structs, and processing
2274 * this bio might require one, we pause until there are some
2275 * prepared mappings to process.
2276 */
2277 if (ensure_next_mapping(pool)) {
2278 for (j = i; j < count; j++)
2279 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281 spin_lock_irq(&tc->lock);
2282 list_splice(&cells, &tc->deferred_cells);
2283 spin_unlock_irq(&tc->lock);
2284 return;
2285 }
2286
2287 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288 pool->process_discard_cell(tc, cell);
2289 else
2290 pool->process_cell(tc, cell);
2291 }
2292 } while (!list_empty(&cells));
2293 }
2294
2295 static void thin_get(struct thin_c *tc);
2296 static void thin_put(struct thin_c *tc);
2297
2298 /*
2299 * We can't hold rcu_read_lock() around code that can block. So we
2300 * find a thin with the rcu lock held; bump a refcount; then drop
2301 * the lock.
2302 */
get_first_thin(struct pool * pool)2303 static struct thin_c *get_first_thin(struct pool *pool)
2304 {
2305 struct thin_c *tc = NULL;
2306
2307 rcu_read_lock();
2308 if (!list_empty(&pool->active_thins)) {
2309 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2310 thin_get(tc);
2311 }
2312 rcu_read_unlock();
2313
2314 return tc;
2315 }
2316
get_next_thin(struct pool * pool,struct thin_c * tc)2317 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2318 {
2319 struct thin_c *old_tc = tc;
2320
2321 rcu_read_lock();
2322 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2323 thin_get(tc);
2324 thin_put(old_tc);
2325 rcu_read_unlock();
2326 return tc;
2327 }
2328 thin_put(old_tc);
2329 rcu_read_unlock();
2330
2331 return NULL;
2332 }
2333
process_deferred_bios(struct pool * pool)2334 static void process_deferred_bios(struct pool *pool)
2335 {
2336 struct bio *bio;
2337 struct bio_list bios, bio_completions;
2338 struct thin_c *tc;
2339
2340 tc = get_first_thin(pool);
2341 while (tc) {
2342 process_thin_deferred_cells(tc);
2343 process_thin_deferred_bios(tc);
2344 tc = get_next_thin(pool, tc);
2345 }
2346
2347 /*
2348 * If there are any deferred flush bios, we must commit the metadata
2349 * before issuing them or signaling their completion.
2350 */
2351 bio_list_init(&bios);
2352 bio_list_init(&bio_completions);
2353
2354 spin_lock_irq(&pool->lock);
2355 bio_list_merge(&bios, &pool->deferred_flush_bios);
2356 bio_list_init(&pool->deferred_flush_bios);
2357
2358 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2359 bio_list_init(&pool->deferred_flush_completions);
2360 spin_unlock_irq(&pool->lock);
2361
2362 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2363 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2364 return;
2365
2366 if (commit(pool)) {
2367 bio_list_merge(&bios, &bio_completions);
2368
2369 while ((bio = bio_list_pop(&bios)))
2370 bio_io_error(bio);
2371 return;
2372 }
2373 pool->last_commit_jiffies = jiffies;
2374
2375 while ((bio = bio_list_pop(&bio_completions)))
2376 bio_endio(bio);
2377
2378 while ((bio = bio_list_pop(&bios))) {
2379 /*
2380 * The data device was flushed as part of metadata commit,
2381 * so complete redundant flushes immediately.
2382 */
2383 if (bio->bi_opf & REQ_PREFLUSH)
2384 bio_endio(bio);
2385 else
2386 dm_submit_bio_remap(bio, NULL);
2387 }
2388 }
2389
do_worker(struct work_struct * ws)2390 static void do_worker(struct work_struct *ws)
2391 {
2392 struct pool *pool = container_of(ws, struct pool, worker);
2393
2394 throttle_work_start(&pool->throttle);
2395 dm_pool_issue_prefetches(pool->pmd);
2396 throttle_work_update(&pool->throttle);
2397 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2398 throttle_work_update(&pool->throttle);
2399 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2400 throttle_work_update(&pool->throttle);
2401 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2402 throttle_work_update(&pool->throttle);
2403 process_deferred_bios(pool);
2404 throttle_work_complete(&pool->throttle);
2405 }
2406
2407 /*
2408 * We want to commit periodically so that not too much
2409 * unwritten data builds up.
2410 */
do_waker(struct work_struct * ws)2411 static void do_waker(struct work_struct *ws)
2412 {
2413 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2414 wake_worker(pool);
2415 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2416 }
2417
2418 /*
2419 * We're holding onto IO to allow userland time to react. After the
2420 * timeout either the pool will have been resized (and thus back in
2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2422 */
do_no_space_timeout(struct work_struct * ws)2423 static void do_no_space_timeout(struct work_struct *ws)
2424 {
2425 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2426 no_space_timeout);
2427
2428 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2429 pool->pf.error_if_no_space = true;
2430 notify_of_pool_mode_change(pool);
2431 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2432 }
2433 }
2434
2435 /*----------------------------------------------------------------*/
2436
2437 struct pool_work {
2438 struct work_struct worker;
2439 struct completion complete;
2440 };
2441
to_pool_work(struct work_struct * ws)2442 static struct pool_work *to_pool_work(struct work_struct *ws)
2443 {
2444 return container_of(ws, struct pool_work, worker);
2445 }
2446
pool_work_complete(struct pool_work * pw)2447 static void pool_work_complete(struct pool_work *pw)
2448 {
2449 complete(&pw->complete);
2450 }
2451
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2453 void (*fn)(struct work_struct *))
2454 {
2455 INIT_WORK_ONSTACK(&pw->worker, fn);
2456 init_completion(&pw->complete);
2457 queue_work(pool->wq, &pw->worker);
2458 wait_for_completion(&pw->complete);
2459 }
2460
2461 /*----------------------------------------------------------------*/
2462
2463 struct noflush_work {
2464 struct pool_work pw;
2465 struct thin_c *tc;
2466 };
2467
to_noflush(struct work_struct * ws)2468 static struct noflush_work *to_noflush(struct work_struct *ws)
2469 {
2470 return container_of(to_pool_work(ws), struct noflush_work, pw);
2471 }
2472
do_noflush_start(struct work_struct * ws)2473 static void do_noflush_start(struct work_struct *ws)
2474 {
2475 struct noflush_work *w = to_noflush(ws);
2476 w->tc->requeue_mode = true;
2477 requeue_io(w->tc);
2478 pool_work_complete(&w->pw);
2479 }
2480
do_noflush_stop(struct work_struct * ws)2481 static void do_noflush_stop(struct work_struct *ws)
2482 {
2483 struct noflush_work *w = to_noflush(ws);
2484 w->tc->requeue_mode = false;
2485 pool_work_complete(&w->pw);
2486 }
2487
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2489 {
2490 struct noflush_work w;
2491
2492 w.tc = tc;
2493 pool_work_wait(&w.pw, tc->pool, fn);
2494 }
2495
2496 /*----------------------------------------------------------------*/
2497
passdown_enabled(struct pool_c * pt)2498 static bool passdown_enabled(struct pool_c *pt)
2499 {
2500 return pt->adjusted_pf.discard_passdown;
2501 }
2502
set_discard_callbacks(struct pool * pool)2503 static void set_discard_callbacks(struct pool *pool)
2504 {
2505 struct pool_c *pt = pool->ti->private;
2506
2507 if (passdown_enabled(pt)) {
2508 pool->process_discard_cell = process_discard_cell_passdown;
2509 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2510 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2511 } else {
2512 pool->process_discard_cell = process_discard_cell_no_passdown;
2513 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2514 }
2515 }
2516
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2518 {
2519 struct pool_c *pt = pool->ti->private;
2520 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2521 enum pool_mode old_mode = get_pool_mode(pool);
2522 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2523
2524 /*
2525 * Never allow the pool to transition to PM_WRITE mode if user
2526 * intervention is required to verify metadata and data consistency.
2527 */
2528 if (new_mode == PM_WRITE && needs_check) {
2529 DMERR("%s: unable to switch pool to write mode until repaired.",
2530 dm_device_name(pool->pool_md));
2531 if (old_mode != new_mode)
2532 new_mode = old_mode;
2533 else
2534 new_mode = PM_READ_ONLY;
2535 }
2536 /*
2537 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2538 * not going to recover without a thin_repair. So we never let the
2539 * pool move out of the old mode.
2540 */
2541 if (old_mode == PM_FAIL)
2542 new_mode = old_mode;
2543
2544 switch (new_mode) {
2545 case PM_FAIL:
2546 dm_pool_metadata_read_only(pool->pmd);
2547 pool->process_bio = process_bio_fail;
2548 pool->process_discard = process_bio_fail;
2549 pool->process_cell = process_cell_fail;
2550 pool->process_discard_cell = process_cell_fail;
2551 pool->process_prepared_mapping = process_prepared_mapping_fail;
2552 pool->process_prepared_discard = process_prepared_discard_fail;
2553
2554 error_retry_list(pool);
2555 break;
2556
2557 case PM_OUT_OF_METADATA_SPACE:
2558 case PM_READ_ONLY:
2559 dm_pool_metadata_read_only(pool->pmd);
2560 pool->process_bio = process_bio_read_only;
2561 pool->process_discard = process_bio_success;
2562 pool->process_cell = process_cell_read_only;
2563 pool->process_discard_cell = process_cell_success;
2564 pool->process_prepared_mapping = process_prepared_mapping_fail;
2565 pool->process_prepared_discard = process_prepared_discard_success;
2566
2567 error_retry_list(pool);
2568 break;
2569
2570 case PM_OUT_OF_DATA_SPACE:
2571 /*
2572 * Ideally we'd never hit this state; the low water mark
2573 * would trigger userland to extend the pool before we
2574 * completely run out of data space. However, many small
2575 * IOs to unprovisioned space can consume data space at an
2576 * alarming rate. Adjust your low water mark if you're
2577 * frequently seeing this mode.
2578 */
2579 pool->out_of_data_space = true;
2580 pool->process_bio = process_bio_read_only;
2581 pool->process_discard = process_discard_bio;
2582 pool->process_cell = process_cell_read_only;
2583 pool->process_prepared_mapping = process_prepared_mapping;
2584 set_discard_callbacks(pool);
2585
2586 if (!pool->pf.error_if_no_space && no_space_timeout)
2587 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2588 break;
2589
2590 case PM_WRITE:
2591 if (old_mode == PM_OUT_OF_DATA_SPACE)
2592 cancel_delayed_work_sync(&pool->no_space_timeout);
2593 pool->out_of_data_space = false;
2594 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2595 dm_pool_metadata_read_write(pool->pmd);
2596 pool->process_bio = process_bio;
2597 pool->process_discard = process_discard_bio;
2598 pool->process_cell = process_cell;
2599 pool->process_prepared_mapping = process_prepared_mapping;
2600 set_discard_callbacks(pool);
2601 break;
2602 }
2603
2604 pool->pf.mode = new_mode;
2605 /*
2606 * The pool mode may have changed, sync it so bind_control_target()
2607 * doesn't cause an unexpected mode transition on resume.
2608 */
2609 pt->adjusted_pf.mode = new_mode;
2610
2611 if (old_mode != new_mode)
2612 notify_of_pool_mode_change(pool);
2613 }
2614
abort_transaction(struct pool * pool)2615 static void abort_transaction(struct pool *pool)
2616 {
2617 const char *dev_name = dm_device_name(pool->pool_md);
2618
2619 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2620 if (dm_pool_abort_metadata(pool->pmd)) {
2621 DMERR("%s: failed to abort metadata transaction", dev_name);
2622 set_pool_mode(pool, PM_FAIL);
2623 }
2624
2625 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2626 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2627 set_pool_mode(pool, PM_FAIL);
2628 }
2629 }
2630
metadata_operation_failed(struct pool * pool,const char * op,int r)2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2632 {
2633 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2634 dm_device_name(pool->pool_md), op, r);
2635
2636 abort_transaction(pool);
2637 set_pool_mode(pool, PM_READ_ONLY);
2638 }
2639
2640 /*----------------------------------------------------------------*/
2641
2642 /*
2643 * Mapping functions.
2644 */
2645
2646 /*
2647 * Called only while mapping a thin bio to hand it over to the workqueue.
2648 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2650 {
2651 struct pool *pool = tc->pool;
2652
2653 spin_lock_irq(&tc->lock);
2654 bio_list_add(&tc->deferred_bio_list, bio);
2655 spin_unlock_irq(&tc->lock);
2656
2657 wake_worker(pool);
2658 }
2659
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2661 {
2662 struct pool *pool = tc->pool;
2663
2664 throttle_lock(&pool->throttle);
2665 thin_defer_bio(tc, bio);
2666 throttle_unlock(&pool->throttle);
2667 }
2668
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2670 {
2671 struct pool *pool = tc->pool;
2672
2673 throttle_lock(&pool->throttle);
2674 spin_lock_irq(&tc->lock);
2675 list_add_tail(&cell->user_list, &tc->deferred_cells);
2676 spin_unlock_irq(&tc->lock);
2677 throttle_unlock(&pool->throttle);
2678
2679 wake_worker(pool);
2680 }
2681
thin_hook_bio(struct thin_c * tc,struct bio * bio)2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2685
2686 h->tc = tc;
2687 h->shared_read_entry = NULL;
2688 h->all_io_entry = NULL;
2689 h->overwrite_mapping = NULL;
2690 h->cell = NULL;
2691 }
2692
2693 /*
2694 * Non-blocking function called from the thin target's map function.
2695 */
thin_bio_map(struct dm_target * ti,struct bio * bio)2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2697 {
2698 int r;
2699 struct thin_c *tc = ti->private;
2700 dm_block_t block = get_bio_block(tc, bio);
2701 struct dm_thin_device *td = tc->td;
2702 struct dm_thin_lookup_result result;
2703 struct dm_bio_prison_cell *virt_cell, *data_cell;
2704 struct dm_cell_key key;
2705
2706 thin_hook_bio(tc, bio);
2707
2708 if (tc->requeue_mode) {
2709 bio->bi_status = BLK_STS_DM_REQUEUE;
2710 bio_endio(bio);
2711 return DM_MAPIO_SUBMITTED;
2712 }
2713
2714 if (get_pool_mode(tc->pool) == PM_FAIL) {
2715 bio_io_error(bio);
2716 return DM_MAPIO_SUBMITTED;
2717 }
2718
2719 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2720 thin_defer_bio_with_throttle(tc, bio);
2721 return DM_MAPIO_SUBMITTED;
2722 }
2723
2724 /*
2725 * We must hold the virtual cell before doing the lookup, otherwise
2726 * there's a race with discard.
2727 */
2728 build_virtual_key(tc->td, block, &key);
2729 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2730 return DM_MAPIO_SUBMITTED;
2731
2732 r = dm_thin_find_block(td, block, 0, &result);
2733
2734 /*
2735 * Note that we defer readahead too.
2736 */
2737 switch (r) {
2738 case 0:
2739 if (unlikely(result.shared)) {
2740 /*
2741 * We have a race condition here between the
2742 * result.shared value returned by the lookup and
2743 * snapshot creation, which may cause new
2744 * sharing.
2745 *
2746 * To avoid this always quiesce the origin before
2747 * taking the snap. You want to do this anyway to
2748 * ensure a consistent application view
2749 * (i.e. lockfs).
2750 *
2751 * More distant ancestors are irrelevant. The
2752 * shared flag will be set in their case.
2753 */
2754 thin_defer_cell(tc, virt_cell);
2755 return DM_MAPIO_SUBMITTED;
2756 }
2757
2758 build_data_key(tc->td, result.block, &key);
2759 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2760 cell_defer_no_holder(tc, virt_cell);
2761 return DM_MAPIO_SUBMITTED;
2762 }
2763
2764 inc_all_io_entry(tc->pool, bio);
2765 cell_defer_no_holder(tc, data_cell);
2766 cell_defer_no_holder(tc, virt_cell);
2767
2768 remap(tc, bio, result.block);
2769 return DM_MAPIO_REMAPPED;
2770
2771 case -ENODATA:
2772 case -EWOULDBLOCK:
2773 thin_defer_cell(tc, virt_cell);
2774 return DM_MAPIO_SUBMITTED;
2775
2776 default:
2777 /*
2778 * Must always call bio_io_error on failure.
2779 * dm_thin_find_block can fail with -EINVAL if the
2780 * pool is switched to fail-io mode.
2781 */
2782 bio_io_error(bio);
2783 cell_defer_no_holder(tc, virt_cell);
2784 return DM_MAPIO_SUBMITTED;
2785 }
2786 }
2787
requeue_bios(struct pool * pool)2788 static void requeue_bios(struct pool *pool)
2789 {
2790 struct thin_c *tc;
2791
2792 rcu_read_lock();
2793 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2794 spin_lock_irq(&tc->lock);
2795 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2796 bio_list_init(&tc->retry_on_resume_list);
2797 spin_unlock_irq(&tc->lock);
2798 }
2799 rcu_read_unlock();
2800 }
2801
2802 /*----------------------------------------------------------------
2803 * Binding of control targets to a pool object
2804 *--------------------------------------------------------------*/
is_factor(sector_t block_size,uint32_t n)2805 static bool is_factor(sector_t block_size, uint32_t n)
2806 {
2807 return !sector_div(block_size, n);
2808 }
2809
2810 /*
2811 * If discard_passdown was enabled verify that the data device
2812 * supports discards. Disable discard_passdown if not.
2813 */
disable_passdown_if_not_supported(struct pool_c * pt)2814 static void disable_passdown_if_not_supported(struct pool_c *pt)
2815 {
2816 struct pool *pool = pt->pool;
2817 struct block_device *data_bdev = pt->data_dev->bdev;
2818 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2819 const char *reason = NULL;
2820
2821 if (!pt->adjusted_pf.discard_passdown)
2822 return;
2823
2824 if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2825 reason = "discard unsupported";
2826
2827 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2828 reason = "max discard sectors smaller than a block";
2829
2830 if (reason) {
2831 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2832 pt->adjusted_pf.discard_passdown = false;
2833 }
2834 }
2835
bind_control_target(struct pool * pool,struct dm_target * ti)2836 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2837 {
2838 struct pool_c *pt = ti->private;
2839
2840 /*
2841 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2842 */
2843 enum pool_mode old_mode = get_pool_mode(pool);
2844 enum pool_mode new_mode = pt->adjusted_pf.mode;
2845
2846 /*
2847 * Don't change the pool's mode until set_pool_mode() below.
2848 * Otherwise the pool's process_* function pointers may
2849 * not match the desired pool mode.
2850 */
2851 pt->adjusted_pf.mode = old_mode;
2852
2853 pool->ti = ti;
2854 pool->pf = pt->adjusted_pf;
2855 pool->low_water_blocks = pt->low_water_blocks;
2856
2857 set_pool_mode(pool, new_mode);
2858
2859 return 0;
2860 }
2861
unbind_control_target(struct pool * pool,struct dm_target * ti)2862 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2863 {
2864 if (pool->ti == ti)
2865 pool->ti = NULL;
2866 }
2867
2868 /*----------------------------------------------------------------
2869 * Pool creation
2870 *--------------------------------------------------------------*/
2871 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2872 static void pool_features_init(struct pool_features *pf)
2873 {
2874 pf->mode = PM_WRITE;
2875 pf->zero_new_blocks = true;
2876 pf->discard_enabled = true;
2877 pf->discard_passdown = true;
2878 pf->error_if_no_space = false;
2879 }
2880
__pool_destroy(struct pool * pool)2881 static void __pool_destroy(struct pool *pool)
2882 {
2883 __pool_table_remove(pool);
2884
2885 vfree(pool->cell_sort_array);
2886 if (dm_pool_metadata_close(pool->pmd) < 0)
2887 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2888
2889 dm_bio_prison_destroy(pool->prison);
2890 dm_kcopyd_client_destroy(pool->copier);
2891
2892 if (pool->wq)
2893 destroy_workqueue(pool->wq);
2894
2895 if (pool->next_mapping)
2896 mempool_free(pool->next_mapping, &pool->mapping_pool);
2897 mempool_exit(&pool->mapping_pool);
2898 dm_deferred_set_destroy(pool->shared_read_ds);
2899 dm_deferred_set_destroy(pool->all_io_ds);
2900 kfree(pool);
2901 }
2902
2903 static struct kmem_cache *_new_mapping_cache;
2904
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2905 static struct pool *pool_create(struct mapped_device *pool_md,
2906 struct block_device *metadata_dev,
2907 struct block_device *data_dev,
2908 unsigned long block_size,
2909 int read_only, char **error)
2910 {
2911 int r;
2912 void *err_p;
2913 struct pool *pool;
2914 struct dm_pool_metadata *pmd;
2915 bool format_device = read_only ? false : true;
2916
2917 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2918 if (IS_ERR(pmd)) {
2919 *error = "Error creating metadata object";
2920 return (struct pool *)pmd;
2921 }
2922
2923 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2924 if (!pool) {
2925 *error = "Error allocating memory for pool";
2926 err_p = ERR_PTR(-ENOMEM);
2927 goto bad_pool;
2928 }
2929
2930 pool->pmd = pmd;
2931 pool->sectors_per_block = block_size;
2932 if (block_size & (block_size - 1))
2933 pool->sectors_per_block_shift = -1;
2934 else
2935 pool->sectors_per_block_shift = __ffs(block_size);
2936 pool->low_water_blocks = 0;
2937 pool_features_init(&pool->pf);
2938 pool->prison = dm_bio_prison_create();
2939 if (!pool->prison) {
2940 *error = "Error creating pool's bio prison";
2941 err_p = ERR_PTR(-ENOMEM);
2942 goto bad_prison;
2943 }
2944
2945 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2946 if (IS_ERR(pool->copier)) {
2947 r = PTR_ERR(pool->copier);
2948 *error = "Error creating pool's kcopyd client";
2949 err_p = ERR_PTR(r);
2950 goto bad_kcopyd_client;
2951 }
2952
2953 /*
2954 * Create singlethreaded workqueue that will service all devices
2955 * that use this metadata.
2956 */
2957 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2958 if (!pool->wq) {
2959 *error = "Error creating pool's workqueue";
2960 err_p = ERR_PTR(-ENOMEM);
2961 goto bad_wq;
2962 }
2963
2964 throttle_init(&pool->throttle);
2965 INIT_WORK(&pool->worker, do_worker);
2966 INIT_DELAYED_WORK(&pool->waker, do_waker);
2967 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2968 spin_lock_init(&pool->lock);
2969 bio_list_init(&pool->deferred_flush_bios);
2970 bio_list_init(&pool->deferred_flush_completions);
2971 INIT_LIST_HEAD(&pool->prepared_mappings);
2972 INIT_LIST_HEAD(&pool->prepared_discards);
2973 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2974 INIT_LIST_HEAD(&pool->active_thins);
2975 pool->low_water_triggered = false;
2976 pool->suspended = true;
2977 pool->out_of_data_space = false;
2978
2979 pool->shared_read_ds = dm_deferred_set_create();
2980 if (!pool->shared_read_ds) {
2981 *error = "Error creating pool's shared read deferred set";
2982 err_p = ERR_PTR(-ENOMEM);
2983 goto bad_shared_read_ds;
2984 }
2985
2986 pool->all_io_ds = dm_deferred_set_create();
2987 if (!pool->all_io_ds) {
2988 *error = "Error creating pool's all io deferred set";
2989 err_p = ERR_PTR(-ENOMEM);
2990 goto bad_all_io_ds;
2991 }
2992
2993 pool->next_mapping = NULL;
2994 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2995 _new_mapping_cache);
2996 if (r) {
2997 *error = "Error creating pool's mapping mempool";
2998 err_p = ERR_PTR(r);
2999 goto bad_mapping_pool;
3000 }
3001
3002 pool->cell_sort_array =
3003 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3004 sizeof(*pool->cell_sort_array)));
3005 if (!pool->cell_sort_array) {
3006 *error = "Error allocating cell sort array";
3007 err_p = ERR_PTR(-ENOMEM);
3008 goto bad_sort_array;
3009 }
3010
3011 pool->ref_count = 1;
3012 pool->last_commit_jiffies = jiffies;
3013 pool->pool_md = pool_md;
3014 pool->md_dev = metadata_dev;
3015 pool->data_dev = data_dev;
3016 __pool_table_insert(pool);
3017
3018 return pool;
3019
3020 bad_sort_array:
3021 mempool_exit(&pool->mapping_pool);
3022 bad_mapping_pool:
3023 dm_deferred_set_destroy(pool->all_io_ds);
3024 bad_all_io_ds:
3025 dm_deferred_set_destroy(pool->shared_read_ds);
3026 bad_shared_read_ds:
3027 destroy_workqueue(pool->wq);
3028 bad_wq:
3029 dm_kcopyd_client_destroy(pool->copier);
3030 bad_kcopyd_client:
3031 dm_bio_prison_destroy(pool->prison);
3032 bad_prison:
3033 kfree(pool);
3034 bad_pool:
3035 if (dm_pool_metadata_close(pmd))
3036 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3037
3038 return err_p;
3039 }
3040
__pool_inc(struct pool * pool)3041 static void __pool_inc(struct pool *pool)
3042 {
3043 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3044 pool->ref_count++;
3045 }
3046
__pool_dec(struct pool * pool)3047 static void __pool_dec(struct pool *pool)
3048 {
3049 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3050 BUG_ON(!pool->ref_count);
3051 if (!--pool->ref_count)
3052 __pool_destroy(pool);
3053 }
3054
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3055 static struct pool *__pool_find(struct mapped_device *pool_md,
3056 struct block_device *metadata_dev,
3057 struct block_device *data_dev,
3058 unsigned long block_size, int read_only,
3059 char **error, int *created)
3060 {
3061 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3062
3063 if (pool) {
3064 if (pool->pool_md != pool_md) {
3065 *error = "metadata device already in use by a pool";
3066 return ERR_PTR(-EBUSY);
3067 }
3068 if (pool->data_dev != data_dev) {
3069 *error = "data device already in use by a pool";
3070 return ERR_PTR(-EBUSY);
3071 }
3072 __pool_inc(pool);
3073
3074 } else {
3075 pool = __pool_table_lookup(pool_md);
3076 if (pool) {
3077 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3078 *error = "different pool cannot replace a pool";
3079 return ERR_PTR(-EINVAL);
3080 }
3081 __pool_inc(pool);
3082
3083 } else {
3084 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3085 *created = 1;
3086 }
3087 }
3088
3089 return pool;
3090 }
3091
3092 /*----------------------------------------------------------------
3093 * Pool target methods
3094 *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)3095 static void pool_dtr(struct dm_target *ti)
3096 {
3097 struct pool_c *pt = ti->private;
3098
3099 mutex_lock(&dm_thin_pool_table.mutex);
3100
3101 unbind_control_target(pt->pool, ti);
3102 __pool_dec(pt->pool);
3103 dm_put_device(ti, pt->metadata_dev);
3104 dm_put_device(ti, pt->data_dev);
3105 kfree(pt);
3106
3107 mutex_unlock(&dm_thin_pool_table.mutex);
3108 }
3109
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3110 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3111 struct dm_target *ti)
3112 {
3113 int r;
3114 unsigned argc;
3115 const char *arg_name;
3116
3117 static const struct dm_arg _args[] = {
3118 {0, 4, "Invalid number of pool feature arguments"},
3119 };
3120
3121 /*
3122 * No feature arguments supplied.
3123 */
3124 if (!as->argc)
3125 return 0;
3126
3127 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3128 if (r)
3129 return -EINVAL;
3130
3131 while (argc && !r) {
3132 arg_name = dm_shift_arg(as);
3133 argc--;
3134
3135 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3136 pf->zero_new_blocks = false;
3137
3138 else if (!strcasecmp(arg_name, "ignore_discard"))
3139 pf->discard_enabled = false;
3140
3141 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3142 pf->discard_passdown = false;
3143
3144 else if (!strcasecmp(arg_name, "read_only"))
3145 pf->mode = PM_READ_ONLY;
3146
3147 else if (!strcasecmp(arg_name, "error_if_no_space"))
3148 pf->error_if_no_space = true;
3149
3150 else {
3151 ti->error = "Unrecognised pool feature requested";
3152 r = -EINVAL;
3153 break;
3154 }
3155 }
3156
3157 return r;
3158 }
3159
metadata_low_callback(void * context)3160 static void metadata_low_callback(void *context)
3161 {
3162 struct pool *pool = context;
3163
3164 DMWARN("%s: reached low water mark for metadata device: sending event.",
3165 dm_device_name(pool->pool_md));
3166
3167 dm_table_event(pool->ti->table);
3168 }
3169
3170 /*
3171 * We need to flush the data device **before** committing the metadata.
3172 *
3173 * This ensures that the data blocks of any newly inserted mappings are
3174 * properly written to non-volatile storage and won't be lost in case of a
3175 * crash.
3176 *
3177 * Failure to do so can result in data corruption in the case of internal or
3178 * external snapshots and in the case of newly provisioned blocks, when block
3179 * zeroing is enabled.
3180 */
metadata_pre_commit_callback(void * context)3181 static int metadata_pre_commit_callback(void *context)
3182 {
3183 struct pool *pool = context;
3184
3185 return blkdev_issue_flush(pool->data_dev);
3186 }
3187
get_dev_size(struct block_device * bdev)3188 static sector_t get_dev_size(struct block_device *bdev)
3189 {
3190 return bdev_nr_sectors(bdev);
3191 }
3192
warn_if_metadata_device_too_big(struct block_device * bdev)3193 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3194 {
3195 sector_t metadata_dev_size = get_dev_size(bdev);
3196
3197 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3198 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3199 bdev, THIN_METADATA_MAX_SECTORS);
3200 }
3201
get_metadata_dev_size(struct block_device * bdev)3202 static sector_t get_metadata_dev_size(struct block_device *bdev)
3203 {
3204 sector_t metadata_dev_size = get_dev_size(bdev);
3205
3206 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3207 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3208
3209 return metadata_dev_size;
3210 }
3211
get_metadata_dev_size_in_blocks(struct block_device * bdev)3212 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3213 {
3214 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3215
3216 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3217
3218 return metadata_dev_size;
3219 }
3220
3221 /*
3222 * When a metadata threshold is crossed a dm event is triggered, and
3223 * userland should respond by growing the metadata device. We could let
3224 * userland set the threshold, like we do with the data threshold, but I'm
3225 * not sure they know enough to do this well.
3226 */
calc_metadata_threshold(struct pool_c * pt)3227 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3228 {
3229 /*
3230 * 4M is ample for all ops with the possible exception of thin
3231 * device deletion which is harmless if it fails (just retry the
3232 * delete after you've grown the device).
3233 */
3234 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3235 return min((dm_block_t)1024ULL /* 4M */, quarter);
3236 }
3237
3238 /*
3239 * thin-pool <metadata dev> <data dev>
3240 * <data block size (sectors)>
3241 * <low water mark (blocks)>
3242 * [<#feature args> [<arg>]*]
3243 *
3244 * Optional feature arguments are:
3245 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3246 * ignore_discard: disable discard
3247 * no_discard_passdown: don't pass discards down to the data device
3248 * read_only: Don't allow any changes to be made to the pool metadata.
3249 * error_if_no_space: error IOs, instead of queueing, if no space.
3250 */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)3251 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3252 {
3253 int r, pool_created = 0;
3254 struct pool_c *pt;
3255 struct pool *pool;
3256 struct pool_features pf;
3257 struct dm_arg_set as;
3258 struct dm_dev *data_dev;
3259 unsigned long block_size;
3260 dm_block_t low_water_blocks;
3261 struct dm_dev *metadata_dev;
3262 fmode_t metadata_mode;
3263
3264 /*
3265 * FIXME Remove validation from scope of lock.
3266 */
3267 mutex_lock(&dm_thin_pool_table.mutex);
3268
3269 if (argc < 4) {
3270 ti->error = "Invalid argument count";
3271 r = -EINVAL;
3272 goto out_unlock;
3273 }
3274
3275 as.argc = argc;
3276 as.argv = argv;
3277
3278 /* make sure metadata and data are different devices */
3279 if (!strcmp(argv[0], argv[1])) {
3280 ti->error = "Error setting metadata or data device";
3281 r = -EINVAL;
3282 goto out_unlock;
3283 }
3284
3285 /*
3286 * Set default pool features.
3287 */
3288 pool_features_init(&pf);
3289
3290 dm_consume_args(&as, 4);
3291 r = parse_pool_features(&as, &pf, ti);
3292 if (r)
3293 goto out_unlock;
3294
3295 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3296 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3297 if (r) {
3298 ti->error = "Error opening metadata block device";
3299 goto out_unlock;
3300 }
3301 warn_if_metadata_device_too_big(metadata_dev->bdev);
3302
3303 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3304 if (r) {
3305 ti->error = "Error getting data device";
3306 goto out_metadata;
3307 }
3308
3309 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3310 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3311 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3312 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3313 ti->error = "Invalid block size";
3314 r = -EINVAL;
3315 goto out;
3316 }
3317
3318 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3319 ti->error = "Invalid low water mark";
3320 r = -EINVAL;
3321 goto out;
3322 }
3323
3324 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3325 if (!pt) {
3326 r = -ENOMEM;
3327 goto out;
3328 }
3329
3330 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3331 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3332 if (IS_ERR(pool)) {
3333 r = PTR_ERR(pool);
3334 goto out_free_pt;
3335 }
3336
3337 /*
3338 * 'pool_created' reflects whether this is the first table load.
3339 * Top level discard support is not allowed to be changed after
3340 * initial load. This would require a pool reload to trigger thin
3341 * device changes.
3342 */
3343 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3344 ti->error = "Discard support cannot be disabled once enabled";
3345 r = -EINVAL;
3346 goto out_flags_changed;
3347 }
3348
3349 pt->pool = pool;
3350 pt->ti = ti;
3351 pt->metadata_dev = metadata_dev;
3352 pt->data_dev = data_dev;
3353 pt->low_water_blocks = low_water_blocks;
3354 pt->adjusted_pf = pt->requested_pf = pf;
3355 ti->num_flush_bios = 1;
3356
3357 /*
3358 * Only need to enable discards if the pool should pass
3359 * them down to the data device. The thin device's discard
3360 * processing will cause mappings to be removed from the btree.
3361 */
3362 if (pf.discard_enabled && pf.discard_passdown) {
3363 ti->num_discard_bios = 1;
3364
3365 /*
3366 * Setting 'discards_supported' circumvents the normal
3367 * stacking of discard limits (this keeps the pool and
3368 * thin devices' discard limits consistent).
3369 */
3370 ti->discards_supported = true;
3371 }
3372 ti->private = pt;
3373
3374 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3375 calc_metadata_threshold(pt),
3376 metadata_low_callback,
3377 pool);
3378 if (r) {
3379 ti->error = "Error registering metadata threshold";
3380 goto out_flags_changed;
3381 }
3382
3383 dm_pool_register_pre_commit_callback(pool->pmd,
3384 metadata_pre_commit_callback, pool);
3385
3386 mutex_unlock(&dm_thin_pool_table.mutex);
3387
3388 return 0;
3389
3390 out_flags_changed:
3391 __pool_dec(pool);
3392 out_free_pt:
3393 kfree(pt);
3394 out:
3395 dm_put_device(ti, data_dev);
3396 out_metadata:
3397 dm_put_device(ti, metadata_dev);
3398 out_unlock:
3399 mutex_unlock(&dm_thin_pool_table.mutex);
3400
3401 return r;
3402 }
3403
pool_map(struct dm_target * ti,struct bio * bio)3404 static int pool_map(struct dm_target *ti, struct bio *bio)
3405 {
3406 int r;
3407 struct pool_c *pt = ti->private;
3408 struct pool *pool = pt->pool;
3409
3410 /*
3411 * As this is a singleton target, ti->begin is always zero.
3412 */
3413 spin_lock_irq(&pool->lock);
3414 bio_set_dev(bio, pt->data_dev->bdev);
3415 r = DM_MAPIO_REMAPPED;
3416 spin_unlock_irq(&pool->lock);
3417
3418 return r;
3419 }
3420
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3421 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3422 {
3423 int r;
3424 struct pool_c *pt = ti->private;
3425 struct pool *pool = pt->pool;
3426 sector_t data_size = ti->len;
3427 dm_block_t sb_data_size;
3428
3429 *need_commit = false;
3430
3431 (void) sector_div(data_size, pool->sectors_per_block);
3432
3433 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3434 if (r) {
3435 DMERR("%s: failed to retrieve data device size",
3436 dm_device_name(pool->pool_md));
3437 return r;
3438 }
3439
3440 if (data_size < sb_data_size) {
3441 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3442 dm_device_name(pool->pool_md),
3443 (unsigned long long)data_size, sb_data_size);
3444 return -EINVAL;
3445
3446 } else if (data_size > sb_data_size) {
3447 if (dm_pool_metadata_needs_check(pool->pmd)) {
3448 DMERR("%s: unable to grow the data device until repaired.",
3449 dm_device_name(pool->pool_md));
3450 return 0;
3451 }
3452
3453 if (sb_data_size)
3454 DMINFO("%s: growing the data device from %llu to %llu blocks",
3455 dm_device_name(pool->pool_md),
3456 sb_data_size, (unsigned long long)data_size);
3457 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3458 if (r) {
3459 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3460 return r;
3461 }
3462
3463 *need_commit = true;
3464 }
3465
3466 return 0;
3467 }
3468
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3469 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3470 {
3471 int r;
3472 struct pool_c *pt = ti->private;
3473 struct pool *pool = pt->pool;
3474 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3475
3476 *need_commit = false;
3477
3478 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3479
3480 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3481 if (r) {
3482 DMERR("%s: failed to retrieve metadata device size",
3483 dm_device_name(pool->pool_md));
3484 return r;
3485 }
3486
3487 if (metadata_dev_size < sb_metadata_dev_size) {
3488 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3489 dm_device_name(pool->pool_md),
3490 metadata_dev_size, sb_metadata_dev_size);
3491 return -EINVAL;
3492
3493 } else if (metadata_dev_size > sb_metadata_dev_size) {
3494 if (dm_pool_metadata_needs_check(pool->pmd)) {
3495 DMERR("%s: unable to grow the metadata device until repaired.",
3496 dm_device_name(pool->pool_md));
3497 return 0;
3498 }
3499
3500 warn_if_metadata_device_too_big(pool->md_dev);
3501 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3502 dm_device_name(pool->pool_md),
3503 sb_metadata_dev_size, metadata_dev_size);
3504
3505 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3506 set_pool_mode(pool, PM_WRITE);
3507
3508 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3509 if (r) {
3510 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3511 return r;
3512 }
3513
3514 *need_commit = true;
3515 }
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * Retrieves the number of blocks of the data device from
3522 * the superblock and compares it to the actual device size,
3523 * thus resizing the data device in case it has grown.
3524 *
3525 * This both copes with opening preallocated data devices in the ctr
3526 * being followed by a resume
3527 * -and-
3528 * calling the resume method individually after userspace has
3529 * grown the data device in reaction to a table event.
3530 */
pool_preresume(struct dm_target * ti)3531 static int pool_preresume(struct dm_target *ti)
3532 {
3533 int r;
3534 bool need_commit1, need_commit2;
3535 struct pool_c *pt = ti->private;
3536 struct pool *pool = pt->pool;
3537
3538 /*
3539 * Take control of the pool object.
3540 */
3541 r = bind_control_target(pool, ti);
3542 if (r)
3543 return r;
3544
3545 r = maybe_resize_data_dev(ti, &need_commit1);
3546 if (r)
3547 return r;
3548
3549 r = maybe_resize_metadata_dev(ti, &need_commit2);
3550 if (r)
3551 return r;
3552
3553 if (need_commit1 || need_commit2)
3554 (void) commit(pool);
3555
3556 return 0;
3557 }
3558
pool_suspend_active_thins(struct pool * pool)3559 static void pool_suspend_active_thins(struct pool *pool)
3560 {
3561 struct thin_c *tc;
3562
3563 /* Suspend all active thin devices */
3564 tc = get_first_thin(pool);
3565 while (tc) {
3566 dm_internal_suspend_noflush(tc->thin_md);
3567 tc = get_next_thin(pool, tc);
3568 }
3569 }
3570
pool_resume_active_thins(struct pool * pool)3571 static void pool_resume_active_thins(struct pool *pool)
3572 {
3573 struct thin_c *tc;
3574
3575 /* Resume all active thin devices */
3576 tc = get_first_thin(pool);
3577 while (tc) {
3578 dm_internal_resume(tc->thin_md);
3579 tc = get_next_thin(pool, tc);
3580 }
3581 }
3582
pool_resume(struct dm_target * ti)3583 static void pool_resume(struct dm_target *ti)
3584 {
3585 struct pool_c *pt = ti->private;
3586 struct pool *pool = pt->pool;
3587
3588 /*
3589 * Must requeue active_thins' bios and then resume
3590 * active_thins _before_ clearing 'suspend' flag.
3591 */
3592 requeue_bios(pool);
3593 pool_resume_active_thins(pool);
3594
3595 spin_lock_irq(&pool->lock);
3596 pool->low_water_triggered = false;
3597 pool->suspended = false;
3598 spin_unlock_irq(&pool->lock);
3599
3600 do_waker(&pool->waker.work);
3601 }
3602
pool_presuspend(struct dm_target * ti)3603 static void pool_presuspend(struct dm_target *ti)
3604 {
3605 struct pool_c *pt = ti->private;
3606 struct pool *pool = pt->pool;
3607
3608 spin_lock_irq(&pool->lock);
3609 pool->suspended = true;
3610 spin_unlock_irq(&pool->lock);
3611
3612 pool_suspend_active_thins(pool);
3613 }
3614
pool_presuspend_undo(struct dm_target * ti)3615 static void pool_presuspend_undo(struct dm_target *ti)
3616 {
3617 struct pool_c *pt = ti->private;
3618 struct pool *pool = pt->pool;
3619
3620 pool_resume_active_thins(pool);
3621
3622 spin_lock_irq(&pool->lock);
3623 pool->suspended = false;
3624 spin_unlock_irq(&pool->lock);
3625 }
3626
pool_postsuspend(struct dm_target * ti)3627 static void pool_postsuspend(struct dm_target *ti)
3628 {
3629 struct pool_c *pt = ti->private;
3630 struct pool *pool = pt->pool;
3631
3632 cancel_delayed_work_sync(&pool->waker);
3633 cancel_delayed_work_sync(&pool->no_space_timeout);
3634 flush_workqueue(pool->wq);
3635 (void) commit(pool);
3636 }
3637
check_arg_count(unsigned argc,unsigned args_required)3638 static int check_arg_count(unsigned argc, unsigned args_required)
3639 {
3640 if (argc != args_required) {
3641 DMWARN("Message received with %u arguments instead of %u.",
3642 argc, args_required);
3643 return -EINVAL;
3644 }
3645
3646 return 0;
3647 }
3648
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3649 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3650 {
3651 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3652 *dev_id <= MAX_DEV_ID)
3653 return 0;
3654
3655 if (warning)
3656 DMWARN("Message received with invalid device id: %s", arg);
3657
3658 return -EINVAL;
3659 }
3660
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)3661 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3662 {
3663 dm_thin_id dev_id;
3664 int r;
3665
3666 r = check_arg_count(argc, 2);
3667 if (r)
3668 return r;
3669
3670 r = read_dev_id(argv[1], &dev_id, 1);
3671 if (r)
3672 return r;
3673
3674 r = dm_pool_create_thin(pool->pmd, dev_id);
3675 if (r) {
3676 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3677 argv[1]);
3678 return r;
3679 }
3680
3681 return 0;
3682 }
3683
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3684 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686 dm_thin_id dev_id;
3687 dm_thin_id origin_dev_id;
3688 int r;
3689
3690 r = check_arg_count(argc, 3);
3691 if (r)
3692 return r;
3693
3694 r = read_dev_id(argv[1], &dev_id, 1);
3695 if (r)
3696 return r;
3697
3698 r = read_dev_id(argv[2], &origin_dev_id, 1);
3699 if (r)
3700 return r;
3701
3702 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3703 if (r) {
3704 DMWARN("Creation of new snapshot %s of device %s failed.",
3705 argv[1], argv[2]);
3706 return r;
3707 }
3708
3709 return 0;
3710 }
3711
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)3712 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3713 {
3714 dm_thin_id dev_id;
3715 int r;
3716
3717 r = check_arg_count(argc, 2);
3718 if (r)
3719 return r;
3720
3721 r = read_dev_id(argv[1], &dev_id, 1);
3722 if (r)
3723 return r;
3724
3725 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3726 if (r)
3727 DMWARN("Deletion of thin device %s failed.", argv[1]);
3728
3729 return r;
3730 }
3731
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)3732 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3733 {
3734 dm_thin_id old_id, new_id;
3735 int r;
3736
3737 r = check_arg_count(argc, 3);
3738 if (r)
3739 return r;
3740
3741 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3742 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3743 return -EINVAL;
3744 }
3745
3746 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3747 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3748 return -EINVAL;
3749 }
3750
3751 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3752 if (r) {
3753 DMWARN("Failed to change transaction id from %s to %s.",
3754 argv[1], argv[2]);
3755 return r;
3756 }
3757
3758 return 0;
3759 }
3760
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3761 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3762 {
3763 int r;
3764
3765 r = check_arg_count(argc, 1);
3766 if (r)
3767 return r;
3768
3769 (void) commit(pool);
3770
3771 r = dm_pool_reserve_metadata_snap(pool->pmd);
3772 if (r)
3773 DMWARN("reserve_metadata_snap message failed.");
3774
3775 return r;
3776 }
3777
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3778 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3779 {
3780 int r;
3781
3782 r = check_arg_count(argc, 1);
3783 if (r)
3784 return r;
3785
3786 r = dm_pool_release_metadata_snap(pool->pmd);
3787 if (r)
3788 DMWARN("release_metadata_snap message failed.");
3789
3790 return r;
3791 }
3792
3793 /*
3794 * Messages supported:
3795 * create_thin <dev_id>
3796 * create_snap <dev_id> <origin_id>
3797 * delete <dev_id>
3798 * set_transaction_id <current_trans_id> <new_trans_id>
3799 * reserve_metadata_snap
3800 * release_metadata_snap
3801 */
pool_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3802 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3803 char *result, unsigned maxlen)
3804 {
3805 int r = -EINVAL;
3806 struct pool_c *pt = ti->private;
3807 struct pool *pool = pt->pool;
3808
3809 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3810 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3811 dm_device_name(pool->pool_md));
3812 return -EOPNOTSUPP;
3813 }
3814
3815 if (!strcasecmp(argv[0], "create_thin"))
3816 r = process_create_thin_mesg(argc, argv, pool);
3817
3818 else if (!strcasecmp(argv[0], "create_snap"))
3819 r = process_create_snap_mesg(argc, argv, pool);
3820
3821 else if (!strcasecmp(argv[0], "delete"))
3822 r = process_delete_mesg(argc, argv, pool);
3823
3824 else if (!strcasecmp(argv[0], "set_transaction_id"))
3825 r = process_set_transaction_id_mesg(argc, argv, pool);
3826
3827 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3828 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3829
3830 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3831 r = process_release_metadata_snap_mesg(argc, argv, pool);
3832
3833 else
3834 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3835
3836 if (!r)
3837 (void) commit(pool);
3838
3839 return r;
3840 }
3841
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)3842 static void emit_flags(struct pool_features *pf, char *result,
3843 unsigned sz, unsigned maxlen)
3844 {
3845 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3846 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3847 pf->error_if_no_space;
3848 DMEMIT("%u ", count);
3849
3850 if (!pf->zero_new_blocks)
3851 DMEMIT("skip_block_zeroing ");
3852
3853 if (!pf->discard_enabled)
3854 DMEMIT("ignore_discard ");
3855
3856 if (!pf->discard_passdown)
3857 DMEMIT("no_discard_passdown ");
3858
3859 if (pf->mode == PM_READ_ONLY)
3860 DMEMIT("read_only ");
3861
3862 if (pf->error_if_no_space)
3863 DMEMIT("error_if_no_space ");
3864 }
3865
3866 /*
3867 * Status line is:
3868 * <transaction id> <used metadata sectors>/<total metadata sectors>
3869 * <used data sectors>/<total data sectors> <held metadata root>
3870 * <pool mode> <discard config> <no space config> <needs_check>
3871 */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3872 static void pool_status(struct dm_target *ti, status_type_t type,
3873 unsigned status_flags, char *result, unsigned maxlen)
3874 {
3875 int r;
3876 unsigned sz = 0;
3877 uint64_t transaction_id;
3878 dm_block_t nr_free_blocks_data;
3879 dm_block_t nr_free_blocks_metadata;
3880 dm_block_t nr_blocks_data;
3881 dm_block_t nr_blocks_metadata;
3882 dm_block_t held_root;
3883 enum pool_mode mode;
3884 char buf[BDEVNAME_SIZE];
3885 char buf2[BDEVNAME_SIZE];
3886 struct pool_c *pt = ti->private;
3887 struct pool *pool = pt->pool;
3888
3889 switch (type) {
3890 case STATUSTYPE_INFO:
3891 if (get_pool_mode(pool) == PM_FAIL) {
3892 DMEMIT("Fail");
3893 break;
3894 }
3895
3896 /* Commit to ensure statistics aren't out-of-date */
3897 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3898 (void) commit(pool);
3899
3900 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3901 if (r) {
3902 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3903 dm_device_name(pool->pool_md), r);
3904 goto err;
3905 }
3906
3907 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3908 if (r) {
3909 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3910 dm_device_name(pool->pool_md), r);
3911 goto err;
3912 }
3913
3914 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3915 if (r) {
3916 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3917 dm_device_name(pool->pool_md), r);
3918 goto err;
3919 }
3920
3921 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3922 if (r) {
3923 DMERR("%s: dm_pool_get_free_block_count returned %d",
3924 dm_device_name(pool->pool_md), r);
3925 goto err;
3926 }
3927
3928 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3929 if (r) {
3930 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3931 dm_device_name(pool->pool_md), r);
3932 goto err;
3933 }
3934
3935 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3936 if (r) {
3937 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3938 dm_device_name(pool->pool_md), r);
3939 goto err;
3940 }
3941
3942 DMEMIT("%llu %llu/%llu %llu/%llu ",
3943 (unsigned long long)transaction_id,
3944 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3945 (unsigned long long)nr_blocks_metadata,
3946 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3947 (unsigned long long)nr_blocks_data);
3948
3949 if (held_root)
3950 DMEMIT("%llu ", held_root);
3951 else
3952 DMEMIT("- ");
3953
3954 mode = get_pool_mode(pool);
3955 if (mode == PM_OUT_OF_DATA_SPACE)
3956 DMEMIT("out_of_data_space ");
3957 else if (is_read_only_pool_mode(mode))
3958 DMEMIT("ro ");
3959 else
3960 DMEMIT("rw ");
3961
3962 if (!pool->pf.discard_enabled)
3963 DMEMIT("ignore_discard ");
3964 else if (pool->pf.discard_passdown)
3965 DMEMIT("discard_passdown ");
3966 else
3967 DMEMIT("no_discard_passdown ");
3968
3969 if (pool->pf.error_if_no_space)
3970 DMEMIT("error_if_no_space ");
3971 else
3972 DMEMIT("queue_if_no_space ");
3973
3974 if (dm_pool_metadata_needs_check(pool->pmd))
3975 DMEMIT("needs_check ");
3976 else
3977 DMEMIT("- ");
3978
3979 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3980
3981 break;
3982
3983 case STATUSTYPE_TABLE:
3984 DMEMIT("%s %s %lu %llu ",
3985 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3986 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3987 (unsigned long)pool->sectors_per_block,
3988 (unsigned long long)pt->low_water_blocks);
3989 emit_flags(&pt->requested_pf, result, sz, maxlen);
3990 break;
3991
3992 case STATUSTYPE_IMA:
3993 *result = '\0';
3994 break;
3995 }
3996 return;
3997
3998 err:
3999 DMEMIT("Error");
4000 }
4001
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4002 static int pool_iterate_devices(struct dm_target *ti,
4003 iterate_devices_callout_fn fn, void *data)
4004 {
4005 struct pool_c *pt = ti->private;
4006
4007 return fn(ti, pt->data_dev, 0, ti->len, data);
4008 }
4009
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4010 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4011 {
4012 struct pool_c *pt = ti->private;
4013 struct pool *pool = pt->pool;
4014 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4015
4016 /*
4017 * If max_sectors is smaller than pool->sectors_per_block adjust it
4018 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4019 * This is especially beneficial when the pool's data device is a RAID
4020 * device that has a full stripe width that matches pool->sectors_per_block
4021 * -- because even though partial RAID stripe-sized IOs will be issued to a
4022 * single RAID stripe; when aggregated they will end on a full RAID stripe
4023 * boundary.. which avoids additional partial RAID stripe writes cascading
4024 */
4025 if (limits->max_sectors < pool->sectors_per_block) {
4026 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4027 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4028 limits->max_sectors--;
4029 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4030 }
4031 }
4032
4033 /*
4034 * If the system-determined stacked limits are compatible with the
4035 * pool's blocksize (io_opt is a factor) do not override them.
4036 */
4037 if (io_opt_sectors < pool->sectors_per_block ||
4038 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4039 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4040 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4041 else
4042 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4043 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4044 }
4045
4046 /*
4047 * pt->adjusted_pf is a staging area for the actual features to use.
4048 * They get transferred to the live pool in bind_control_target()
4049 * called from pool_preresume().
4050 */
4051 if (!pt->adjusted_pf.discard_enabled) {
4052 /*
4053 * Must explicitly disallow stacking discard limits otherwise the
4054 * block layer will stack them if pool's data device has support.
4055 */
4056 limits->discard_granularity = 0;
4057 return;
4058 }
4059
4060 disable_passdown_if_not_supported(pt);
4061
4062 /*
4063 * The pool uses the same discard limits as the underlying data
4064 * device. DM core has already set this up.
4065 */
4066 }
4067
4068 static struct target_type pool_target = {
4069 .name = "thin-pool",
4070 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4071 DM_TARGET_IMMUTABLE,
4072 .version = {1, 22, 0},
4073 .module = THIS_MODULE,
4074 .ctr = pool_ctr,
4075 .dtr = pool_dtr,
4076 .map = pool_map,
4077 .presuspend = pool_presuspend,
4078 .presuspend_undo = pool_presuspend_undo,
4079 .postsuspend = pool_postsuspend,
4080 .preresume = pool_preresume,
4081 .resume = pool_resume,
4082 .message = pool_message,
4083 .status = pool_status,
4084 .iterate_devices = pool_iterate_devices,
4085 .io_hints = pool_io_hints,
4086 };
4087
4088 /*----------------------------------------------------------------
4089 * Thin target methods
4090 *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)4091 static void thin_get(struct thin_c *tc)
4092 {
4093 refcount_inc(&tc->refcount);
4094 }
4095
thin_put(struct thin_c * tc)4096 static void thin_put(struct thin_c *tc)
4097 {
4098 if (refcount_dec_and_test(&tc->refcount))
4099 complete(&tc->can_destroy);
4100 }
4101
thin_dtr(struct dm_target * ti)4102 static void thin_dtr(struct dm_target *ti)
4103 {
4104 struct thin_c *tc = ti->private;
4105
4106 spin_lock_irq(&tc->pool->lock);
4107 list_del_rcu(&tc->list);
4108 spin_unlock_irq(&tc->pool->lock);
4109 synchronize_rcu();
4110
4111 thin_put(tc);
4112 wait_for_completion(&tc->can_destroy);
4113
4114 mutex_lock(&dm_thin_pool_table.mutex);
4115
4116 __pool_dec(tc->pool);
4117 dm_pool_close_thin_device(tc->td);
4118 dm_put_device(ti, tc->pool_dev);
4119 if (tc->origin_dev)
4120 dm_put_device(ti, tc->origin_dev);
4121 kfree(tc);
4122
4123 mutex_unlock(&dm_thin_pool_table.mutex);
4124 }
4125
4126 /*
4127 * Thin target parameters:
4128 *
4129 * <pool_dev> <dev_id> [origin_dev]
4130 *
4131 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4132 * dev_id: the internal device identifier
4133 * origin_dev: a device external to the pool that should act as the origin
4134 *
4135 * If the pool device has discards disabled, they get disabled for the thin
4136 * device as well.
4137 */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)4138 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4139 {
4140 int r;
4141 struct thin_c *tc;
4142 struct dm_dev *pool_dev, *origin_dev;
4143 struct mapped_device *pool_md;
4144
4145 mutex_lock(&dm_thin_pool_table.mutex);
4146
4147 if (argc != 2 && argc != 3) {
4148 ti->error = "Invalid argument count";
4149 r = -EINVAL;
4150 goto out_unlock;
4151 }
4152
4153 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4154 if (!tc) {
4155 ti->error = "Out of memory";
4156 r = -ENOMEM;
4157 goto out_unlock;
4158 }
4159 tc->thin_md = dm_table_get_md(ti->table);
4160 spin_lock_init(&tc->lock);
4161 INIT_LIST_HEAD(&tc->deferred_cells);
4162 bio_list_init(&tc->deferred_bio_list);
4163 bio_list_init(&tc->retry_on_resume_list);
4164 tc->sort_bio_list = RB_ROOT;
4165
4166 if (argc == 3) {
4167 if (!strcmp(argv[0], argv[2])) {
4168 ti->error = "Error setting origin device";
4169 r = -EINVAL;
4170 goto bad_origin_dev;
4171 }
4172
4173 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4174 if (r) {
4175 ti->error = "Error opening origin device";
4176 goto bad_origin_dev;
4177 }
4178 tc->origin_dev = origin_dev;
4179 }
4180
4181 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4182 if (r) {
4183 ti->error = "Error opening pool device";
4184 goto bad_pool_dev;
4185 }
4186 tc->pool_dev = pool_dev;
4187
4188 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4189 ti->error = "Invalid device id";
4190 r = -EINVAL;
4191 goto bad_common;
4192 }
4193
4194 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4195 if (!pool_md) {
4196 ti->error = "Couldn't get pool mapped device";
4197 r = -EINVAL;
4198 goto bad_common;
4199 }
4200
4201 tc->pool = __pool_table_lookup(pool_md);
4202 if (!tc->pool) {
4203 ti->error = "Couldn't find pool object";
4204 r = -EINVAL;
4205 goto bad_pool_lookup;
4206 }
4207 __pool_inc(tc->pool);
4208
4209 if (get_pool_mode(tc->pool) == PM_FAIL) {
4210 ti->error = "Couldn't open thin device, Pool is in fail mode";
4211 r = -EINVAL;
4212 goto bad_pool;
4213 }
4214
4215 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4216 if (r) {
4217 ti->error = "Couldn't open thin internal device";
4218 goto bad_pool;
4219 }
4220
4221 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4222 if (r)
4223 goto bad;
4224
4225 ti->num_flush_bios = 1;
4226 ti->flush_supported = true;
4227 ti->accounts_remapped_io = true;
4228 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4229
4230 /* In case the pool supports discards, pass them on. */
4231 if (tc->pool->pf.discard_enabled) {
4232 ti->discards_supported = true;
4233 ti->num_discard_bios = 1;
4234 }
4235
4236 mutex_unlock(&dm_thin_pool_table.mutex);
4237
4238 spin_lock_irq(&tc->pool->lock);
4239 if (tc->pool->suspended) {
4240 spin_unlock_irq(&tc->pool->lock);
4241 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4242 ti->error = "Unable to activate thin device while pool is suspended";
4243 r = -EINVAL;
4244 goto bad;
4245 }
4246 refcount_set(&tc->refcount, 1);
4247 init_completion(&tc->can_destroy);
4248 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4249 spin_unlock_irq(&tc->pool->lock);
4250 /*
4251 * This synchronize_rcu() call is needed here otherwise we risk a
4252 * wake_worker() call finding no bios to process (because the newly
4253 * added tc isn't yet visible). So this reduces latency since we
4254 * aren't then dependent on the periodic commit to wake_worker().
4255 */
4256 synchronize_rcu();
4257
4258 dm_put(pool_md);
4259
4260 return 0;
4261
4262 bad:
4263 dm_pool_close_thin_device(tc->td);
4264 bad_pool:
4265 __pool_dec(tc->pool);
4266 bad_pool_lookup:
4267 dm_put(pool_md);
4268 bad_common:
4269 dm_put_device(ti, tc->pool_dev);
4270 bad_pool_dev:
4271 if (tc->origin_dev)
4272 dm_put_device(ti, tc->origin_dev);
4273 bad_origin_dev:
4274 kfree(tc);
4275 out_unlock:
4276 mutex_unlock(&dm_thin_pool_table.mutex);
4277
4278 return r;
4279 }
4280
thin_map(struct dm_target * ti,struct bio * bio)4281 static int thin_map(struct dm_target *ti, struct bio *bio)
4282 {
4283 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4284
4285 return thin_bio_map(ti, bio);
4286 }
4287
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4288 static int thin_endio(struct dm_target *ti, struct bio *bio,
4289 blk_status_t *err)
4290 {
4291 unsigned long flags;
4292 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4293 struct list_head work;
4294 struct dm_thin_new_mapping *m, *tmp;
4295 struct pool *pool = h->tc->pool;
4296
4297 if (h->shared_read_entry) {
4298 INIT_LIST_HEAD(&work);
4299 dm_deferred_entry_dec(h->shared_read_entry, &work);
4300
4301 spin_lock_irqsave(&pool->lock, flags);
4302 list_for_each_entry_safe(m, tmp, &work, list) {
4303 list_del(&m->list);
4304 __complete_mapping_preparation(m);
4305 }
4306 spin_unlock_irqrestore(&pool->lock, flags);
4307 }
4308
4309 if (h->all_io_entry) {
4310 INIT_LIST_HEAD(&work);
4311 dm_deferred_entry_dec(h->all_io_entry, &work);
4312 if (!list_empty(&work)) {
4313 spin_lock_irqsave(&pool->lock, flags);
4314 list_for_each_entry_safe(m, tmp, &work, list)
4315 list_add_tail(&m->list, &pool->prepared_discards);
4316 spin_unlock_irqrestore(&pool->lock, flags);
4317 wake_worker(pool);
4318 }
4319 }
4320
4321 if (h->cell)
4322 cell_defer_no_holder(h->tc, h->cell);
4323
4324 return DM_ENDIO_DONE;
4325 }
4326
thin_presuspend(struct dm_target * ti)4327 static void thin_presuspend(struct dm_target *ti)
4328 {
4329 struct thin_c *tc = ti->private;
4330
4331 if (dm_noflush_suspending(ti))
4332 noflush_work(tc, do_noflush_start);
4333 }
4334
thin_postsuspend(struct dm_target * ti)4335 static void thin_postsuspend(struct dm_target *ti)
4336 {
4337 struct thin_c *tc = ti->private;
4338
4339 /*
4340 * The dm_noflush_suspending flag has been cleared by now, so
4341 * unfortunately we must always run this.
4342 */
4343 noflush_work(tc, do_noflush_stop);
4344 }
4345
thin_preresume(struct dm_target * ti)4346 static int thin_preresume(struct dm_target *ti)
4347 {
4348 struct thin_c *tc = ti->private;
4349
4350 if (tc->origin_dev)
4351 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4352
4353 return 0;
4354 }
4355
4356 /*
4357 * <nr mapped sectors> <highest mapped sector>
4358 */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)4359 static void thin_status(struct dm_target *ti, status_type_t type,
4360 unsigned status_flags, char *result, unsigned maxlen)
4361 {
4362 int r;
4363 ssize_t sz = 0;
4364 dm_block_t mapped, highest;
4365 char buf[BDEVNAME_SIZE];
4366 struct thin_c *tc = ti->private;
4367
4368 if (get_pool_mode(tc->pool) == PM_FAIL) {
4369 DMEMIT("Fail");
4370 return;
4371 }
4372
4373 if (!tc->td)
4374 DMEMIT("-");
4375 else {
4376 switch (type) {
4377 case STATUSTYPE_INFO:
4378 r = dm_thin_get_mapped_count(tc->td, &mapped);
4379 if (r) {
4380 DMERR("dm_thin_get_mapped_count returned %d", r);
4381 goto err;
4382 }
4383
4384 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4385 if (r < 0) {
4386 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4387 goto err;
4388 }
4389
4390 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4391 if (r)
4392 DMEMIT("%llu", ((highest + 1) *
4393 tc->pool->sectors_per_block) - 1);
4394 else
4395 DMEMIT("-");
4396 break;
4397
4398 case STATUSTYPE_TABLE:
4399 DMEMIT("%s %lu",
4400 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4401 (unsigned long) tc->dev_id);
4402 if (tc->origin_dev)
4403 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4404 break;
4405
4406 case STATUSTYPE_IMA:
4407 *result = '\0';
4408 break;
4409 }
4410 }
4411
4412 return;
4413
4414 err:
4415 DMEMIT("Error");
4416 }
4417
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4418 static int thin_iterate_devices(struct dm_target *ti,
4419 iterate_devices_callout_fn fn, void *data)
4420 {
4421 sector_t blocks;
4422 struct thin_c *tc = ti->private;
4423 struct pool *pool = tc->pool;
4424
4425 /*
4426 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4427 * we follow a more convoluted path through to the pool's target.
4428 */
4429 if (!pool->ti)
4430 return 0; /* nothing is bound */
4431
4432 blocks = pool->ti->len;
4433 (void) sector_div(blocks, pool->sectors_per_block);
4434 if (blocks)
4435 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4436
4437 return 0;
4438 }
4439
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4440 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4441 {
4442 struct thin_c *tc = ti->private;
4443 struct pool *pool = tc->pool;
4444
4445 if (!pool->pf.discard_enabled)
4446 return;
4447
4448 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4449 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4450 }
4451
4452 static struct target_type thin_target = {
4453 .name = "thin",
4454 .version = {1, 22, 0},
4455 .module = THIS_MODULE,
4456 .ctr = thin_ctr,
4457 .dtr = thin_dtr,
4458 .map = thin_map,
4459 .end_io = thin_endio,
4460 .preresume = thin_preresume,
4461 .presuspend = thin_presuspend,
4462 .postsuspend = thin_postsuspend,
4463 .status = thin_status,
4464 .iterate_devices = thin_iterate_devices,
4465 .io_hints = thin_io_hints,
4466 };
4467
4468 /*----------------------------------------------------------------*/
4469
dm_thin_init(void)4470 static int __init dm_thin_init(void)
4471 {
4472 int r = -ENOMEM;
4473
4474 pool_table_init();
4475
4476 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4477 if (!_new_mapping_cache)
4478 return r;
4479
4480 r = dm_register_target(&thin_target);
4481 if (r)
4482 goto bad_new_mapping_cache;
4483
4484 r = dm_register_target(&pool_target);
4485 if (r)
4486 goto bad_thin_target;
4487
4488 return 0;
4489
4490 bad_thin_target:
4491 dm_unregister_target(&thin_target);
4492 bad_new_mapping_cache:
4493 kmem_cache_destroy(_new_mapping_cache);
4494
4495 return r;
4496 }
4497
dm_thin_exit(void)4498 static void dm_thin_exit(void)
4499 {
4500 dm_unregister_target(&thin_target);
4501 dm_unregister_target(&pool_target);
4502
4503 kmem_cache_destroy(_new_mapping_cache);
4504
4505 pool_table_exit();
4506 }
4507
4508 module_init(dm_thin_init);
4509 module_exit(dm_thin_exit);
4510
4511 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4512 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4513
4514 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4515 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4516 MODULE_LICENSE("GPL");
4517