1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24
25 typedef u32 sysmmu_iova_t;
26 typedef u32 sysmmu_pte_t;
27
28 /* We do not consider super section mapping (16MB) */
29 #define SECT_ORDER 20
30 #define LPAGE_ORDER 16
31 #define SPAGE_ORDER 12
32
33 #define SECT_SIZE (1 << SECT_ORDER)
34 #define LPAGE_SIZE (1 << LPAGE_ORDER)
35 #define SPAGE_SIZE (1 << SPAGE_ORDER)
36
37 #define SECT_MASK (~(SECT_SIZE - 1))
38 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
39 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
40
41 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
42 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
43 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
44 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
45 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
46 ((*(sent) & 3) == 1))
47 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
48
49 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
50 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
51 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
52
53 /*
54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
55 * v5.0 introduced support for 36bit physical address space by shifting
56 * all page entry values by 4 bits.
57 * All SYSMMU controllers in the system support the address spaces of the same
58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
59 * value (0 or 4).
60 */
61 static short PG_ENT_SHIFT = -1;
62 #define SYSMMU_PG_ENT_SHIFT 0
63 #define SYSMMU_V5_PG_ENT_SHIFT 4
64
65 static const sysmmu_pte_t *LV1_PROT;
66 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
67 ((0 << 15) | (0 << 10)), /* no access */
68 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
69 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
70 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
71 };
72 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
73 (0 << 4), /* no access */
74 (1 << 4), /* IOMMU_READ only */
75 (2 << 4), /* IOMMU_WRITE only */
76 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
77 };
78
79 static const sysmmu_pte_t *LV2_PROT;
80 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
81 ((0 << 9) | (0 << 4)), /* no access */
82 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
83 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
84 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
85 };
86 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
87 (0 << 2), /* no access */
88 (1 << 2), /* IOMMU_READ only */
89 (2 << 2), /* IOMMU_WRITE only */
90 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
91 };
92
93 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
94
95 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
96 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
97 #define section_offs(iova) (iova & (SECT_SIZE - 1))
98 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
99 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
100 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
101 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
102
103 #define NUM_LV1ENTRIES 4096
104 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
105
lv1ent_offset(sysmmu_iova_t iova)106 static u32 lv1ent_offset(sysmmu_iova_t iova)
107 {
108 return iova >> SECT_ORDER;
109 }
110
lv2ent_offset(sysmmu_iova_t iova)111 static u32 lv2ent_offset(sysmmu_iova_t iova)
112 {
113 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
114 }
115
116 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
117 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
118
119 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
120 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
121
122 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
123 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
124 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
125 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
126
127 #define CTRL_ENABLE 0x5
128 #define CTRL_BLOCK 0x7
129 #define CTRL_DISABLE 0x0
130
131 #define CFG_LRU 0x1
132 #define CFG_EAP (1 << 2)
133 #define CFG_QOS(n) ((n & 0xF) << 7)
134 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
135 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
136 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
137
138 #define CTRL_VM_ENABLE BIT(0)
139 #define CTRL_VM_FAULT_MODE_STALL BIT(3)
140 #define CAPA0_CAPA1_EXIST BIT(11)
141 #define CAPA1_VCR_ENABLED BIT(14)
142
143 /* common registers */
144 #define REG_MMU_CTRL 0x000
145 #define REG_MMU_CFG 0x004
146 #define REG_MMU_STATUS 0x008
147 #define REG_MMU_VERSION 0x034
148
149 #define MMU_MAJ_VER(val) ((val) >> 7)
150 #define MMU_MIN_VER(val) ((val) & 0x7F)
151 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152
153 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154
155 /* v1.x - v3.x registers */
156 #define REG_PAGE_FAULT_ADDR 0x024
157 #define REG_AW_FAULT_ADDR 0x028
158 #define REG_AR_FAULT_ADDR 0x02C
159 #define REG_DEFAULT_SLAVE_ADDR 0x030
160
161 /* v5.x registers */
162 #define REG_V5_FAULT_AR_VA 0x070
163 #define REG_V5_FAULT_AW_VA 0x080
164
165 /* v7.x registers */
166 #define REG_V7_CAPA0 0x870
167 #define REG_V7_CAPA1 0x874
168 #define REG_V7_CTRL_VM 0x8000
169
170 #define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL)
171
172 static struct device *dma_dev;
173 static struct kmem_cache *lv2table_kmem_cache;
174 static sysmmu_pte_t *zero_lv2_table;
175 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
176
section_entry(sysmmu_pte_t * pgtable,sysmmu_iova_t iova)177 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
178 {
179 return pgtable + lv1ent_offset(iova);
180 }
181
page_entry(sysmmu_pte_t * sent,sysmmu_iova_t iova)182 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
183 {
184 return (sysmmu_pte_t *)phys_to_virt(
185 lv2table_base(sent)) + lv2ent_offset(iova);
186 }
187
188 /*
189 * IOMMU fault information register
190 */
191 struct sysmmu_fault_info {
192 unsigned int bit; /* bit number in STATUS register */
193 unsigned short addr_reg; /* register to read VA fault address */
194 const char *name; /* human readable fault name */
195 unsigned int type; /* fault type for report_iommu_fault */
196 };
197
198 static const struct sysmmu_fault_info sysmmu_faults[] = {
199 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
200 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
201 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
202 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
203 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
204 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
205 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
206 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
207 };
208
209 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
210 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
211 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
212 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
213 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
215 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
216 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
217 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
218 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
219 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
220 };
221
222 /*
223 * This structure is attached to dev->iommu->priv of the master device
224 * on device add, contains a list of SYSMMU controllers defined by device tree,
225 * which are bound to given master device. It is usually referenced by 'owner'
226 * pointer.
227 */
228 struct exynos_iommu_owner {
229 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
230 struct iommu_domain *domain; /* domain this device is attached */
231 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
232 };
233
234 /*
235 * This structure exynos specific generalization of struct iommu_domain.
236 * It contains list of SYSMMU controllers from all master devices, which has
237 * been attached to this domain and page tables of IO address space defined by
238 * it. It is usually referenced by 'domain' pointer.
239 */
240 struct exynos_iommu_domain {
241 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
242 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
243 short *lv2entcnt; /* free lv2 entry counter for each section */
244 spinlock_t lock; /* lock for modyfying list of clients */
245 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
246 struct iommu_domain domain; /* generic domain data structure */
247 };
248
249 /*
250 * SysMMU version specific data. Contains offsets for the registers which can
251 * be found in different SysMMU variants, but have different offset values.
252 */
253 struct sysmmu_variant {
254 u32 pt_base; /* page table base address (physical) */
255 u32 flush_all; /* invalidate all TLB entries */
256 u32 flush_entry; /* invalidate specific TLB entry */
257 u32 flush_range; /* invalidate TLB entries in specified range */
258 u32 flush_start; /* start address of range invalidation */
259 u32 flush_end; /* end address of range invalidation */
260 u32 int_status; /* interrupt status information */
261 u32 int_clear; /* clear the interrupt */
262 };
263
264 /*
265 * This structure hold all data of a single SYSMMU controller, this includes
266 * hw resources like registers and clocks, pointers and list nodes to connect
267 * it to all other structures, internal state and parameters read from device
268 * tree. It is usually referenced by 'data' pointer.
269 */
270 struct sysmmu_drvdata {
271 struct device *sysmmu; /* SYSMMU controller device */
272 struct device *master; /* master device (owner) */
273 struct device_link *link; /* runtime PM link to master */
274 void __iomem *sfrbase; /* our registers */
275 struct clk *clk; /* SYSMMU's clock */
276 struct clk *aclk; /* SYSMMU's aclk clock */
277 struct clk *pclk; /* SYSMMU's pclk clock */
278 struct clk *clk_master; /* master's device clock */
279 spinlock_t lock; /* lock for modyfying state */
280 bool active; /* current status */
281 struct exynos_iommu_domain *domain; /* domain we belong to */
282 struct list_head domain_node; /* node for domain clients list */
283 struct list_head owner_node; /* node for owner controllers list */
284 phys_addr_t pgtable; /* assigned page table structure */
285 unsigned int version; /* our version */
286
287 struct iommu_device iommu; /* IOMMU core handle */
288 const struct sysmmu_variant *variant; /* version specific data */
289
290 /* v7 fields */
291 bool has_vcr; /* virtual machine control register */
292 };
293
294 #define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
295
296 /* SysMMU v1..v3 */
297 static const struct sysmmu_variant sysmmu_v1_variant = {
298 .flush_all = 0x0c,
299 .flush_entry = 0x10,
300 .pt_base = 0x14,
301 .int_status = 0x18,
302 .int_clear = 0x1c,
303 };
304
305 /* SysMMU v5 and v7 (non-VM capable) */
306 static const struct sysmmu_variant sysmmu_v5_variant = {
307 .pt_base = 0x0c,
308 .flush_all = 0x10,
309 .flush_entry = 0x14,
310 .flush_range = 0x18,
311 .flush_start = 0x20,
312 .flush_end = 0x24,
313 .int_status = 0x60,
314 .int_clear = 0x64,
315 };
316
317 /* SysMMU v7: VM capable register set */
318 static const struct sysmmu_variant sysmmu_v7_vm_variant = {
319 .pt_base = 0x800c,
320 .flush_all = 0x8010,
321 .flush_entry = 0x8014,
322 .flush_range = 0x8018,
323 .flush_start = 0x8020,
324 .flush_end = 0x8024,
325 .int_status = 0x60,
326 .int_clear = 0x64,
327 };
328
to_exynos_domain(struct iommu_domain * dom)329 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
330 {
331 return container_of(dom, struct exynos_iommu_domain, domain);
332 }
333
sysmmu_unblock(struct sysmmu_drvdata * data)334 static void sysmmu_unblock(struct sysmmu_drvdata *data)
335 {
336 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
337 }
338
sysmmu_block(struct sysmmu_drvdata * data)339 static bool sysmmu_block(struct sysmmu_drvdata *data)
340 {
341 int i = 120;
342
343 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
344 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
345 --i;
346
347 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
348 sysmmu_unblock(data);
349 return false;
350 }
351
352 return true;
353 }
354
__sysmmu_tlb_invalidate(struct sysmmu_drvdata * data)355 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
356 {
357 writel(0x1, SYSMMU_REG(data, flush_all));
358 }
359
__sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,unsigned int num_inv)360 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
361 sysmmu_iova_t iova, unsigned int num_inv)
362 {
363 unsigned int i;
364
365 if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
366 for (i = 0; i < num_inv; i++) {
367 writel((iova & SPAGE_MASK) | 1,
368 SYSMMU_REG(data, flush_entry));
369 iova += SPAGE_SIZE;
370 }
371 } else {
372 writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
373 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
374 SYSMMU_REG(data, flush_end));
375 writel(0x1, SYSMMU_REG(data, flush_range));
376 }
377 }
378
__sysmmu_set_ptbase(struct sysmmu_drvdata * data,phys_addr_t pgd)379 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
380 {
381 u32 pt_base;
382
383 if (MMU_MAJ_VER(data->version) < 5)
384 pt_base = pgd;
385 else
386 pt_base = pgd >> SPAGE_ORDER;
387
388 writel(pt_base, SYSMMU_REG(data, pt_base));
389 __sysmmu_tlb_invalidate(data);
390 }
391
__sysmmu_enable_clocks(struct sysmmu_drvdata * data)392 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
393 {
394 BUG_ON(clk_prepare_enable(data->clk_master));
395 BUG_ON(clk_prepare_enable(data->clk));
396 BUG_ON(clk_prepare_enable(data->pclk));
397 BUG_ON(clk_prepare_enable(data->aclk));
398 }
399
__sysmmu_disable_clocks(struct sysmmu_drvdata * data)400 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
401 {
402 clk_disable_unprepare(data->aclk);
403 clk_disable_unprepare(data->pclk);
404 clk_disable_unprepare(data->clk);
405 clk_disable_unprepare(data->clk_master);
406 }
407
__sysmmu_has_capa1(struct sysmmu_drvdata * data)408 static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
409 {
410 u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
411
412 return capa0 & CAPA0_CAPA1_EXIST;
413 }
414
__sysmmu_get_vcr(struct sysmmu_drvdata * data)415 static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
416 {
417 u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
418
419 data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
420 }
421
__sysmmu_get_version(struct sysmmu_drvdata * data)422 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
423 {
424 u32 ver;
425
426 __sysmmu_enable_clocks(data);
427
428 ver = readl(data->sfrbase + REG_MMU_VERSION);
429
430 /* controllers on some SoCs don't report proper version */
431 if (ver == 0x80000001u)
432 data->version = MAKE_MMU_VER(1, 0);
433 else
434 data->version = MMU_RAW_VER(ver);
435
436 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
437 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
438
439 if (MMU_MAJ_VER(data->version) < 5) {
440 data->variant = &sysmmu_v1_variant;
441 } else if (MMU_MAJ_VER(data->version) < 7) {
442 data->variant = &sysmmu_v5_variant;
443 } else {
444 if (__sysmmu_has_capa1(data))
445 __sysmmu_get_vcr(data);
446 if (data->has_vcr)
447 data->variant = &sysmmu_v7_vm_variant;
448 else
449 data->variant = &sysmmu_v5_variant;
450 }
451
452 __sysmmu_disable_clocks(data);
453 }
454
show_fault_information(struct sysmmu_drvdata * data,const struct sysmmu_fault_info * finfo,sysmmu_iova_t fault_addr)455 static void show_fault_information(struct sysmmu_drvdata *data,
456 const struct sysmmu_fault_info *finfo,
457 sysmmu_iova_t fault_addr)
458 {
459 sysmmu_pte_t *ent;
460
461 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
462 dev_name(data->master), finfo->name, fault_addr);
463 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
464 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
465 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
466 if (lv1ent_page(ent)) {
467 ent = page_entry(ent, fault_addr);
468 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
469 }
470 }
471
exynos_sysmmu_irq(int irq,void * dev_id)472 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
473 {
474 /* SYSMMU is in blocked state when interrupt occurred. */
475 struct sysmmu_drvdata *data = dev_id;
476 const struct sysmmu_fault_info *finfo;
477 unsigned int i, n, itype;
478 sysmmu_iova_t fault_addr;
479 int ret = -ENOSYS;
480
481 WARN_ON(!data->active);
482
483 if (MMU_MAJ_VER(data->version) < 5) {
484 finfo = sysmmu_faults;
485 n = ARRAY_SIZE(sysmmu_faults);
486 } else {
487 finfo = sysmmu_v5_faults;
488 n = ARRAY_SIZE(sysmmu_v5_faults);
489 }
490
491 spin_lock(&data->lock);
492
493 clk_enable(data->clk_master);
494
495 itype = __ffs(readl(SYSMMU_REG(data, int_status)));
496 for (i = 0; i < n; i++, finfo++)
497 if (finfo->bit == itype)
498 break;
499 /* unknown/unsupported fault */
500 BUG_ON(i == n);
501
502 /* print debug message */
503 fault_addr = readl(data->sfrbase + finfo->addr_reg);
504 show_fault_information(data, finfo, fault_addr);
505
506 if (data->domain)
507 ret = report_iommu_fault(&data->domain->domain,
508 data->master, fault_addr, finfo->type);
509 /* fault is not recovered by fault handler */
510 BUG_ON(ret != 0);
511
512 writel(1 << itype, SYSMMU_REG(data, int_clear));
513
514 sysmmu_unblock(data);
515
516 clk_disable(data->clk_master);
517
518 spin_unlock(&data->lock);
519
520 return IRQ_HANDLED;
521 }
522
__sysmmu_disable(struct sysmmu_drvdata * data)523 static void __sysmmu_disable(struct sysmmu_drvdata *data)
524 {
525 unsigned long flags;
526
527 clk_enable(data->clk_master);
528
529 spin_lock_irqsave(&data->lock, flags);
530 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
531 writel(0, data->sfrbase + REG_MMU_CFG);
532 data->active = false;
533 spin_unlock_irqrestore(&data->lock, flags);
534
535 __sysmmu_disable_clocks(data);
536 }
537
__sysmmu_init_config(struct sysmmu_drvdata * data)538 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
539 {
540 unsigned int cfg;
541
542 if (data->version <= MAKE_MMU_VER(3, 1))
543 cfg = CFG_LRU | CFG_QOS(15);
544 else if (data->version <= MAKE_MMU_VER(3, 2))
545 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
546 else
547 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
548
549 cfg |= CFG_EAP; /* enable access protection bits check */
550
551 writel(cfg, data->sfrbase + REG_MMU_CFG);
552 }
553
__sysmmu_enable_vid(struct sysmmu_drvdata * data)554 static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
555 {
556 u32 ctrl;
557
558 if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
559 return;
560
561 ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
562 ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
563 writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
564 }
565
__sysmmu_enable(struct sysmmu_drvdata * data)566 static void __sysmmu_enable(struct sysmmu_drvdata *data)
567 {
568 unsigned long flags;
569
570 __sysmmu_enable_clocks(data);
571
572 spin_lock_irqsave(&data->lock, flags);
573 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
574 __sysmmu_init_config(data);
575 __sysmmu_set_ptbase(data, data->pgtable);
576 __sysmmu_enable_vid(data);
577 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
578 data->active = true;
579 spin_unlock_irqrestore(&data->lock, flags);
580
581 /*
582 * SYSMMU driver keeps master's clock enabled only for the short
583 * time, while accessing the registers. For performing address
584 * translation during DMA transaction it relies on the client
585 * driver to enable it.
586 */
587 clk_disable(data->clk_master);
588 }
589
sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata * data,sysmmu_iova_t iova)590 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
591 sysmmu_iova_t iova)
592 {
593 unsigned long flags;
594
595 spin_lock_irqsave(&data->lock, flags);
596 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
597 clk_enable(data->clk_master);
598 if (sysmmu_block(data)) {
599 if (data->version >= MAKE_MMU_VER(5, 0))
600 __sysmmu_tlb_invalidate(data);
601 else
602 __sysmmu_tlb_invalidate_entry(data, iova, 1);
603 sysmmu_unblock(data);
604 }
605 clk_disable(data->clk_master);
606 }
607 spin_unlock_irqrestore(&data->lock, flags);
608 }
609
sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,size_t size)610 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
611 sysmmu_iova_t iova, size_t size)
612 {
613 unsigned long flags;
614
615 spin_lock_irqsave(&data->lock, flags);
616 if (data->active) {
617 unsigned int num_inv = 1;
618
619 clk_enable(data->clk_master);
620
621 /*
622 * L2TLB invalidation required
623 * 4KB page: 1 invalidation
624 * 64KB page: 16 invalidations
625 * 1MB page: 64 invalidations
626 * because it is set-associative TLB
627 * with 8-way and 64 sets.
628 * 1MB page can be cached in one of all sets.
629 * 64KB page can be one of 16 consecutive sets.
630 */
631 if (MMU_MAJ_VER(data->version) == 2)
632 num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
633
634 if (sysmmu_block(data)) {
635 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
636 sysmmu_unblock(data);
637 }
638 clk_disable(data->clk_master);
639 }
640 spin_unlock_irqrestore(&data->lock, flags);
641 }
642
643 static const struct iommu_ops exynos_iommu_ops;
644
exynos_sysmmu_probe(struct platform_device * pdev)645 static int exynos_sysmmu_probe(struct platform_device *pdev)
646 {
647 int irq, ret;
648 struct device *dev = &pdev->dev;
649 struct sysmmu_drvdata *data;
650 struct resource *res;
651
652 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
653 if (!data)
654 return -ENOMEM;
655
656 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
657 data->sfrbase = devm_ioremap_resource(dev, res);
658 if (IS_ERR(data->sfrbase))
659 return PTR_ERR(data->sfrbase);
660
661 irq = platform_get_irq(pdev, 0);
662 if (irq <= 0)
663 return irq;
664
665 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
666 dev_name(dev), data);
667 if (ret) {
668 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
669 return ret;
670 }
671
672 data->clk = devm_clk_get(dev, "sysmmu");
673 if (PTR_ERR(data->clk) == -ENOENT)
674 data->clk = NULL;
675 else if (IS_ERR(data->clk))
676 return PTR_ERR(data->clk);
677
678 data->aclk = devm_clk_get(dev, "aclk");
679 if (PTR_ERR(data->aclk) == -ENOENT)
680 data->aclk = NULL;
681 else if (IS_ERR(data->aclk))
682 return PTR_ERR(data->aclk);
683
684 data->pclk = devm_clk_get(dev, "pclk");
685 if (PTR_ERR(data->pclk) == -ENOENT)
686 data->pclk = NULL;
687 else if (IS_ERR(data->pclk))
688 return PTR_ERR(data->pclk);
689
690 if (!data->clk && (!data->aclk || !data->pclk)) {
691 dev_err(dev, "Failed to get device clock(s)!\n");
692 return -ENOSYS;
693 }
694
695 data->clk_master = devm_clk_get(dev, "master");
696 if (PTR_ERR(data->clk_master) == -ENOENT)
697 data->clk_master = NULL;
698 else if (IS_ERR(data->clk_master))
699 return PTR_ERR(data->clk_master);
700
701 data->sysmmu = dev;
702 spin_lock_init(&data->lock);
703
704 __sysmmu_get_version(data);
705
706 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
707 dev_name(data->sysmmu));
708 if (ret)
709 return ret;
710
711 ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
712 if (ret)
713 goto err_iommu_register;
714
715 platform_set_drvdata(pdev, data);
716
717 if (PG_ENT_SHIFT < 0) {
718 if (MMU_MAJ_VER(data->version) < 5) {
719 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
720 LV1_PROT = SYSMMU_LV1_PROT;
721 LV2_PROT = SYSMMU_LV2_PROT;
722 } else {
723 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
724 LV1_PROT = SYSMMU_V5_LV1_PROT;
725 LV2_PROT = SYSMMU_V5_LV2_PROT;
726 }
727 }
728
729 if (MMU_MAJ_VER(data->version) >= 5) {
730 ret = dma_set_mask(dev, DMA_BIT_MASK(36));
731 if (ret) {
732 dev_err(dev, "Unable to set DMA mask: %d\n", ret);
733 goto err_dma_set_mask;
734 }
735 }
736
737 /*
738 * use the first registered sysmmu device for performing
739 * dma mapping operations on iommu page tables (cpu cache flush)
740 */
741 if (!dma_dev)
742 dma_dev = &pdev->dev;
743
744 pm_runtime_enable(dev);
745
746 return 0;
747
748 err_dma_set_mask:
749 iommu_device_unregister(&data->iommu);
750 err_iommu_register:
751 iommu_device_sysfs_remove(&data->iommu);
752 return ret;
753 }
754
exynos_sysmmu_suspend(struct device * dev)755 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
756 {
757 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
758 struct device *master = data->master;
759
760 if (master) {
761 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
762
763 mutex_lock(&owner->rpm_lock);
764 if (data->domain) {
765 dev_dbg(data->sysmmu, "saving state\n");
766 __sysmmu_disable(data);
767 }
768 mutex_unlock(&owner->rpm_lock);
769 }
770 return 0;
771 }
772
exynos_sysmmu_resume(struct device * dev)773 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
774 {
775 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
776 struct device *master = data->master;
777
778 if (master) {
779 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
780
781 mutex_lock(&owner->rpm_lock);
782 if (data->domain) {
783 dev_dbg(data->sysmmu, "restoring state\n");
784 __sysmmu_enable(data);
785 }
786 mutex_unlock(&owner->rpm_lock);
787 }
788 return 0;
789 }
790
791 static const struct dev_pm_ops sysmmu_pm_ops = {
792 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
793 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
794 pm_runtime_force_resume)
795 };
796
797 static const struct of_device_id sysmmu_of_match[] = {
798 { .compatible = "samsung,exynos-sysmmu", },
799 { },
800 };
801
802 static struct platform_driver exynos_sysmmu_driver __refdata = {
803 .probe = exynos_sysmmu_probe,
804 .driver = {
805 .name = "exynos-sysmmu",
806 .of_match_table = sysmmu_of_match,
807 .pm = &sysmmu_pm_ops,
808 .suppress_bind_attrs = true,
809 }
810 };
811
exynos_iommu_set_pte(sysmmu_pte_t * ent,sysmmu_pte_t val)812 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
813 {
814 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
815 DMA_TO_DEVICE);
816 *ent = cpu_to_le32(val);
817 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
818 DMA_TO_DEVICE);
819 }
820
exynos_iommu_domain_alloc(unsigned type)821 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
822 {
823 struct exynos_iommu_domain *domain;
824 dma_addr_t handle;
825 int i;
826
827 /* Check if correct PTE offsets are initialized */
828 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
829
830 if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
831 return NULL;
832
833 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
834 if (!domain)
835 return NULL;
836
837 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
838 if (!domain->pgtable)
839 goto err_pgtable;
840
841 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
842 if (!domain->lv2entcnt)
843 goto err_counter;
844
845 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
846 for (i = 0; i < NUM_LV1ENTRIES; i++)
847 domain->pgtable[i] = ZERO_LV2LINK;
848
849 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
850 DMA_TO_DEVICE);
851 /* For mapping page table entries we rely on dma == phys */
852 BUG_ON(handle != virt_to_phys(domain->pgtable));
853 if (dma_mapping_error(dma_dev, handle))
854 goto err_lv2ent;
855
856 spin_lock_init(&domain->lock);
857 spin_lock_init(&domain->pgtablelock);
858 INIT_LIST_HEAD(&domain->clients);
859
860 domain->domain.geometry.aperture_start = 0;
861 domain->domain.geometry.aperture_end = ~0UL;
862 domain->domain.geometry.force_aperture = true;
863
864 return &domain->domain;
865
866 err_lv2ent:
867 free_pages((unsigned long)domain->lv2entcnt, 1);
868 err_counter:
869 free_pages((unsigned long)domain->pgtable, 2);
870 err_pgtable:
871 kfree(domain);
872 return NULL;
873 }
874
exynos_iommu_domain_free(struct iommu_domain * iommu_domain)875 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
876 {
877 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
878 struct sysmmu_drvdata *data, *next;
879 unsigned long flags;
880 int i;
881
882 WARN_ON(!list_empty(&domain->clients));
883
884 spin_lock_irqsave(&domain->lock, flags);
885
886 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
887 spin_lock(&data->lock);
888 __sysmmu_disable(data);
889 data->pgtable = 0;
890 data->domain = NULL;
891 list_del_init(&data->domain_node);
892 spin_unlock(&data->lock);
893 }
894
895 spin_unlock_irqrestore(&domain->lock, flags);
896
897 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
898 DMA_TO_DEVICE);
899
900 for (i = 0; i < NUM_LV1ENTRIES; i++)
901 if (lv1ent_page(domain->pgtable + i)) {
902 phys_addr_t base = lv2table_base(domain->pgtable + i);
903
904 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
905 DMA_TO_DEVICE);
906 kmem_cache_free(lv2table_kmem_cache,
907 phys_to_virt(base));
908 }
909
910 free_pages((unsigned long)domain->pgtable, 2);
911 free_pages((unsigned long)domain->lv2entcnt, 1);
912 kfree(domain);
913 }
914
exynos_iommu_detach_device(struct iommu_domain * iommu_domain,struct device * dev)915 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
916 struct device *dev)
917 {
918 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
919 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
920 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
921 struct sysmmu_drvdata *data, *next;
922 unsigned long flags;
923
924 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
925 return;
926
927 mutex_lock(&owner->rpm_lock);
928
929 list_for_each_entry(data, &owner->controllers, owner_node) {
930 pm_runtime_get_noresume(data->sysmmu);
931 if (pm_runtime_active(data->sysmmu))
932 __sysmmu_disable(data);
933 pm_runtime_put(data->sysmmu);
934 }
935
936 spin_lock_irqsave(&domain->lock, flags);
937 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
938 spin_lock(&data->lock);
939 data->pgtable = 0;
940 data->domain = NULL;
941 list_del_init(&data->domain_node);
942 spin_unlock(&data->lock);
943 }
944 owner->domain = NULL;
945 spin_unlock_irqrestore(&domain->lock, flags);
946
947 mutex_unlock(&owner->rpm_lock);
948
949 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
950 &pagetable);
951 }
952
exynos_iommu_attach_device(struct iommu_domain * iommu_domain,struct device * dev)953 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
954 struct device *dev)
955 {
956 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
957 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
958 struct sysmmu_drvdata *data;
959 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
960 unsigned long flags;
961
962 if (!has_sysmmu(dev))
963 return -ENODEV;
964
965 if (owner->domain)
966 exynos_iommu_detach_device(owner->domain, dev);
967
968 mutex_lock(&owner->rpm_lock);
969
970 spin_lock_irqsave(&domain->lock, flags);
971 list_for_each_entry(data, &owner->controllers, owner_node) {
972 spin_lock(&data->lock);
973 data->pgtable = pagetable;
974 data->domain = domain;
975 list_add_tail(&data->domain_node, &domain->clients);
976 spin_unlock(&data->lock);
977 }
978 owner->domain = iommu_domain;
979 spin_unlock_irqrestore(&domain->lock, flags);
980
981 list_for_each_entry(data, &owner->controllers, owner_node) {
982 pm_runtime_get_noresume(data->sysmmu);
983 if (pm_runtime_active(data->sysmmu))
984 __sysmmu_enable(data);
985 pm_runtime_put(data->sysmmu);
986 }
987
988 mutex_unlock(&owner->rpm_lock);
989
990 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
991 &pagetable);
992
993 return 0;
994 }
995
alloc_lv2entry(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,short * pgcounter)996 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
997 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
998 {
999 if (lv1ent_section(sent)) {
1000 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1001 return ERR_PTR(-EADDRINUSE);
1002 }
1003
1004 if (lv1ent_fault(sent)) {
1005 dma_addr_t handle;
1006 sysmmu_pte_t *pent;
1007 bool need_flush_flpd_cache = lv1ent_zero(sent);
1008
1009 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1010 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1011 if (!pent)
1012 return ERR_PTR(-ENOMEM);
1013
1014 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1015 kmemleak_ignore(pent);
1016 *pgcounter = NUM_LV2ENTRIES;
1017 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1018 DMA_TO_DEVICE);
1019 if (dma_mapping_error(dma_dev, handle)) {
1020 kmem_cache_free(lv2table_kmem_cache, pent);
1021 return ERR_PTR(-EADDRINUSE);
1022 }
1023
1024 /*
1025 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1026 * FLPD cache may cache the address of zero_l2_table. This
1027 * function replaces the zero_l2_table with new L2 page table
1028 * to write valid mappings.
1029 * Accessing the valid area may cause page fault since FLPD
1030 * cache may still cache zero_l2_table for the valid area
1031 * instead of new L2 page table that has the mapping
1032 * information of the valid area.
1033 * Thus any replacement of zero_l2_table with other valid L2
1034 * page table must involve FLPD cache invalidation for System
1035 * MMU v3.3.
1036 * FLPD cache invalidation is performed with TLB invalidation
1037 * by VPN without blocking. It is safe to invalidate TLB without
1038 * blocking because the target address of TLB invalidation is
1039 * not currently mapped.
1040 */
1041 if (need_flush_flpd_cache) {
1042 struct sysmmu_drvdata *data;
1043
1044 spin_lock(&domain->lock);
1045 list_for_each_entry(data, &domain->clients, domain_node)
1046 sysmmu_tlb_invalidate_flpdcache(data, iova);
1047 spin_unlock(&domain->lock);
1048 }
1049 }
1050
1051 return page_entry(sent, iova);
1052 }
1053
lv1set_section(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,phys_addr_t paddr,int prot,short * pgcnt)1054 static int lv1set_section(struct exynos_iommu_domain *domain,
1055 sysmmu_pte_t *sent, sysmmu_iova_t iova,
1056 phys_addr_t paddr, int prot, short *pgcnt)
1057 {
1058 if (lv1ent_section(sent)) {
1059 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1060 iova);
1061 return -EADDRINUSE;
1062 }
1063
1064 if (lv1ent_page(sent)) {
1065 if (*pgcnt != NUM_LV2ENTRIES) {
1066 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1067 iova);
1068 return -EADDRINUSE;
1069 }
1070
1071 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1072 *pgcnt = 0;
1073 }
1074
1075 exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1076
1077 spin_lock(&domain->lock);
1078 if (lv1ent_page_zero(sent)) {
1079 struct sysmmu_drvdata *data;
1080 /*
1081 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1082 * entry by speculative prefetch of SLPD which has no mapping.
1083 */
1084 list_for_each_entry(data, &domain->clients, domain_node)
1085 sysmmu_tlb_invalidate_flpdcache(data, iova);
1086 }
1087 spin_unlock(&domain->lock);
1088
1089 return 0;
1090 }
1091
lv2set_page(sysmmu_pte_t * pent,phys_addr_t paddr,size_t size,int prot,short * pgcnt)1092 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1093 int prot, short *pgcnt)
1094 {
1095 if (size == SPAGE_SIZE) {
1096 if (WARN_ON(!lv2ent_fault(pent)))
1097 return -EADDRINUSE;
1098
1099 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1100 *pgcnt -= 1;
1101 } else { /* size == LPAGE_SIZE */
1102 int i;
1103 dma_addr_t pent_base = virt_to_phys(pent);
1104
1105 dma_sync_single_for_cpu(dma_dev, pent_base,
1106 sizeof(*pent) * SPAGES_PER_LPAGE,
1107 DMA_TO_DEVICE);
1108 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1109 if (WARN_ON(!lv2ent_fault(pent))) {
1110 if (i > 0)
1111 memset(pent - i, 0, sizeof(*pent) * i);
1112 return -EADDRINUSE;
1113 }
1114
1115 *pent = mk_lv2ent_lpage(paddr, prot);
1116 }
1117 dma_sync_single_for_device(dma_dev, pent_base,
1118 sizeof(*pent) * SPAGES_PER_LPAGE,
1119 DMA_TO_DEVICE);
1120 *pgcnt -= SPAGES_PER_LPAGE;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1128 *
1129 * System MMU v3.x has advanced logic to improve address translation
1130 * performance with caching more page table entries by a page table walk.
1131 * However, the logic has a bug that while caching faulty page table entries,
1132 * System MMU reports page fault if the cached fault entry is hit even though
1133 * the fault entry is updated to a valid entry after the entry is cached.
1134 * To prevent caching faulty page table entries which may be updated to valid
1135 * entries later, the virtual memory manager should care about the workaround
1136 * for the problem. The following describes the workaround.
1137 *
1138 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1139 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1140 *
1141 * Precisely, any start address of I/O virtual region must be aligned with
1142 * the following sizes for System MMU v3.1 and v3.2.
1143 * System MMU v3.1: 128KiB
1144 * System MMU v3.2: 256KiB
1145 *
1146 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1147 * more workarounds.
1148 * - Any two consecutive I/O virtual regions must have a hole of size larger
1149 * than or equal to 128KiB.
1150 * - Start address of an I/O virtual region must be aligned by 128KiB.
1151 */
exynos_iommu_map(struct iommu_domain * iommu_domain,unsigned long l_iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)1152 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1153 unsigned long l_iova, phys_addr_t paddr, size_t size,
1154 int prot, gfp_t gfp)
1155 {
1156 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1157 sysmmu_pte_t *entry;
1158 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1159 unsigned long flags;
1160 int ret = -ENOMEM;
1161
1162 BUG_ON(domain->pgtable == NULL);
1163 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1164
1165 spin_lock_irqsave(&domain->pgtablelock, flags);
1166
1167 entry = section_entry(domain->pgtable, iova);
1168
1169 if (size == SECT_SIZE) {
1170 ret = lv1set_section(domain, entry, iova, paddr, prot,
1171 &domain->lv2entcnt[lv1ent_offset(iova)]);
1172 } else {
1173 sysmmu_pte_t *pent;
1174
1175 pent = alloc_lv2entry(domain, entry, iova,
1176 &domain->lv2entcnt[lv1ent_offset(iova)]);
1177
1178 if (IS_ERR(pent))
1179 ret = PTR_ERR(pent);
1180 else
1181 ret = lv2set_page(pent, paddr, size, prot,
1182 &domain->lv2entcnt[lv1ent_offset(iova)]);
1183 }
1184
1185 if (ret)
1186 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1187 __func__, ret, size, iova);
1188
1189 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1190
1191 return ret;
1192 }
1193
exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain * domain,sysmmu_iova_t iova,size_t size)1194 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1195 sysmmu_iova_t iova, size_t size)
1196 {
1197 struct sysmmu_drvdata *data;
1198 unsigned long flags;
1199
1200 spin_lock_irqsave(&domain->lock, flags);
1201
1202 list_for_each_entry(data, &domain->clients, domain_node)
1203 sysmmu_tlb_invalidate_entry(data, iova, size);
1204
1205 spin_unlock_irqrestore(&domain->lock, flags);
1206 }
1207
exynos_iommu_unmap(struct iommu_domain * iommu_domain,unsigned long l_iova,size_t size,struct iommu_iotlb_gather * gather)1208 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1209 unsigned long l_iova, size_t size,
1210 struct iommu_iotlb_gather *gather)
1211 {
1212 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1213 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1214 sysmmu_pte_t *ent;
1215 size_t err_pgsize;
1216 unsigned long flags;
1217
1218 BUG_ON(domain->pgtable == NULL);
1219
1220 spin_lock_irqsave(&domain->pgtablelock, flags);
1221
1222 ent = section_entry(domain->pgtable, iova);
1223
1224 if (lv1ent_section(ent)) {
1225 if (WARN_ON(size < SECT_SIZE)) {
1226 err_pgsize = SECT_SIZE;
1227 goto err;
1228 }
1229
1230 /* workaround for h/w bug in System MMU v3.3 */
1231 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1232 size = SECT_SIZE;
1233 goto done;
1234 }
1235
1236 if (unlikely(lv1ent_fault(ent))) {
1237 if (size > SECT_SIZE)
1238 size = SECT_SIZE;
1239 goto done;
1240 }
1241
1242 /* lv1ent_page(sent) == true here */
1243
1244 ent = page_entry(ent, iova);
1245
1246 if (unlikely(lv2ent_fault(ent))) {
1247 size = SPAGE_SIZE;
1248 goto done;
1249 }
1250
1251 if (lv2ent_small(ent)) {
1252 exynos_iommu_set_pte(ent, 0);
1253 size = SPAGE_SIZE;
1254 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1255 goto done;
1256 }
1257
1258 /* lv1ent_large(ent) == true here */
1259 if (WARN_ON(size < LPAGE_SIZE)) {
1260 err_pgsize = LPAGE_SIZE;
1261 goto err;
1262 }
1263
1264 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1265 sizeof(*ent) * SPAGES_PER_LPAGE,
1266 DMA_TO_DEVICE);
1267 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1268 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1269 sizeof(*ent) * SPAGES_PER_LPAGE,
1270 DMA_TO_DEVICE);
1271 size = LPAGE_SIZE;
1272 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1273 done:
1274 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1275
1276 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1277
1278 return size;
1279 err:
1280 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1281
1282 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1283 __func__, size, iova, err_pgsize);
1284
1285 return 0;
1286 }
1287
exynos_iommu_iova_to_phys(struct iommu_domain * iommu_domain,dma_addr_t iova)1288 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1289 dma_addr_t iova)
1290 {
1291 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1292 sysmmu_pte_t *entry;
1293 unsigned long flags;
1294 phys_addr_t phys = 0;
1295
1296 spin_lock_irqsave(&domain->pgtablelock, flags);
1297
1298 entry = section_entry(domain->pgtable, iova);
1299
1300 if (lv1ent_section(entry)) {
1301 phys = section_phys(entry) + section_offs(iova);
1302 } else if (lv1ent_page(entry)) {
1303 entry = page_entry(entry, iova);
1304
1305 if (lv2ent_large(entry))
1306 phys = lpage_phys(entry) + lpage_offs(iova);
1307 else if (lv2ent_small(entry))
1308 phys = spage_phys(entry) + spage_offs(iova);
1309 }
1310
1311 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1312
1313 return phys;
1314 }
1315
exynos_iommu_probe_device(struct device * dev)1316 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1317 {
1318 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1319 struct sysmmu_drvdata *data;
1320
1321 if (!has_sysmmu(dev))
1322 return ERR_PTR(-ENODEV);
1323
1324 list_for_each_entry(data, &owner->controllers, owner_node) {
1325 /*
1326 * SYSMMU will be runtime activated via device link
1327 * (dependency) to its master device, so there are no
1328 * direct calls to pm_runtime_get/put in this driver.
1329 */
1330 data->link = device_link_add(dev, data->sysmmu,
1331 DL_FLAG_STATELESS |
1332 DL_FLAG_PM_RUNTIME);
1333 }
1334
1335 /* There is always at least one entry, see exynos_iommu_of_xlate() */
1336 data = list_first_entry(&owner->controllers,
1337 struct sysmmu_drvdata, owner_node);
1338
1339 return &data->iommu;
1340 }
1341
exynos_iommu_release_device(struct device * dev)1342 static void exynos_iommu_release_device(struct device *dev)
1343 {
1344 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1345 struct sysmmu_drvdata *data;
1346
1347 if (owner->domain) {
1348 struct iommu_group *group = iommu_group_get(dev);
1349
1350 if (group) {
1351 WARN_ON(owner->domain !=
1352 iommu_group_default_domain(group));
1353 exynos_iommu_detach_device(owner->domain, dev);
1354 iommu_group_put(group);
1355 }
1356 }
1357
1358 list_for_each_entry(data, &owner->controllers, owner_node)
1359 device_link_del(data->link);
1360 }
1361
exynos_iommu_of_xlate(struct device * dev,struct of_phandle_args * spec)1362 static int exynos_iommu_of_xlate(struct device *dev,
1363 struct of_phandle_args *spec)
1364 {
1365 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1366 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1367 struct sysmmu_drvdata *data, *entry;
1368
1369 if (!sysmmu)
1370 return -ENODEV;
1371
1372 data = platform_get_drvdata(sysmmu);
1373 if (!data) {
1374 put_device(&sysmmu->dev);
1375 return -ENODEV;
1376 }
1377
1378 if (!owner) {
1379 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1380 if (!owner) {
1381 put_device(&sysmmu->dev);
1382 return -ENOMEM;
1383 }
1384
1385 INIT_LIST_HEAD(&owner->controllers);
1386 mutex_init(&owner->rpm_lock);
1387 dev_iommu_priv_set(dev, owner);
1388 }
1389
1390 list_for_each_entry(entry, &owner->controllers, owner_node)
1391 if (entry == data)
1392 return 0;
1393
1394 list_add_tail(&data->owner_node, &owner->controllers);
1395 data->master = dev;
1396
1397 return 0;
1398 }
1399
1400 static const struct iommu_ops exynos_iommu_ops = {
1401 .domain_alloc = exynos_iommu_domain_alloc,
1402 .device_group = generic_device_group,
1403 .probe_device = exynos_iommu_probe_device,
1404 .release_device = exynos_iommu_release_device,
1405 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1406 .of_xlate = exynos_iommu_of_xlate,
1407 .default_domain_ops = &(const struct iommu_domain_ops) {
1408 .attach_dev = exynos_iommu_attach_device,
1409 .detach_dev = exynos_iommu_detach_device,
1410 .map = exynos_iommu_map,
1411 .unmap = exynos_iommu_unmap,
1412 .iova_to_phys = exynos_iommu_iova_to_phys,
1413 .free = exynos_iommu_domain_free,
1414 }
1415 };
1416
exynos_iommu_init(void)1417 static int __init exynos_iommu_init(void)
1418 {
1419 struct device_node *np;
1420 int ret;
1421
1422 np = of_find_matching_node(NULL, sysmmu_of_match);
1423 if (!np)
1424 return 0;
1425
1426 of_node_put(np);
1427
1428 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1429 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1430 if (!lv2table_kmem_cache) {
1431 pr_err("%s: Failed to create kmem cache\n", __func__);
1432 return -ENOMEM;
1433 }
1434
1435 ret = platform_driver_register(&exynos_sysmmu_driver);
1436 if (ret) {
1437 pr_err("%s: Failed to register driver\n", __func__);
1438 goto err_reg_driver;
1439 }
1440
1441 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1442 if (zero_lv2_table == NULL) {
1443 pr_err("%s: Failed to allocate zero level2 page table\n",
1444 __func__);
1445 ret = -ENOMEM;
1446 goto err_zero_lv2;
1447 }
1448
1449 return 0;
1450 err_zero_lv2:
1451 platform_driver_unregister(&exynos_sysmmu_driver);
1452 err_reg_driver:
1453 kmem_cache_destroy(lv2table_kmem_cache);
1454 return ret;
1455 }
1456 core_initcall(exynos_iommu_init);
1457