1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/pci.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spinlock.h>
29 #include <linux/swiotlb.h>
30 #include <linux/vmalloc.h>
31
32 #include "dma-iommu.h"
33
34 struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38 };
39
40 enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
42 IOMMU_DMA_MSI_COOKIE,
43 };
44
45 struct iommu_dma_cookie {
46 enum iommu_dma_cookie_type type;
47 union {
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 struct {
50 struct iova_domain iovad;
51
52 struct iova_fq __percpu *fq; /* Flush queue */
53 /* Number of TLB flushes that have been started */
54 atomic64_t fq_flush_start_cnt;
55 /* Number of TLB flushes that have been finished */
56 atomic64_t fq_flush_finish_cnt;
57 /* Timer to regularily empty the flush queues */
58 struct timer_list fq_timer;
59 /* 1 when timer is active, 0 when not */
60 atomic_t fq_timer_on;
61 };
62 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
63 dma_addr_t msi_iova;
64 };
65 struct list_head msi_page_list;
66
67 /* Domain for flush queue callback; NULL if flush queue not in use */
68 struct iommu_domain *fq_domain;
69 struct mutex mutex;
70 };
71
72 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
73 bool iommu_dma_forcedac __read_mostly;
74
iommu_dma_forcedac_setup(char * str)75 static int __init iommu_dma_forcedac_setup(char *str)
76 {
77 int ret = kstrtobool(str, &iommu_dma_forcedac);
78
79 if (!ret && iommu_dma_forcedac)
80 pr_info("Forcing DAC for PCI devices\n");
81 return ret;
82 }
83 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
84
85 /* Number of entries per flush queue */
86 #define IOVA_FQ_SIZE 256
87
88 /* Timeout (in ms) after which entries are flushed from the queue */
89 #define IOVA_FQ_TIMEOUT 10
90
91 /* Flush queue entry for deferred flushing */
92 struct iova_fq_entry {
93 unsigned long iova_pfn;
94 unsigned long pages;
95 struct list_head freelist;
96 u64 counter; /* Flush counter when this entry was added */
97 };
98
99 /* Per-CPU flush queue structure */
100 struct iova_fq {
101 struct iova_fq_entry entries[IOVA_FQ_SIZE];
102 unsigned int head, tail;
103 spinlock_t lock;
104 };
105
106 #define fq_ring_for_each(i, fq) \
107 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
108
fq_full(struct iova_fq * fq)109 static inline bool fq_full(struct iova_fq *fq)
110 {
111 assert_spin_locked(&fq->lock);
112 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
113 }
114
fq_ring_add(struct iova_fq * fq)115 static inline unsigned int fq_ring_add(struct iova_fq *fq)
116 {
117 unsigned int idx = fq->tail;
118
119 assert_spin_locked(&fq->lock);
120
121 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
122
123 return idx;
124 }
125
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)126 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
127 {
128 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
129 unsigned int idx;
130
131 assert_spin_locked(&fq->lock);
132
133 fq_ring_for_each(idx, fq) {
134
135 if (fq->entries[idx].counter >= counter)
136 break;
137
138 put_pages_list(&fq->entries[idx].freelist);
139 free_iova_fast(&cookie->iovad,
140 fq->entries[idx].iova_pfn,
141 fq->entries[idx].pages);
142
143 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
144 }
145 }
146
fq_flush_iotlb(struct iommu_dma_cookie * cookie)147 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
148 {
149 atomic64_inc(&cookie->fq_flush_start_cnt);
150 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
151 atomic64_inc(&cookie->fq_flush_finish_cnt);
152 }
153
fq_flush_timeout(struct timer_list * t)154 static void fq_flush_timeout(struct timer_list *t)
155 {
156 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
157 int cpu;
158
159 atomic_set(&cookie->fq_timer_on, 0);
160 fq_flush_iotlb(cookie);
161
162 for_each_possible_cpu(cpu) {
163 unsigned long flags;
164 struct iova_fq *fq;
165
166 fq = per_cpu_ptr(cookie->fq, cpu);
167 spin_lock_irqsave(&fq->lock, flags);
168 fq_ring_free(cookie, fq);
169 spin_unlock_irqrestore(&fq->lock, flags);
170 }
171 }
172
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)173 static void queue_iova(struct iommu_dma_cookie *cookie,
174 unsigned long pfn, unsigned long pages,
175 struct list_head *freelist)
176 {
177 struct iova_fq *fq;
178 unsigned long flags;
179 unsigned int idx;
180
181 /*
182 * Order against the IOMMU driver's pagetable update from unmapping
183 * @pte, to guarantee that fq_flush_iotlb() observes that if called
184 * from a different CPU before we release the lock below. Full barrier
185 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
186 * written fq state here.
187 */
188 smp_mb();
189
190 fq = raw_cpu_ptr(cookie->fq);
191 spin_lock_irqsave(&fq->lock, flags);
192
193 /*
194 * First remove all entries from the flush queue that have already been
195 * flushed out on another CPU. This makes the fq_full() check below less
196 * likely to be true.
197 */
198 fq_ring_free(cookie, fq);
199
200 if (fq_full(fq)) {
201 fq_flush_iotlb(cookie);
202 fq_ring_free(cookie, fq);
203 }
204
205 idx = fq_ring_add(fq);
206
207 fq->entries[idx].iova_pfn = pfn;
208 fq->entries[idx].pages = pages;
209 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
210 list_splice(freelist, &fq->entries[idx].freelist);
211
212 spin_unlock_irqrestore(&fq->lock, flags);
213
214 /* Avoid false sharing as much as possible. */
215 if (!atomic_read(&cookie->fq_timer_on) &&
216 !atomic_xchg(&cookie->fq_timer_on, 1))
217 mod_timer(&cookie->fq_timer,
218 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
219 }
220
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)221 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
222 {
223 int cpu, idx;
224
225 if (!cookie->fq)
226 return;
227
228 del_timer_sync(&cookie->fq_timer);
229 /* The IOVAs will be torn down separately, so just free our queued pages */
230 for_each_possible_cpu(cpu) {
231 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
232
233 fq_ring_for_each(idx, fq)
234 put_pages_list(&fq->entries[idx].freelist);
235 }
236
237 free_percpu(cookie->fq);
238 }
239
240 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)241 int iommu_dma_init_fq(struct iommu_domain *domain)
242 {
243 struct iommu_dma_cookie *cookie = domain->iova_cookie;
244 struct iova_fq __percpu *queue;
245 int i, cpu;
246
247 if (cookie->fq_domain)
248 return 0;
249
250 atomic64_set(&cookie->fq_flush_start_cnt, 0);
251 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
252
253 queue = alloc_percpu(struct iova_fq);
254 if (!queue) {
255 pr_warn("iova flush queue initialization failed\n");
256 return -ENOMEM;
257 }
258
259 for_each_possible_cpu(cpu) {
260 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
261
262 fq->head = 0;
263 fq->tail = 0;
264
265 spin_lock_init(&fq->lock);
266
267 for (i = 0; i < IOVA_FQ_SIZE; i++)
268 INIT_LIST_HEAD(&fq->entries[i].freelist);
269 }
270
271 cookie->fq = queue;
272
273 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
274 atomic_set(&cookie->fq_timer_on, 0);
275 /*
276 * Prevent incomplete fq state being observable. Pairs with path from
277 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
278 */
279 smp_wmb();
280 WRITE_ONCE(cookie->fq_domain, domain);
281 return 0;
282 }
283
cookie_msi_granule(struct iommu_dma_cookie * cookie)284 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
285 {
286 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
287 return cookie->iovad.granule;
288 return PAGE_SIZE;
289 }
290
cookie_alloc(enum iommu_dma_cookie_type type)291 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
292 {
293 struct iommu_dma_cookie *cookie;
294
295 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
296 if (cookie) {
297 INIT_LIST_HEAD(&cookie->msi_page_list);
298 cookie->type = type;
299 }
300 return cookie;
301 }
302
303 /**
304 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
305 * @domain: IOMMU domain to prepare for DMA-API usage
306 */
iommu_get_dma_cookie(struct iommu_domain * domain)307 int iommu_get_dma_cookie(struct iommu_domain *domain)
308 {
309 if (domain->iova_cookie)
310 return -EEXIST;
311
312 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
313 if (!domain->iova_cookie)
314 return -ENOMEM;
315
316 mutex_init(&domain->iova_cookie->mutex);
317 return 0;
318 }
319
320 /**
321 * iommu_get_msi_cookie - Acquire just MSI remapping resources
322 * @domain: IOMMU domain to prepare
323 * @base: Start address of IOVA region for MSI mappings
324 *
325 * Users who manage their own IOVA allocation and do not want DMA API support,
326 * but would still like to take advantage of automatic MSI remapping, can use
327 * this to initialise their own domain appropriately. Users should reserve a
328 * contiguous IOVA region, starting at @base, large enough to accommodate the
329 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
330 * used by the devices attached to @domain.
331 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)332 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
333 {
334 struct iommu_dma_cookie *cookie;
335
336 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
337 return -EINVAL;
338
339 if (domain->iova_cookie)
340 return -EEXIST;
341
342 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
343 if (!cookie)
344 return -ENOMEM;
345
346 cookie->msi_iova = base;
347 domain->iova_cookie = cookie;
348 return 0;
349 }
350 EXPORT_SYMBOL(iommu_get_msi_cookie);
351
352 /**
353 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
354 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
355 * iommu_get_msi_cookie()
356 */
iommu_put_dma_cookie(struct iommu_domain * domain)357 void iommu_put_dma_cookie(struct iommu_domain *domain)
358 {
359 struct iommu_dma_cookie *cookie = domain->iova_cookie;
360 struct iommu_dma_msi_page *msi, *tmp;
361
362 if (!cookie)
363 return;
364
365 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
366 iommu_dma_free_fq(cookie);
367 put_iova_domain(&cookie->iovad);
368 }
369
370 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
371 list_del(&msi->list);
372 kfree(msi);
373 }
374 kfree(cookie);
375 domain->iova_cookie = NULL;
376 }
377
378 /**
379 * iommu_dma_get_resv_regions - Reserved region driver helper
380 * @dev: Device from iommu_get_resv_regions()
381 * @list: Reserved region list from iommu_get_resv_regions()
382 *
383 * IOMMU drivers can use this to implement their .get_resv_regions callback
384 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
385 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
386 * reservation.
387 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)388 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
389 {
390
391 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
392 iort_iommu_get_resv_regions(dev, list);
393
394 }
395 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
396
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)397 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
398 phys_addr_t start, phys_addr_t end)
399 {
400 struct iova_domain *iovad = &cookie->iovad;
401 struct iommu_dma_msi_page *msi_page;
402 int i, num_pages;
403
404 start -= iova_offset(iovad, start);
405 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
406
407 for (i = 0; i < num_pages; i++) {
408 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
409 if (!msi_page)
410 return -ENOMEM;
411
412 msi_page->phys = start;
413 msi_page->iova = start;
414 INIT_LIST_HEAD(&msi_page->list);
415 list_add(&msi_page->list, &cookie->msi_page_list);
416 start += iovad->granule;
417 }
418
419 return 0;
420 }
421
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)422 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
423 const struct list_head *b)
424 {
425 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
426 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
427
428 return res_a->res->start > res_b->res->start;
429 }
430
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)431 static int iova_reserve_pci_windows(struct pci_dev *dev,
432 struct iova_domain *iovad)
433 {
434 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
435 struct resource_entry *window;
436 unsigned long lo, hi;
437 phys_addr_t start = 0, end;
438
439 resource_list_for_each_entry(window, &bridge->windows) {
440 if (resource_type(window->res) != IORESOURCE_MEM)
441 continue;
442
443 lo = iova_pfn(iovad, window->res->start - window->offset);
444 hi = iova_pfn(iovad, window->res->end - window->offset);
445 reserve_iova(iovad, lo, hi);
446 }
447
448 /* Get reserved DMA windows from host bridge */
449 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
450 resource_list_for_each_entry(window, &bridge->dma_ranges) {
451 end = window->res->start - window->offset;
452 resv_iova:
453 if (end > start) {
454 lo = iova_pfn(iovad, start);
455 hi = iova_pfn(iovad, end);
456 reserve_iova(iovad, lo, hi);
457 } else if (end < start) {
458 /* DMA ranges should be non-overlapping */
459 dev_err(&dev->dev,
460 "Failed to reserve IOVA [%pa-%pa]\n",
461 &start, &end);
462 return -EINVAL;
463 }
464
465 start = window->res->end - window->offset + 1;
466 /* If window is last entry */
467 if (window->node.next == &bridge->dma_ranges &&
468 end != ~(phys_addr_t)0) {
469 end = ~(phys_addr_t)0;
470 goto resv_iova;
471 }
472 }
473
474 return 0;
475 }
476
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)477 static int iova_reserve_iommu_regions(struct device *dev,
478 struct iommu_domain *domain)
479 {
480 struct iommu_dma_cookie *cookie = domain->iova_cookie;
481 struct iova_domain *iovad = &cookie->iovad;
482 struct iommu_resv_region *region;
483 LIST_HEAD(resv_regions);
484 int ret = 0;
485
486 if (dev_is_pci(dev)) {
487 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
488 if (ret)
489 return ret;
490 }
491
492 iommu_get_resv_regions(dev, &resv_regions);
493 list_for_each_entry(region, &resv_regions, list) {
494 unsigned long lo, hi;
495
496 /* We ARE the software that manages these! */
497 if (region->type == IOMMU_RESV_SW_MSI)
498 continue;
499
500 lo = iova_pfn(iovad, region->start);
501 hi = iova_pfn(iovad, region->start + region->length - 1);
502 reserve_iova(iovad, lo, hi);
503
504 if (region->type == IOMMU_RESV_MSI)
505 ret = cookie_init_hw_msi_region(cookie, region->start,
506 region->start + region->length);
507 if (ret)
508 break;
509 }
510 iommu_put_resv_regions(dev, &resv_regions);
511
512 return ret;
513 }
514
dev_is_untrusted(struct device * dev)515 static bool dev_is_untrusted(struct device *dev)
516 {
517 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
518 }
519
dev_use_swiotlb(struct device * dev)520 static bool dev_use_swiotlb(struct device *dev)
521 {
522 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
523 }
524
525 /**
526 * iommu_dma_init_domain - Initialise a DMA mapping domain
527 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
528 * @base: IOVA at which the mappable address space starts
529 * @limit: Last address of the IOVA space
530 * @dev: Device the domain is being initialised for
531 *
532 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
533 * avoid rounding surprises. If necessary, we reserve the page at address 0
534 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
535 * any change which could make prior IOVAs invalid will fail.
536 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)537 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
538 dma_addr_t limit, struct device *dev)
539 {
540 struct iommu_dma_cookie *cookie = domain->iova_cookie;
541 unsigned long order, base_pfn;
542 struct iova_domain *iovad;
543 int ret;
544
545 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
546 return -EINVAL;
547
548 iovad = &cookie->iovad;
549
550 /* Use the smallest supported page size for IOVA granularity */
551 order = __ffs(domain->pgsize_bitmap);
552 base_pfn = max_t(unsigned long, 1, base >> order);
553
554 /* Check the domain allows at least some access to the device... */
555 if (domain->geometry.force_aperture) {
556 if (base > domain->geometry.aperture_end ||
557 limit < domain->geometry.aperture_start) {
558 pr_warn("specified DMA range outside IOMMU capability\n");
559 return -EFAULT;
560 }
561 /* ...then finally give it a kicking to make sure it fits */
562 base_pfn = max_t(unsigned long, base_pfn,
563 domain->geometry.aperture_start >> order);
564 }
565
566 /* start_pfn is always nonzero for an already-initialised domain */
567 mutex_lock(&cookie->mutex);
568 if (iovad->start_pfn) {
569 if (1UL << order != iovad->granule ||
570 base_pfn != iovad->start_pfn) {
571 pr_warn("Incompatible range for DMA domain\n");
572 ret = -EFAULT;
573 goto done_unlock;
574 }
575
576 ret = 0;
577 goto done_unlock;
578 }
579
580 init_iova_domain(iovad, 1UL << order, base_pfn);
581 ret = iova_domain_init_rcaches(iovad);
582 if (ret)
583 goto done_unlock;
584
585 /* If the FQ fails we can simply fall back to strict mode */
586 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
587 domain->type = IOMMU_DOMAIN_DMA;
588
589 ret = iova_reserve_iommu_regions(dev, domain);
590
591 done_unlock:
592 mutex_unlock(&cookie->mutex);
593 return ret;
594 }
595
596 /**
597 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
598 * page flags.
599 * @dir: Direction of DMA transfer
600 * @coherent: Is the DMA master cache-coherent?
601 * @attrs: DMA attributes for the mapping
602 *
603 * Return: corresponding IOMMU API page protection flags
604 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)605 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
606 unsigned long attrs)
607 {
608 int prot = coherent ? IOMMU_CACHE : 0;
609
610 if (attrs & DMA_ATTR_PRIVILEGED)
611 prot |= IOMMU_PRIV;
612
613 switch (dir) {
614 case DMA_BIDIRECTIONAL:
615 return prot | IOMMU_READ | IOMMU_WRITE;
616 case DMA_TO_DEVICE:
617 return prot | IOMMU_READ;
618 case DMA_FROM_DEVICE:
619 return prot | IOMMU_WRITE;
620 default:
621 return 0;
622 }
623 }
624
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)625 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
626 size_t size, u64 dma_limit, struct device *dev)
627 {
628 struct iommu_dma_cookie *cookie = domain->iova_cookie;
629 struct iova_domain *iovad = &cookie->iovad;
630 unsigned long shift, iova_len, iova = 0;
631
632 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
633 cookie->msi_iova += size;
634 return cookie->msi_iova - size;
635 }
636
637 shift = iova_shift(iovad);
638 iova_len = size >> shift;
639
640 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
641
642 if (domain->geometry.force_aperture)
643 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
644
645 /* Try to get PCI devices a SAC address */
646 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
647 iova = alloc_iova_fast(iovad, iova_len,
648 DMA_BIT_MASK(32) >> shift, false);
649
650 if (!iova)
651 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
652 true);
653
654 return (dma_addr_t)iova << shift;
655 }
656
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)657 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
658 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
659 {
660 struct iova_domain *iovad = &cookie->iovad;
661
662 /* The MSI case is only ever cleaning up its most recent allocation */
663 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
664 cookie->msi_iova -= size;
665 else if (gather && gather->queued)
666 queue_iova(cookie, iova_pfn(iovad, iova),
667 size >> iova_shift(iovad),
668 &gather->freelist);
669 else
670 free_iova_fast(iovad, iova_pfn(iovad, iova),
671 size >> iova_shift(iovad));
672 }
673
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)674 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
675 size_t size)
676 {
677 struct iommu_domain *domain = iommu_get_dma_domain(dev);
678 struct iommu_dma_cookie *cookie = domain->iova_cookie;
679 struct iova_domain *iovad = &cookie->iovad;
680 size_t iova_off = iova_offset(iovad, dma_addr);
681 struct iommu_iotlb_gather iotlb_gather;
682 size_t unmapped;
683
684 dma_addr -= iova_off;
685 size = iova_align(iovad, size + iova_off);
686 iommu_iotlb_gather_init(&iotlb_gather);
687 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
688
689 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
690 WARN_ON(unmapped != size);
691
692 if (!iotlb_gather.queued)
693 iommu_iotlb_sync(domain, &iotlb_gather);
694 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
695 }
696
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)697 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
698 size_t size, int prot, u64 dma_mask)
699 {
700 struct iommu_domain *domain = iommu_get_dma_domain(dev);
701 struct iommu_dma_cookie *cookie = domain->iova_cookie;
702 struct iova_domain *iovad = &cookie->iovad;
703 size_t iova_off = iova_offset(iovad, phys);
704 dma_addr_t iova;
705
706 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
707 iommu_deferred_attach(dev, domain))
708 return DMA_MAPPING_ERROR;
709
710 size = iova_align(iovad, size + iova_off);
711
712 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
713 if (!iova)
714 return DMA_MAPPING_ERROR;
715
716 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
717 iommu_dma_free_iova(cookie, iova, size, NULL);
718 return DMA_MAPPING_ERROR;
719 }
720 return iova + iova_off;
721 }
722
__iommu_dma_free_pages(struct page ** pages,int count)723 static void __iommu_dma_free_pages(struct page **pages, int count)
724 {
725 while (count--)
726 __free_page(pages[count]);
727 kvfree(pages);
728 }
729
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)730 static struct page **__iommu_dma_alloc_pages(struct device *dev,
731 unsigned int count, unsigned long order_mask, gfp_t gfp)
732 {
733 struct page **pages;
734 unsigned int i = 0, nid = dev_to_node(dev);
735
736 order_mask &= (2U << MAX_ORDER) - 1;
737 if (!order_mask)
738 return NULL;
739
740 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
741 if (!pages)
742 return NULL;
743
744 /* IOMMU can map any pages, so himem can also be used here */
745 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
746
747 /* It makes no sense to muck about with huge pages */
748 gfp &= ~__GFP_COMP;
749
750 while (count) {
751 struct page *page = NULL;
752 unsigned int order_size;
753
754 /*
755 * Higher-order allocations are a convenience rather
756 * than a necessity, hence using __GFP_NORETRY until
757 * falling back to minimum-order allocations.
758 */
759 for (order_mask &= (2U << __fls(count)) - 1;
760 order_mask; order_mask &= ~order_size) {
761 unsigned int order = __fls(order_mask);
762 gfp_t alloc_flags = gfp;
763
764 order_size = 1U << order;
765 if (order_mask > order_size)
766 alloc_flags |= __GFP_NORETRY;
767 page = alloc_pages_node(nid, alloc_flags, order);
768 if (!page)
769 continue;
770 if (order)
771 split_page(page, order);
772 break;
773 }
774 if (!page) {
775 __iommu_dma_free_pages(pages, i);
776 return NULL;
777 }
778 count -= order_size;
779 while (order_size--)
780 pages[i++] = page++;
781 }
782 return pages;
783 }
784
785 /*
786 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
787 * but an IOMMU which supports smaller pages might not map the whole thing.
788 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)789 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
790 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
791 unsigned long attrs)
792 {
793 struct iommu_domain *domain = iommu_get_dma_domain(dev);
794 struct iommu_dma_cookie *cookie = domain->iova_cookie;
795 struct iova_domain *iovad = &cookie->iovad;
796 bool coherent = dev_is_dma_coherent(dev);
797 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
798 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
799 struct page **pages;
800 dma_addr_t iova;
801 ssize_t ret;
802
803 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
804 iommu_deferred_attach(dev, domain))
805 return NULL;
806
807 min_size = alloc_sizes & -alloc_sizes;
808 if (min_size < PAGE_SIZE) {
809 min_size = PAGE_SIZE;
810 alloc_sizes |= PAGE_SIZE;
811 } else {
812 size = ALIGN(size, min_size);
813 }
814 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
815 alloc_sizes = min_size;
816
817 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
818 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
819 gfp);
820 if (!pages)
821 return NULL;
822
823 size = iova_align(iovad, size);
824 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
825 if (!iova)
826 goto out_free_pages;
827
828 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
829 goto out_free_iova;
830
831 if (!(ioprot & IOMMU_CACHE)) {
832 struct scatterlist *sg;
833 int i;
834
835 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
836 arch_dma_prep_coherent(sg_page(sg), sg->length);
837 }
838
839 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
840 if (ret < 0 || ret < size)
841 goto out_free_sg;
842
843 sgt->sgl->dma_address = iova;
844 sgt->sgl->dma_length = size;
845 return pages;
846
847 out_free_sg:
848 sg_free_table(sgt);
849 out_free_iova:
850 iommu_dma_free_iova(cookie, iova, size, NULL);
851 out_free_pages:
852 __iommu_dma_free_pages(pages, count);
853 return NULL;
854 }
855
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)856 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
857 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
858 unsigned long attrs)
859 {
860 struct page **pages;
861 struct sg_table sgt;
862 void *vaddr;
863
864 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
865 attrs);
866 if (!pages)
867 return NULL;
868 *dma_handle = sgt.sgl->dma_address;
869 sg_free_table(&sgt);
870 vaddr = dma_common_pages_remap(pages, size, prot,
871 __builtin_return_address(0));
872 if (!vaddr)
873 goto out_unmap;
874 return vaddr;
875
876 out_unmap:
877 __iommu_dma_unmap(dev, *dma_handle, size);
878 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
879 return NULL;
880 }
881
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)882 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
883 size_t size, enum dma_data_direction dir, gfp_t gfp,
884 unsigned long attrs)
885 {
886 struct dma_sgt_handle *sh;
887
888 sh = kmalloc(sizeof(*sh), gfp);
889 if (!sh)
890 return NULL;
891
892 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
893 PAGE_KERNEL, attrs);
894 if (!sh->pages) {
895 kfree(sh);
896 return NULL;
897 }
898 return &sh->sgt;
899 }
900
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)901 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
902 struct sg_table *sgt, enum dma_data_direction dir)
903 {
904 struct dma_sgt_handle *sh = sgt_handle(sgt);
905
906 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
907 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
908 sg_free_table(&sh->sgt);
909 kfree(sh);
910 }
911
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)912 static void iommu_dma_sync_single_for_cpu(struct device *dev,
913 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
914 {
915 phys_addr_t phys;
916
917 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
918 return;
919
920 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
921 if (!dev_is_dma_coherent(dev))
922 arch_sync_dma_for_cpu(phys, size, dir);
923
924 if (is_swiotlb_buffer(dev, phys))
925 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
926 }
927
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)928 static void iommu_dma_sync_single_for_device(struct device *dev,
929 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
930 {
931 phys_addr_t phys;
932
933 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
934 return;
935
936 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
937 if (is_swiotlb_buffer(dev, phys))
938 swiotlb_sync_single_for_device(dev, phys, size, dir);
939
940 if (!dev_is_dma_coherent(dev))
941 arch_sync_dma_for_device(phys, size, dir);
942 }
943
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)944 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
945 struct scatterlist *sgl, int nelems,
946 enum dma_data_direction dir)
947 {
948 struct scatterlist *sg;
949 int i;
950
951 if (dev_use_swiotlb(dev))
952 for_each_sg(sgl, sg, nelems, i)
953 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
954 sg->length, dir);
955 else if (!dev_is_dma_coherent(dev))
956 for_each_sg(sgl, sg, nelems, i)
957 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
958 }
959
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)960 static void iommu_dma_sync_sg_for_device(struct device *dev,
961 struct scatterlist *sgl, int nelems,
962 enum dma_data_direction dir)
963 {
964 struct scatterlist *sg;
965 int i;
966
967 if (dev_use_swiotlb(dev))
968 for_each_sg(sgl, sg, nelems, i)
969 iommu_dma_sync_single_for_device(dev,
970 sg_dma_address(sg),
971 sg->length, dir);
972 else if (!dev_is_dma_coherent(dev))
973 for_each_sg(sgl, sg, nelems, i)
974 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
975 }
976
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)977 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
978 unsigned long offset, size_t size, enum dma_data_direction dir,
979 unsigned long attrs)
980 {
981 phys_addr_t phys = page_to_phys(page) + offset;
982 bool coherent = dev_is_dma_coherent(dev);
983 int prot = dma_info_to_prot(dir, coherent, attrs);
984 struct iommu_domain *domain = iommu_get_dma_domain(dev);
985 struct iommu_dma_cookie *cookie = domain->iova_cookie;
986 struct iova_domain *iovad = &cookie->iovad;
987 dma_addr_t iova, dma_mask = dma_get_mask(dev);
988
989 /*
990 * If both the physical buffer start address and size are
991 * page aligned, we don't need to use a bounce page.
992 */
993 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
994 void *padding_start;
995 size_t padding_size, aligned_size;
996
997 if (!is_swiotlb_active(dev)) {
998 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
999 return DMA_MAPPING_ERROR;
1000 }
1001
1002 aligned_size = iova_align(iovad, size);
1003 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1004 iova_mask(iovad), dir, attrs);
1005
1006 if (phys == DMA_MAPPING_ERROR)
1007 return DMA_MAPPING_ERROR;
1008
1009 /* Cleanup the padding area. */
1010 padding_start = phys_to_virt(phys);
1011 padding_size = aligned_size;
1012
1013 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1014 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1015 padding_start += size;
1016 padding_size -= size;
1017 }
1018
1019 memset(padding_start, 0, padding_size);
1020 }
1021
1022 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1023 arch_sync_dma_for_device(phys, size, dir);
1024
1025 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1026 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1027 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1028 return iova;
1029 }
1030
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1031 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1032 size_t size, enum dma_data_direction dir, unsigned long attrs)
1033 {
1034 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1035 phys_addr_t phys;
1036
1037 phys = iommu_iova_to_phys(domain, dma_handle);
1038 if (WARN_ON(!phys))
1039 return;
1040
1041 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1042 arch_sync_dma_for_cpu(phys, size, dir);
1043
1044 __iommu_dma_unmap(dev, dma_handle, size);
1045
1046 if (unlikely(is_swiotlb_buffer(dev, phys)))
1047 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1048 }
1049
1050 /*
1051 * Prepare a successfully-mapped scatterlist to give back to the caller.
1052 *
1053 * At this point the segments are already laid out by iommu_dma_map_sg() to
1054 * avoid individually crossing any boundaries, so we merely need to check a
1055 * segment's start address to avoid concatenating across one.
1056 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1057 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1058 dma_addr_t dma_addr)
1059 {
1060 struct scatterlist *s, *cur = sg;
1061 unsigned long seg_mask = dma_get_seg_boundary(dev);
1062 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1063 int i, count = 0;
1064
1065 for_each_sg(sg, s, nents, i) {
1066 /* Restore this segment's original unaligned fields first */
1067 dma_addr_t s_dma_addr = sg_dma_address(s);
1068 unsigned int s_iova_off = sg_dma_address(s);
1069 unsigned int s_length = sg_dma_len(s);
1070 unsigned int s_iova_len = s->length;
1071
1072 sg_dma_address(s) = DMA_MAPPING_ERROR;
1073 sg_dma_len(s) = 0;
1074
1075 if (sg_is_dma_bus_address(s)) {
1076 if (i > 0)
1077 cur = sg_next(cur);
1078
1079 sg_dma_unmark_bus_address(s);
1080 sg_dma_address(cur) = s_dma_addr;
1081 sg_dma_len(cur) = s_length;
1082 sg_dma_mark_bus_address(cur);
1083 count++;
1084 cur_len = 0;
1085 continue;
1086 }
1087
1088 s->offset += s_iova_off;
1089 s->length = s_length;
1090
1091 /*
1092 * Now fill in the real DMA data. If...
1093 * - there is a valid output segment to append to
1094 * - and this segment starts on an IOVA page boundary
1095 * - but doesn't fall at a segment boundary
1096 * - and wouldn't make the resulting output segment too long
1097 */
1098 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1099 (max_len - cur_len >= s_length)) {
1100 /* ...then concatenate it with the previous one */
1101 cur_len += s_length;
1102 } else {
1103 /* Otherwise start the next output segment */
1104 if (i > 0)
1105 cur = sg_next(cur);
1106 cur_len = s_length;
1107 count++;
1108
1109 sg_dma_address(cur) = dma_addr + s_iova_off;
1110 }
1111
1112 sg_dma_len(cur) = cur_len;
1113 dma_addr += s_iova_len;
1114
1115 if (s_length + s_iova_off < s_iova_len)
1116 cur_len = 0;
1117 }
1118 return count;
1119 }
1120
1121 /*
1122 * If mapping failed, then just restore the original list,
1123 * but making sure the DMA fields are invalidated.
1124 */
__invalidate_sg(struct scatterlist * sg,int nents)1125 static void __invalidate_sg(struct scatterlist *sg, int nents)
1126 {
1127 struct scatterlist *s;
1128 int i;
1129
1130 for_each_sg(sg, s, nents, i) {
1131 if (sg_is_dma_bus_address(s)) {
1132 sg_dma_unmark_bus_address(s);
1133 } else {
1134 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1135 s->offset += sg_dma_address(s);
1136 if (sg_dma_len(s))
1137 s->length = sg_dma_len(s);
1138 }
1139 sg_dma_address(s) = DMA_MAPPING_ERROR;
1140 sg_dma_len(s) = 0;
1141 }
1142 }
1143
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1144 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1145 int nents, enum dma_data_direction dir, unsigned long attrs)
1146 {
1147 struct scatterlist *s;
1148 int i;
1149
1150 for_each_sg(sg, s, nents, i)
1151 iommu_dma_unmap_page(dev, sg_dma_address(s),
1152 sg_dma_len(s), dir, attrs);
1153 }
1154
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1155 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1156 int nents, enum dma_data_direction dir, unsigned long attrs)
1157 {
1158 struct scatterlist *s;
1159 int i;
1160
1161 for_each_sg(sg, s, nents, i) {
1162 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1163 s->offset, s->length, dir, attrs);
1164 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1165 goto out_unmap;
1166 sg_dma_len(s) = s->length;
1167 }
1168
1169 return nents;
1170
1171 out_unmap:
1172 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1173 return -EIO;
1174 }
1175
1176 /*
1177 * The DMA API client is passing in a scatterlist which could describe
1178 * any old buffer layout, but the IOMMU API requires everything to be
1179 * aligned to IOMMU pages. Hence the need for this complicated bit of
1180 * impedance-matching, to be able to hand off a suitably-aligned list,
1181 * but still preserve the original offsets and sizes for the caller.
1182 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1183 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1184 int nents, enum dma_data_direction dir, unsigned long attrs)
1185 {
1186 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1187 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1188 struct iova_domain *iovad = &cookie->iovad;
1189 struct scatterlist *s, *prev = NULL;
1190 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1191 struct pci_p2pdma_map_state p2pdma_state = {};
1192 enum pci_p2pdma_map_type map;
1193 dma_addr_t iova;
1194 size_t iova_len = 0;
1195 unsigned long mask = dma_get_seg_boundary(dev);
1196 ssize_t ret;
1197 int i;
1198
1199 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1200 ret = iommu_deferred_attach(dev, domain);
1201 if (ret)
1202 goto out;
1203 }
1204
1205 if (dev_use_swiotlb(dev))
1206 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1207
1208 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1209 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1210
1211 /*
1212 * Work out how much IOVA space we need, and align the segments to
1213 * IOVA granules for the IOMMU driver to handle. With some clever
1214 * trickery we can modify the list in-place, but reversibly, by
1215 * stashing the unaligned parts in the as-yet-unused DMA fields.
1216 */
1217 for_each_sg(sg, s, nents, i) {
1218 size_t s_iova_off = iova_offset(iovad, s->offset);
1219 size_t s_length = s->length;
1220 size_t pad_len = (mask - iova_len + 1) & mask;
1221
1222 if (is_pci_p2pdma_page(sg_page(s))) {
1223 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1224 switch (map) {
1225 case PCI_P2PDMA_MAP_BUS_ADDR:
1226 /*
1227 * iommu_map_sg() will skip this segment as
1228 * it is marked as a bus address,
1229 * __finalise_sg() will copy the dma address
1230 * into the output segment.
1231 */
1232 continue;
1233 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1234 /*
1235 * Mapping through host bridge should be
1236 * mapped with regular IOVAs, thus we
1237 * do nothing here and continue below.
1238 */
1239 break;
1240 default:
1241 ret = -EREMOTEIO;
1242 goto out_restore_sg;
1243 }
1244 }
1245
1246 sg_dma_address(s) = s_iova_off;
1247 sg_dma_len(s) = s_length;
1248 s->offset -= s_iova_off;
1249 s_length = iova_align(iovad, s_length + s_iova_off);
1250 s->length = s_length;
1251
1252 /*
1253 * Due to the alignment of our single IOVA allocation, we can
1254 * depend on these assumptions about the segment boundary mask:
1255 * - If mask size >= IOVA size, then the IOVA range cannot
1256 * possibly fall across a boundary, so we don't care.
1257 * - If mask size < IOVA size, then the IOVA range must start
1258 * exactly on a boundary, therefore we can lay things out
1259 * based purely on segment lengths without needing to know
1260 * the actual addresses beforehand.
1261 * - The mask must be a power of 2, so pad_len == 0 if
1262 * iova_len == 0, thus we cannot dereference prev the first
1263 * time through here (i.e. before it has a meaningful value).
1264 */
1265 if (pad_len && pad_len < s_length - 1) {
1266 prev->length += pad_len;
1267 iova_len += pad_len;
1268 }
1269
1270 iova_len += s_length;
1271 prev = s;
1272 }
1273
1274 if (!iova_len)
1275 return __finalise_sg(dev, sg, nents, 0);
1276
1277 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1278 if (!iova) {
1279 ret = -ENOMEM;
1280 goto out_restore_sg;
1281 }
1282
1283 /*
1284 * We'll leave any physical concatenation to the IOMMU driver's
1285 * implementation - it knows better than we do.
1286 */
1287 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1288 if (ret < 0 || ret < iova_len)
1289 goto out_free_iova;
1290
1291 return __finalise_sg(dev, sg, nents, iova);
1292
1293 out_free_iova:
1294 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1295 out_restore_sg:
1296 __invalidate_sg(sg, nents);
1297 out:
1298 if (ret != -ENOMEM && ret != -EREMOTEIO)
1299 return -EINVAL;
1300 return ret;
1301 }
1302
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1303 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1304 int nents, enum dma_data_direction dir, unsigned long attrs)
1305 {
1306 dma_addr_t end = 0, start;
1307 struct scatterlist *tmp;
1308 int i;
1309
1310 if (dev_use_swiotlb(dev)) {
1311 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1312 return;
1313 }
1314
1315 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1316 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1317
1318 /*
1319 * The scatterlist segments are mapped into a single
1320 * contiguous IOVA allocation, the start and end points
1321 * just have to be determined.
1322 */
1323 for_each_sg(sg, tmp, nents, i) {
1324 if (sg_is_dma_bus_address(tmp)) {
1325 sg_dma_unmark_bus_address(tmp);
1326 continue;
1327 }
1328
1329 if (sg_dma_len(tmp) == 0)
1330 break;
1331
1332 start = sg_dma_address(tmp);
1333 break;
1334 }
1335
1336 nents -= i;
1337 for_each_sg(tmp, tmp, nents, i) {
1338 if (sg_is_dma_bus_address(tmp)) {
1339 sg_dma_unmark_bus_address(tmp);
1340 continue;
1341 }
1342
1343 if (sg_dma_len(tmp) == 0)
1344 break;
1345
1346 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1347 }
1348
1349 if (end)
1350 __iommu_dma_unmap(dev, start, end - start);
1351 }
1352
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1353 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1354 size_t size, enum dma_data_direction dir, unsigned long attrs)
1355 {
1356 return __iommu_dma_map(dev, phys, size,
1357 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1358 dma_get_mask(dev));
1359 }
1360
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1361 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1362 size_t size, enum dma_data_direction dir, unsigned long attrs)
1363 {
1364 __iommu_dma_unmap(dev, handle, size);
1365 }
1366
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1367 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1368 {
1369 size_t alloc_size = PAGE_ALIGN(size);
1370 int count = alloc_size >> PAGE_SHIFT;
1371 struct page *page = NULL, **pages = NULL;
1372
1373 /* Non-coherent atomic allocation? Easy */
1374 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1375 dma_free_from_pool(dev, cpu_addr, alloc_size))
1376 return;
1377
1378 if (is_vmalloc_addr(cpu_addr)) {
1379 /*
1380 * If it the address is remapped, then it's either non-coherent
1381 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1382 */
1383 pages = dma_common_find_pages(cpu_addr);
1384 if (!pages)
1385 page = vmalloc_to_page(cpu_addr);
1386 dma_common_free_remap(cpu_addr, alloc_size);
1387 } else {
1388 /* Lowmem means a coherent atomic or CMA allocation */
1389 page = virt_to_page(cpu_addr);
1390 }
1391
1392 if (pages)
1393 __iommu_dma_free_pages(pages, count);
1394 if (page)
1395 dma_free_contiguous(dev, page, alloc_size);
1396 }
1397
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1398 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1399 dma_addr_t handle, unsigned long attrs)
1400 {
1401 __iommu_dma_unmap(dev, handle, size);
1402 __iommu_dma_free(dev, size, cpu_addr);
1403 }
1404
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1405 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1406 struct page **pagep, gfp_t gfp, unsigned long attrs)
1407 {
1408 bool coherent = dev_is_dma_coherent(dev);
1409 size_t alloc_size = PAGE_ALIGN(size);
1410 int node = dev_to_node(dev);
1411 struct page *page = NULL;
1412 void *cpu_addr;
1413
1414 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1415 if (!page)
1416 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1417 if (!page)
1418 return NULL;
1419
1420 if (!coherent || PageHighMem(page)) {
1421 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1422
1423 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1424 prot, __builtin_return_address(0));
1425 if (!cpu_addr)
1426 goto out_free_pages;
1427
1428 if (!coherent)
1429 arch_dma_prep_coherent(page, size);
1430 } else {
1431 cpu_addr = page_address(page);
1432 }
1433
1434 *pagep = page;
1435 memset(cpu_addr, 0, alloc_size);
1436 return cpu_addr;
1437 out_free_pages:
1438 dma_free_contiguous(dev, page, alloc_size);
1439 return NULL;
1440 }
1441
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1442 static void *iommu_dma_alloc(struct device *dev, size_t size,
1443 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1444 {
1445 bool coherent = dev_is_dma_coherent(dev);
1446 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1447 struct page *page = NULL;
1448 void *cpu_addr;
1449
1450 gfp |= __GFP_ZERO;
1451
1452 if (gfpflags_allow_blocking(gfp) &&
1453 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1454 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1455 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1456 }
1457
1458 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1459 !gfpflags_allow_blocking(gfp) && !coherent)
1460 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1461 gfp, NULL);
1462 else
1463 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1464 if (!cpu_addr)
1465 return NULL;
1466
1467 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1468 dev->coherent_dma_mask);
1469 if (*handle == DMA_MAPPING_ERROR) {
1470 __iommu_dma_free(dev, size, cpu_addr);
1471 return NULL;
1472 }
1473
1474 return cpu_addr;
1475 }
1476
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1477 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1478 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1479 unsigned long attrs)
1480 {
1481 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1482 unsigned long pfn, off = vma->vm_pgoff;
1483 int ret;
1484
1485 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1486
1487 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1488 return ret;
1489
1490 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1491 return -ENXIO;
1492
1493 if (is_vmalloc_addr(cpu_addr)) {
1494 struct page **pages = dma_common_find_pages(cpu_addr);
1495
1496 if (pages)
1497 return vm_map_pages(vma, pages, nr_pages);
1498 pfn = vmalloc_to_pfn(cpu_addr);
1499 } else {
1500 pfn = page_to_pfn(virt_to_page(cpu_addr));
1501 }
1502
1503 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1504 vma->vm_end - vma->vm_start,
1505 vma->vm_page_prot);
1506 }
1507
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1508 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1509 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1510 unsigned long attrs)
1511 {
1512 struct page *page;
1513 int ret;
1514
1515 if (is_vmalloc_addr(cpu_addr)) {
1516 struct page **pages = dma_common_find_pages(cpu_addr);
1517
1518 if (pages) {
1519 return sg_alloc_table_from_pages(sgt, pages,
1520 PAGE_ALIGN(size) >> PAGE_SHIFT,
1521 0, size, GFP_KERNEL);
1522 }
1523
1524 page = vmalloc_to_page(cpu_addr);
1525 } else {
1526 page = virt_to_page(cpu_addr);
1527 }
1528
1529 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1530 if (!ret)
1531 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1532 return ret;
1533 }
1534
iommu_dma_get_merge_boundary(struct device * dev)1535 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1536 {
1537 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1538
1539 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1540 }
1541
iommu_dma_opt_mapping_size(void)1542 static size_t iommu_dma_opt_mapping_size(void)
1543 {
1544 return iova_rcache_range();
1545 }
1546
1547 static const struct dma_map_ops iommu_dma_ops = {
1548 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
1549 .alloc = iommu_dma_alloc,
1550 .free = iommu_dma_free,
1551 .alloc_pages = dma_common_alloc_pages,
1552 .free_pages = dma_common_free_pages,
1553 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1554 .free_noncontiguous = iommu_dma_free_noncontiguous,
1555 .mmap = iommu_dma_mmap,
1556 .get_sgtable = iommu_dma_get_sgtable,
1557 .map_page = iommu_dma_map_page,
1558 .unmap_page = iommu_dma_unmap_page,
1559 .map_sg = iommu_dma_map_sg,
1560 .unmap_sg = iommu_dma_unmap_sg,
1561 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1562 .sync_single_for_device = iommu_dma_sync_single_for_device,
1563 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1564 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1565 .map_resource = iommu_dma_map_resource,
1566 .unmap_resource = iommu_dma_unmap_resource,
1567 .get_merge_boundary = iommu_dma_get_merge_boundary,
1568 .opt_mapping_size = iommu_dma_opt_mapping_size,
1569 };
1570
1571 /*
1572 * The IOMMU core code allocates the default DMA domain, which the underlying
1573 * IOMMU driver needs to support via the dma-iommu layer.
1574 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1575 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1576 {
1577 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1578
1579 if (!domain)
1580 goto out_err;
1581
1582 /*
1583 * The IOMMU core code allocates the default DMA domain, which the
1584 * underlying IOMMU driver needs to support via the dma-iommu layer.
1585 */
1586 if (iommu_is_dma_domain(domain)) {
1587 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1588 goto out_err;
1589 dev->dma_ops = &iommu_dma_ops;
1590 }
1591
1592 return;
1593 out_err:
1594 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1595 dev_name(dev));
1596 }
1597 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1598
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1599 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1600 phys_addr_t msi_addr, struct iommu_domain *domain)
1601 {
1602 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1603 struct iommu_dma_msi_page *msi_page;
1604 dma_addr_t iova;
1605 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1606 size_t size = cookie_msi_granule(cookie);
1607
1608 msi_addr &= ~(phys_addr_t)(size - 1);
1609 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1610 if (msi_page->phys == msi_addr)
1611 return msi_page;
1612
1613 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1614 if (!msi_page)
1615 return NULL;
1616
1617 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1618 if (!iova)
1619 goto out_free_page;
1620
1621 if (iommu_map(domain, iova, msi_addr, size, prot))
1622 goto out_free_iova;
1623
1624 INIT_LIST_HEAD(&msi_page->list);
1625 msi_page->phys = msi_addr;
1626 msi_page->iova = iova;
1627 list_add(&msi_page->list, &cookie->msi_page_list);
1628 return msi_page;
1629
1630 out_free_iova:
1631 iommu_dma_free_iova(cookie, iova, size, NULL);
1632 out_free_page:
1633 kfree(msi_page);
1634 return NULL;
1635 }
1636
1637 /**
1638 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1639 * @desc: MSI descriptor, will store the MSI page
1640 * @msi_addr: MSI target address to be mapped
1641 *
1642 * Return: 0 on success or negative error code if the mapping failed.
1643 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1644 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1645 {
1646 struct device *dev = msi_desc_to_dev(desc);
1647 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1648 struct iommu_dma_msi_page *msi_page;
1649 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1650
1651 if (!domain || !domain->iova_cookie) {
1652 desc->iommu_cookie = NULL;
1653 return 0;
1654 }
1655
1656 /*
1657 * In fact the whole prepare operation should already be serialised by
1658 * irq_domain_mutex further up the callchain, but that's pretty subtle
1659 * on its own, so consider this locking as failsafe documentation...
1660 */
1661 mutex_lock(&msi_prepare_lock);
1662 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1663 mutex_unlock(&msi_prepare_lock);
1664
1665 msi_desc_set_iommu_cookie(desc, msi_page);
1666
1667 if (!msi_page)
1668 return -ENOMEM;
1669 return 0;
1670 }
1671
1672 /**
1673 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1674 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1675 * @msg: MSI message containing target physical address
1676 */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1677 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1678 {
1679 struct device *dev = msi_desc_to_dev(desc);
1680 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1681 const struct iommu_dma_msi_page *msi_page;
1682
1683 msi_page = msi_desc_get_iommu_cookie(desc);
1684
1685 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1686 return;
1687
1688 msg->address_hi = upper_32_bits(msi_page->iova);
1689 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1690 msg->address_lo += lower_32_bits(msi_page->iova);
1691 }
1692
iommu_dma_init(void)1693 static int iommu_dma_init(void)
1694 {
1695 if (is_kdump_kernel())
1696 static_branch_enable(&iommu_deferred_attach_enabled);
1697
1698 return iova_cache_get();
1699 }
1700 arch_initcall(iommu_dma_init);
1701