1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IPv4 over IEEE 1394, per RFC 2734
4 * IPv6 over IEEE 1394, per RFC 3146
5 *
6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
7 *
8 * based on eth1394 by Ben Collins et al
9 */
10
11 #include <linux/bug.h>
12 #include <linux/compiler.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/ethtool.h>
16 #include <linux/firewire.h>
17 #include <linux/firewire-constants.h>
18 #include <linux/highmem.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/jiffies.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/mutex.h>
26 #include <linux/netdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30
31 #include <asm/unaligned.h>
32 #include <net/arp.h>
33 #include <net/firewire.h>
34
35 /* rx limits */
36 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
37 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
38
39 /* tx limits */
40 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
41 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
42 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
43
44 #define IEEE1394_BROADCAST_CHANNEL 31
45 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
46 #define IEEE1394_MAX_PAYLOAD_S100 512
47 #define FWNET_NO_FIFO_ADDR (~0ULL)
48
49 #define IANA_SPECIFIER_ID 0x00005eU
50 #define RFC2734_SW_VERSION 0x000001U
51 #define RFC3146_SW_VERSION 0x000002U
52
53 #define IEEE1394_GASP_HDR_SIZE 8
54
55 #define RFC2374_UNFRAG_HDR_SIZE 4
56 #define RFC2374_FRAG_HDR_SIZE 8
57 #define RFC2374_FRAG_OVERHEAD 4
58
59 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
60 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
61 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
62 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
63
fwnet_hwaddr_is_multicast(u8 * ha)64 static bool fwnet_hwaddr_is_multicast(u8 *ha)
65 {
66 return !!(*ha & 1);
67 }
68
69 /* IPv4 and IPv6 encapsulation header */
70 struct rfc2734_header {
71 u32 w0;
72 u32 w1;
73 };
74
75 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
76 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
77 #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1)
78 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
79 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
80
81 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
82 #define fwnet_set_hdr_ether_type(et) (et)
83 #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16)
84 #define fwnet_set_hdr_fg_off(fgo) (fgo)
85
86 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
87
fwnet_make_uf_hdr(struct rfc2734_header * hdr,unsigned ether_type)88 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
89 unsigned ether_type)
90 {
91 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
92 | fwnet_set_hdr_ether_type(ether_type);
93 }
94
fwnet_make_ff_hdr(struct rfc2734_header * hdr,unsigned ether_type,unsigned dg_size,unsigned dgl)95 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
96 unsigned ether_type, unsigned dg_size, unsigned dgl)
97 {
98 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
99 | fwnet_set_hdr_dg_size(dg_size)
100 | fwnet_set_hdr_ether_type(ether_type);
101 hdr->w1 = fwnet_set_hdr_dgl(dgl);
102 }
103
fwnet_make_sf_hdr(struct rfc2734_header * hdr,unsigned lf,unsigned dg_size,unsigned fg_off,unsigned dgl)104 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
105 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
106 {
107 hdr->w0 = fwnet_set_hdr_lf(lf)
108 | fwnet_set_hdr_dg_size(dg_size)
109 | fwnet_set_hdr_fg_off(fg_off);
110 hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 /* This list keeps track of what parts of the datagram have been filled in */
114 struct fwnet_fragment_info {
115 struct list_head fi_link;
116 u16 offset;
117 u16 len;
118 };
119
120 struct fwnet_partial_datagram {
121 struct list_head pd_link;
122 struct list_head fi_list;
123 struct sk_buff *skb;
124 /* FIXME Why not use skb->data? */
125 char *pbuf;
126 u16 datagram_label;
127 u16 ether_type;
128 u16 datagram_size;
129 };
130
131 static DEFINE_MUTEX(fwnet_device_mutex);
132 static LIST_HEAD(fwnet_device_list);
133
134 struct fwnet_device {
135 struct list_head dev_link;
136 spinlock_t lock;
137 enum {
138 FWNET_BROADCAST_ERROR,
139 FWNET_BROADCAST_RUNNING,
140 FWNET_BROADCAST_STOPPED,
141 } broadcast_state;
142 struct fw_iso_context *broadcast_rcv_context;
143 struct fw_iso_buffer broadcast_rcv_buffer;
144 void **broadcast_rcv_buffer_ptrs;
145 unsigned broadcast_rcv_next_ptr;
146 unsigned num_broadcast_rcv_ptrs;
147 unsigned rcv_buffer_size;
148 /*
149 * This value is the maximum unfragmented datagram size that can be
150 * sent by the hardware. It already has the GASP overhead and the
151 * unfragmented datagram header overhead calculated into it.
152 */
153 unsigned broadcast_xmt_max_payload;
154 u16 broadcast_xmt_datagramlabel;
155
156 /*
157 * The CSR address that remote nodes must send datagrams to for us to
158 * receive them.
159 */
160 struct fw_address_handler handler;
161 u64 local_fifo;
162
163 /* Number of tx datagrams that have been queued but not yet acked */
164 int queued_datagrams;
165
166 int peer_count;
167 struct list_head peer_list;
168 struct fw_card *card;
169 struct net_device *netdev;
170 };
171
172 struct fwnet_peer {
173 struct list_head peer_link;
174 struct fwnet_device *dev;
175 u64 guid;
176
177 /* guarded by dev->lock */
178 struct list_head pd_list; /* received partial datagrams */
179 unsigned pdg_size; /* pd_list size */
180
181 u16 datagram_label; /* outgoing datagram label */
182 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
183 int node_id;
184 int generation;
185 unsigned speed;
186 };
187
188 /* This is our task struct. It's used for the packet complete callback. */
189 struct fwnet_packet_task {
190 struct fw_transaction transaction;
191 struct rfc2734_header hdr;
192 struct sk_buff *skb;
193 struct fwnet_device *dev;
194
195 int outstanding_pkts;
196 u64 fifo_addr;
197 u16 dest_node;
198 u16 max_payload;
199 u8 generation;
200 u8 speed;
201 u8 enqueued;
202 };
203
204 /*
205 * saddr == NULL means use device source address.
206 * daddr == NULL means leave destination address (eg unresolved arp).
207 */
fwnet_header_create(struct sk_buff * skb,struct net_device * net,unsigned short type,const void * daddr,const void * saddr,unsigned len)208 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
209 unsigned short type, const void *daddr,
210 const void *saddr, unsigned len)
211 {
212 struct fwnet_header *h;
213
214 h = skb_push(skb, sizeof(*h));
215 put_unaligned_be16(type, &h->h_proto);
216
217 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
218 memset(h->h_dest, 0, net->addr_len);
219
220 return net->hard_header_len;
221 }
222
223 if (daddr) {
224 memcpy(h->h_dest, daddr, net->addr_len);
225
226 return net->hard_header_len;
227 }
228
229 return -net->hard_header_len;
230 }
231
fwnet_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)232 static int fwnet_header_cache(const struct neighbour *neigh,
233 struct hh_cache *hh, __be16 type)
234 {
235 struct net_device *net;
236 struct fwnet_header *h;
237
238 if (type == cpu_to_be16(ETH_P_802_3))
239 return -1;
240 net = neigh->dev;
241 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
242 h->h_proto = type;
243 memcpy(h->h_dest, neigh->ha, net->addr_len);
244
245 /* Pairs with the READ_ONCE() in neigh_resolve_output(),
246 * neigh_hh_output() and neigh_update_hhs().
247 */
248 smp_store_release(&hh->hh_len, FWNET_HLEN);
249
250 return 0;
251 }
252
253 /* Called by Address Resolution module to notify changes in address. */
fwnet_header_cache_update(struct hh_cache * hh,const struct net_device * net,const unsigned char * haddr)254 static void fwnet_header_cache_update(struct hh_cache *hh,
255 const struct net_device *net, const unsigned char *haddr)
256 {
257 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
258 }
259
fwnet_header_parse(const struct sk_buff * skb,unsigned char * haddr)260 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
261 {
262 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
263
264 return FWNET_ALEN;
265 }
266
267 static const struct header_ops fwnet_header_ops = {
268 .create = fwnet_header_create,
269 .cache = fwnet_header_cache,
270 .cache_update = fwnet_header_cache_update,
271 .parse = fwnet_header_parse,
272 };
273
274 /* FIXME: is this correct for all cases? */
fwnet_frag_overlap(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)275 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
276 unsigned offset, unsigned len)
277 {
278 struct fwnet_fragment_info *fi;
279 unsigned end = offset + len;
280
281 list_for_each_entry(fi, &pd->fi_list, fi_link)
282 if (offset < fi->offset + fi->len && end > fi->offset)
283 return true;
284
285 return false;
286 }
287
288 /* Assumes that new fragment does not overlap any existing fragments */
fwnet_frag_new(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)289 static struct fwnet_fragment_info *fwnet_frag_new(
290 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
291 {
292 struct fwnet_fragment_info *fi, *fi2, *new;
293 struct list_head *list;
294
295 list = &pd->fi_list;
296 list_for_each_entry(fi, &pd->fi_list, fi_link) {
297 if (fi->offset + fi->len == offset) {
298 /* The new fragment can be tacked on to the end */
299 /* Did the new fragment plug a hole? */
300 fi2 = list_entry(fi->fi_link.next,
301 struct fwnet_fragment_info, fi_link);
302 if (fi->offset + fi->len == fi2->offset) {
303 /* glue fragments together */
304 fi->len += len + fi2->len;
305 list_del(&fi2->fi_link);
306 kfree(fi2);
307 } else {
308 fi->len += len;
309 }
310
311 return fi;
312 }
313 if (offset + len == fi->offset) {
314 /* The new fragment can be tacked on to the beginning */
315 /* Did the new fragment plug a hole? */
316 fi2 = list_entry(fi->fi_link.prev,
317 struct fwnet_fragment_info, fi_link);
318 if (fi2->offset + fi2->len == fi->offset) {
319 /* glue fragments together */
320 fi2->len += fi->len + len;
321 list_del(&fi->fi_link);
322 kfree(fi);
323
324 return fi2;
325 }
326 fi->offset = offset;
327 fi->len += len;
328
329 return fi;
330 }
331 if (offset > fi->offset + fi->len) {
332 list = &fi->fi_link;
333 break;
334 }
335 if (offset + len < fi->offset) {
336 list = fi->fi_link.prev;
337 break;
338 }
339 }
340
341 new = kmalloc(sizeof(*new), GFP_ATOMIC);
342 if (!new)
343 return NULL;
344
345 new->offset = offset;
346 new->len = len;
347 list_add(&new->fi_link, list);
348
349 return new;
350 }
351
fwnet_pd_new(struct net_device * net,struct fwnet_peer * peer,u16 datagram_label,unsigned dg_size,void * frag_buf,unsigned frag_off,unsigned frag_len)352 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
353 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
354 void *frag_buf, unsigned frag_off, unsigned frag_len)
355 {
356 struct fwnet_partial_datagram *new;
357 struct fwnet_fragment_info *fi;
358
359 new = kmalloc(sizeof(*new), GFP_ATOMIC);
360 if (!new)
361 goto fail;
362
363 INIT_LIST_HEAD(&new->fi_list);
364 fi = fwnet_frag_new(new, frag_off, frag_len);
365 if (fi == NULL)
366 goto fail_w_new;
367
368 new->datagram_label = datagram_label;
369 new->datagram_size = dg_size;
370 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
371 if (new->skb == NULL)
372 goto fail_w_fi;
373
374 skb_reserve(new->skb, LL_RESERVED_SPACE(net));
375 new->pbuf = skb_put(new->skb, dg_size);
376 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
377 list_add_tail(&new->pd_link, &peer->pd_list);
378
379 return new;
380
381 fail_w_fi:
382 kfree(fi);
383 fail_w_new:
384 kfree(new);
385 fail:
386 return NULL;
387 }
388
fwnet_pd_find(struct fwnet_peer * peer,u16 datagram_label)389 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
390 u16 datagram_label)
391 {
392 struct fwnet_partial_datagram *pd;
393
394 list_for_each_entry(pd, &peer->pd_list, pd_link)
395 if (pd->datagram_label == datagram_label)
396 return pd;
397
398 return NULL;
399 }
400
401
fwnet_pd_delete(struct fwnet_partial_datagram * old)402 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
403 {
404 struct fwnet_fragment_info *fi, *n;
405
406 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
407 kfree(fi);
408
409 list_del(&old->pd_link);
410 dev_kfree_skb_any(old->skb);
411 kfree(old);
412 }
413
fwnet_pd_update(struct fwnet_peer * peer,struct fwnet_partial_datagram * pd,void * frag_buf,unsigned frag_off,unsigned frag_len)414 static bool fwnet_pd_update(struct fwnet_peer *peer,
415 struct fwnet_partial_datagram *pd, void *frag_buf,
416 unsigned frag_off, unsigned frag_len)
417 {
418 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
419 return false;
420
421 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
422
423 /*
424 * Move list entry to beginning of list so that oldest partial
425 * datagrams percolate to the end of the list
426 */
427 list_move_tail(&pd->pd_link, &peer->pd_list);
428
429 return true;
430 }
431
fwnet_pd_is_complete(struct fwnet_partial_datagram * pd)432 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
433 {
434 struct fwnet_fragment_info *fi;
435
436 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
437
438 return fi->len == pd->datagram_size;
439 }
440
441 /* caller must hold dev->lock */
fwnet_peer_find_by_guid(struct fwnet_device * dev,u64 guid)442 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
443 u64 guid)
444 {
445 struct fwnet_peer *peer;
446
447 list_for_each_entry(peer, &dev->peer_list, peer_link)
448 if (peer->guid == guid)
449 return peer;
450
451 return NULL;
452 }
453
454 /* caller must hold dev->lock */
fwnet_peer_find_by_node_id(struct fwnet_device * dev,int node_id,int generation)455 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
456 int node_id, int generation)
457 {
458 struct fwnet_peer *peer;
459
460 list_for_each_entry(peer, &dev->peer_list, peer_link)
461 if (peer->node_id == node_id &&
462 peer->generation == generation)
463 return peer;
464
465 return NULL;
466 }
467
468 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
fwnet_max_payload(unsigned max_rec,unsigned speed)469 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
470 {
471 max_rec = min(max_rec, speed + 8);
472 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
473
474 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
475 }
476
477
fwnet_finish_incoming_packet(struct net_device * net,struct sk_buff * skb,u16 source_node_id,bool is_broadcast,u16 ether_type)478 static int fwnet_finish_incoming_packet(struct net_device *net,
479 struct sk_buff *skb, u16 source_node_id,
480 bool is_broadcast, u16 ether_type)
481 {
482 int status;
483
484 switch (ether_type) {
485 case ETH_P_ARP:
486 case ETH_P_IP:
487 #if IS_ENABLED(CONFIG_IPV6)
488 case ETH_P_IPV6:
489 #endif
490 break;
491 default:
492 goto err;
493 }
494
495 /* Write metadata, and then pass to the receive level */
496 skb->dev = net;
497 skb->ip_summed = CHECKSUM_NONE;
498
499 /*
500 * Parse the encapsulation header. This actually does the job of
501 * converting to an ethernet-like pseudo frame header.
502 */
503 if (dev_hard_header(skb, net, ether_type,
504 is_broadcast ? net->broadcast : net->dev_addr,
505 NULL, skb->len) >= 0) {
506 struct fwnet_header *eth;
507 u16 *rawp;
508 __be16 protocol;
509
510 skb_reset_mac_header(skb);
511 skb_pull(skb, sizeof(*eth));
512 eth = (struct fwnet_header *)skb_mac_header(skb);
513 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
514 if (memcmp(eth->h_dest, net->broadcast,
515 net->addr_len) == 0)
516 skb->pkt_type = PACKET_BROADCAST;
517 #if 0
518 else
519 skb->pkt_type = PACKET_MULTICAST;
520 #endif
521 } else {
522 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
523 skb->pkt_type = PACKET_OTHERHOST;
524 }
525 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
526 protocol = eth->h_proto;
527 } else {
528 rawp = (u16 *)skb->data;
529 if (*rawp == 0xffff)
530 protocol = htons(ETH_P_802_3);
531 else
532 protocol = htons(ETH_P_802_2);
533 }
534 skb->protocol = protocol;
535 }
536 status = netif_rx(skb);
537 if (status == NET_RX_DROP) {
538 net->stats.rx_errors++;
539 net->stats.rx_dropped++;
540 } else {
541 net->stats.rx_packets++;
542 net->stats.rx_bytes += skb->len;
543 }
544
545 return 0;
546
547 err:
548 net->stats.rx_errors++;
549 net->stats.rx_dropped++;
550
551 dev_kfree_skb_any(skb);
552
553 return -ENOENT;
554 }
555
fwnet_incoming_packet(struct fwnet_device * dev,__be32 * buf,int len,int source_node_id,int generation,bool is_broadcast)556 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
557 int source_node_id, int generation,
558 bool is_broadcast)
559 {
560 struct sk_buff *skb;
561 struct net_device *net = dev->netdev;
562 struct rfc2734_header hdr;
563 unsigned lf;
564 unsigned long flags;
565 struct fwnet_peer *peer;
566 struct fwnet_partial_datagram *pd;
567 int fg_off;
568 int dg_size;
569 u16 datagram_label;
570 int retval;
571 u16 ether_type;
572
573 if (len <= RFC2374_UNFRAG_HDR_SIZE)
574 return 0;
575
576 hdr.w0 = be32_to_cpu(buf[0]);
577 lf = fwnet_get_hdr_lf(&hdr);
578 if (lf == RFC2374_HDR_UNFRAG) {
579 /*
580 * An unfragmented datagram has been received by the ieee1394
581 * bus. Build an skbuff around it so we can pass it to the
582 * high level network layer.
583 */
584 ether_type = fwnet_get_hdr_ether_type(&hdr);
585 buf++;
586 len -= RFC2374_UNFRAG_HDR_SIZE;
587
588 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
589 if (unlikely(!skb)) {
590 net->stats.rx_dropped++;
591
592 return -ENOMEM;
593 }
594 skb_reserve(skb, LL_RESERVED_SPACE(net));
595 skb_put_data(skb, buf, len);
596
597 return fwnet_finish_incoming_packet(net, skb, source_node_id,
598 is_broadcast, ether_type);
599 }
600
601 /* A datagram fragment has been received, now the fun begins. */
602
603 if (len <= RFC2374_FRAG_HDR_SIZE)
604 return 0;
605
606 hdr.w1 = ntohl(buf[1]);
607 buf += 2;
608 len -= RFC2374_FRAG_HDR_SIZE;
609 if (lf == RFC2374_HDR_FIRSTFRAG) {
610 ether_type = fwnet_get_hdr_ether_type(&hdr);
611 fg_off = 0;
612 } else {
613 ether_type = 0;
614 fg_off = fwnet_get_hdr_fg_off(&hdr);
615 }
616 datagram_label = fwnet_get_hdr_dgl(&hdr);
617 dg_size = fwnet_get_hdr_dg_size(&hdr);
618
619 if (fg_off + len > dg_size)
620 return 0;
621
622 spin_lock_irqsave(&dev->lock, flags);
623
624 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
625 if (!peer) {
626 retval = -ENOENT;
627 goto fail;
628 }
629
630 pd = fwnet_pd_find(peer, datagram_label);
631 if (pd == NULL) {
632 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
633 /* remove the oldest */
634 fwnet_pd_delete(list_first_entry(&peer->pd_list,
635 struct fwnet_partial_datagram, pd_link));
636 peer->pdg_size--;
637 }
638 pd = fwnet_pd_new(net, peer, datagram_label,
639 dg_size, buf, fg_off, len);
640 if (pd == NULL) {
641 retval = -ENOMEM;
642 goto fail;
643 }
644 peer->pdg_size++;
645 } else {
646 if (fwnet_frag_overlap(pd, fg_off, len) ||
647 pd->datagram_size != dg_size) {
648 /*
649 * Differing datagram sizes or overlapping fragments,
650 * discard old datagram and start a new one.
651 */
652 fwnet_pd_delete(pd);
653 pd = fwnet_pd_new(net, peer, datagram_label,
654 dg_size, buf, fg_off, len);
655 if (pd == NULL) {
656 peer->pdg_size--;
657 retval = -ENOMEM;
658 goto fail;
659 }
660 } else {
661 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
662 /*
663 * Couldn't save off fragment anyway
664 * so might as well obliterate the
665 * datagram now.
666 */
667 fwnet_pd_delete(pd);
668 peer->pdg_size--;
669 retval = -ENOMEM;
670 goto fail;
671 }
672 }
673 } /* new datagram or add to existing one */
674
675 if (lf == RFC2374_HDR_FIRSTFRAG)
676 pd->ether_type = ether_type;
677
678 if (fwnet_pd_is_complete(pd)) {
679 ether_type = pd->ether_type;
680 peer->pdg_size--;
681 skb = skb_get(pd->skb);
682 fwnet_pd_delete(pd);
683
684 spin_unlock_irqrestore(&dev->lock, flags);
685
686 return fwnet_finish_incoming_packet(net, skb, source_node_id,
687 false, ether_type);
688 }
689 /*
690 * Datagram is not complete, we're done for the
691 * moment.
692 */
693 retval = 0;
694 fail:
695 spin_unlock_irqrestore(&dev->lock, flags);
696
697 return retval;
698 }
699
fwnet_receive_packet(struct fw_card * card,struct fw_request * r,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)700 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
701 int tcode, int destination, int source, int generation,
702 unsigned long long offset, void *payload, size_t length,
703 void *callback_data)
704 {
705 struct fwnet_device *dev = callback_data;
706 int rcode;
707
708 if (destination == IEEE1394_ALL_NODES) {
709 kfree(r);
710
711 return;
712 }
713
714 if (offset != dev->handler.offset)
715 rcode = RCODE_ADDRESS_ERROR;
716 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
717 rcode = RCODE_TYPE_ERROR;
718 else if (fwnet_incoming_packet(dev, payload, length,
719 source, generation, false) != 0) {
720 dev_err(&dev->netdev->dev, "incoming packet failure\n");
721 rcode = RCODE_CONFLICT_ERROR;
722 } else
723 rcode = RCODE_COMPLETE;
724
725 fw_send_response(card, r, rcode);
726 }
727
gasp_source_id(__be32 * p)728 static int gasp_source_id(__be32 *p)
729 {
730 return be32_to_cpu(p[0]) >> 16;
731 }
732
gasp_specifier_id(__be32 * p)733 static u32 gasp_specifier_id(__be32 *p)
734 {
735 return (be32_to_cpu(p[0]) & 0xffff) << 8 |
736 (be32_to_cpu(p[1]) & 0xff000000) >> 24;
737 }
738
gasp_version(__be32 * p)739 static u32 gasp_version(__be32 *p)
740 {
741 return be32_to_cpu(p[1]) & 0xffffff;
742 }
743
fwnet_receive_broadcast(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * data)744 static void fwnet_receive_broadcast(struct fw_iso_context *context,
745 u32 cycle, size_t header_length, void *header, void *data)
746 {
747 struct fwnet_device *dev;
748 struct fw_iso_packet packet;
749 __be16 *hdr_ptr;
750 __be32 *buf_ptr;
751 int retval;
752 u32 length;
753 unsigned long offset;
754 unsigned long flags;
755
756 dev = data;
757 hdr_ptr = header;
758 length = be16_to_cpup(hdr_ptr);
759
760 spin_lock_irqsave(&dev->lock, flags);
761
762 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
763 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
764 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
765 dev->broadcast_rcv_next_ptr = 0;
766
767 spin_unlock_irqrestore(&dev->lock, flags);
768
769 if (length > IEEE1394_GASP_HDR_SIZE &&
770 gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
771 (gasp_version(buf_ptr) == RFC2734_SW_VERSION
772 #if IS_ENABLED(CONFIG_IPV6)
773 || gasp_version(buf_ptr) == RFC3146_SW_VERSION
774 #endif
775 ))
776 fwnet_incoming_packet(dev, buf_ptr + 2,
777 length - IEEE1394_GASP_HDR_SIZE,
778 gasp_source_id(buf_ptr),
779 context->card->generation, true);
780
781 packet.payload_length = dev->rcv_buffer_size;
782 packet.interrupt = 1;
783 packet.skip = 0;
784 packet.tag = 3;
785 packet.sy = 0;
786 packet.header_length = IEEE1394_GASP_HDR_SIZE;
787
788 spin_lock_irqsave(&dev->lock, flags);
789
790 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
791 &dev->broadcast_rcv_buffer, offset);
792
793 spin_unlock_irqrestore(&dev->lock, flags);
794
795 if (retval >= 0)
796 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
797 else
798 dev_err(&dev->netdev->dev, "requeue failed\n");
799 }
800
801 static struct kmem_cache *fwnet_packet_task_cache;
802
fwnet_free_ptask(struct fwnet_packet_task * ptask)803 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
804 {
805 dev_kfree_skb_any(ptask->skb);
806 kmem_cache_free(fwnet_packet_task_cache, ptask);
807 }
808
809 /* Caller must hold dev->lock. */
dec_queued_datagrams(struct fwnet_device * dev)810 static void dec_queued_datagrams(struct fwnet_device *dev)
811 {
812 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
813 netif_wake_queue(dev->netdev);
814 }
815
816 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
817
fwnet_transmit_packet_done(struct fwnet_packet_task * ptask)818 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
819 {
820 struct fwnet_device *dev = ptask->dev;
821 struct sk_buff *skb = ptask->skb;
822 unsigned long flags;
823 bool free;
824
825 spin_lock_irqsave(&dev->lock, flags);
826
827 ptask->outstanding_pkts--;
828
829 /* Check whether we or the networking TX soft-IRQ is last user. */
830 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
831 if (free)
832 dec_queued_datagrams(dev);
833
834 if (ptask->outstanding_pkts == 0) {
835 dev->netdev->stats.tx_packets++;
836 dev->netdev->stats.tx_bytes += skb->len;
837 }
838
839 spin_unlock_irqrestore(&dev->lock, flags);
840
841 if (ptask->outstanding_pkts > 0) {
842 u16 dg_size;
843 u16 fg_off;
844 u16 datagram_label;
845 u16 lf;
846
847 /* Update the ptask to point to the next fragment and send it */
848 lf = fwnet_get_hdr_lf(&ptask->hdr);
849 switch (lf) {
850 case RFC2374_HDR_LASTFRAG:
851 case RFC2374_HDR_UNFRAG:
852 default:
853 dev_err(&dev->netdev->dev,
854 "outstanding packet %x lf %x, header %x,%x\n",
855 ptask->outstanding_pkts, lf, ptask->hdr.w0,
856 ptask->hdr.w1);
857 BUG();
858
859 case RFC2374_HDR_FIRSTFRAG:
860 /* Set frag type here for future interior fragments */
861 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
862 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
863 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
864 break;
865
866 case RFC2374_HDR_INTFRAG:
867 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
868 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
869 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
870 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
871 break;
872 }
873
874 if (ptask->dest_node == IEEE1394_ALL_NODES) {
875 skb_pull(skb,
876 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
877 } else {
878 skb_pull(skb, ptask->max_payload);
879 }
880 if (ptask->outstanding_pkts > 1) {
881 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
882 dg_size, fg_off, datagram_label);
883 } else {
884 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
885 dg_size, fg_off, datagram_label);
886 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
887 }
888 fwnet_send_packet(ptask);
889 }
890
891 if (free)
892 fwnet_free_ptask(ptask);
893 }
894
fwnet_transmit_packet_failed(struct fwnet_packet_task * ptask)895 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
896 {
897 struct fwnet_device *dev = ptask->dev;
898 unsigned long flags;
899 bool free;
900
901 spin_lock_irqsave(&dev->lock, flags);
902
903 /* One fragment failed; don't try to send remaining fragments. */
904 ptask->outstanding_pkts = 0;
905
906 /* Check whether we or the networking TX soft-IRQ is last user. */
907 free = ptask->enqueued;
908 if (free)
909 dec_queued_datagrams(dev);
910
911 dev->netdev->stats.tx_dropped++;
912 dev->netdev->stats.tx_errors++;
913
914 spin_unlock_irqrestore(&dev->lock, flags);
915
916 if (free)
917 fwnet_free_ptask(ptask);
918 }
919
fwnet_write_complete(struct fw_card * card,int rcode,void * payload,size_t length,void * data)920 static void fwnet_write_complete(struct fw_card *card, int rcode,
921 void *payload, size_t length, void *data)
922 {
923 struct fwnet_packet_task *ptask = data;
924 static unsigned long j;
925 static int last_rcode, errors_skipped;
926
927 if (rcode == RCODE_COMPLETE) {
928 fwnet_transmit_packet_done(ptask);
929 } else {
930 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
931 dev_err(&ptask->dev->netdev->dev,
932 "fwnet_write_complete failed: %x (skipped %d)\n",
933 rcode, errors_skipped);
934
935 errors_skipped = 0;
936 last_rcode = rcode;
937 } else {
938 errors_skipped++;
939 }
940 fwnet_transmit_packet_failed(ptask);
941 }
942 }
943
fwnet_send_packet(struct fwnet_packet_task * ptask)944 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
945 {
946 struct fwnet_device *dev;
947 unsigned tx_len;
948 struct rfc2734_header *bufhdr;
949 unsigned long flags;
950 bool free;
951
952 dev = ptask->dev;
953 tx_len = ptask->max_payload;
954 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
955 case RFC2374_HDR_UNFRAG:
956 bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
957 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
958 break;
959
960 case RFC2374_HDR_FIRSTFRAG:
961 case RFC2374_HDR_INTFRAG:
962 case RFC2374_HDR_LASTFRAG:
963 bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
964 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
965 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
966 break;
967
968 default:
969 BUG();
970 }
971 if (ptask->dest_node == IEEE1394_ALL_NODES) {
972 u8 *p;
973 int generation;
974 int node_id;
975 unsigned int sw_version;
976
977 /* ptask->generation may not have been set yet */
978 generation = dev->card->generation;
979 smp_rmb();
980 node_id = dev->card->node_id;
981
982 switch (ptask->skb->protocol) {
983 default:
984 sw_version = RFC2734_SW_VERSION;
985 break;
986 #if IS_ENABLED(CONFIG_IPV6)
987 case htons(ETH_P_IPV6):
988 sw_version = RFC3146_SW_VERSION;
989 #endif
990 }
991
992 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
993 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
994 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
995 | sw_version, &p[4]);
996
997 /* We should not transmit if broadcast_channel.valid == 0. */
998 fw_send_request(dev->card, &ptask->transaction,
999 TCODE_STREAM_DATA,
1000 fw_stream_packet_destination_id(3,
1001 IEEE1394_BROADCAST_CHANNEL, 0),
1002 generation, SCODE_100, 0ULL, ptask->skb->data,
1003 tx_len + 8, fwnet_write_complete, ptask);
1004
1005 spin_lock_irqsave(&dev->lock, flags);
1006
1007 /* If the AT tasklet already ran, we may be last user. */
1008 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1009 if (!free)
1010 ptask->enqueued = true;
1011 else
1012 dec_queued_datagrams(dev);
1013
1014 spin_unlock_irqrestore(&dev->lock, flags);
1015
1016 goto out;
1017 }
1018
1019 fw_send_request(dev->card, &ptask->transaction,
1020 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1021 ptask->generation, ptask->speed, ptask->fifo_addr,
1022 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1023
1024 spin_lock_irqsave(&dev->lock, flags);
1025
1026 /* If the AT tasklet already ran, we may be last user. */
1027 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1028 if (!free)
1029 ptask->enqueued = true;
1030 else
1031 dec_queued_datagrams(dev);
1032
1033 spin_unlock_irqrestore(&dev->lock, flags);
1034
1035 netif_trans_update(dev->netdev);
1036 out:
1037 if (free)
1038 fwnet_free_ptask(ptask);
1039
1040 return 0;
1041 }
1042
fwnet_fifo_stop(struct fwnet_device * dev)1043 static void fwnet_fifo_stop(struct fwnet_device *dev)
1044 {
1045 if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1046 return;
1047
1048 fw_core_remove_address_handler(&dev->handler);
1049 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1050 }
1051
fwnet_fifo_start(struct fwnet_device * dev)1052 static int fwnet_fifo_start(struct fwnet_device *dev)
1053 {
1054 int retval;
1055
1056 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1057 return 0;
1058
1059 dev->handler.length = 4096;
1060 dev->handler.address_callback = fwnet_receive_packet;
1061 dev->handler.callback_data = dev;
1062
1063 retval = fw_core_add_address_handler(&dev->handler,
1064 &fw_high_memory_region);
1065 if (retval < 0)
1066 return retval;
1067
1068 dev->local_fifo = dev->handler.offset;
1069
1070 return 0;
1071 }
1072
__fwnet_broadcast_stop(struct fwnet_device * dev)1073 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1074 {
1075 unsigned u;
1076
1077 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1078 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1079 kunmap(dev->broadcast_rcv_buffer.pages[u]);
1080 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1081 }
1082 if (dev->broadcast_rcv_context) {
1083 fw_iso_context_destroy(dev->broadcast_rcv_context);
1084 dev->broadcast_rcv_context = NULL;
1085 }
1086 kfree(dev->broadcast_rcv_buffer_ptrs);
1087 dev->broadcast_rcv_buffer_ptrs = NULL;
1088 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1089 }
1090
fwnet_broadcast_stop(struct fwnet_device * dev)1091 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1092 {
1093 if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1094 return;
1095 fw_iso_context_stop(dev->broadcast_rcv_context);
1096 __fwnet_broadcast_stop(dev);
1097 }
1098
fwnet_broadcast_start(struct fwnet_device * dev)1099 static int fwnet_broadcast_start(struct fwnet_device *dev)
1100 {
1101 struct fw_iso_context *context;
1102 int retval;
1103 unsigned num_packets;
1104 unsigned max_receive;
1105 struct fw_iso_packet packet;
1106 unsigned long offset;
1107 void **ptrptr;
1108 unsigned u;
1109
1110 if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1111 return 0;
1112
1113 max_receive = 1U << (dev->card->max_receive + 1);
1114 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1115
1116 ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1117 if (!ptrptr) {
1118 retval = -ENOMEM;
1119 goto failed;
1120 }
1121 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1122
1123 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1124 IEEE1394_BROADCAST_CHANNEL,
1125 dev->card->link_speed, 8,
1126 fwnet_receive_broadcast, dev);
1127 if (IS_ERR(context)) {
1128 retval = PTR_ERR(context);
1129 goto failed;
1130 }
1131
1132 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1133 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1134 if (retval < 0)
1135 goto failed;
1136
1137 dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1138
1139 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1140 void *ptr;
1141 unsigned v;
1142
1143 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1144 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1145 *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1146 }
1147 dev->broadcast_rcv_context = context;
1148
1149 packet.payload_length = max_receive;
1150 packet.interrupt = 1;
1151 packet.skip = 0;
1152 packet.tag = 3;
1153 packet.sy = 0;
1154 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1155 offset = 0;
1156
1157 for (u = 0; u < num_packets; u++) {
1158 retval = fw_iso_context_queue(context, &packet,
1159 &dev->broadcast_rcv_buffer, offset);
1160 if (retval < 0)
1161 goto failed;
1162
1163 offset += max_receive;
1164 }
1165 dev->num_broadcast_rcv_ptrs = num_packets;
1166 dev->rcv_buffer_size = max_receive;
1167 dev->broadcast_rcv_next_ptr = 0U;
1168 retval = fw_iso_context_start(context, -1, 0,
1169 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1170 if (retval < 0)
1171 goto failed;
1172
1173 /* FIXME: adjust it according to the min. speed of all known peers? */
1174 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1175 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1176 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1177
1178 return 0;
1179
1180 failed:
1181 __fwnet_broadcast_stop(dev);
1182 return retval;
1183 }
1184
set_carrier_state(struct fwnet_device * dev)1185 static void set_carrier_state(struct fwnet_device *dev)
1186 {
1187 if (dev->peer_count > 1)
1188 netif_carrier_on(dev->netdev);
1189 else
1190 netif_carrier_off(dev->netdev);
1191 }
1192
1193 /* ifup */
fwnet_open(struct net_device * net)1194 static int fwnet_open(struct net_device *net)
1195 {
1196 struct fwnet_device *dev = netdev_priv(net);
1197 int ret;
1198
1199 ret = fwnet_broadcast_start(dev);
1200 if (ret)
1201 return ret;
1202
1203 netif_start_queue(net);
1204
1205 spin_lock_irq(&dev->lock);
1206 set_carrier_state(dev);
1207 spin_unlock_irq(&dev->lock);
1208
1209 return 0;
1210 }
1211
1212 /* ifdown */
fwnet_stop(struct net_device * net)1213 static int fwnet_stop(struct net_device *net)
1214 {
1215 struct fwnet_device *dev = netdev_priv(net);
1216
1217 netif_stop_queue(net);
1218 fwnet_broadcast_stop(dev);
1219
1220 return 0;
1221 }
1222
fwnet_tx(struct sk_buff * skb,struct net_device * net)1223 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1224 {
1225 struct fwnet_header hdr_buf;
1226 struct fwnet_device *dev = netdev_priv(net);
1227 __be16 proto;
1228 u16 dest_node;
1229 unsigned max_payload;
1230 u16 dg_size;
1231 u16 *datagram_label_ptr;
1232 struct fwnet_packet_task *ptask;
1233 struct fwnet_peer *peer;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&dev->lock, flags);
1237
1238 /* Can this happen? */
1239 if (netif_queue_stopped(dev->netdev)) {
1240 spin_unlock_irqrestore(&dev->lock, flags);
1241
1242 return NETDEV_TX_BUSY;
1243 }
1244
1245 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1246 if (ptask == NULL)
1247 goto fail;
1248
1249 skb = skb_share_check(skb, GFP_ATOMIC);
1250 if (!skb)
1251 goto fail;
1252
1253 /*
1254 * Make a copy of the driver-specific header.
1255 * We might need to rebuild the header on tx failure.
1256 */
1257 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1258 proto = hdr_buf.h_proto;
1259
1260 switch (proto) {
1261 case htons(ETH_P_ARP):
1262 case htons(ETH_P_IP):
1263 #if IS_ENABLED(CONFIG_IPV6)
1264 case htons(ETH_P_IPV6):
1265 #endif
1266 break;
1267 default:
1268 goto fail;
1269 }
1270
1271 skb_pull(skb, sizeof(hdr_buf));
1272 dg_size = skb->len;
1273
1274 /*
1275 * Set the transmission type for the packet. ARP packets and IP
1276 * broadcast packets are sent via GASP.
1277 */
1278 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1279 max_payload = dev->broadcast_xmt_max_payload;
1280 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1281
1282 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1283 ptask->generation = 0;
1284 ptask->dest_node = IEEE1394_ALL_NODES;
1285 ptask->speed = SCODE_100;
1286 } else {
1287 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1288 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1289 u8 generation;
1290
1291 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1292 if (!peer)
1293 goto fail;
1294
1295 generation = peer->generation;
1296 dest_node = peer->node_id;
1297 max_payload = peer->max_payload;
1298 datagram_label_ptr = &peer->datagram_label;
1299
1300 ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo);
1301 ptask->generation = generation;
1302 ptask->dest_node = dest_node;
1303 ptask->speed = peer->speed;
1304 }
1305
1306 ptask->hdr.w0 = 0;
1307 ptask->hdr.w1 = 0;
1308 ptask->skb = skb;
1309 ptask->dev = dev;
1310
1311 /* Does it all fit in one packet? */
1312 if (dg_size <= max_payload) {
1313 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1314 ptask->outstanding_pkts = 1;
1315 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1316 } else {
1317 u16 datagram_label;
1318
1319 max_payload -= RFC2374_FRAG_OVERHEAD;
1320 datagram_label = (*datagram_label_ptr)++;
1321 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1322 datagram_label);
1323 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1324 max_payload += RFC2374_FRAG_HDR_SIZE;
1325 }
1326
1327 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1328 netif_stop_queue(dev->netdev);
1329
1330 spin_unlock_irqrestore(&dev->lock, flags);
1331
1332 ptask->max_payload = max_payload;
1333 ptask->enqueued = 0;
1334
1335 fwnet_send_packet(ptask);
1336
1337 return NETDEV_TX_OK;
1338
1339 fail:
1340 spin_unlock_irqrestore(&dev->lock, flags);
1341
1342 if (ptask)
1343 kmem_cache_free(fwnet_packet_task_cache, ptask);
1344
1345 if (skb != NULL)
1346 dev_kfree_skb(skb);
1347
1348 net->stats.tx_dropped++;
1349 net->stats.tx_errors++;
1350
1351 /*
1352 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1353 * causes serious problems" here, allegedly. Before that patch,
1354 * -ERRNO was returned which is not appropriate under Linux 2.6.
1355 * Perhaps more needs to be done? Stop the queue in serious
1356 * conditions and restart it elsewhere?
1357 */
1358 return NETDEV_TX_OK;
1359 }
1360
1361 static const struct ethtool_ops fwnet_ethtool_ops = {
1362 .get_link = ethtool_op_get_link,
1363 };
1364
1365 static const struct net_device_ops fwnet_netdev_ops = {
1366 .ndo_open = fwnet_open,
1367 .ndo_stop = fwnet_stop,
1368 .ndo_start_xmit = fwnet_tx,
1369 };
1370
fwnet_init_dev(struct net_device * net)1371 static void fwnet_init_dev(struct net_device *net)
1372 {
1373 net->header_ops = &fwnet_header_ops;
1374 net->netdev_ops = &fwnet_netdev_ops;
1375 net->watchdog_timeo = 2 * HZ;
1376 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1377 net->features = NETIF_F_HIGHDMA;
1378 net->addr_len = FWNET_ALEN;
1379 net->hard_header_len = FWNET_HLEN;
1380 net->type = ARPHRD_IEEE1394;
1381 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1382 net->ethtool_ops = &fwnet_ethtool_ops;
1383 }
1384
1385 /* caller must hold fwnet_device_mutex */
fwnet_dev_find(struct fw_card * card)1386 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1387 {
1388 struct fwnet_device *dev;
1389
1390 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1391 if (dev->card == card)
1392 return dev;
1393
1394 return NULL;
1395 }
1396
fwnet_add_peer(struct fwnet_device * dev,struct fw_unit * unit,struct fw_device * device)1397 static int fwnet_add_peer(struct fwnet_device *dev,
1398 struct fw_unit *unit, struct fw_device *device)
1399 {
1400 struct fwnet_peer *peer;
1401
1402 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1403 if (!peer)
1404 return -ENOMEM;
1405
1406 dev_set_drvdata(&unit->device, peer);
1407
1408 peer->dev = dev;
1409 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1410 INIT_LIST_HEAD(&peer->pd_list);
1411 peer->pdg_size = 0;
1412 peer->datagram_label = 0;
1413 peer->speed = device->max_speed;
1414 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1415
1416 peer->generation = device->generation;
1417 smp_rmb();
1418 peer->node_id = device->node_id;
1419
1420 spin_lock_irq(&dev->lock);
1421 list_add_tail(&peer->peer_link, &dev->peer_list);
1422 dev->peer_count++;
1423 set_carrier_state(dev);
1424 spin_unlock_irq(&dev->lock);
1425
1426 return 0;
1427 }
1428
fwnet_probe(struct fw_unit * unit,const struct ieee1394_device_id * id)1429 static int fwnet_probe(struct fw_unit *unit,
1430 const struct ieee1394_device_id *id)
1431 {
1432 struct fw_device *device = fw_parent_device(unit);
1433 struct fw_card *card = device->card;
1434 struct net_device *net;
1435 bool allocated_netdev = false;
1436 struct fwnet_device *dev;
1437 union fwnet_hwaddr ha;
1438 int ret;
1439
1440 mutex_lock(&fwnet_device_mutex);
1441
1442 dev = fwnet_dev_find(card);
1443 if (dev) {
1444 net = dev->netdev;
1445 goto have_dev;
1446 }
1447
1448 net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1449 fwnet_init_dev);
1450 if (net == NULL) {
1451 mutex_unlock(&fwnet_device_mutex);
1452 return -ENOMEM;
1453 }
1454
1455 allocated_netdev = true;
1456 SET_NETDEV_DEV(net, card->device);
1457 dev = netdev_priv(net);
1458
1459 spin_lock_init(&dev->lock);
1460 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1461 dev->broadcast_rcv_context = NULL;
1462 dev->broadcast_xmt_max_payload = 0;
1463 dev->broadcast_xmt_datagramlabel = 0;
1464 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1465 dev->queued_datagrams = 0;
1466 INIT_LIST_HEAD(&dev->peer_list);
1467 dev->card = card;
1468 dev->netdev = net;
1469
1470 ret = fwnet_fifo_start(dev);
1471 if (ret < 0)
1472 goto out;
1473 dev->local_fifo = dev->handler.offset;
1474
1475 /*
1476 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1477 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1478 * maximum possible datagram_size + 1 = 0xfff + 1
1479 */
1480 net->mtu = 1500U;
1481 net->min_mtu = ETH_MIN_MTU;
1482 net->max_mtu = 4096U;
1483
1484 /* Set our hardware address while we're at it */
1485 ha.uc.uniq_id = cpu_to_be64(card->guid);
1486 ha.uc.max_rec = dev->card->max_receive;
1487 ha.uc.sspd = dev->card->link_speed;
1488 put_unaligned_be48(dev->local_fifo, ha.uc.fifo);
1489 dev_addr_set(net, ha.u);
1490
1491 memset(net->broadcast, -1, net->addr_len);
1492
1493 ret = register_netdev(net);
1494 if (ret)
1495 goto out;
1496
1497 list_add_tail(&dev->dev_link, &fwnet_device_list);
1498 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1499 dev_name(card->device));
1500 have_dev:
1501 ret = fwnet_add_peer(dev, unit, device);
1502 if (ret && allocated_netdev) {
1503 unregister_netdev(net);
1504 list_del(&dev->dev_link);
1505 out:
1506 fwnet_fifo_stop(dev);
1507 free_netdev(net);
1508 }
1509
1510 mutex_unlock(&fwnet_device_mutex);
1511
1512 return ret;
1513 }
1514
1515 /*
1516 * FIXME abort partially sent fragmented datagrams,
1517 * discard partially received fragmented datagrams
1518 */
fwnet_update(struct fw_unit * unit)1519 static void fwnet_update(struct fw_unit *unit)
1520 {
1521 struct fw_device *device = fw_parent_device(unit);
1522 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1523 int generation;
1524
1525 generation = device->generation;
1526
1527 spin_lock_irq(&peer->dev->lock);
1528 peer->node_id = device->node_id;
1529 peer->generation = generation;
1530 spin_unlock_irq(&peer->dev->lock);
1531 }
1532
fwnet_remove_peer(struct fwnet_peer * peer,struct fwnet_device * dev)1533 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1534 {
1535 struct fwnet_partial_datagram *pd, *pd_next;
1536
1537 spin_lock_irq(&dev->lock);
1538 list_del(&peer->peer_link);
1539 dev->peer_count--;
1540 set_carrier_state(dev);
1541 spin_unlock_irq(&dev->lock);
1542
1543 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1544 fwnet_pd_delete(pd);
1545
1546 kfree(peer);
1547 }
1548
fwnet_remove(struct fw_unit * unit)1549 static void fwnet_remove(struct fw_unit *unit)
1550 {
1551 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1552 struct fwnet_device *dev = peer->dev;
1553 struct net_device *net;
1554 int i;
1555
1556 mutex_lock(&fwnet_device_mutex);
1557
1558 net = dev->netdev;
1559
1560 fwnet_remove_peer(peer, dev);
1561
1562 if (list_empty(&dev->peer_list)) {
1563 unregister_netdev(net);
1564
1565 fwnet_fifo_stop(dev);
1566
1567 for (i = 0; dev->queued_datagrams && i < 5; i++)
1568 ssleep(1);
1569 WARN_ON(dev->queued_datagrams);
1570 list_del(&dev->dev_link);
1571
1572 free_netdev(net);
1573 }
1574
1575 mutex_unlock(&fwnet_device_mutex);
1576 }
1577
1578 static const struct ieee1394_device_id fwnet_id_table[] = {
1579 {
1580 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1581 IEEE1394_MATCH_VERSION,
1582 .specifier_id = IANA_SPECIFIER_ID,
1583 .version = RFC2734_SW_VERSION,
1584 },
1585 #if IS_ENABLED(CONFIG_IPV6)
1586 {
1587 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1588 IEEE1394_MATCH_VERSION,
1589 .specifier_id = IANA_SPECIFIER_ID,
1590 .version = RFC3146_SW_VERSION,
1591 },
1592 #endif
1593 { }
1594 };
1595
1596 static struct fw_driver fwnet_driver = {
1597 .driver = {
1598 .owner = THIS_MODULE,
1599 .name = KBUILD_MODNAME,
1600 .bus = &fw_bus_type,
1601 },
1602 .probe = fwnet_probe,
1603 .update = fwnet_update,
1604 .remove = fwnet_remove,
1605 .id_table = fwnet_id_table,
1606 };
1607
1608 static const u32 rfc2374_unit_directory_data[] = {
1609 0x00040000, /* directory_length */
1610 0x1200005e, /* unit_specifier_id: IANA */
1611 0x81000003, /* textual descriptor offset */
1612 0x13000001, /* unit_sw_version: RFC 2734 */
1613 0x81000005, /* textual descriptor offset */
1614 0x00030000, /* descriptor_length */
1615 0x00000000, /* text */
1616 0x00000000, /* minimal ASCII, en */
1617 0x49414e41, /* I A N A */
1618 0x00030000, /* descriptor_length */
1619 0x00000000, /* text */
1620 0x00000000, /* minimal ASCII, en */
1621 0x49507634, /* I P v 4 */
1622 };
1623
1624 static struct fw_descriptor rfc2374_unit_directory = {
1625 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1626 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1627 .data = rfc2374_unit_directory_data
1628 };
1629
1630 #if IS_ENABLED(CONFIG_IPV6)
1631 static const u32 rfc3146_unit_directory_data[] = {
1632 0x00040000, /* directory_length */
1633 0x1200005e, /* unit_specifier_id: IANA */
1634 0x81000003, /* textual descriptor offset */
1635 0x13000002, /* unit_sw_version: RFC 3146 */
1636 0x81000005, /* textual descriptor offset */
1637 0x00030000, /* descriptor_length */
1638 0x00000000, /* text */
1639 0x00000000, /* minimal ASCII, en */
1640 0x49414e41, /* I A N A */
1641 0x00030000, /* descriptor_length */
1642 0x00000000, /* text */
1643 0x00000000, /* minimal ASCII, en */
1644 0x49507636, /* I P v 6 */
1645 };
1646
1647 static struct fw_descriptor rfc3146_unit_directory = {
1648 .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1649 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1650 .data = rfc3146_unit_directory_data
1651 };
1652 #endif
1653
fwnet_init(void)1654 static int __init fwnet_init(void)
1655 {
1656 int err;
1657
1658 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1659 if (err)
1660 return err;
1661
1662 #if IS_ENABLED(CONFIG_IPV6)
1663 err = fw_core_add_descriptor(&rfc3146_unit_directory);
1664 if (err)
1665 goto out;
1666 #endif
1667
1668 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1669 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1670 if (!fwnet_packet_task_cache) {
1671 err = -ENOMEM;
1672 goto out2;
1673 }
1674
1675 err = driver_register(&fwnet_driver.driver);
1676 if (!err)
1677 return 0;
1678
1679 kmem_cache_destroy(fwnet_packet_task_cache);
1680 out2:
1681 #if IS_ENABLED(CONFIG_IPV6)
1682 fw_core_remove_descriptor(&rfc3146_unit_directory);
1683 out:
1684 #endif
1685 fw_core_remove_descriptor(&rfc2374_unit_directory);
1686
1687 return err;
1688 }
1689 module_init(fwnet_init);
1690
fwnet_cleanup(void)1691 static void __exit fwnet_cleanup(void)
1692 {
1693 driver_unregister(&fwnet_driver.driver);
1694 kmem_cache_destroy(fwnet_packet_task_cache);
1695 #if IS_ENABLED(CONFIG_IPV6)
1696 fw_core_remove_descriptor(&rfc3146_unit_directory);
1697 #endif
1698 fw_core_remove_descriptor(&rfc2374_unit_directory);
1699 }
1700 module_exit(fwnet_cleanup);
1701
1702 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1703 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1704 MODULE_LICENSE("GPL");
1705 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1706