1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DMA driver for NVIDIA Tegra GPC DMA controller.
4 *
5 * Copyright (c) 2014-2022, NVIDIA CORPORATION. All rights reserved.
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/minmax.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/of_dma.h>
18 #include <linux/platform_device.h>
19 #include <linux/reset.h>
20 #include <linux/slab.h>
21 #include <dt-bindings/memory/tegra186-mc.h>
22 #include "virt-dma.h"
23
24 /* CSR register */
25 #define TEGRA_GPCDMA_CHAN_CSR 0x00
26 #define TEGRA_GPCDMA_CSR_ENB BIT(31)
27 #define TEGRA_GPCDMA_CSR_IE_EOC BIT(30)
28 #define TEGRA_GPCDMA_CSR_ONCE BIT(27)
29
30 #define TEGRA_GPCDMA_CSR_FC_MODE GENMASK(25, 24)
31 #define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO \
32 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
33 #define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO \
34 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
35 #define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO \
36 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
37 #define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO \
38 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
39
40 #define TEGRA_GPCDMA_CSR_DMA GENMASK(23, 21)
41 #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC \
42 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
43 #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC \
44 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
45 #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC \
46 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
47 #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC \
48 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
49 #define TEGRA_GPCDMA_CSR_DMA_MEM2MEM \
50 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
51 #define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT \
52 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
53
54 #define TEGRA_GPCDMA_CSR_REQ_SEL_MASK GENMASK(20, 16)
55 #define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED \
56 FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
57 #define TEGRA_GPCDMA_CSR_IRQ_MASK BIT(15)
58 #define TEGRA_GPCDMA_CSR_WEIGHT GENMASK(13, 10)
59
60 /* STATUS register */
61 #define TEGRA_GPCDMA_CHAN_STATUS 0x004
62 #define TEGRA_GPCDMA_STATUS_BUSY BIT(31)
63 #define TEGRA_GPCDMA_STATUS_ISE_EOC BIT(30)
64 #define TEGRA_GPCDMA_STATUS_PING_PONG BIT(28)
65 #define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY BIT(27)
66 #define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE BIT(26)
67 #define TEGRA_GPCDMA_STATUS_CHANNEL_RX BIT(25)
68 #define TEGRA_GPCDMA_STATUS_CHANNEL_TX BIT(24)
69 #define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA BIT(23)
70 #define TEGRA_GPCDMA_STATUS_IRQ_STA BIT(21)
71 #define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA BIT(20)
72
73 #define TEGRA_GPCDMA_CHAN_CSRE 0x008
74 #define TEGRA_GPCDMA_CHAN_CSRE_PAUSE BIT(31)
75
76 /* Source address */
77 #define TEGRA_GPCDMA_CHAN_SRC_PTR 0x00C
78
79 /* Destination address */
80 #define TEGRA_GPCDMA_CHAN_DST_PTR 0x010
81
82 /* High address pointer */
83 #define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR 0x014
84 #define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR GENMASK(7, 0)
85 #define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR GENMASK(23, 16)
86
87 /* MC sequence register */
88 #define TEGRA_GPCDMA_CHAN_MCSEQ 0x18
89 #define TEGRA_GPCDMA_MCSEQ_DATA_SWAP BIT(31)
90 #define TEGRA_GPCDMA_MCSEQ_REQ_COUNT GENMASK(30, 25)
91 #define TEGRA_GPCDMA_MCSEQ_BURST GENMASK(24, 23)
92 #define TEGRA_GPCDMA_MCSEQ_BURST_2 \
93 FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
94 #define TEGRA_GPCDMA_MCSEQ_BURST_16 \
95 FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
96 #define TEGRA_GPCDMA_MCSEQ_WRAP1 GENMASK(22, 20)
97 #define TEGRA_GPCDMA_MCSEQ_WRAP0 GENMASK(19, 17)
98 #define TEGRA_GPCDMA_MCSEQ_WRAP_NONE 0
99
100 #define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK GENMASK(13, 7)
101 #define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK GENMASK(6, 0)
102
103 /* MMIO sequence register */
104 #define TEGRA_GPCDMA_CHAN_MMIOSEQ 0x01c
105 #define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF BIT(31)
106 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH GENMASK(30, 28)
107 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8 \
108 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
109 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16 \
110 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
111 #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32 \
112 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
113 #define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP BIT(27)
114 #define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT 23
115 #define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN 2U
116 #define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX 32U
117 #define TEGRA_GPCDMA_MMIOSEQ_BURST(bs) \
118 (GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
119 #define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID GENMASK(22, 19)
120 #define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD GENMASK(18, 16)
121 #define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT GENMASK(8, 7)
122
123 /* Channel WCOUNT */
124 #define TEGRA_GPCDMA_CHAN_WCOUNT 0x20
125
126 /* Transfer count */
127 #define TEGRA_GPCDMA_CHAN_XFER_COUNT 0x24
128
129 /* DMA byte count status */
130 #define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS 0x28
131
132 /* Error Status Register */
133 #define TEGRA_GPCDMA_CHAN_ERR_STATUS 0x30
134 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT 8
135 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK 0xF
136 #define TEGRA_GPCDMA_CHAN_ERR_TYPE(err) ( \
137 ((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) & \
138 TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
139 #define TEGRA_DMA_BM_FIFO_FULL_ERR 0xF
140 #define TEGRA_DMA_PERIPH_FIFO_FULL_ERR 0xE
141 #define TEGRA_DMA_PERIPH_ID_ERR 0xD
142 #define TEGRA_DMA_STREAM_ID_ERR 0xC
143 #define TEGRA_DMA_MC_SLAVE_ERR 0xB
144 #define TEGRA_DMA_MMIO_SLAVE_ERR 0xA
145
146 /* Fixed Pattern */
147 #define TEGRA_GPCDMA_CHAN_FIXED_PATTERN 0x34
148
149 #define TEGRA_GPCDMA_CHAN_TZ 0x38
150 #define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1 BIT(0)
151 #define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1 BIT(1)
152
153 #define TEGRA_GPCDMA_CHAN_SPARE 0x3c
154 #define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC BIT(16)
155
156 /*
157 * If any burst is in flight and DMA paused then this is the time to complete
158 * on-flight burst and update DMA status register.
159 */
160 #define TEGRA_GPCDMA_BURST_COMPLETE_TIME 10
161 #define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT 5000 /* 5 msec */
162
163 /* Channel base address offset from GPCDMA base address */
164 #define TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET 0x20000
165
166 struct tegra_dma;
167 struct tegra_dma_channel;
168
169 /*
170 * tegra_dma_chip_data Tegra chip specific DMA data
171 * @nr_channels: Number of channels available in the controller.
172 * @channel_reg_size: Channel register size.
173 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
174 * @hw_support_pause: DMA HW engine support pause of the channel.
175 */
176 struct tegra_dma_chip_data {
177 bool hw_support_pause;
178 unsigned int nr_channels;
179 unsigned int channel_reg_size;
180 unsigned int max_dma_count;
181 int (*terminate)(struct tegra_dma_channel *tdc);
182 };
183
184 /* DMA channel registers */
185 struct tegra_dma_channel_regs {
186 u32 csr;
187 u32 src_ptr;
188 u32 dst_ptr;
189 u32 high_addr_ptr;
190 u32 mc_seq;
191 u32 mmio_seq;
192 u32 wcount;
193 u32 fixed_pattern;
194 };
195
196 /*
197 * tegra_dma_sg_req: DMA request details to configure hardware. This
198 * contains the details for one transfer to configure DMA hw.
199 * The client's request for data transfer can be broken into multiple
200 * sub-transfer as per requester details and hw support. This sub transfer
201 * get added as an array in Tegra DMA desc which manages the transfer details.
202 */
203 struct tegra_dma_sg_req {
204 unsigned int len;
205 struct tegra_dma_channel_regs ch_regs;
206 };
207
208 /*
209 * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
210 * manage client request and keep track of transfer status, callbacks
211 * and request counts etc.
212 */
213 struct tegra_dma_desc {
214 bool cyclic;
215 unsigned int bytes_req;
216 unsigned int bytes_xfer;
217 unsigned int sg_idx;
218 unsigned int sg_count;
219 struct virt_dma_desc vd;
220 struct tegra_dma_channel *tdc;
221 struct tegra_dma_sg_req sg_req[];
222 };
223
224 /*
225 * tegra_dma_channel: Channel specific information
226 */
227 struct tegra_dma_channel {
228 bool config_init;
229 char name[30];
230 enum dma_transfer_direction sid_dir;
231 int id;
232 int irq;
233 int slave_id;
234 struct tegra_dma *tdma;
235 struct virt_dma_chan vc;
236 struct tegra_dma_desc *dma_desc;
237 struct dma_slave_config dma_sconfig;
238 unsigned int stream_id;
239 unsigned long chan_base_offset;
240 };
241
242 /*
243 * tegra_dma: Tegra DMA specific information
244 */
245 struct tegra_dma {
246 const struct tegra_dma_chip_data *chip_data;
247 unsigned long sid_m2d_reserved;
248 unsigned long sid_d2m_reserved;
249 void __iomem *base_addr;
250 struct device *dev;
251 struct dma_device dma_dev;
252 struct reset_control *rst;
253 struct tegra_dma_channel channels[];
254 };
255
tdc_write(struct tegra_dma_channel * tdc,u32 reg,u32 val)256 static inline void tdc_write(struct tegra_dma_channel *tdc,
257 u32 reg, u32 val)
258 {
259 writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
260 }
261
tdc_read(struct tegra_dma_channel * tdc,u32 reg)262 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
263 {
264 return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
265 }
266
to_tegra_dma_chan(struct dma_chan * dc)267 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
268 {
269 return container_of(dc, struct tegra_dma_channel, vc.chan);
270 }
271
vd_to_tegra_dma_desc(struct virt_dma_desc * vd)272 static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
273 {
274 return container_of(vd, struct tegra_dma_desc, vd);
275 }
276
tdc2dev(struct tegra_dma_channel * tdc)277 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
278 {
279 return tdc->vc.chan.device->dev;
280 }
281
tegra_dma_dump_chan_regs(struct tegra_dma_channel * tdc)282 static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
283 {
284 dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
285 tdc->id, tdc->name);
286 dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
287 tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
288 tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
289 tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
290 tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
291 tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
292 );
293 dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
294 tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
295 tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
296 tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
297 tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
298 tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
299 );
300 dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
301 tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
302 }
303
tegra_dma_sid_reserve(struct tegra_dma_channel * tdc,enum dma_transfer_direction direction)304 static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
305 enum dma_transfer_direction direction)
306 {
307 struct tegra_dma *tdma = tdc->tdma;
308 int sid = tdc->slave_id;
309
310 if (!is_slave_direction(direction))
311 return 0;
312
313 switch (direction) {
314 case DMA_MEM_TO_DEV:
315 if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) {
316 dev_err(tdma->dev, "slave id already in use\n");
317 return -EINVAL;
318 }
319 break;
320 case DMA_DEV_TO_MEM:
321 if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) {
322 dev_err(tdma->dev, "slave id already in use\n");
323 return -EINVAL;
324 }
325 break;
326 default:
327 break;
328 }
329
330 tdc->sid_dir = direction;
331
332 return 0;
333 }
334
tegra_dma_sid_free(struct tegra_dma_channel * tdc)335 static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
336 {
337 struct tegra_dma *tdma = tdc->tdma;
338 int sid = tdc->slave_id;
339
340 switch (tdc->sid_dir) {
341 case DMA_MEM_TO_DEV:
342 clear_bit(sid, &tdma->sid_m2d_reserved);
343 break;
344 case DMA_DEV_TO_MEM:
345 clear_bit(sid, &tdma->sid_d2m_reserved);
346 break;
347 default:
348 break;
349 }
350
351 tdc->sid_dir = DMA_TRANS_NONE;
352 }
353
tegra_dma_desc_free(struct virt_dma_desc * vd)354 static void tegra_dma_desc_free(struct virt_dma_desc *vd)
355 {
356 kfree(container_of(vd, struct tegra_dma_desc, vd));
357 }
358
tegra_dma_slave_config(struct dma_chan * dc,struct dma_slave_config * sconfig)359 static int tegra_dma_slave_config(struct dma_chan *dc,
360 struct dma_slave_config *sconfig)
361 {
362 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
363
364 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
365 tdc->config_init = true;
366
367 return 0;
368 }
369
tegra_dma_pause(struct tegra_dma_channel * tdc)370 static int tegra_dma_pause(struct tegra_dma_channel *tdc)
371 {
372 int ret;
373 u32 val;
374
375 val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
376 val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
377 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
378
379 /* Wait until busy bit is de-asserted */
380 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
381 tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
382 val,
383 !(val & TEGRA_GPCDMA_STATUS_BUSY),
384 TEGRA_GPCDMA_BURST_COMPLETE_TIME,
385 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
386
387 if (ret) {
388 dev_err(tdc2dev(tdc), "DMA pause timed out\n");
389 tegra_dma_dump_chan_regs(tdc);
390 }
391
392 return ret;
393 }
394
tegra_dma_device_pause(struct dma_chan * dc)395 static int tegra_dma_device_pause(struct dma_chan *dc)
396 {
397 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
398 unsigned long flags;
399 int ret;
400
401 if (!tdc->tdma->chip_data->hw_support_pause)
402 return -ENOSYS;
403
404 spin_lock_irqsave(&tdc->vc.lock, flags);
405 ret = tegra_dma_pause(tdc);
406 spin_unlock_irqrestore(&tdc->vc.lock, flags);
407
408 return ret;
409 }
410
tegra_dma_resume(struct tegra_dma_channel * tdc)411 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
412 {
413 u32 val;
414
415 val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
416 val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
417 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
418 }
419
tegra_dma_device_resume(struct dma_chan * dc)420 static int tegra_dma_device_resume(struct dma_chan *dc)
421 {
422 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
423 unsigned long flags;
424
425 if (!tdc->tdma->chip_data->hw_support_pause)
426 return -ENOSYS;
427
428 spin_lock_irqsave(&tdc->vc.lock, flags);
429 tegra_dma_resume(tdc);
430 spin_unlock_irqrestore(&tdc->vc.lock, flags);
431
432 return 0;
433 }
434
tegra_dma_pause_noerr(struct tegra_dma_channel * tdc)435 static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc)
436 {
437 /* Return 0 irrespective of PAUSE status.
438 * This is useful to recover channels that can exit out of flush
439 * state when the channel is disabled.
440 */
441
442 tegra_dma_pause(tdc);
443 return 0;
444 }
445
tegra_dma_disable(struct tegra_dma_channel * tdc)446 static void tegra_dma_disable(struct tegra_dma_channel *tdc)
447 {
448 u32 csr, status;
449
450 csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
451
452 /* Disable interrupts */
453 csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
454
455 /* Disable DMA */
456 csr &= ~TEGRA_GPCDMA_CSR_ENB;
457 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
458
459 /* Clear interrupt status if it is there */
460 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
461 if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
462 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
463 tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status);
464 }
465 }
466
tegra_dma_configure_next_sg(struct tegra_dma_channel * tdc)467 static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
468 {
469 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
470 struct tegra_dma_channel_regs *ch_regs;
471 int ret;
472 u32 val;
473
474 dma_desc->sg_idx++;
475
476 /* Reset the sg index for cyclic transfers */
477 if (dma_desc->sg_idx == dma_desc->sg_count)
478 dma_desc->sg_idx = 0;
479
480 /* Configure next transfer immediately after DMA is busy */
481 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
482 tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
483 val,
484 (val & TEGRA_GPCDMA_STATUS_BUSY), 0,
485 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
486 if (ret)
487 return;
488
489 ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
490
491 tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
492 tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
493 tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
494 tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
495
496 /* Start DMA */
497 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
498 ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
499 }
500
tegra_dma_start(struct tegra_dma_channel * tdc)501 static void tegra_dma_start(struct tegra_dma_channel *tdc)
502 {
503 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
504 struct tegra_dma_channel_regs *ch_regs;
505 struct virt_dma_desc *vdesc;
506
507 if (!dma_desc) {
508 vdesc = vchan_next_desc(&tdc->vc);
509 if (!vdesc)
510 return;
511
512 dma_desc = vd_to_tegra_dma_desc(vdesc);
513 list_del(&vdesc->node);
514 dma_desc->tdc = tdc;
515 tdc->dma_desc = dma_desc;
516
517 tegra_dma_resume(tdc);
518 }
519
520 ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
521
522 tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount);
523 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0);
524 tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr);
525 tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr);
526 tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr);
527 tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern);
528 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq);
529 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq);
530 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr);
531
532 /* Start DMA */
533 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
534 ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
535 }
536
tegra_dma_xfer_complete(struct tegra_dma_channel * tdc)537 static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
538 {
539 vchan_cookie_complete(&tdc->dma_desc->vd);
540
541 tegra_dma_sid_free(tdc);
542 tdc->dma_desc = NULL;
543 }
544
tegra_dma_chan_decode_error(struct tegra_dma_channel * tdc,unsigned int err_status)545 static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
546 unsigned int err_status)
547 {
548 switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
549 case TEGRA_DMA_BM_FIFO_FULL_ERR:
550 dev_err(tdc->tdma->dev,
551 "GPCDMA CH%d bm fifo full\n", tdc->id);
552 break;
553
554 case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
555 dev_err(tdc->tdma->dev,
556 "GPCDMA CH%d peripheral fifo full\n", tdc->id);
557 break;
558
559 case TEGRA_DMA_PERIPH_ID_ERR:
560 dev_err(tdc->tdma->dev,
561 "GPCDMA CH%d illegal peripheral id\n", tdc->id);
562 break;
563
564 case TEGRA_DMA_STREAM_ID_ERR:
565 dev_err(tdc->tdma->dev,
566 "GPCDMA CH%d illegal stream id\n", tdc->id);
567 break;
568
569 case TEGRA_DMA_MC_SLAVE_ERR:
570 dev_err(tdc->tdma->dev,
571 "GPCDMA CH%d mc slave error\n", tdc->id);
572 break;
573
574 case TEGRA_DMA_MMIO_SLAVE_ERR:
575 dev_err(tdc->tdma->dev,
576 "GPCDMA CH%d mmio slave error\n", tdc->id);
577 break;
578
579 default:
580 dev_err(tdc->tdma->dev,
581 "GPCDMA CH%d security violation %x\n", tdc->id,
582 err_status);
583 }
584 }
585
tegra_dma_isr(int irq,void * dev_id)586 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
587 {
588 struct tegra_dma_channel *tdc = dev_id;
589 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
590 struct tegra_dma_sg_req *sg_req;
591 u32 status;
592
593 /* Check channel error status register */
594 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
595 if (status) {
596 tegra_dma_chan_decode_error(tdc, status);
597 tegra_dma_dump_chan_regs(tdc);
598 tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF);
599 }
600
601 spin_lock(&tdc->vc.lock);
602 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
603 if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
604 goto irq_done;
605
606 tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
607 TEGRA_GPCDMA_STATUS_ISE_EOC);
608
609 if (!dma_desc)
610 goto irq_done;
611
612 sg_req = dma_desc->sg_req;
613 dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
614
615 if (dma_desc->cyclic) {
616 vchan_cyclic_callback(&dma_desc->vd);
617 tegra_dma_configure_next_sg(tdc);
618 } else {
619 dma_desc->sg_idx++;
620 if (dma_desc->sg_idx == dma_desc->sg_count)
621 tegra_dma_xfer_complete(tdc);
622 else
623 tegra_dma_start(tdc);
624 }
625
626 irq_done:
627 spin_unlock(&tdc->vc.lock);
628 return IRQ_HANDLED;
629 }
630
tegra_dma_issue_pending(struct dma_chan * dc)631 static void tegra_dma_issue_pending(struct dma_chan *dc)
632 {
633 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
634 unsigned long flags;
635
636 if (tdc->dma_desc)
637 return;
638
639 spin_lock_irqsave(&tdc->vc.lock, flags);
640 if (vchan_issue_pending(&tdc->vc))
641 tegra_dma_start(tdc);
642
643 /*
644 * For cyclic DMA transfers, program the second
645 * transfer parameters as soon as the first DMA
646 * transfer is started inorder for the DMA
647 * controller to trigger the second transfer
648 * with the correct parameters.
649 */
650 if (tdc->dma_desc && tdc->dma_desc->cyclic)
651 tegra_dma_configure_next_sg(tdc);
652
653 spin_unlock_irqrestore(&tdc->vc.lock, flags);
654 }
655
tegra_dma_stop_client(struct tegra_dma_channel * tdc)656 static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
657 {
658 int ret;
659 u32 status, csr;
660
661 /*
662 * Change the client associated with the DMA channel
663 * to stop DMA engine from starting any more bursts for
664 * the given client and wait for in flight bursts to complete
665 */
666 csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
667 csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
668 csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
669 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr);
670
671 /* Wait for in flight data transfer to finish */
672 udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
673
674 /* If TX/RX path is still active wait till it becomes
675 * inactive
676 */
677
678 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
679 tdc->chan_base_offset +
680 TEGRA_GPCDMA_CHAN_STATUS,
681 status,
682 !(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
683 TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
684 5,
685 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
686 if (ret) {
687 dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
688 tegra_dma_dump_chan_regs(tdc);
689 }
690
691 return ret;
692 }
693
tegra_dma_terminate_all(struct dma_chan * dc)694 static int tegra_dma_terminate_all(struct dma_chan *dc)
695 {
696 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
697 unsigned long flags;
698 LIST_HEAD(head);
699 int err;
700
701 spin_lock_irqsave(&tdc->vc.lock, flags);
702
703 if (tdc->dma_desc) {
704 err = tdc->tdma->chip_data->terminate(tdc);
705 if (err) {
706 spin_unlock_irqrestore(&tdc->vc.lock, flags);
707 return err;
708 }
709
710 tegra_dma_disable(tdc);
711 tdc->dma_desc = NULL;
712 }
713
714 tegra_dma_sid_free(tdc);
715 vchan_get_all_descriptors(&tdc->vc, &head);
716 spin_unlock_irqrestore(&tdc->vc.lock, flags);
717
718 vchan_dma_desc_free_list(&tdc->vc, &head);
719
720 return 0;
721 }
722
tegra_dma_get_residual(struct tegra_dma_channel * tdc)723 static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
724 {
725 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
726 struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
727 unsigned int bytes_xfer, residual;
728 u32 wcount = 0, status;
729
730 wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
731
732 /*
733 * Set wcount = 0 if EOC bit is set. The transfer would have
734 * already completed and the CHAN_XFER_COUNT could have updated
735 * for the next transfer, specifically in case of cyclic transfers.
736 */
737 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
738 if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
739 wcount = 0;
740
741 bytes_xfer = dma_desc->bytes_xfer +
742 sg_req[dma_desc->sg_idx].len - (wcount * 4);
743
744 residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
745
746 return residual;
747 }
748
tegra_dma_tx_status(struct dma_chan * dc,dma_cookie_t cookie,struct dma_tx_state * txstate)749 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
750 dma_cookie_t cookie,
751 struct dma_tx_state *txstate)
752 {
753 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
754 struct tegra_dma_desc *dma_desc;
755 struct virt_dma_desc *vd;
756 unsigned int residual;
757 unsigned long flags;
758 enum dma_status ret;
759
760 ret = dma_cookie_status(dc, cookie, txstate);
761 if (ret == DMA_COMPLETE)
762 return ret;
763
764 spin_lock_irqsave(&tdc->vc.lock, flags);
765 vd = vchan_find_desc(&tdc->vc, cookie);
766 if (vd) {
767 dma_desc = vd_to_tegra_dma_desc(vd);
768 residual = dma_desc->bytes_req;
769 dma_set_residue(txstate, residual);
770 } else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
771 residual = tegra_dma_get_residual(tdc);
772 dma_set_residue(txstate, residual);
773 } else {
774 dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
775 }
776 spin_unlock_irqrestore(&tdc->vc.lock, flags);
777
778 return ret;
779 }
780
get_bus_width(struct tegra_dma_channel * tdc,enum dma_slave_buswidth slave_bw)781 static inline int get_bus_width(struct tegra_dma_channel *tdc,
782 enum dma_slave_buswidth slave_bw)
783 {
784 switch (slave_bw) {
785 case DMA_SLAVE_BUSWIDTH_1_BYTE:
786 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
787 case DMA_SLAVE_BUSWIDTH_2_BYTES:
788 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
789 case DMA_SLAVE_BUSWIDTH_4_BYTES:
790 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
791 default:
792 dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
793 return -EINVAL;
794 }
795 }
796
get_burst_size(struct tegra_dma_channel * tdc,u32 burst_size,enum dma_slave_buswidth slave_bw,int len)797 static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
798 u32 burst_size, enum dma_slave_buswidth slave_bw,
799 int len)
800 {
801 unsigned int burst_mmio_width, burst_byte;
802
803 /*
804 * burst_size from client is in terms of the bus_width.
805 * convert that into words.
806 * If burst_size is not specified from client, then use
807 * len to calculate the optimum burst size
808 */
809 burst_byte = burst_size ? burst_size * slave_bw : len;
810 burst_mmio_width = burst_byte / 4;
811
812 if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
813 return 0;
814
815 burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
816
817 return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
818 }
819
get_transfer_param(struct tegra_dma_channel * tdc,enum dma_transfer_direction direction,u32 * apb_addr,u32 * mmio_seq,u32 * csr,unsigned int * burst_size,enum dma_slave_buswidth * slave_bw)820 static int get_transfer_param(struct tegra_dma_channel *tdc,
821 enum dma_transfer_direction direction,
822 u32 *apb_addr,
823 u32 *mmio_seq,
824 u32 *csr,
825 unsigned int *burst_size,
826 enum dma_slave_buswidth *slave_bw)
827 {
828 switch (direction) {
829 case DMA_MEM_TO_DEV:
830 *apb_addr = tdc->dma_sconfig.dst_addr;
831 *mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
832 *burst_size = tdc->dma_sconfig.dst_maxburst;
833 *slave_bw = tdc->dma_sconfig.dst_addr_width;
834 *csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
835 return 0;
836 case DMA_DEV_TO_MEM:
837 *apb_addr = tdc->dma_sconfig.src_addr;
838 *mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
839 *burst_size = tdc->dma_sconfig.src_maxburst;
840 *slave_bw = tdc->dma_sconfig.src_addr_width;
841 *csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
842 return 0;
843 default:
844 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
845 }
846
847 return -EINVAL;
848 }
849
850 static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_memset(struct dma_chan * dc,dma_addr_t dest,int value,size_t len,unsigned long flags)851 tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
852 size_t len, unsigned long flags)
853 {
854 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
855 unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
856 struct tegra_dma_sg_req *sg_req;
857 struct tegra_dma_desc *dma_desc;
858 u32 csr, mc_seq;
859
860 if ((len & 3) || (dest & 3) || len > max_dma_count) {
861 dev_err(tdc2dev(tdc),
862 "DMA length/memory address is not supported\n");
863 return NULL;
864 }
865
866 /* Set DMA mode to fixed pattern */
867 csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
868 /* Enable once or continuous mode */
869 csr |= TEGRA_GPCDMA_CSR_ONCE;
870 /* Enable IRQ mask */
871 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
872 /* Enable the DMA interrupt */
873 if (flags & DMA_PREP_INTERRUPT)
874 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
875 /* Configure default priority weight for the channel */
876 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
877
878 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
879 /* retain stream-id and clean rest */
880 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
881
882 /* Set the address wrapping */
883 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
884 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
885 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
886 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
887
888 /* Program outstanding MC requests */
889 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
890 /* Set burst size */
891 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
892
893 dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
894 if (!dma_desc)
895 return NULL;
896
897 dma_desc->bytes_req = len;
898 dma_desc->sg_count = 1;
899 sg_req = dma_desc->sg_req;
900
901 sg_req[0].ch_regs.src_ptr = 0;
902 sg_req[0].ch_regs.dst_ptr = dest;
903 sg_req[0].ch_regs.high_addr_ptr =
904 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
905 sg_req[0].ch_regs.fixed_pattern = value;
906 /* Word count reg takes value as (N +1) words */
907 sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
908 sg_req[0].ch_regs.csr = csr;
909 sg_req[0].ch_regs.mmio_seq = 0;
910 sg_req[0].ch_regs.mc_seq = mc_seq;
911 sg_req[0].len = len;
912
913 dma_desc->cyclic = false;
914 return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
915 }
916
917 static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_memcpy(struct dma_chan * dc,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)918 tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
919 dma_addr_t src, size_t len, unsigned long flags)
920 {
921 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
922 struct tegra_dma_sg_req *sg_req;
923 struct tegra_dma_desc *dma_desc;
924 unsigned int max_dma_count;
925 u32 csr, mc_seq;
926
927 max_dma_count = tdc->tdma->chip_data->max_dma_count;
928 if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
929 dev_err(tdc2dev(tdc),
930 "DMA length/memory address is not supported\n");
931 return NULL;
932 }
933
934 /* Set DMA mode to memory to memory transfer */
935 csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
936 /* Enable once or continuous mode */
937 csr |= TEGRA_GPCDMA_CSR_ONCE;
938 /* Enable IRQ mask */
939 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
940 /* Enable the DMA interrupt */
941 if (flags & DMA_PREP_INTERRUPT)
942 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
943 /* Configure default priority weight for the channel */
944 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
945
946 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
947 /* retain stream-id and clean rest */
948 mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
949 (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
950
951 /* Set the address wrapping */
952 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
953 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
954 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
955 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
956
957 /* Program outstanding MC requests */
958 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
959 /* Set burst size */
960 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
961
962 dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
963 if (!dma_desc)
964 return NULL;
965
966 dma_desc->bytes_req = len;
967 dma_desc->sg_count = 1;
968 sg_req = dma_desc->sg_req;
969
970 sg_req[0].ch_regs.src_ptr = src;
971 sg_req[0].ch_regs.dst_ptr = dest;
972 sg_req[0].ch_regs.high_addr_ptr =
973 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
974 sg_req[0].ch_regs.high_addr_ptr |=
975 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
976 /* Word count reg takes value as (N +1) words */
977 sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
978 sg_req[0].ch_regs.csr = csr;
979 sg_req[0].ch_regs.mmio_seq = 0;
980 sg_req[0].ch_regs.mc_seq = mc_seq;
981 sg_req[0].len = len;
982
983 dma_desc->cyclic = false;
984 return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
985 }
986
987 static struct dma_async_tx_descriptor *
tegra_dma_prep_slave_sg(struct dma_chan * dc,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)988 tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
989 unsigned int sg_len, enum dma_transfer_direction direction,
990 unsigned long flags, void *context)
991 {
992 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
993 unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
994 enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
995 u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
996 struct tegra_dma_sg_req *sg_req;
997 struct tegra_dma_desc *dma_desc;
998 struct scatterlist *sg;
999 u32 burst_size;
1000 unsigned int i;
1001 int ret;
1002
1003 if (!tdc->config_init) {
1004 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1005 return NULL;
1006 }
1007 if (sg_len < 1) {
1008 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1009 return NULL;
1010 }
1011
1012 ret = tegra_dma_sid_reserve(tdc, direction);
1013 if (ret)
1014 return NULL;
1015
1016 ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1017 &burst_size, &slave_bw);
1018 if (ret < 0)
1019 return NULL;
1020
1021 /* Enable once or continuous mode */
1022 csr |= TEGRA_GPCDMA_CSR_ONCE;
1023 /* Program the slave id in requestor select */
1024 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1025 /* Enable IRQ mask */
1026 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1027 /* Configure default priority weight for the channel*/
1028 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1029
1030 /* Enable the DMA interrupt */
1031 if (flags & DMA_PREP_INTERRUPT)
1032 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1033
1034 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1035 /* retain stream-id and clean rest */
1036 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1037
1038 /* Set the address wrapping on both MC and MMIO side */
1039
1040 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1041 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1042 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1043 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1044 mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1045
1046 /* Program 2 MC outstanding requests by default. */
1047 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1048
1049 /* Setting MC burst size depending on MMIO burst size */
1050 if (burst_size == 64)
1051 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1052 else
1053 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1054
1055 dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
1056 if (!dma_desc)
1057 return NULL;
1058
1059 dma_desc->sg_count = sg_len;
1060 sg_req = dma_desc->sg_req;
1061
1062 /* Make transfer requests */
1063 for_each_sg(sgl, sg, sg_len, i) {
1064 u32 len;
1065 dma_addr_t mem;
1066
1067 mem = sg_dma_address(sg);
1068 len = sg_dma_len(sg);
1069
1070 if ((len & 3) || (mem & 3) || len > max_dma_count) {
1071 dev_err(tdc2dev(tdc),
1072 "DMA length/memory address is not supported\n");
1073 kfree(dma_desc);
1074 return NULL;
1075 }
1076
1077 mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1078 dma_desc->bytes_req += len;
1079
1080 if (direction == DMA_MEM_TO_DEV) {
1081 sg_req[i].ch_regs.src_ptr = mem;
1082 sg_req[i].ch_regs.dst_ptr = apb_ptr;
1083 sg_req[i].ch_regs.high_addr_ptr =
1084 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1085 } else if (direction == DMA_DEV_TO_MEM) {
1086 sg_req[i].ch_regs.src_ptr = apb_ptr;
1087 sg_req[i].ch_regs.dst_ptr = mem;
1088 sg_req[i].ch_regs.high_addr_ptr =
1089 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1090 }
1091
1092 /*
1093 * Word count register takes input in words. Writing a value
1094 * of N into word count register means a req of (N+1) words.
1095 */
1096 sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1097 sg_req[i].ch_regs.csr = csr;
1098 sg_req[i].ch_regs.mmio_seq = mmio_seq;
1099 sg_req[i].ch_regs.mc_seq = mc_seq;
1100 sg_req[i].len = len;
1101 }
1102
1103 dma_desc->cyclic = false;
1104 return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1105 }
1106
1107 static struct dma_async_tx_descriptor *
tegra_dma_prep_dma_cyclic(struct dma_chan * dc,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1108 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1109 size_t period_len, enum dma_transfer_direction direction,
1110 unsigned long flags)
1111 {
1112 enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1113 u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
1114 unsigned int max_dma_count, len, period_count, i;
1115 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1116 struct tegra_dma_desc *dma_desc;
1117 struct tegra_dma_sg_req *sg_req;
1118 dma_addr_t mem = buf_addr;
1119 int ret;
1120
1121 if (!buf_len || !period_len) {
1122 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1123 return NULL;
1124 }
1125
1126 if (!tdc->config_init) {
1127 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1128 return NULL;
1129 }
1130
1131 ret = tegra_dma_sid_reserve(tdc, direction);
1132 if (ret)
1133 return NULL;
1134
1135 /*
1136 * We only support cycle transfer when buf_len is multiple of
1137 * period_len.
1138 */
1139 if (buf_len % period_len) {
1140 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1141 return NULL;
1142 }
1143
1144 len = period_len;
1145 max_dma_count = tdc->tdma->chip_data->max_dma_count;
1146 if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
1147 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1148 return NULL;
1149 }
1150
1151 ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr,
1152 &burst_size, &slave_bw);
1153 if (ret < 0)
1154 return NULL;
1155
1156 /* Enable once or continuous mode */
1157 csr &= ~TEGRA_GPCDMA_CSR_ONCE;
1158 /* Program the slave id in requestor select */
1159 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1160 /* Enable IRQ mask */
1161 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1162 /* Configure default priority weight for the channel*/
1163 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1164
1165 /* Enable the DMA interrupt */
1166 if (flags & DMA_PREP_INTERRUPT)
1167 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1168
1169 mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1170
1171 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1172 /* retain stream-id and clean rest */
1173 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1174
1175 /* Set the address wrapping on both MC and MMIO side */
1176 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1177 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1178 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1179 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1180
1181 /* Program 2 MC outstanding requests by default. */
1182 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1183 /* Setting MC burst size depending on MMIO burst size */
1184 if (burst_size == 64)
1185 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1186 else
1187 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1188
1189 period_count = buf_len / period_len;
1190 dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
1191 GFP_NOWAIT);
1192 if (!dma_desc)
1193 return NULL;
1194
1195 dma_desc->bytes_req = buf_len;
1196 dma_desc->sg_count = period_count;
1197 sg_req = dma_desc->sg_req;
1198
1199 /* Split transfer equal to period size */
1200 for (i = 0; i < period_count; i++) {
1201 mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1202 if (direction == DMA_MEM_TO_DEV) {
1203 sg_req[i].ch_regs.src_ptr = mem;
1204 sg_req[i].ch_regs.dst_ptr = apb_ptr;
1205 sg_req[i].ch_regs.high_addr_ptr =
1206 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1207 } else if (direction == DMA_DEV_TO_MEM) {
1208 sg_req[i].ch_regs.src_ptr = apb_ptr;
1209 sg_req[i].ch_regs.dst_ptr = mem;
1210 sg_req[i].ch_regs.high_addr_ptr =
1211 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1212 }
1213 /*
1214 * Word count register takes input in words. Writing a value
1215 * of N into word count register means a req of (N+1) words.
1216 */
1217 sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1218 sg_req[i].ch_regs.csr = csr;
1219 sg_req[i].ch_regs.mmio_seq = mmio_seq;
1220 sg_req[i].ch_regs.mc_seq = mc_seq;
1221 sg_req[i].len = len;
1222
1223 mem += len;
1224 }
1225
1226 dma_desc->cyclic = true;
1227
1228 return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags);
1229 }
1230
tegra_dma_alloc_chan_resources(struct dma_chan * dc)1231 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1232 {
1233 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1234 int ret;
1235
1236 ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1237 if (ret) {
1238 dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
1239 return ret;
1240 }
1241
1242 dma_cookie_init(&tdc->vc.chan);
1243 tdc->config_init = false;
1244 return 0;
1245 }
1246
tegra_dma_chan_synchronize(struct dma_chan * dc)1247 static void tegra_dma_chan_synchronize(struct dma_chan *dc)
1248 {
1249 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1250
1251 synchronize_irq(tdc->irq);
1252 vchan_synchronize(&tdc->vc);
1253 }
1254
tegra_dma_free_chan_resources(struct dma_chan * dc)1255 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1256 {
1257 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1258
1259 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1260
1261 tegra_dma_terminate_all(dc);
1262 synchronize_irq(tdc->irq);
1263
1264 tasklet_kill(&tdc->vc.task);
1265 tdc->config_init = false;
1266 tdc->slave_id = -1;
1267 tdc->sid_dir = DMA_TRANS_NONE;
1268 free_irq(tdc->irq, tdc);
1269
1270 vchan_free_chan_resources(&tdc->vc);
1271 }
1272
tegra_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1273 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1274 struct of_dma *ofdma)
1275 {
1276 struct tegra_dma *tdma = ofdma->of_dma_data;
1277 struct tegra_dma_channel *tdc;
1278 struct dma_chan *chan;
1279
1280 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1281 if (!chan)
1282 return NULL;
1283
1284 tdc = to_tegra_dma_chan(chan);
1285 tdc->slave_id = dma_spec->args[0];
1286
1287 return chan;
1288 }
1289
1290 static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
1291 .nr_channels = 31,
1292 .channel_reg_size = SZ_64K,
1293 .max_dma_count = SZ_1G,
1294 .hw_support_pause = false,
1295 .terminate = tegra_dma_stop_client,
1296 };
1297
1298 static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
1299 .nr_channels = 31,
1300 .channel_reg_size = SZ_64K,
1301 .max_dma_count = SZ_1G,
1302 .hw_support_pause = true,
1303 .terminate = tegra_dma_pause,
1304 };
1305
1306 static const struct tegra_dma_chip_data tegra234_dma_chip_data = {
1307 .nr_channels = 31,
1308 .channel_reg_size = SZ_64K,
1309 .max_dma_count = SZ_1G,
1310 .hw_support_pause = true,
1311 .terminate = tegra_dma_pause_noerr,
1312 };
1313
1314 static const struct of_device_id tegra_dma_of_match[] = {
1315 {
1316 .compatible = "nvidia,tegra186-gpcdma",
1317 .data = &tegra186_dma_chip_data,
1318 }, {
1319 .compatible = "nvidia,tegra194-gpcdma",
1320 .data = &tegra194_dma_chip_data,
1321 }, {
1322 .compatible = "nvidia,tegra234-gpcdma",
1323 .data = &tegra234_dma_chip_data,
1324 }, {
1325 },
1326 };
1327 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1328
tegra_dma_program_sid(struct tegra_dma_channel * tdc,int stream_id)1329 static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
1330 {
1331 unsigned int reg_val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1332
1333 reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
1334 reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
1335
1336 reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
1337 reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
1338
1339 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val);
1340 return 0;
1341 }
1342
tegra_dma_probe(struct platform_device * pdev)1343 static int tegra_dma_probe(struct platform_device *pdev)
1344 {
1345 const struct tegra_dma_chip_data *cdata = NULL;
1346 struct iommu_fwspec *iommu_spec;
1347 unsigned int stream_id, i;
1348 struct tegra_dma *tdma;
1349 int ret;
1350
1351 cdata = of_device_get_match_data(&pdev->dev);
1352
1353 tdma = devm_kzalloc(&pdev->dev,
1354 struct_size(tdma, channels, cdata->nr_channels),
1355 GFP_KERNEL);
1356 if (!tdma)
1357 return -ENOMEM;
1358
1359 tdma->dev = &pdev->dev;
1360 tdma->chip_data = cdata;
1361 platform_set_drvdata(pdev, tdma);
1362
1363 tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1364 if (IS_ERR(tdma->base_addr))
1365 return PTR_ERR(tdma->base_addr);
1366
1367 tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma");
1368 if (IS_ERR(tdma->rst)) {
1369 return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst),
1370 "Missing controller reset\n");
1371 }
1372 reset_control_reset(tdma->rst);
1373
1374 tdma->dma_dev.dev = &pdev->dev;
1375
1376 iommu_spec = dev_iommu_fwspec_get(&pdev->dev);
1377 if (!iommu_spec) {
1378 dev_err(&pdev->dev, "Missing iommu stream-id\n");
1379 return -EINVAL;
1380 }
1381 stream_id = iommu_spec->ids[0] & 0xffff;
1382
1383 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1384 for (i = 0; i < cdata->nr_channels; i++) {
1385 struct tegra_dma_channel *tdc = &tdma->channels[i];
1386
1387 tdc->irq = platform_get_irq(pdev, i);
1388 if (tdc->irq < 0)
1389 return tdc->irq;
1390
1391 tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET +
1392 i * cdata->channel_reg_size;
1393 snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i);
1394 tdc->tdma = tdma;
1395 tdc->id = i;
1396 tdc->slave_id = -1;
1397
1398 vchan_init(&tdc->vc, &tdma->dma_dev);
1399 tdc->vc.desc_free = tegra_dma_desc_free;
1400
1401 /* program stream-id for this channel */
1402 tegra_dma_program_sid(tdc, stream_id);
1403 tdc->stream_id = stream_id;
1404 }
1405
1406 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1407 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1408 dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
1409 dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
1410 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1411
1412 /*
1413 * Only word aligned transfers are supported. Set the copy
1414 * alignment shift.
1415 */
1416 tdma->dma_dev.copy_align = 2;
1417 tdma->dma_dev.fill_align = 2;
1418 tdma->dma_dev.device_alloc_chan_resources =
1419 tegra_dma_alloc_chan_resources;
1420 tdma->dma_dev.device_free_chan_resources =
1421 tegra_dma_free_chan_resources;
1422 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1423 tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
1424 tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
1425 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1426 tdma->dma_dev.device_config = tegra_dma_slave_config;
1427 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1428 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1429 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1430 tdma->dma_dev.device_pause = tegra_dma_device_pause;
1431 tdma->dma_dev.device_resume = tegra_dma_device_resume;
1432 tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
1433 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1434
1435 ret = dma_async_device_register(&tdma->dma_dev);
1436 if (ret < 0) {
1437 dev_err_probe(&pdev->dev, ret,
1438 "GPC DMA driver registration failed\n");
1439 return ret;
1440 }
1441
1442 ret = of_dma_controller_register(pdev->dev.of_node,
1443 tegra_dma_of_xlate, tdma);
1444 if (ret < 0) {
1445 dev_err_probe(&pdev->dev, ret,
1446 "GPC DMA OF registration failed\n");
1447
1448 dma_async_device_unregister(&tdma->dma_dev);
1449 return ret;
1450 }
1451
1452 dev_info(&pdev->dev, "GPC DMA driver register %d channels\n",
1453 cdata->nr_channels);
1454
1455 return 0;
1456 }
1457
tegra_dma_remove(struct platform_device * pdev)1458 static int tegra_dma_remove(struct platform_device *pdev)
1459 {
1460 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1461
1462 of_dma_controller_free(pdev->dev.of_node);
1463 dma_async_device_unregister(&tdma->dma_dev);
1464
1465 return 0;
1466 }
1467
tegra_dma_pm_suspend(struct device * dev)1468 static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
1469 {
1470 struct tegra_dma *tdma = dev_get_drvdata(dev);
1471 unsigned int i;
1472
1473 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1474 struct tegra_dma_channel *tdc = &tdma->channels[i];
1475
1476 if (tdc->dma_desc) {
1477 dev_err(tdma->dev, "channel %u busy\n", i);
1478 return -EBUSY;
1479 }
1480 }
1481
1482 return 0;
1483 }
1484
tegra_dma_pm_resume(struct device * dev)1485 static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
1486 {
1487 struct tegra_dma *tdma = dev_get_drvdata(dev);
1488 unsigned int i;
1489
1490 reset_control_reset(tdma->rst);
1491
1492 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1493 struct tegra_dma_channel *tdc = &tdma->channels[i];
1494
1495 tegra_dma_program_sid(tdc, tdc->stream_id);
1496 }
1497
1498 return 0;
1499 }
1500
1501 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1502 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1503 };
1504
1505 static struct platform_driver tegra_dma_driver = {
1506 .driver = {
1507 .name = "tegra-gpcdma",
1508 .pm = &tegra_dma_dev_pm_ops,
1509 .of_match_table = tegra_dma_of_match,
1510 },
1511 .probe = tegra_dma_probe,
1512 .remove = tegra_dma_remove,
1513 };
1514
1515 module_platform_driver(tegra_dma_driver);
1516
1517 MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
1518 MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
1519 MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
1520 MODULE_LICENSE("GPL");
1521