1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014 Imagination Technologies
4 * Authors: Will Thomas, James Hartley
5 *
6 * Interface structure taken from omap-sham driver
7 */
8
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/scatterlist.h>
19
20 #include <crypto/internal/hash.h>
21 #include <crypto/md5.h>
22 #include <crypto/sha1.h>
23 #include <crypto/sha2.h>
24
25 #define CR_RESET 0
26 #define CR_RESET_SET 1
27 #define CR_RESET_UNSET 0
28
29 #define CR_MESSAGE_LENGTH_H 0x4
30 #define CR_MESSAGE_LENGTH_L 0x8
31
32 #define CR_CONTROL 0xc
33 #define CR_CONTROL_BYTE_ORDER_3210 0
34 #define CR_CONTROL_BYTE_ORDER_0123 1
35 #define CR_CONTROL_BYTE_ORDER_2310 2
36 #define CR_CONTROL_BYTE_ORDER_1032 3
37 #define CR_CONTROL_BYTE_ORDER_SHIFT 8
38 #define CR_CONTROL_ALGO_MD5 0
39 #define CR_CONTROL_ALGO_SHA1 1
40 #define CR_CONTROL_ALGO_SHA224 2
41 #define CR_CONTROL_ALGO_SHA256 3
42
43 #define CR_INTSTAT 0x10
44 #define CR_INTENAB 0x14
45 #define CR_INTCLEAR 0x18
46 #define CR_INT_RESULTS_AVAILABLE BIT(0)
47 #define CR_INT_NEW_RESULTS_SET BIT(1)
48 #define CR_INT_RESULT_READ_ERR BIT(2)
49 #define CR_INT_MESSAGE_WRITE_ERROR BIT(3)
50 #define CR_INT_STATUS BIT(8)
51
52 #define CR_RESULT_QUEUE 0x1c
53 #define CR_RSD0 0x40
54 #define CR_CORE_REV 0x50
55 #define CR_CORE_DES1 0x60
56 #define CR_CORE_DES2 0x70
57
58 #define DRIVER_FLAGS_BUSY BIT(0)
59 #define DRIVER_FLAGS_FINAL BIT(1)
60 #define DRIVER_FLAGS_DMA_ACTIVE BIT(2)
61 #define DRIVER_FLAGS_OUTPUT_READY BIT(3)
62 #define DRIVER_FLAGS_INIT BIT(4)
63 #define DRIVER_FLAGS_CPU BIT(5)
64 #define DRIVER_FLAGS_DMA_READY BIT(6)
65 #define DRIVER_FLAGS_ERROR BIT(7)
66 #define DRIVER_FLAGS_SG BIT(8)
67 #define DRIVER_FLAGS_SHA1 BIT(18)
68 #define DRIVER_FLAGS_SHA224 BIT(19)
69 #define DRIVER_FLAGS_SHA256 BIT(20)
70 #define DRIVER_FLAGS_MD5 BIT(21)
71
72 #define IMG_HASH_QUEUE_LENGTH 20
73 #define IMG_HASH_DMA_BURST 4
74 #define IMG_HASH_DMA_THRESHOLD 64
75
76 #ifdef __LITTLE_ENDIAN
77 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_3210
78 #else
79 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_0123
80 #endif
81
82 struct img_hash_dev;
83
84 struct img_hash_request_ctx {
85 struct img_hash_dev *hdev;
86 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
87 unsigned long flags;
88 size_t digsize;
89
90 dma_addr_t dma_addr;
91 size_t dma_ct;
92
93 /* sg root */
94 struct scatterlist *sgfirst;
95 /* walk state */
96 struct scatterlist *sg;
97 size_t nents;
98 size_t offset;
99 unsigned int total;
100 size_t sent;
101
102 unsigned long op;
103
104 size_t bufcnt;
105 struct ahash_request fallback_req;
106
107 /* Zero length buffer must remain last member of struct */
108 u8 buffer[] __aligned(sizeof(u32));
109 };
110
111 struct img_hash_ctx {
112 struct img_hash_dev *hdev;
113 unsigned long flags;
114 struct crypto_ahash *fallback;
115 };
116
117 struct img_hash_dev {
118 struct list_head list;
119 struct device *dev;
120 struct clk *hash_clk;
121 struct clk *sys_clk;
122 void __iomem *io_base;
123
124 phys_addr_t bus_addr;
125 void __iomem *cpu_addr;
126
127 spinlock_t lock;
128 int err;
129 struct tasklet_struct done_task;
130 struct tasklet_struct dma_task;
131
132 unsigned long flags;
133 struct crypto_queue queue;
134 struct ahash_request *req;
135
136 struct dma_chan *dma_lch;
137 };
138
139 struct img_hash_drv {
140 struct list_head dev_list;
141 spinlock_t lock;
142 };
143
144 static struct img_hash_drv img_hash = {
145 .dev_list = LIST_HEAD_INIT(img_hash.dev_list),
146 .lock = __SPIN_LOCK_UNLOCKED(img_hash.lock),
147 };
148
img_hash_read(struct img_hash_dev * hdev,u32 offset)149 static inline u32 img_hash_read(struct img_hash_dev *hdev, u32 offset)
150 {
151 return readl_relaxed(hdev->io_base + offset);
152 }
153
img_hash_write(struct img_hash_dev * hdev,u32 offset,u32 value)154 static inline void img_hash_write(struct img_hash_dev *hdev,
155 u32 offset, u32 value)
156 {
157 writel_relaxed(value, hdev->io_base + offset);
158 }
159
img_hash_read_result_queue(struct img_hash_dev * hdev)160 static inline u32 img_hash_read_result_queue(struct img_hash_dev *hdev)
161 {
162 return be32_to_cpu(img_hash_read(hdev, CR_RESULT_QUEUE));
163 }
164
img_hash_start(struct img_hash_dev * hdev,bool dma)165 static void img_hash_start(struct img_hash_dev *hdev, bool dma)
166 {
167 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
168 u32 cr = IMG_HASH_BYTE_ORDER << CR_CONTROL_BYTE_ORDER_SHIFT;
169
170 if (ctx->flags & DRIVER_FLAGS_MD5)
171 cr |= CR_CONTROL_ALGO_MD5;
172 else if (ctx->flags & DRIVER_FLAGS_SHA1)
173 cr |= CR_CONTROL_ALGO_SHA1;
174 else if (ctx->flags & DRIVER_FLAGS_SHA224)
175 cr |= CR_CONTROL_ALGO_SHA224;
176 else if (ctx->flags & DRIVER_FLAGS_SHA256)
177 cr |= CR_CONTROL_ALGO_SHA256;
178 dev_dbg(hdev->dev, "Starting hash process\n");
179 img_hash_write(hdev, CR_CONTROL, cr);
180
181 /*
182 * The hardware block requires two cycles between writing the control
183 * register and writing the first word of data in non DMA mode, to
184 * ensure the first data write is not grouped in burst with the control
185 * register write a read is issued to 'flush' the bus.
186 */
187 if (!dma)
188 img_hash_read(hdev, CR_CONTROL);
189 }
190
img_hash_xmit_cpu(struct img_hash_dev * hdev,const u8 * buf,size_t length,int final)191 static int img_hash_xmit_cpu(struct img_hash_dev *hdev, const u8 *buf,
192 size_t length, int final)
193 {
194 u32 count, len32;
195 const u32 *buffer = (const u32 *)buf;
196
197 dev_dbg(hdev->dev, "xmit_cpu: length: %zu bytes\n", length);
198
199 if (final)
200 hdev->flags |= DRIVER_FLAGS_FINAL;
201
202 len32 = DIV_ROUND_UP(length, sizeof(u32));
203
204 for (count = 0; count < len32; count++)
205 writel_relaxed(buffer[count], hdev->cpu_addr);
206
207 return -EINPROGRESS;
208 }
209
img_hash_dma_callback(void * data)210 static void img_hash_dma_callback(void *data)
211 {
212 struct img_hash_dev *hdev = (struct img_hash_dev *)data;
213 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
214
215 if (ctx->bufcnt) {
216 img_hash_xmit_cpu(hdev, ctx->buffer, ctx->bufcnt, 0);
217 ctx->bufcnt = 0;
218 }
219 if (ctx->sg)
220 tasklet_schedule(&hdev->dma_task);
221 }
222
img_hash_xmit_dma(struct img_hash_dev * hdev,struct scatterlist * sg)223 static int img_hash_xmit_dma(struct img_hash_dev *hdev, struct scatterlist *sg)
224 {
225 struct dma_async_tx_descriptor *desc;
226 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
227
228 ctx->dma_ct = dma_map_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
229 if (ctx->dma_ct == 0) {
230 dev_err(hdev->dev, "Invalid DMA sg\n");
231 hdev->err = -EINVAL;
232 return -EINVAL;
233 }
234
235 desc = dmaengine_prep_slave_sg(hdev->dma_lch,
236 sg,
237 ctx->dma_ct,
238 DMA_MEM_TO_DEV,
239 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
240 if (!desc) {
241 dev_err(hdev->dev, "Null DMA descriptor\n");
242 hdev->err = -EINVAL;
243 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
244 return -EINVAL;
245 }
246 desc->callback = img_hash_dma_callback;
247 desc->callback_param = hdev;
248 dmaengine_submit(desc);
249 dma_async_issue_pending(hdev->dma_lch);
250
251 return 0;
252 }
253
img_hash_write_via_cpu(struct img_hash_dev * hdev)254 static int img_hash_write_via_cpu(struct img_hash_dev *hdev)
255 {
256 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
257
258 ctx->bufcnt = sg_copy_to_buffer(hdev->req->src, sg_nents(ctx->sg),
259 ctx->buffer, hdev->req->nbytes);
260
261 ctx->total = hdev->req->nbytes;
262 ctx->bufcnt = 0;
263
264 hdev->flags |= (DRIVER_FLAGS_CPU | DRIVER_FLAGS_FINAL);
265
266 img_hash_start(hdev, false);
267
268 return img_hash_xmit_cpu(hdev, ctx->buffer, ctx->total, 1);
269 }
270
img_hash_finish(struct ahash_request * req)271 static int img_hash_finish(struct ahash_request *req)
272 {
273 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
274
275 if (!req->result)
276 return -EINVAL;
277
278 memcpy(req->result, ctx->digest, ctx->digsize);
279
280 return 0;
281 }
282
img_hash_copy_hash(struct ahash_request * req)283 static void img_hash_copy_hash(struct ahash_request *req)
284 {
285 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
286 u32 *hash = (u32 *)ctx->digest;
287 int i;
288
289 for (i = (ctx->digsize / sizeof(u32)) - 1; i >= 0; i--)
290 hash[i] = img_hash_read_result_queue(ctx->hdev);
291 }
292
img_hash_finish_req(struct ahash_request * req,int err)293 static void img_hash_finish_req(struct ahash_request *req, int err)
294 {
295 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
296 struct img_hash_dev *hdev = ctx->hdev;
297
298 if (!err) {
299 img_hash_copy_hash(req);
300 if (DRIVER_FLAGS_FINAL & hdev->flags)
301 err = img_hash_finish(req);
302 } else {
303 dev_warn(hdev->dev, "Hash failed with error %d\n", err);
304 ctx->flags |= DRIVER_FLAGS_ERROR;
305 }
306
307 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY | DRIVER_FLAGS_OUTPUT_READY |
308 DRIVER_FLAGS_CPU | DRIVER_FLAGS_BUSY | DRIVER_FLAGS_FINAL);
309
310 if (req->base.complete)
311 req->base.complete(&req->base, err);
312 }
313
img_hash_write_via_dma(struct img_hash_dev * hdev)314 static int img_hash_write_via_dma(struct img_hash_dev *hdev)
315 {
316 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
317
318 img_hash_start(hdev, true);
319
320 dev_dbg(hdev->dev, "xmit dma size: %d\n", ctx->total);
321
322 if (!ctx->total)
323 hdev->flags |= DRIVER_FLAGS_FINAL;
324
325 hdev->flags |= DRIVER_FLAGS_DMA_ACTIVE | DRIVER_FLAGS_FINAL;
326
327 tasklet_schedule(&hdev->dma_task);
328
329 return -EINPROGRESS;
330 }
331
img_hash_dma_init(struct img_hash_dev * hdev)332 static int img_hash_dma_init(struct img_hash_dev *hdev)
333 {
334 struct dma_slave_config dma_conf;
335 int err;
336
337 hdev->dma_lch = dma_request_chan(hdev->dev, "tx");
338 if (IS_ERR(hdev->dma_lch)) {
339 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
340 return PTR_ERR(hdev->dma_lch);
341 }
342 dma_conf.direction = DMA_MEM_TO_DEV;
343 dma_conf.dst_addr = hdev->bus_addr;
344 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
345 dma_conf.dst_maxburst = IMG_HASH_DMA_BURST;
346 dma_conf.device_fc = false;
347
348 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
349 if (err) {
350 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
351 dma_release_channel(hdev->dma_lch);
352 return err;
353 }
354
355 return 0;
356 }
357
img_hash_dma_task(unsigned long d)358 static void img_hash_dma_task(unsigned long d)
359 {
360 struct img_hash_dev *hdev = (struct img_hash_dev *)d;
361 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
362 u8 *addr;
363 size_t nbytes, bleft, wsend, len, tbc;
364 struct scatterlist tsg;
365
366 if (!hdev->req || !ctx->sg)
367 return;
368
369 addr = sg_virt(ctx->sg);
370 nbytes = ctx->sg->length - ctx->offset;
371
372 /*
373 * The hash accelerator does not support a data valid mask. This means
374 * that if each dma (i.e. per page) is not a multiple of 4 bytes, the
375 * padding bytes in the last word written by that dma would erroneously
376 * be included in the hash. To avoid this we round down the transfer,
377 * and add the excess to the start of the next dma. It does not matter
378 * that the final dma may not be a multiple of 4 bytes as the hashing
379 * block is programmed to accept the correct number of bytes.
380 */
381
382 bleft = nbytes % 4;
383 wsend = (nbytes / 4);
384
385 if (wsend) {
386 sg_init_one(&tsg, addr + ctx->offset, wsend * 4);
387 if (img_hash_xmit_dma(hdev, &tsg)) {
388 dev_err(hdev->dev, "DMA failed, falling back to CPU");
389 ctx->flags |= DRIVER_FLAGS_CPU;
390 hdev->err = 0;
391 img_hash_xmit_cpu(hdev, addr + ctx->offset,
392 wsend * 4, 0);
393 ctx->sent += wsend * 4;
394 wsend = 0;
395 } else {
396 ctx->sent += wsend * 4;
397 }
398 }
399
400 if (bleft) {
401 ctx->bufcnt = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
402 ctx->buffer, bleft, ctx->sent);
403 tbc = 0;
404 ctx->sg = sg_next(ctx->sg);
405 while (ctx->sg && (ctx->bufcnt < 4)) {
406 len = ctx->sg->length;
407 if (likely(len > (4 - ctx->bufcnt)))
408 len = 4 - ctx->bufcnt;
409 tbc = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
410 ctx->buffer + ctx->bufcnt, len,
411 ctx->sent + ctx->bufcnt);
412 ctx->bufcnt += tbc;
413 if (tbc >= ctx->sg->length) {
414 ctx->sg = sg_next(ctx->sg);
415 tbc = 0;
416 }
417 }
418
419 ctx->sent += ctx->bufcnt;
420 ctx->offset = tbc;
421
422 if (!wsend)
423 img_hash_dma_callback(hdev);
424 } else {
425 ctx->offset = 0;
426 ctx->sg = sg_next(ctx->sg);
427 }
428 }
429
img_hash_write_via_dma_stop(struct img_hash_dev * hdev)430 static int img_hash_write_via_dma_stop(struct img_hash_dev *hdev)
431 {
432 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
433
434 if (ctx->flags & DRIVER_FLAGS_SG)
435 dma_unmap_sg(hdev->dev, ctx->sg, ctx->dma_ct, DMA_TO_DEVICE);
436
437 return 0;
438 }
439
img_hash_process_data(struct img_hash_dev * hdev)440 static int img_hash_process_data(struct img_hash_dev *hdev)
441 {
442 struct ahash_request *req = hdev->req;
443 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
444 int err = 0;
445
446 ctx->bufcnt = 0;
447
448 if (req->nbytes >= IMG_HASH_DMA_THRESHOLD) {
449 dev_dbg(hdev->dev, "process data request(%d bytes) using DMA\n",
450 req->nbytes);
451 err = img_hash_write_via_dma(hdev);
452 } else {
453 dev_dbg(hdev->dev, "process data request(%d bytes) using CPU\n",
454 req->nbytes);
455 err = img_hash_write_via_cpu(hdev);
456 }
457 return err;
458 }
459
img_hash_hw_init(struct img_hash_dev * hdev)460 static int img_hash_hw_init(struct img_hash_dev *hdev)
461 {
462 unsigned long long nbits;
463 u32 u, l;
464
465 img_hash_write(hdev, CR_RESET, CR_RESET_SET);
466 img_hash_write(hdev, CR_RESET, CR_RESET_UNSET);
467 img_hash_write(hdev, CR_INTENAB, CR_INT_NEW_RESULTS_SET);
468
469 nbits = (u64)hdev->req->nbytes << 3;
470 u = nbits >> 32;
471 l = nbits;
472 img_hash_write(hdev, CR_MESSAGE_LENGTH_H, u);
473 img_hash_write(hdev, CR_MESSAGE_LENGTH_L, l);
474
475 if (!(DRIVER_FLAGS_INIT & hdev->flags)) {
476 hdev->flags |= DRIVER_FLAGS_INIT;
477 hdev->err = 0;
478 }
479 dev_dbg(hdev->dev, "hw initialized, nbits: %llx\n", nbits);
480 return 0;
481 }
482
img_hash_init(struct ahash_request * req)483 static int img_hash_init(struct ahash_request *req)
484 {
485 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
486 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
487 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
488
489 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
490 rctx->fallback_req.base.flags = req->base.flags
491 & CRYPTO_TFM_REQ_MAY_SLEEP;
492
493 return crypto_ahash_init(&rctx->fallback_req);
494 }
495
img_hash_handle_queue(struct img_hash_dev * hdev,struct ahash_request * req)496 static int img_hash_handle_queue(struct img_hash_dev *hdev,
497 struct ahash_request *req)
498 {
499 struct crypto_async_request *async_req, *backlog;
500 struct img_hash_request_ctx *ctx;
501 unsigned long flags;
502 int err = 0, res = 0;
503
504 spin_lock_irqsave(&hdev->lock, flags);
505
506 if (req)
507 res = ahash_enqueue_request(&hdev->queue, req);
508
509 if (DRIVER_FLAGS_BUSY & hdev->flags) {
510 spin_unlock_irqrestore(&hdev->lock, flags);
511 return res;
512 }
513
514 backlog = crypto_get_backlog(&hdev->queue);
515 async_req = crypto_dequeue_request(&hdev->queue);
516 if (async_req)
517 hdev->flags |= DRIVER_FLAGS_BUSY;
518
519 spin_unlock_irqrestore(&hdev->lock, flags);
520
521 if (!async_req)
522 return res;
523
524 if (backlog)
525 backlog->complete(backlog, -EINPROGRESS);
526
527 req = ahash_request_cast(async_req);
528 hdev->req = req;
529
530 ctx = ahash_request_ctx(req);
531
532 dev_info(hdev->dev, "processing req, op: %lu, bytes: %d\n",
533 ctx->op, req->nbytes);
534
535 err = img_hash_hw_init(hdev);
536
537 if (!err)
538 err = img_hash_process_data(hdev);
539
540 if (err != -EINPROGRESS) {
541 /* done_task will not finish so do it here */
542 img_hash_finish_req(req, err);
543 }
544 return res;
545 }
546
img_hash_update(struct ahash_request * req)547 static int img_hash_update(struct ahash_request *req)
548 {
549 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
552
553 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
554 rctx->fallback_req.base.flags = req->base.flags
555 & CRYPTO_TFM_REQ_MAY_SLEEP;
556 rctx->fallback_req.nbytes = req->nbytes;
557 rctx->fallback_req.src = req->src;
558
559 return crypto_ahash_update(&rctx->fallback_req);
560 }
561
img_hash_final(struct ahash_request * req)562 static int img_hash_final(struct ahash_request *req)
563 {
564 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
565 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
566 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
567
568 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
569 rctx->fallback_req.base.flags = req->base.flags
570 & CRYPTO_TFM_REQ_MAY_SLEEP;
571 rctx->fallback_req.result = req->result;
572
573 return crypto_ahash_final(&rctx->fallback_req);
574 }
575
img_hash_finup(struct ahash_request * req)576 static int img_hash_finup(struct ahash_request *req)
577 {
578 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
579 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
580 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
581
582 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
583 rctx->fallback_req.base.flags = req->base.flags
584 & CRYPTO_TFM_REQ_MAY_SLEEP;
585 rctx->fallback_req.nbytes = req->nbytes;
586 rctx->fallback_req.src = req->src;
587 rctx->fallback_req.result = req->result;
588
589 return crypto_ahash_finup(&rctx->fallback_req);
590 }
591
img_hash_import(struct ahash_request * req,const void * in)592 static int img_hash_import(struct ahash_request *req, const void *in)
593 {
594 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
595 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
596 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
597
598 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
599 rctx->fallback_req.base.flags = req->base.flags
600 & CRYPTO_TFM_REQ_MAY_SLEEP;
601
602 return crypto_ahash_import(&rctx->fallback_req, in);
603 }
604
img_hash_export(struct ahash_request * req,void * out)605 static int img_hash_export(struct ahash_request *req, void *out)
606 {
607 struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
608 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
609 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
610
611 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
612 rctx->fallback_req.base.flags = req->base.flags
613 & CRYPTO_TFM_REQ_MAY_SLEEP;
614
615 return crypto_ahash_export(&rctx->fallback_req, out);
616 }
617
img_hash_digest(struct ahash_request * req)618 static int img_hash_digest(struct ahash_request *req)
619 {
620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
621 struct img_hash_ctx *tctx = crypto_ahash_ctx(tfm);
622 struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
623 struct img_hash_dev *hdev = NULL;
624 struct img_hash_dev *tmp;
625 int err;
626
627 spin_lock(&img_hash.lock);
628 if (!tctx->hdev) {
629 list_for_each_entry(tmp, &img_hash.dev_list, list) {
630 hdev = tmp;
631 break;
632 }
633 tctx->hdev = hdev;
634
635 } else {
636 hdev = tctx->hdev;
637 }
638
639 spin_unlock(&img_hash.lock);
640 ctx->hdev = hdev;
641 ctx->flags = 0;
642 ctx->digsize = crypto_ahash_digestsize(tfm);
643
644 switch (ctx->digsize) {
645 case SHA1_DIGEST_SIZE:
646 ctx->flags |= DRIVER_FLAGS_SHA1;
647 break;
648 case SHA256_DIGEST_SIZE:
649 ctx->flags |= DRIVER_FLAGS_SHA256;
650 break;
651 case SHA224_DIGEST_SIZE:
652 ctx->flags |= DRIVER_FLAGS_SHA224;
653 break;
654 case MD5_DIGEST_SIZE:
655 ctx->flags |= DRIVER_FLAGS_MD5;
656 break;
657 default:
658 return -EINVAL;
659 }
660
661 ctx->bufcnt = 0;
662 ctx->offset = 0;
663 ctx->sent = 0;
664 ctx->total = req->nbytes;
665 ctx->sg = req->src;
666 ctx->sgfirst = req->src;
667 ctx->nents = sg_nents(ctx->sg);
668
669 err = img_hash_handle_queue(tctx->hdev, req);
670
671 return err;
672 }
673
img_hash_cra_init(struct crypto_tfm * tfm,const char * alg_name)674 static int img_hash_cra_init(struct crypto_tfm *tfm, const char *alg_name)
675 {
676 struct img_hash_ctx *ctx = crypto_tfm_ctx(tfm);
677
678 ctx->fallback = crypto_alloc_ahash(alg_name, 0,
679 CRYPTO_ALG_NEED_FALLBACK);
680 if (IS_ERR(ctx->fallback)) {
681 pr_err("img_hash: Could not load fallback driver.\n");
682 return PTR_ERR(ctx->fallback);
683 }
684 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
685 sizeof(struct img_hash_request_ctx) +
686 crypto_ahash_reqsize(ctx->fallback) +
687 IMG_HASH_DMA_THRESHOLD);
688
689 return 0;
690 }
691
img_hash_cra_md5_init(struct crypto_tfm * tfm)692 static int img_hash_cra_md5_init(struct crypto_tfm *tfm)
693 {
694 return img_hash_cra_init(tfm, "md5-generic");
695 }
696
img_hash_cra_sha1_init(struct crypto_tfm * tfm)697 static int img_hash_cra_sha1_init(struct crypto_tfm *tfm)
698 {
699 return img_hash_cra_init(tfm, "sha1-generic");
700 }
701
img_hash_cra_sha224_init(struct crypto_tfm * tfm)702 static int img_hash_cra_sha224_init(struct crypto_tfm *tfm)
703 {
704 return img_hash_cra_init(tfm, "sha224-generic");
705 }
706
img_hash_cra_sha256_init(struct crypto_tfm * tfm)707 static int img_hash_cra_sha256_init(struct crypto_tfm *tfm)
708 {
709 return img_hash_cra_init(tfm, "sha256-generic");
710 }
711
img_hash_cra_exit(struct crypto_tfm * tfm)712 static void img_hash_cra_exit(struct crypto_tfm *tfm)
713 {
714 struct img_hash_ctx *tctx = crypto_tfm_ctx(tfm);
715
716 crypto_free_ahash(tctx->fallback);
717 }
718
img_irq_handler(int irq,void * dev_id)719 static irqreturn_t img_irq_handler(int irq, void *dev_id)
720 {
721 struct img_hash_dev *hdev = dev_id;
722 u32 reg;
723
724 reg = img_hash_read(hdev, CR_INTSTAT);
725 img_hash_write(hdev, CR_INTCLEAR, reg);
726
727 if (reg & CR_INT_NEW_RESULTS_SET) {
728 dev_dbg(hdev->dev, "IRQ CR_INT_NEW_RESULTS_SET\n");
729 if (DRIVER_FLAGS_BUSY & hdev->flags) {
730 hdev->flags |= DRIVER_FLAGS_OUTPUT_READY;
731 if (!(DRIVER_FLAGS_CPU & hdev->flags))
732 hdev->flags |= DRIVER_FLAGS_DMA_READY;
733 tasklet_schedule(&hdev->done_task);
734 } else {
735 dev_warn(hdev->dev,
736 "HASH interrupt when no active requests.\n");
737 }
738 } else if (reg & CR_INT_RESULTS_AVAILABLE) {
739 dev_warn(hdev->dev,
740 "IRQ triggered before the hash had completed\n");
741 } else if (reg & CR_INT_RESULT_READ_ERR) {
742 dev_warn(hdev->dev,
743 "Attempt to read from an empty result queue\n");
744 } else if (reg & CR_INT_MESSAGE_WRITE_ERROR) {
745 dev_warn(hdev->dev,
746 "Data written before the hardware was configured\n");
747 }
748 return IRQ_HANDLED;
749 }
750
751 static struct ahash_alg img_algs[] = {
752 {
753 .init = img_hash_init,
754 .update = img_hash_update,
755 .final = img_hash_final,
756 .finup = img_hash_finup,
757 .export = img_hash_export,
758 .import = img_hash_import,
759 .digest = img_hash_digest,
760 .halg = {
761 .digestsize = MD5_DIGEST_SIZE,
762 .statesize = sizeof(struct md5_state),
763 .base = {
764 .cra_name = "md5",
765 .cra_driver_name = "img-md5",
766 .cra_priority = 300,
767 .cra_flags =
768 CRYPTO_ALG_ASYNC |
769 CRYPTO_ALG_NEED_FALLBACK,
770 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
771 .cra_ctxsize = sizeof(struct img_hash_ctx),
772 .cra_init = img_hash_cra_md5_init,
773 .cra_exit = img_hash_cra_exit,
774 .cra_module = THIS_MODULE,
775 }
776 }
777 },
778 {
779 .init = img_hash_init,
780 .update = img_hash_update,
781 .final = img_hash_final,
782 .finup = img_hash_finup,
783 .export = img_hash_export,
784 .import = img_hash_import,
785 .digest = img_hash_digest,
786 .halg = {
787 .digestsize = SHA1_DIGEST_SIZE,
788 .statesize = sizeof(struct sha1_state),
789 .base = {
790 .cra_name = "sha1",
791 .cra_driver_name = "img-sha1",
792 .cra_priority = 300,
793 .cra_flags =
794 CRYPTO_ALG_ASYNC |
795 CRYPTO_ALG_NEED_FALLBACK,
796 .cra_blocksize = SHA1_BLOCK_SIZE,
797 .cra_ctxsize = sizeof(struct img_hash_ctx),
798 .cra_init = img_hash_cra_sha1_init,
799 .cra_exit = img_hash_cra_exit,
800 .cra_module = THIS_MODULE,
801 }
802 }
803 },
804 {
805 .init = img_hash_init,
806 .update = img_hash_update,
807 .final = img_hash_final,
808 .finup = img_hash_finup,
809 .export = img_hash_export,
810 .import = img_hash_import,
811 .digest = img_hash_digest,
812 .halg = {
813 .digestsize = SHA224_DIGEST_SIZE,
814 .statesize = sizeof(struct sha256_state),
815 .base = {
816 .cra_name = "sha224",
817 .cra_driver_name = "img-sha224",
818 .cra_priority = 300,
819 .cra_flags =
820 CRYPTO_ALG_ASYNC |
821 CRYPTO_ALG_NEED_FALLBACK,
822 .cra_blocksize = SHA224_BLOCK_SIZE,
823 .cra_ctxsize = sizeof(struct img_hash_ctx),
824 .cra_init = img_hash_cra_sha224_init,
825 .cra_exit = img_hash_cra_exit,
826 .cra_module = THIS_MODULE,
827 }
828 }
829 },
830 {
831 .init = img_hash_init,
832 .update = img_hash_update,
833 .final = img_hash_final,
834 .finup = img_hash_finup,
835 .export = img_hash_export,
836 .import = img_hash_import,
837 .digest = img_hash_digest,
838 .halg = {
839 .digestsize = SHA256_DIGEST_SIZE,
840 .statesize = sizeof(struct sha256_state),
841 .base = {
842 .cra_name = "sha256",
843 .cra_driver_name = "img-sha256",
844 .cra_priority = 300,
845 .cra_flags =
846 CRYPTO_ALG_ASYNC |
847 CRYPTO_ALG_NEED_FALLBACK,
848 .cra_blocksize = SHA256_BLOCK_SIZE,
849 .cra_ctxsize = sizeof(struct img_hash_ctx),
850 .cra_init = img_hash_cra_sha256_init,
851 .cra_exit = img_hash_cra_exit,
852 .cra_module = THIS_MODULE,
853 }
854 }
855 }
856 };
857
img_register_algs(struct img_hash_dev * hdev)858 static int img_register_algs(struct img_hash_dev *hdev)
859 {
860 int i, err;
861
862 for (i = 0; i < ARRAY_SIZE(img_algs); i++) {
863 err = crypto_register_ahash(&img_algs[i]);
864 if (err)
865 goto err_reg;
866 }
867 return 0;
868
869 err_reg:
870 for (; i--; )
871 crypto_unregister_ahash(&img_algs[i]);
872
873 return err;
874 }
875
img_unregister_algs(struct img_hash_dev * hdev)876 static int img_unregister_algs(struct img_hash_dev *hdev)
877 {
878 int i;
879
880 for (i = 0; i < ARRAY_SIZE(img_algs); i++)
881 crypto_unregister_ahash(&img_algs[i]);
882 return 0;
883 }
884
img_hash_done_task(unsigned long data)885 static void img_hash_done_task(unsigned long data)
886 {
887 struct img_hash_dev *hdev = (struct img_hash_dev *)data;
888 int err = 0;
889
890 if (hdev->err == -EINVAL) {
891 err = hdev->err;
892 goto finish;
893 }
894
895 if (!(DRIVER_FLAGS_BUSY & hdev->flags)) {
896 img_hash_handle_queue(hdev, NULL);
897 return;
898 }
899
900 if (DRIVER_FLAGS_CPU & hdev->flags) {
901 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
902 hdev->flags &= ~DRIVER_FLAGS_OUTPUT_READY;
903 goto finish;
904 }
905 } else if (DRIVER_FLAGS_DMA_READY & hdev->flags) {
906 if (DRIVER_FLAGS_DMA_ACTIVE & hdev->flags) {
907 hdev->flags &= ~DRIVER_FLAGS_DMA_ACTIVE;
908 img_hash_write_via_dma_stop(hdev);
909 if (hdev->err) {
910 err = hdev->err;
911 goto finish;
912 }
913 }
914 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
915 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY |
916 DRIVER_FLAGS_OUTPUT_READY);
917 goto finish;
918 }
919 }
920 return;
921
922 finish:
923 img_hash_finish_req(hdev->req, err);
924 }
925
926 static const struct of_device_id img_hash_match[] = {
927 { .compatible = "img,hash-accelerator" },
928 {}
929 };
930 MODULE_DEVICE_TABLE(of, img_hash_match);
931
img_hash_probe(struct platform_device * pdev)932 static int img_hash_probe(struct platform_device *pdev)
933 {
934 struct img_hash_dev *hdev;
935 struct device *dev = &pdev->dev;
936 struct resource *hash_res;
937 int irq;
938 int err;
939
940 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
941 if (hdev == NULL)
942 return -ENOMEM;
943
944 spin_lock_init(&hdev->lock);
945
946 hdev->dev = dev;
947
948 platform_set_drvdata(pdev, hdev);
949
950 INIT_LIST_HEAD(&hdev->list);
951
952 tasklet_init(&hdev->done_task, img_hash_done_task, (unsigned long)hdev);
953 tasklet_init(&hdev->dma_task, img_hash_dma_task, (unsigned long)hdev);
954
955 crypto_init_queue(&hdev->queue, IMG_HASH_QUEUE_LENGTH);
956
957 /* Register bank */
958 hdev->io_base = devm_platform_ioremap_resource(pdev, 0);
959 if (IS_ERR(hdev->io_base)) {
960 err = PTR_ERR(hdev->io_base);
961 goto res_err;
962 }
963
964 /* Write port (DMA or CPU) */
965 hash_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
966 hdev->cpu_addr = devm_ioremap_resource(dev, hash_res);
967 if (IS_ERR(hdev->cpu_addr)) {
968 err = PTR_ERR(hdev->cpu_addr);
969 goto res_err;
970 }
971 hdev->bus_addr = hash_res->start;
972
973 irq = platform_get_irq(pdev, 0);
974 if (irq < 0) {
975 err = irq;
976 goto res_err;
977 }
978
979 err = devm_request_irq(dev, irq, img_irq_handler, 0,
980 dev_name(dev), hdev);
981 if (err) {
982 dev_err(dev, "unable to request irq\n");
983 goto res_err;
984 }
985 dev_dbg(dev, "using IRQ channel %d\n", irq);
986
987 hdev->hash_clk = devm_clk_get(&pdev->dev, "hash");
988 if (IS_ERR(hdev->hash_clk)) {
989 dev_err(dev, "clock initialization failed.\n");
990 err = PTR_ERR(hdev->hash_clk);
991 goto res_err;
992 }
993
994 hdev->sys_clk = devm_clk_get(&pdev->dev, "sys");
995 if (IS_ERR(hdev->sys_clk)) {
996 dev_err(dev, "clock initialization failed.\n");
997 err = PTR_ERR(hdev->sys_clk);
998 goto res_err;
999 }
1000
1001 err = clk_prepare_enable(hdev->hash_clk);
1002 if (err)
1003 goto res_err;
1004
1005 err = clk_prepare_enable(hdev->sys_clk);
1006 if (err)
1007 goto clk_err;
1008
1009 err = img_hash_dma_init(hdev);
1010 if (err)
1011 goto dma_err;
1012
1013 dev_dbg(dev, "using %s for DMA transfers\n",
1014 dma_chan_name(hdev->dma_lch));
1015
1016 spin_lock(&img_hash.lock);
1017 list_add_tail(&hdev->list, &img_hash.dev_list);
1018 spin_unlock(&img_hash.lock);
1019
1020 err = img_register_algs(hdev);
1021 if (err)
1022 goto err_algs;
1023 dev_info(dev, "Img MD5/SHA1/SHA224/SHA256 Hardware accelerator initialized\n");
1024
1025 return 0;
1026
1027 err_algs:
1028 spin_lock(&img_hash.lock);
1029 list_del(&hdev->list);
1030 spin_unlock(&img_hash.lock);
1031 dma_release_channel(hdev->dma_lch);
1032 dma_err:
1033 clk_disable_unprepare(hdev->sys_clk);
1034 clk_err:
1035 clk_disable_unprepare(hdev->hash_clk);
1036 res_err:
1037 tasklet_kill(&hdev->done_task);
1038 tasklet_kill(&hdev->dma_task);
1039
1040 return err;
1041 }
1042
img_hash_remove(struct platform_device * pdev)1043 static int img_hash_remove(struct platform_device *pdev)
1044 {
1045 struct img_hash_dev *hdev;
1046
1047 hdev = platform_get_drvdata(pdev);
1048 spin_lock(&img_hash.lock);
1049 list_del(&hdev->list);
1050 spin_unlock(&img_hash.lock);
1051
1052 img_unregister_algs(hdev);
1053
1054 tasklet_kill(&hdev->done_task);
1055 tasklet_kill(&hdev->dma_task);
1056
1057 dma_release_channel(hdev->dma_lch);
1058
1059 clk_disable_unprepare(hdev->hash_clk);
1060 clk_disable_unprepare(hdev->sys_clk);
1061
1062 return 0;
1063 }
1064
1065 #ifdef CONFIG_PM_SLEEP
img_hash_suspend(struct device * dev)1066 static int img_hash_suspend(struct device *dev)
1067 {
1068 struct img_hash_dev *hdev = dev_get_drvdata(dev);
1069
1070 clk_disable_unprepare(hdev->hash_clk);
1071 clk_disable_unprepare(hdev->sys_clk);
1072
1073 return 0;
1074 }
1075
img_hash_resume(struct device * dev)1076 static int img_hash_resume(struct device *dev)
1077 {
1078 struct img_hash_dev *hdev = dev_get_drvdata(dev);
1079 int ret;
1080
1081 ret = clk_prepare_enable(hdev->hash_clk);
1082 if (ret)
1083 return ret;
1084
1085 ret = clk_prepare_enable(hdev->sys_clk);
1086 if (ret) {
1087 clk_disable_unprepare(hdev->hash_clk);
1088 return ret;
1089 }
1090
1091 return 0;
1092 }
1093 #endif /* CONFIG_PM_SLEEP */
1094
1095 static const struct dev_pm_ops img_hash_pm_ops = {
1096 SET_SYSTEM_SLEEP_PM_OPS(img_hash_suspend, img_hash_resume)
1097 };
1098
1099 static struct platform_driver img_hash_driver = {
1100 .probe = img_hash_probe,
1101 .remove = img_hash_remove,
1102 .driver = {
1103 .name = "img-hash-accelerator",
1104 .pm = &img_hash_pm_ops,
1105 .of_match_table = of_match_ptr(img_hash_match),
1106 }
1107 };
1108 module_platform_driver(img_hash_driver);
1109
1110 MODULE_LICENSE("GPL v2");
1111 MODULE_DESCRIPTION("Imgtec SHA1/224/256 & MD5 hw accelerator driver");
1112 MODULE_AUTHOR("Will Thomas.");
1113 MODULE_AUTHOR("James Hartley <james.hartley@imgtec.com>");
1114