1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY 300
45
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
53
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
74 AES_FLAGS_ENCRYPT | \
75 AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
79 #define AES_FLAGS_OWN_SHA BIT(5)
80
81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH 50
84
85 #define ATMEL_AES_DMA_THRESHOLD 256
86
87
88 struct atmel_aes_caps {
89 bool has_dualbuff;
90 bool has_cfb64;
91 bool has_gcm;
92 bool has_xts;
93 bool has_authenc;
94 u32 max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104 struct atmel_aes_dev *dd;
105 atmel_aes_fn_t start;
106 int keylen;
107 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
108 u16 block_size;
109 bool is_aead;
110 };
111
112 struct atmel_aes_ctx {
113 struct atmel_aes_base_ctx base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117 struct atmel_aes_base_ctx base;
118
119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
120 size_t offset;
121 struct scatterlist src[2];
122 struct scatterlist dst[2];
123 u32 blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127 struct atmel_aes_base_ctx base;
128
129 struct scatterlist src[2];
130 struct scatterlist dst[2];
131
132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 size_t textlen;
136
137 const __be32 *ghash_in;
138 __be32 *ghash_out;
139 atmel_aes_fn_t ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143 struct atmel_aes_base_ctx base;
144
145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
146 struct crypto_skcipher *fallback_tfm;
147 };
148
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151 struct atmel_aes_base_ctx base;
152 struct atmel_sha_authenc_ctx *auth;
153 };
154 #endif
155
156 struct atmel_aes_reqctx {
157 unsigned long mode;
158 u8 lastc[AES_BLOCK_SIZE];
159 struct skcipher_request fallback_req;
160 };
161
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164 struct atmel_aes_reqctx base;
165
166 struct scatterlist src[2];
167 struct scatterlist dst[2];
168 size_t textlen;
169 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171 /* auth_req MUST be place last. */
172 struct ahash_request auth_req;
173 };
174 #endif
175
176 struct atmel_aes_dma {
177 struct dma_chan *chan;
178 struct scatterlist *sg;
179 int nents;
180 unsigned int remainder;
181 unsigned int sg_len;
182 };
183
184 struct atmel_aes_dev {
185 struct list_head list;
186 unsigned long phys_base;
187 void __iomem *io_base;
188
189 struct crypto_async_request *areq;
190 struct atmel_aes_base_ctx *ctx;
191
192 bool is_async;
193 atmel_aes_fn_t resume;
194 atmel_aes_fn_t cpu_transfer_complete;
195
196 struct device *dev;
197 struct clk *iclk;
198 int irq;
199
200 unsigned long flags;
201
202 spinlock_t lock;
203 struct crypto_queue queue;
204
205 struct tasklet_struct done_task;
206 struct tasklet_struct queue_task;
207
208 size_t total;
209 size_t datalen;
210 u32 *data;
211
212 struct atmel_aes_dma src;
213 struct atmel_aes_dma dst;
214
215 size_t buflen;
216 void *buf;
217 struct scatterlist aligned_sg;
218 struct scatterlist *real_dst;
219
220 struct atmel_aes_caps caps;
221
222 u32 hw_version;
223 };
224
225 struct atmel_aes_drv {
226 struct list_head dev_list;
227 spinlock_t lock;
228 };
229
230 static struct atmel_aes_drv atmel_aes = {
231 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234
235 #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238 switch (offset) {
239 case AES_CR:
240 return "CR";
241
242 case AES_MR:
243 return "MR";
244
245 case AES_ISR:
246 return "ISR";
247
248 case AES_IMR:
249 return "IMR";
250
251 case AES_IER:
252 return "IER";
253
254 case AES_IDR:
255 return "IDR";
256
257 case AES_KEYWR(0):
258 case AES_KEYWR(1):
259 case AES_KEYWR(2):
260 case AES_KEYWR(3):
261 case AES_KEYWR(4):
262 case AES_KEYWR(5):
263 case AES_KEYWR(6):
264 case AES_KEYWR(7):
265 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266 break;
267
268 case AES_IDATAR(0):
269 case AES_IDATAR(1):
270 case AES_IDATAR(2):
271 case AES_IDATAR(3):
272 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273 break;
274
275 case AES_ODATAR(0):
276 case AES_ODATAR(1):
277 case AES_ODATAR(2):
278 case AES_ODATAR(3):
279 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280 break;
281
282 case AES_IVR(0):
283 case AES_IVR(1):
284 case AES_IVR(2):
285 case AES_IVR(3):
286 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287 break;
288
289 case AES_AADLENR:
290 return "AADLENR";
291
292 case AES_CLENR:
293 return "CLENR";
294
295 case AES_GHASHR(0):
296 case AES_GHASHR(1):
297 case AES_GHASHR(2):
298 case AES_GHASHR(3):
299 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300 break;
301
302 case AES_TAGR(0):
303 case AES_TAGR(1):
304 case AES_TAGR(2):
305 case AES_TAGR(3):
306 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307 break;
308
309 case AES_CTRR:
310 return "CTRR";
311
312 case AES_GCMHR(0):
313 case AES_GCMHR(1):
314 case AES_GCMHR(2):
315 case AES_GCMHR(3):
316 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317 break;
318
319 case AES_EMR:
320 return "EMR";
321
322 case AES_TWR(0):
323 case AES_TWR(1):
324 case AES_TWR(2):
325 case AES_TWR(3):
326 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327 break;
328
329 case AES_ALPHAR(0):
330 case AES_ALPHAR(1):
331 case AES_ALPHAR(2):
332 case AES_ALPHAR(3):
333 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334 break;
335
336 default:
337 snprintf(tmp, sz, "0x%02x", offset);
338 break;
339 }
340
341 return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344
345 /* Shared functions */
346
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349 u32 value = readl_relaxed(dd->io_base + offset);
350
351 #ifdef VERBOSE_DEBUG
352 if (dd->flags & AES_FLAGS_DUMP_REG) {
353 char tmp[16];
354
355 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357 }
358 #endif /* VERBOSE_DEBUG */
359
360 return value;
361 }
362
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364 u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367 if (dd->flags & AES_FLAGS_DUMP_REG) {
368 char tmp[16];
369
370 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372 }
373 #endif /* VERBOSE_DEBUG */
374
375 writel_relaxed(value, dd->io_base + offset);
376 }
377
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379 u32 *value, int count)
380 {
381 for (; count--; value++, offset += 4)
382 *value = atmel_aes_read(dd, offset);
383 }
384
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386 const u32 *value, int count)
387 {
388 for (; count--; value++, offset += 4)
389 atmel_aes_write(dd, offset, *value);
390 }
391
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,void * value)392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393 void *value)
394 {
395 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const void * value)398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399 const void *value)
400 {
401 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405 atmel_aes_fn_t resume)
406 {
407 u32 isr = atmel_aes_read(dd, AES_ISR);
408
409 if (unlikely(isr & AES_INT_DATARDY))
410 return resume(dd);
411
412 dd->resume = resume;
413 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414 return -EINPROGRESS;
415 }
416
atmel_aes_padlen(size_t len,size_t block_size)417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419 len &= block_size - 1;
420 return len ? block_size - len : 0;
421 }
422
atmel_aes_dev_alloc(struct atmel_aes_base_ctx * ctx)423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424 {
425 struct atmel_aes_dev *aes_dd;
426
427 spin_lock_bh(&atmel_aes.lock);
428 /* One AES IP per SoC. */
429 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430 struct atmel_aes_dev, list);
431 spin_unlock_bh(&atmel_aes.lock);
432 return aes_dd;
433 }
434
atmel_aes_hw_init(struct atmel_aes_dev * dd)435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436 {
437 int err;
438
439 err = clk_enable(dd->iclk);
440 if (err)
441 return err;
442
443 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446 return 0;
447 }
448
atmel_aes_get_version(struct atmel_aes_dev * dd)449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450 {
451 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452 }
453
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455 {
456 int err;
457
458 err = atmel_aes_hw_init(dd);
459 if (err)
460 return err;
461
462 dd->hw_version = atmel_aes_get_version(dd);
463
464 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466 clk_disable(dd->iclk);
467 return 0;
468 }
469
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471 const struct atmel_aes_reqctx *rctx)
472 {
473 /* Clear all but persistent flags and set request flags. */
474 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475 }
476
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478 {
479 return (dd->flags & AES_FLAGS_ENCRYPT);
480 }
481
482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484 #endif
485
atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev * dd)486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487 {
488 struct skcipher_request *req = skcipher_request_cast(dd->areq);
489 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493 if (req->cryptlen < ivsize)
494 return;
495
496 if (rctx->mode & AES_FLAGS_ENCRYPT) {
497 scatterwalk_map_and_copy(req->iv, req->dst,
498 req->cryptlen - ivsize, ivsize, 0);
499 } else {
500 if (req->src == req->dst)
501 memcpy(req->iv, rctx->lastc, ivsize);
502 else
503 scatterwalk_map_and_copy(req->iv, req->src,
504 req->cryptlen - ivsize,
505 ivsize, 0);
506 }
507 }
508
509 static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)510 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
511 {
512 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
513 }
514
atmel_aes_ctr_update_req_iv(struct atmel_aes_dev * dd)515 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
516 {
517 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
518 struct skcipher_request *req = skcipher_request_cast(dd->areq);
519 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
520 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
521 int i;
522
523 /*
524 * The CTR transfer works in fragments of data of maximum 1 MByte
525 * because of the 16 bit CTR counter embedded in the IP. When reaching
526 * here, ctx->blocks contains the number of blocks of the last fragment
527 * processed, there is no need to explicit cast it to u16.
528 */
529 for (i = 0; i < ctx->blocks; i++)
530 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
531
532 memcpy(req->iv, ctx->iv, ivsize);
533 }
534
atmel_aes_complete(struct atmel_aes_dev * dd,int err)535 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
536 {
537 struct skcipher_request *req = skcipher_request_cast(dd->areq);
538 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
539
540 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
541 if (dd->ctx->is_aead)
542 atmel_aes_authenc_complete(dd, err);
543 #endif
544
545 clk_disable(dd->iclk);
546 dd->flags &= ~AES_FLAGS_BUSY;
547
548 if (!err && !dd->ctx->is_aead &&
549 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
550 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
551 atmel_aes_set_iv_as_last_ciphertext_block(dd);
552 else
553 atmel_aes_ctr_update_req_iv(dd);
554 }
555
556 if (dd->is_async)
557 dd->areq->complete(dd->areq, err);
558
559 tasklet_schedule(&dd->queue_task);
560
561 return err;
562 }
563
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv,const u32 * key,int keylen)564 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
565 const __be32 *iv, const u32 *key, int keylen)
566 {
567 u32 valmr = 0;
568
569 /* MR register must be set before IV registers */
570 if (keylen == AES_KEYSIZE_128)
571 valmr |= AES_MR_KEYSIZE_128;
572 else if (keylen == AES_KEYSIZE_192)
573 valmr |= AES_MR_KEYSIZE_192;
574 else
575 valmr |= AES_MR_KEYSIZE_256;
576
577 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
578
579 if (use_dma) {
580 valmr |= AES_MR_SMOD_IDATAR0;
581 if (dd->caps.has_dualbuff)
582 valmr |= AES_MR_DUALBUFF;
583 } else {
584 valmr |= AES_MR_SMOD_AUTO;
585 }
586
587 atmel_aes_write(dd, AES_MR, valmr);
588
589 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
590
591 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
592 atmel_aes_write_block(dd, AES_IVR(0), iv);
593 }
594
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv)595 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
596 const __be32 *iv)
597
598 {
599 atmel_aes_write_ctrl_key(dd, use_dma, iv,
600 dd->ctx->key, dd->ctx->keylen);
601 }
602
603 /* CPU transfer */
604
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)605 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
606 {
607 int err = 0;
608 u32 isr;
609
610 for (;;) {
611 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
612 dd->data += 4;
613 dd->datalen -= AES_BLOCK_SIZE;
614
615 if (dd->datalen < AES_BLOCK_SIZE)
616 break;
617
618 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
619
620 isr = atmel_aes_read(dd, AES_ISR);
621 if (!(isr & AES_INT_DATARDY)) {
622 dd->resume = atmel_aes_cpu_transfer;
623 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
624 return -EINPROGRESS;
625 }
626 }
627
628 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
629 dd->buf, dd->total))
630 err = -EINVAL;
631
632 if (err)
633 return atmel_aes_complete(dd, err);
634
635 return dd->cpu_transfer_complete(dd);
636 }
637
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)638 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
639 struct scatterlist *src,
640 struct scatterlist *dst,
641 size_t len,
642 atmel_aes_fn_t resume)
643 {
644 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
645
646 if (unlikely(len == 0))
647 return -EINVAL;
648
649 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
650
651 dd->total = len;
652 dd->real_dst = dst;
653 dd->cpu_transfer_complete = resume;
654 dd->datalen = len + padlen;
655 dd->data = (u32 *)dd->buf;
656 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
657 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
658 }
659
660
661 /* DMA transfer */
662
663 static void atmel_aes_dma_callback(void *data);
664
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)665 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
666 struct scatterlist *sg,
667 size_t len,
668 struct atmel_aes_dma *dma)
669 {
670 int nents;
671
672 if (!IS_ALIGNED(len, dd->ctx->block_size))
673 return false;
674
675 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
676 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
677 return false;
678
679 if (len <= sg->length) {
680 if (!IS_ALIGNED(len, dd->ctx->block_size))
681 return false;
682
683 dma->nents = nents+1;
684 dma->remainder = sg->length - len;
685 sg->length = len;
686 return true;
687 }
688
689 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
690 return false;
691
692 len -= sg->length;
693 }
694
695 return false;
696 }
697
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)698 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
699 {
700 struct scatterlist *sg = dma->sg;
701 int nents = dma->nents;
702
703 if (!dma->remainder)
704 return;
705
706 while (--nents > 0 && sg)
707 sg = sg_next(sg);
708
709 if (!sg)
710 return;
711
712 sg->length += dma->remainder;
713 }
714
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)715 static int atmel_aes_map(struct atmel_aes_dev *dd,
716 struct scatterlist *src,
717 struct scatterlist *dst,
718 size_t len)
719 {
720 bool src_aligned, dst_aligned;
721 size_t padlen;
722
723 dd->total = len;
724 dd->src.sg = src;
725 dd->dst.sg = dst;
726 dd->real_dst = dst;
727
728 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
729 if (src == dst)
730 dst_aligned = src_aligned;
731 else
732 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
733 if (!src_aligned || !dst_aligned) {
734 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
735
736 if (dd->buflen < len + padlen)
737 return -ENOMEM;
738
739 if (!src_aligned) {
740 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
741 dd->src.sg = &dd->aligned_sg;
742 dd->src.nents = 1;
743 dd->src.remainder = 0;
744 }
745
746 if (!dst_aligned) {
747 dd->dst.sg = &dd->aligned_sg;
748 dd->dst.nents = 1;
749 dd->dst.remainder = 0;
750 }
751
752 sg_init_table(&dd->aligned_sg, 1);
753 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
754 }
755
756 if (dd->src.sg == dd->dst.sg) {
757 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758 DMA_BIDIRECTIONAL);
759 dd->dst.sg_len = dd->src.sg_len;
760 if (!dd->src.sg_len)
761 return -EFAULT;
762 } else {
763 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
764 DMA_TO_DEVICE);
765 if (!dd->src.sg_len)
766 return -EFAULT;
767
768 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
769 DMA_FROM_DEVICE);
770 if (!dd->dst.sg_len) {
771 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
772 DMA_TO_DEVICE);
773 return -EFAULT;
774 }
775 }
776
777 return 0;
778 }
779
atmel_aes_unmap(struct atmel_aes_dev * dd)780 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
781 {
782 if (dd->src.sg == dd->dst.sg) {
783 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
784 DMA_BIDIRECTIONAL);
785
786 if (dd->src.sg != &dd->aligned_sg)
787 atmel_aes_restore_sg(&dd->src);
788 } else {
789 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
790 DMA_FROM_DEVICE);
791
792 if (dd->dst.sg != &dd->aligned_sg)
793 atmel_aes_restore_sg(&dd->dst);
794
795 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
796 DMA_TO_DEVICE);
797
798 if (dd->src.sg != &dd->aligned_sg)
799 atmel_aes_restore_sg(&dd->src);
800 }
801
802 if (dd->dst.sg == &dd->aligned_sg)
803 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
804 dd->buf, dd->total);
805 }
806
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)807 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
808 enum dma_slave_buswidth addr_width,
809 enum dma_transfer_direction dir,
810 u32 maxburst)
811 {
812 struct dma_async_tx_descriptor *desc;
813 struct dma_slave_config config;
814 dma_async_tx_callback callback;
815 struct atmel_aes_dma *dma;
816 int err;
817
818 memset(&config, 0, sizeof(config));
819 config.src_addr_width = addr_width;
820 config.dst_addr_width = addr_width;
821 config.src_maxburst = maxburst;
822 config.dst_maxburst = maxburst;
823
824 switch (dir) {
825 case DMA_MEM_TO_DEV:
826 dma = &dd->src;
827 callback = NULL;
828 config.dst_addr = dd->phys_base + AES_IDATAR(0);
829 break;
830
831 case DMA_DEV_TO_MEM:
832 dma = &dd->dst;
833 callback = atmel_aes_dma_callback;
834 config.src_addr = dd->phys_base + AES_ODATAR(0);
835 break;
836
837 default:
838 return -EINVAL;
839 }
840
841 err = dmaengine_slave_config(dma->chan, &config);
842 if (err)
843 return err;
844
845 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
846 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 if (!desc)
848 return -ENOMEM;
849
850 desc->callback = callback;
851 desc->callback_param = dd;
852 dmaengine_submit(desc);
853 dma_async_issue_pending(dma->chan);
854
855 return 0;
856 }
857
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)858 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
859 struct scatterlist *src,
860 struct scatterlist *dst,
861 size_t len,
862 atmel_aes_fn_t resume)
863 {
864 enum dma_slave_buswidth addr_width;
865 u32 maxburst;
866 int err;
867
868 switch (dd->ctx->block_size) {
869 case CFB8_BLOCK_SIZE:
870 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
871 maxburst = 1;
872 break;
873
874 case CFB16_BLOCK_SIZE:
875 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
876 maxburst = 1;
877 break;
878
879 case CFB32_BLOCK_SIZE:
880 case CFB64_BLOCK_SIZE:
881 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
882 maxburst = 1;
883 break;
884
885 case AES_BLOCK_SIZE:
886 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
887 maxburst = dd->caps.max_burst_size;
888 break;
889
890 default:
891 err = -EINVAL;
892 goto exit;
893 }
894
895 err = atmel_aes_map(dd, src, dst, len);
896 if (err)
897 goto exit;
898
899 dd->resume = resume;
900
901 /* Set output DMA transfer first */
902 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
903 maxburst);
904 if (err)
905 goto unmap;
906
907 /* Then set input DMA transfer */
908 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
909 maxburst);
910 if (err)
911 goto output_transfer_stop;
912
913 return -EINPROGRESS;
914
915 output_transfer_stop:
916 dmaengine_terminate_sync(dd->dst.chan);
917 unmap:
918 atmel_aes_unmap(dd);
919 exit:
920 return atmel_aes_complete(dd, err);
921 }
922
atmel_aes_dma_callback(void * data)923 static void atmel_aes_dma_callback(void *data)
924 {
925 struct atmel_aes_dev *dd = data;
926
927 atmel_aes_unmap(dd);
928 dd->is_async = true;
929 (void)dd->resume(dd);
930 }
931
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)932 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
933 struct crypto_async_request *new_areq)
934 {
935 struct crypto_async_request *areq, *backlog;
936 struct atmel_aes_base_ctx *ctx;
937 unsigned long flags;
938 bool start_async;
939 int err, ret = 0;
940
941 spin_lock_irqsave(&dd->lock, flags);
942 if (new_areq)
943 ret = crypto_enqueue_request(&dd->queue, new_areq);
944 if (dd->flags & AES_FLAGS_BUSY) {
945 spin_unlock_irqrestore(&dd->lock, flags);
946 return ret;
947 }
948 backlog = crypto_get_backlog(&dd->queue);
949 areq = crypto_dequeue_request(&dd->queue);
950 if (areq)
951 dd->flags |= AES_FLAGS_BUSY;
952 spin_unlock_irqrestore(&dd->lock, flags);
953
954 if (!areq)
955 return ret;
956
957 if (backlog)
958 backlog->complete(backlog, -EINPROGRESS);
959
960 ctx = crypto_tfm_ctx(areq->tfm);
961
962 dd->areq = areq;
963 dd->ctx = ctx;
964 start_async = (areq != new_areq);
965 dd->is_async = start_async;
966
967 /* WARNING: ctx->start() MAY change dd->is_async. */
968 err = ctx->start(dd);
969 return (start_async) ? ret : err;
970 }
971
972
973 /* AES async block ciphers */
974
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)975 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
976 {
977 return atmel_aes_complete(dd, 0);
978 }
979
atmel_aes_start(struct atmel_aes_dev * dd)980 static int atmel_aes_start(struct atmel_aes_dev *dd)
981 {
982 struct skcipher_request *req = skcipher_request_cast(dd->areq);
983 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
984 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
985 dd->ctx->block_size != AES_BLOCK_SIZE);
986 int err;
987
988 atmel_aes_set_mode(dd, rctx);
989
990 err = atmel_aes_hw_init(dd);
991 if (err)
992 return atmel_aes_complete(dd, err);
993
994 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
995 if (use_dma)
996 return atmel_aes_dma_start(dd, req->src, req->dst,
997 req->cryptlen,
998 atmel_aes_transfer_complete);
999
1000 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1001 atmel_aes_transfer_complete);
1002 }
1003
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)1004 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1005 {
1006 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1007 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1008 struct scatterlist *src, *dst;
1009 size_t datalen;
1010 u32 ctr;
1011 u16 start, end;
1012 bool use_dma, fragmented = false;
1013
1014 /* Check for transfer completion. */
1015 ctx->offset += dd->total;
1016 if (ctx->offset >= req->cryptlen)
1017 return atmel_aes_transfer_complete(dd);
1018
1019 /* Compute data length. */
1020 datalen = req->cryptlen - ctx->offset;
1021 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1022 ctr = be32_to_cpu(ctx->iv[3]);
1023
1024 /* Check 16bit counter overflow. */
1025 start = ctr & 0xffff;
1026 end = start + ctx->blocks - 1;
1027
1028 if (ctx->blocks >> 16 || end < start) {
1029 ctr |= 0xffff;
1030 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1031 fragmented = true;
1032 }
1033
1034 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1035
1036 /* Jump to offset. */
1037 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1038 dst = ((req->src == req->dst) ? src :
1039 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1040
1041 /* Configure hardware. */
1042 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1043 if (unlikely(fragmented)) {
1044 /*
1045 * Increment the counter manually to cope with the hardware
1046 * counter overflow.
1047 */
1048 ctx->iv[3] = cpu_to_be32(ctr);
1049 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1050 }
1051
1052 if (use_dma)
1053 return atmel_aes_dma_start(dd, src, dst, datalen,
1054 atmel_aes_ctr_transfer);
1055
1056 return atmel_aes_cpu_start(dd, src, dst, datalen,
1057 atmel_aes_ctr_transfer);
1058 }
1059
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1060 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1061 {
1062 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1063 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1064 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1065 int err;
1066
1067 atmel_aes_set_mode(dd, rctx);
1068
1069 err = atmel_aes_hw_init(dd);
1070 if (err)
1071 return atmel_aes_complete(dd, err);
1072
1073 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1074 ctx->offset = 0;
1075 dd->total = 0;
1076 return atmel_aes_ctr_transfer(dd);
1077 }
1078
atmel_aes_xts_fallback(struct skcipher_request * req,bool enc)1079 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1080 {
1081 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1083 crypto_skcipher_reqtfm(req));
1084
1085 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1086 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1087 req->base.complete, req->base.data);
1088 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1089 req->cryptlen, req->iv);
1090
1091 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1092 crypto_skcipher_decrypt(&rctx->fallback_req);
1093 }
1094
atmel_aes_crypt(struct skcipher_request * req,unsigned long mode)1095 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1096 {
1097 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1098 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1099 struct atmel_aes_reqctx *rctx;
1100 u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1101
1102 if (opmode == AES_FLAGS_XTS) {
1103 if (req->cryptlen < XTS_BLOCK_SIZE)
1104 return -EINVAL;
1105
1106 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1107 return atmel_aes_xts_fallback(req,
1108 mode & AES_FLAGS_ENCRYPT);
1109 }
1110
1111 /*
1112 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1113 * to have a positve integer length.
1114 */
1115 if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1116 return 0;
1117
1118 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1119 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1120 return -EINVAL;
1121
1122 switch (mode & AES_FLAGS_OPMODE_MASK) {
1123 case AES_FLAGS_CFB8:
1124 ctx->block_size = CFB8_BLOCK_SIZE;
1125 break;
1126
1127 case AES_FLAGS_CFB16:
1128 ctx->block_size = CFB16_BLOCK_SIZE;
1129 break;
1130
1131 case AES_FLAGS_CFB32:
1132 ctx->block_size = CFB32_BLOCK_SIZE;
1133 break;
1134
1135 case AES_FLAGS_CFB64:
1136 ctx->block_size = CFB64_BLOCK_SIZE;
1137 break;
1138
1139 default:
1140 ctx->block_size = AES_BLOCK_SIZE;
1141 break;
1142 }
1143 ctx->is_aead = false;
1144
1145 rctx = skcipher_request_ctx(req);
1146 rctx->mode = mode;
1147
1148 if (opmode != AES_FLAGS_ECB &&
1149 !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1150 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1151
1152 if (req->cryptlen >= ivsize)
1153 scatterwalk_map_and_copy(rctx->lastc, req->src,
1154 req->cryptlen - ivsize,
1155 ivsize, 0);
1156 }
1157
1158 return atmel_aes_handle_queue(ctx->dd, &req->base);
1159 }
1160
atmel_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1161 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1162 unsigned int keylen)
1163 {
1164 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1165
1166 if (keylen != AES_KEYSIZE_128 &&
1167 keylen != AES_KEYSIZE_192 &&
1168 keylen != AES_KEYSIZE_256)
1169 return -EINVAL;
1170
1171 memcpy(ctx->key, key, keylen);
1172 ctx->keylen = keylen;
1173
1174 return 0;
1175 }
1176
atmel_aes_ecb_encrypt(struct skcipher_request * req)1177 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1178 {
1179 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1180 }
1181
atmel_aes_ecb_decrypt(struct skcipher_request * req)1182 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1183 {
1184 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1185 }
1186
atmel_aes_cbc_encrypt(struct skcipher_request * req)1187 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1188 {
1189 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1190 }
1191
atmel_aes_cbc_decrypt(struct skcipher_request * req)1192 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1193 {
1194 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1195 }
1196
atmel_aes_ofb_encrypt(struct skcipher_request * req)1197 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1198 {
1199 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1200 }
1201
atmel_aes_ofb_decrypt(struct skcipher_request * req)1202 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1203 {
1204 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1205 }
1206
atmel_aes_cfb_encrypt(struct skcipher_request * req)1207 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1208 {
1209 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1210 }
1211
atmel_aes_cfb_decrypt(struct skcipher_request * req)1212 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1213 {
1214 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1215 }
1216
atmel_aes_cfb64_encrypt(struct skcipher_request * req)1217 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1218 {
1219 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1220 }
1221
atmel_aes_cfb64_decrypt(struct skcipher_request * req)1222 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1223 {
1224 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1225 }
1226
atmel_aes_cfb32_encrypt(struct skcipher_request * req)1227 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1228 {
1229 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1230 }
1231
atmel_aes_cfb32_decrypt(struct skcipher_request * req)1232 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1233 {
1234 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1235 }
1236
atmel_aes_cfb16_encrypt(struct skcipher_request * req)1237 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1238 {
1239 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1240 }
1241
atmel_aes_cfb16_decrypt(struct skcipher_request * req)1242 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1243 {
1244 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1245 }
1246
atmel_aes_cfb8_encrypt(struct skcipher_request * req)1247 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1248 {
1249 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1250 }
1251
atmel_aes_cfb8_decrypt(struct skcipher_request * req)1252 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1253 {
1254 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1255 }
1256
atmel_aes_ctr_encrypt(struct skcipher_request * req)1257 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1258 {
1259 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1260 }
1261
atmel_aes_ctr_decrypt(struct skcipher_request * req)1262 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1263 {
1264 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1265 }
1266
atmel_aes_init_tfm(struct crypto_skcipher * tfm)1267 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1268 {
1269 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1270 struct atmel_aes_dev *dd;
1271
1272 dd = atmel_aes_dev_alloc(&ctx->base);
1273 if (!dd)
1274 return -ENODEV;
1275
1276 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1277 ctx->base.dd = dd;
1278 ctx->base.start = atmel_aes_start;
1279
1280 return 0;
1281 }
1282
atmel_aes_ctr_init_tfm(struct crypto_skcipher * tfm)1283 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284 {
1285 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286 struct atmel_aes_dev *dd;
1287
1288 dd = atmel_aes_dev_alloc(&ctx->base);
1289 if (!dd)
1290 return -ENODEV;
1291
1292 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293 ctx->base.dd = dd;
1294 ctx->base.start = atmel_aes_ctr_start;
1295
1296 return 0;
1297 }
1298
1299 static struct skcipher_alg aes_algs[] = {
1300 {
1301 .base.cra_name = "ecb(aes)",
1302 .base.cra_driver_name = "atmel-ecb-aes",
1303 .base.cra_blocksize = AES_BLOCK_SIZE,
1304 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1305
1306 .init = atmel_aes_init_tfm,
1307 .min_keysize = AES_MIN_KEY_SIZE,
1308 .max_keysize = AES_MAX_KEY_SIZE,
1309 .setkey = atmel_aes_setkey,
1310 .encrypt = atmel_aes_ecb_encrypt,
1311 .decrypt = atmel_aes_ecb_decrypt,
1312 },
1313 {
1314 .base.cra_name = "cbc(aes)",
1315 .base.cra_driver_name = "atmel-cbc-aes",
1316 .base.cra_blocksize = AES_BLOCK_SIZE,
1317 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1318
1319 .init = atmel_aes_init_tfm,
1320 .min_keysize = AES_MIN_KEY_SIZE,
1321 .max_keysize = AES_MAX_KEY_SIZE,
1322 .setkey = atmel_aes_setkey,
1323 .encrypt = atmel_aes_cbc_encrypt,
1324 .decrypt = atmel_aes_cbc_decrypt,
1325 .ivsize = AES_BLOCK_SIZE,
1326 },
1327 {
1328 .base.cra_name = "ofb(aes)",
1329 .base.cra_driver_name = "atmel-ofb-aes",
1330 .base.cra_blocksize = 1,
1331 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1332
1333 .init = atmel_aes_init_tfm,
1334 .min_keysize = AES_MIN_KEY_SIZE,
1335 .max_keysize = AES_MAX_KEY_SIZE,
1336 .setkey = atmel_aes_setkey,
1337 .encrypt = atmel_aes_ofb_encrypt,
1338 .decrypt = atmel_aes_ofb_decrypt,
1339 .ivsize = AES_BLOCK_SIZE,
1340 },
1341 {
1342 .base.cra_name = "cfb(aes)",
1343 .base.cra_driver_name = "atmel-cfb-aes",
1344 .base.cra_blocksize = AES_BLOCK_SIZE,
1345 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1346
1347 .init = atmel_aes_init_tfm,
1348 .min_keysize = AES_MIN_KEY_SIZE,
1349 .max_keysize = AES_MAX_KEY_SIZE,
1350 .setkey = atmel_aes_setkey,
1351 .encrypt = atmel_aes_cfb_encrypt,
1352 .decrypt = atmel_aes_cfb_decrypt,
1353 .ivsize = AES_BLOCK_SIZE,
1354 },
1355 {
1356 .base.cra_name = "cfb32(aes)",
1357 .base.cra_driver_name = "atmel-cfb32-aes",
1358 .base.cra_blocksize = CFB32_BLOCK_SIZE,
1359 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1360
1361 .init = atmel_aes_init_tfm,
1362 .min_keysize = AES_MIN_KEY_SIZE,
1363 .max_keysize = AES_MAX_KEY_SIZE,
1364 .setkey = atmel_aes_setkey,
1365 .encrypt = atmel_aes_cfb32_encrypt,
1366 .decrypt = atmel_aes_cfb32_decrypt,
1367 .ivsize = AES_BLOCK_SIZE,
1368 },
1369 {
1370 .base.cra_name = "cfb16(aes)",
1371 .base.cra_driver_name = "atmel-cfb16-aes",
1372 .base.cra_blocksize = CFB16_BLOCK_SIZE,
1373 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1374
1375 .init = atmel_aes_init_tfm,
1376 .min_keysize = AES_MIN_KEY_SIZE,
1377 .max_keysize = AES_MAX_KEY_SIZE,
1378 .setkey = atmel_aes_setkey,
1379 .encrypt = atmel_aes_cfb16_encrypt,
1380 .decrypt = atmel_aes_cfb16_decrypt,
1381 .ivsize = AES_BLOCK_SIZE,
1382 },
1383 {
1384 .base.cra_name = "cfb8(aes)",
1385 .base.cra_driver_name = "atmel-cfb8-aes",
1386 .base.cra_blocksize = CFB8_BLOCK_SIZE,
1387 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1388
1389 .init = atmel_aes_init_tfm,
1390 .min_keysize = AES_MIN_KEY_SIZE,
1391 .max_keysize = AES_MAX_KEY_SIZE,
1392 .setkey = atmel_aes_setkey,
1393 .encrypt = atmel_aes_cfb8_encrypt,
1394 .decrypt = atmel_aes_cfb8_decrypt,
1395 .ivsize = AES_BLOCK_SIZE,
1396 },
1397 {
1398 .base.cra_name = "ctr(aes)",
1399 .base.cra_driver_name = "atmel-ctr-aes",
1400 .base.cra_blocksize = 1,
1401 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1402
1403 .init = atmel_aes_ctr_init_tfm,
1404 .min_keysize = AES_MIN_KEY_SIZE,
1405 .max_keysize = AES_MAX_KEY_SIZE,
1406 .setkey = atmel_aes_setkey,
1407 .encrypt = atmel_aes_ctr_encrypt,
1408 .decrypt = atmel_aes_ctr_decrypt,
1409 .ivsize = AES_BLOCK_SIZE,
1410 },
1411 };
1412
1413 static struct skcipher_alg aes_cfb64_alg = {
1414 .base.cra_name = "cfb64(aes)",
1415 .base.cra_driver_name = "atmel-cfb64-aes",
1416 .base.cra_blocksize = CFB64_BLOCK_SIZE,
1417 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1418
1419 .init = atmel_aes_init_tfm,
1420 .min_keysize = AES_MIN_KEY_SIZE,
1421 .max_keysize = AES_MAX_KEY_SIZE,
1422 .setkey = atmel_aes_setkey,
1423 .encrypt = atmel_aes_cfb64_encrypt,
1424 .decrypt = atmel_aes_cfb64_decrypt,
1425 .ivsize = AES_BLOCK_SIZE,
1426 };
1427
1428
1429 /* gcm aead functions */
1430
1431 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1432 const u32 *data, size_t datalen,
1433 const __be32 *ghash_in, __be32 *ghash_out,
1434 atmel_aes_fn_t resume);
1435 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1436 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1437
1438 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1439 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1440 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1441 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1442 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1443 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1444 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1445
1446 static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1447 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1448 {
1449 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1450 }
1451
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const __be32 * ghash_in,__be32 * ghash_out,atmel_aes_fn_t resume)1452 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1453 const u32 *data, size_t datalen,
1454 const __be32 *ghash_in, __be32 *ghash_out,
1455 atmel_aes_fn_t resume)
1456 {
1457 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458
1459 dd->data = (u32 *)data;
1460 dd->datalen = datalen;
1461 ctx->ghash_in = ghash_in;
1462 ctx->ghash_out = ghash_out;
1463 ctx->ghash_resume = resume;
1464
1465 atmel_aes_write_ctrl(dd, false, NULL);
1466 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1467 }
1468
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1469 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1470 {
1471 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1472
1473 /* Set the data length. */
1474 atmel_aes_write(dd, AES_AADLENR, dd->total);
1475 atmel_aes_write(dd, AES_CLENR, 0);
1476
1477 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1478 if (ctx->ghash_in)
1479 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1480
1481 return atmel_aes_gcm_ghash_finalize(dd);
1482 }
1483
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1484 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1485 {
1486 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1487 u32 isr;
1488
1489 /* Write data into the Input Data Registers. */
1490 while (dd->datalen > 0) {
1491 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1492 dd->data += 4;
1493 dd->datalen -= AES_BLOCK_SIZE;
1494
1495 isr = atmel_aes_read(dd, AES_ISR);
1496 if (!(isr & AES_INT_DATARDY)) {
1497 dd->resume = atmel_aes_gcm_ghash_finalize;
1498 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1499 return -EINPROGRESS;
1500 }
1501 }
1502
1503 /* Read the computed hash from GHASHRx. */
1504 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1505
1506 return ctx->ghash_resume(dd);
1507 }
1508
1509
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1510 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1511 {
1512 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 struct aead_request *req = aead_request_cast(dd->areq);
1514 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1516 size_t ivsize = crypto_aead_ivsize(tfm);
1517 size_t datalen, padlen;
1518 const void *iv = req->iv;
1519 u8 *data = dd->buf;
1520 int err;
1521
1522 atmel_aes_set_mode(dd, rctx);
1523
1524 err = atmel_aes_hw_init(dd);
1525 if (err)
1526 return atmel_aes_complete(dd, err);
1527
1528 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1529 memcpy(ctx->j0, iv, ivsize);
1530 ctx->j0[3] = cpu_to_be32(1);
1531 return atmel_aes_gcm_process(dd);
1532 }
1533
1534 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1535 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1536 if (datalen > dd->buflen)
1537 return atmel_aes_complete(dd, -EINVAL);
1538
1539 memcpy(data, iv, ivsize);
1540 memset(data + ivsize, 0, padlen + sizeof(u64));
1541 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1542
1543 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1544 NULL, ctx->j0, atmel_aes_gcm_process);
1545 }
1546
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1547 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1548 {
1549 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1550 struct aead_request *req = aead_request_cast(dd->areq);
1551 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1552 bool enc = atmel_aes_is_encrypt(dd);
1553 u32 authsize;
1554
1555 /* Compute text length. */
1556 authsize = crypto_aead_authsize(tfm);
1557 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1558
1559 /*
1560 * According to tcrypt test suite, the GCM Automatic Tag Generation
1561 * fails when both the message and its associated data are empty.
1562 */
1563 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1564 dd->flags |= AES_FLAGS_GTAGEN;
1565
1566 atmel_aes_write_ctrl(dd, false, NULL);
1567 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1568 }
1569
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1570 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1571 {
1572 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573 struct aead_request *req = aead_request_cast(dd->areq);
1574 __be32 j0_lsw, *j0 = ctx->j0;
1575 size_t padlen;
1576
1577 /* Write incr32(J0) into IV. */
1578 j0_lsw = j0[3];
1579 be32_add_cpu(&j0[3], 1);
1580 atmel_aes_write_block(dd, AES_IVR(0), j0);
1581 j0[3] = j0_lsw;
1582
1583 /* Set aad and text lengths. */
1584 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1585 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1586
1587 /* Check whether AAD are present. */
1588 if (unlikely(req->assoclen == 0)) {
1589 dd->datalen = 0;
1590 return atmel_aes_gcm_data(dd);
1591 }
1592
1593 /* Copy assoc data and add padding. */
1594 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1595 if (unlikely(req->assoclen + padlen > dd->buflen))
1596 return atmel_aes_complete(dd, -EINVAL);
1597 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1598
1599 /* Write assoc data into the Input Data register. */
1600 dd->data = (u32 *)dd->buf;
1601 dd->datalen = req->assoclen + padlen;
1602 return atmel_aes_gcm_data(dd);
1603 }
1604
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1605 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1606 {
1607 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1608 struct aead_request *req = aead_request_cast(dd->areq);
1609 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1610 struct scatterlist *src, *dst;
1611 u32 isr, mr;
1612
1613 /* Write AAD first. */
1614 while (dd->datalen > 0) {
1615 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1616 dd->data += 4;
1617 dd->datalen -= AES_BLOCK_SIZE;
1618
1619 isr = atmel_aes_read(dd, AES_ISR);
1620 if (!(isr & AES_INT_DATARDY)) {
1621 dd->resume = atmel_aes_gcm_data;
1622 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1623 return -EINPROGRESS;
1624 }
1625 }
1626
1627 /* GMAC only. */
1628 if (unlikely(ctx->textlen == 0))
1629 return atmel_aes_gcm_tag_init(dd);
1630
1631 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1632 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1633 dst = ((req->src == req->dst) ? src :
1634 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1635
1636 if (use_dma) {
1637 /* Update the Mode Register for DMA transfers. */
1638 mr = atmel_aes_read(dd, AES_MR);
1639 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1640 mr |= AES_MR_SMOD_IDATAR0;
1641 if (dd->caps.has_dualbuff)
1642 mr |= AES_MR_DUALBUFF;
1643 atmel_aes_write(dd, AES_MR, mr);
1644
1645 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1646 atmel_aes_gcm_tag_init);
1647 }
1648
1649 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1650 atmel_aes_gcm_tag_init);
1651 }
1652
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1653 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1654 {
1655 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1656 struct aead_request *req = aead_request_cast(dd->areq);
1657 __be64 *data = dd->buf;
1658
1659 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1660 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1661 dd->resume = atmel_aes_gcm_tag_init;
1662 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1663 return -EINPROGRESS;
1664 }
1665
1666 return atmel_aes_gcm_finalize(dd);
1667 }
1668
1669 /* Read the GCM Intermediate Hash Word Registers. */
1670 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1671
1672 data[0] = cpu_to_be64(req->assoclen * 8);
1673 data[1] = cpu_to_be64(ctx->textlen * 8);
1674
1675 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1676 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1677 }
1678
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1679 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1680 {
1681 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1682 unsigned long flags;
1683
1684 /*
1685 * Change mode to CTR to complete the tag generation.
1686 * Use J0 as Initialization Vector.
1687 */
1688 flags = dd->flags;
1689 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1690 dd->flags |= AES_FLAGS_CTR;
1691 atmel_aes_write_ctrl(dd, false, ctx->j0);
1692 dd->flags = flags;
1693
1694 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1695 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1696 }
1697
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1698 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1699 {
1700 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1701 struct aead_request *req = aead_request_cast(dd->areq);
1702 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1703 bool enc = atmel_aes_is_encrypt(dd);
1704 u32 offset, authsize, itag[4], *otag = ctx->tag;
1705 int err;
1706
1707 /* Read the computed tag. */
1708 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1709 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1710 else
1711 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1712
1713 offset = req->assoclen + ctx->textlen;
1714 authsize = crypto_aead_authsize(tfm);
1715 if (enc) {
1716 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1717 err = 0;
1718 } else {
1719 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1720 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1721 }
1722
1723 return atmel_aes_complete(dd, err);
1724 }
1725
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1726 static int atmel_aes_gcm_crypt(struct aead_request *req,
1727 unsigned long mode)
1728 {
1729 struct atmel_aes_base_ctx *ctx;
1730 struct atmel_aes_reqctx *rctx;
1731
1732 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1733 ctx->block_size = AES_BLOCK_SIZE;
1734 ctx->is_aead = true;
1735
1736 rctx = aead_request_ctx(req);
1737 rctx->mode = AES_FLAGS_GCM | mode;
1738
1739 return atmel_aes_handle_queue(ctx->dd, &req->base);
1740 }
1741
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1742 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1743 unsigned int keylen)
1744 {
1745 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1746
1747 if (keylen != AES_KEYSIZE_256 &&
1748 keylen != AES_KEYSIZE_192 &&
1749 keylen != AES_KEYSIZE_128)
1750 return -EINVAL;
1751
1752 memcpy(ctx->key, key, keylen);
1753 ctx->keylen = keylen;
1754
1755 return 0;
1756 }
1757
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1758 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1759 unsigned int authsize)
1760 {
1761 return crypto_gcm_check_authsize(authsize);
1762 }
1763
atmel_aes_gcm_encrypt(struct aead_request * req)1764 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1765 {
1766 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1767 }
1768
atmel_aes_gcm_decrypt(struct aead_request * req)1769 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1770 {
1771 return atmel_aes_gcm_crypt(req, 0);
1772 }
1773
atmel_aes_gcm_init(struct crypto_aead * tfm)1774 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1775 {
1776 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1777 struct atmel_aes_dev *dd;
1778
1779 dd = atmel_aes_dev_alloc(&ctx->base);
1780 if (!dd)
1781 return -ENODEV;
1782
1783 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1784 ctx->base.dd = dd;
1785 ctx->base.start = atmel_aes_gcm_start;
1786
1787 return 0;
1788 }
1789
1790 static struct aead_alg aes_gcm_alg = {
1791 .setkey = atmel_aes_gcm_setkey,
1792 .setauthsize = atmel_aes_gcm_setauthsize,
1793 .encrypt = atmel_aes_gcm_encrypt,
1794 .decrypt = atmel_aes_gcm_decrypt,
1795 .init = atmel_aes_gcm_init,
1796 .ivsize = GCM_AES_IV_SIZE,
1797 .maxauthsize = AES_BLOCK_SIZE,
1798
1799 .base = {
1800 .cra_name = "gcm(aes)",
1801 .cra_driver_name = "atmel-gcm-aes",
1802 .cra_blocksize = 1,
1803 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1804 },
1805 };
1806
1807
1808 /* xts functions */
1809
1810 static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1811 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1812 {
1813 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1814 }
1815
1816 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1817
atmel_aes_xts_start(struct atmel_aes_dev * dd)1818 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1819 {
1820 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1821 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1822 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1823 unsigned long flags;
1824 int err;
1825
1826 atmel_aes_set_mode(dd, rctx);
1827
1828 err = atmel_aes_hw_init(dd);
1829 if (err)
1830 return atmel_aes_complete(dd, err);
1831
1832 /* Compute the tweak value from req->iv with ecb(aes). */
1833 flags = dd->flags;
1834 dd->flags &= ~AES_FLAGS_MODE_MASK;
1835 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1836 atmel_aes_write_ctrl_key(dd, false, NULL,
1837 ctx->key2, ctx->base.keylen);
1838 dd->flags = flags;
1839
1840 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1841 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1842 }
1843
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1844 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1845 {
1846 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1847 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1848 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1849 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1850 u8 *tweak_bytes = (u8 *)tweak;
1851 int i;
1852
1853 /* Read the computed ciphered tweak value. */
1854 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1855 /*
1856 * Hardware quirk:
1857 * the order of the ciphered tweak bytes need to be reversed before
1858 * writing them into the ODATARx registers.
1859 */
1860 for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1861 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1862
1863 /* Process the data. */
1864 atmel_aes_write_ctrl(dd, use_dma, NULL);
1865 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1866 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1867 if (use_dma)
1868 return atmel_aes_dma_start(dd, req->src, req->dst,
1869 req->cryptlen,
1870 atmel_aes_transfer_complete);
1871
1872 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1873 atmel_aes_transfer_complete);
1874 }
1875
atmel_aes_xts_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1876 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1877 unsigned int keylen)
1878 {
1879 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1880 int err;
1881
1882 err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1883 if (err)
1884 return err;
1885
1886 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1887 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1888 CRYPTO_TFM_REQ_MASK);
1889 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1890 if (err)
1891 return err;
1892
1893 memcpy(ctx->base.key, key, keylen/2);
1894 memcpy(ctx->key2, key + keylen/2, keylen/2);
1895 ctx->base.keylen = keylen/2;
1896
1897 return 0;
1898 }
1899
atmel_aes_xts_encrypt(struct skcipher_request * req)1900 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1901 {
1902 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1903 }
1904
atmel_aes_xts_decrypt(struct skcipher_request * req)1905 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1906 {
1907 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1908 }
1909
atmel_aes_xts_init_tfm(struct crypto_skcipher * tfm)1910 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1911 {
1912 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913 struct atmel_aes_dev *dd;
1914 const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1915
1916 dd = atmel_aes_dev_alloc(&ctx->base);
1917 if (!dd)
1918 return -ENODEV;
1919
1920 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1921 CRYPTO_ALG_NEED_FALLBACK);
1922 if (IS_ERR(ctx->fallback_tfm))
1923 return PTR_ERR(ctx->fallback_tfm);
1924
1925 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1926 crypto_skcipher_reqsize(ctx->fallback_tfm));
1927 ctx->base.dd = dd;
1928 ctx->base.start = atmel_aes_xts_start;
1929
1930 return 0;
1931 }
1932
atmel_aes_xts_exit_tfm(struct crypto_skcipher * tfm)1933 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1934 {
1935 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1936
1937 crypto_free_skcipher(ctx->fallback_tfm);
1938 }
1939
1940 static struct skcipher_alg aes_xts_alg = {
1941 .base.cra_name = "xts(aes)",
1942 .base.cra_driver_name = "atmel-xts-aes",
1943 .base.cra_blocksize = AES_BLOCK_SIZE,
1944 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1945 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
1946
1947 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1948 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1949 .ivsize = AES_BLOCK_SIZE,
1950 .setkey = atmel_aes_xts_setkey,
1951 .encrypt = atmel_aes_xts_encrypt,
1952 .decrypt = atmel_aes_xts_decrypt,
1953 .init = atmel_aes_xts_init_tfm,
1954 .exit = atmel_aes_xts_exit_tfm,
1955 };
1956
1957 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1958 /* authenc aead functions */
1959
1960 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1961 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1962 bool is_async);
1963 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1964 bool is_async);
1965 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1966 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1967 bool is_async);
1968
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1969 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1970 {
1971 struct aead_request *req = aead_request_cast(dd->areq);
1972 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1973
1974 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1975 atmel_sha_authenc_abort(&rctx->auth_req);
1976 dd->flags &= ~AES_FLAGS_OWN_SHA;
1977 }
1978
atmel_aes_authenc_start(struct atmel_aes_dev * dd)1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1980 {
1981 struct aead_request *req = aead_request_cast(dd->areq);
1982 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1984 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1985 int err;
1986
1987 atmel_aes_set_mode(dd, &rctx->base);
1988
1989 err = atmel_aes_hw_init(dd);
1990 if (err)
1991 return atmel_aes_complete(dd, err);
1992
1993 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1994 atmel_aes_authenc_init, dd);
1995 }
1996
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)1997 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1998 bool is_async)
1999 {
2000 struct aead_request *req = aead_request_cast(dd->areq);
2001 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003 if (is_async)
2004 dd->is_async = true;
2005 if (err)
2006 return atmel_aes_complete(dd, err);
2007
2008 /* If here, we've got the ownership of the SHA device. */
2009 dd->flags |= AES_FLAGS_OWN_SHA;
2010
2011 /* Configure the SHA device. */
2012 return atmel_sha_authenc_init(&rctx->auth_req,
2013 req->src, req->assoclen,
2014 rctx->textlen,
2015 atmel_aes_authenc_transfer, dd);
2016 }
2017
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)2018 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2019 bool is_async)
2020 {
2021 struct aead_request *req = aead_request_cast(dd->areq);
2022 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2023 bool enc = atmel_aes_is_encrypt(dd);
2024 struct scatterlist *src, *dst;
2025 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2026 u32 emr;
2027
2028 if (is_async)
2029 dd->is_async = true;
2030 if (err)
2031 return atmel_aes_complete(dd, err);
2032
2033 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2034 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2035 dst = src;
2036
2037 if (req->src != req->dst)
2038 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2039
2040 /* Configure the AES device. */
2041 memcpy(iv, req->iv, sizeof(iv));
2042
2043 /*
2044 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2045 * 'true' even if the data transfer is actually performed by the CPU (so
2046 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2047 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2048 * must be set to *_MR_SMOD_IDATAR0.
2049 */
2050 atmel_aes_write_ctrl(dd, true, iv);
2051 emr = AES_EMR_PLIPEN;
2052 if (!enc)
2053 emr |= AES_EMR_PLIPD;
2054 atmel_aes_write(dd, AES_EMR, emr);
2055
2056 /* Transfer data. */
2057 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2058 atmel_aes_authenc_digest);
2059 }
2060
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)2061 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2062 {
2063 struct aead_request *req = aead_request_cast(dd->areq);
2064 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2065
2066 /* atmel_sha_authenc_final() releases the SHA device. */
2067 dd->flags &= ~AES_FLAGS_OWN_SHA;
2068 return atmel_sha_authenc_final(&rctx->auth_req,
2069 rctx->digest, sizeof(rctx->digest),
2070 atmel_aes_authenc_final, dd);
2071 }
2072
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)2073 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2074 bool is_async)
2075 {
2076 struct aead_request *req = aead_request_cast(dd->areq);
2077 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2078 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2079 bool enc = atmel_aes_is_encrypt(dd);
2080 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2081 u32 offs, authsize;
2082
2083 if (is_async)
2084 dd->is_async = true;
2085 if (err)
2086 goto complete;
2087
2088 offs = req->assoclen + rctx->textlen;
2089 authsize = crypto_aead_authsize(tfm);
2090 if (enc) {
2091 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2092 } else {
2093 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2094 if (crypto_memneq(idigest, odigest, authsize))
2095 err = -EBADMSG;
2096 }
2097
2098 complete:
2099 return atmel_aes_complete(dd, err);
2100 }
2101
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)2102 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2103 unsigned int keylen)
2104 {
2105 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2106 struct crypto_authenc_keys keys;
2107 int err;
2108
2109 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2110 goto badkey;
2111
2112 if (keys.enckeylen > sizeof(ctx->base.key))
2113 goto badkey;
2114
2115 /* Save auth key. */
2116 err = atmel_sha_authenc_setkey(ctx->auth,
2117 keys.authkey, keys.authkeylen,
2118 crypto_aead_get_flags(tfm));
2119 if (err) {
2120 memzero_explicit(&keys, sizeof(keys));
2121 return err;
2122 }
2123
2124 /* Save enc key. */
2125 ctx->base.keylen = keys.enckeylen;
2126 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2127
2128 memzero_explicit(&keys, sizeof(keys));
2129 return 0;
2130
2131 badkey:
2132 memzero_explicit(&keys, sizeof(keys));
2133 return -EINVAL;
2134 }
2135
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)2136 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2137 unsigned long auth_mode)
2138 {
2139 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2140 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2141 struct atmel_aes_dev *dd;
2142
2143 dd = atmel_aes_dev_alloc(&ctx->base);
2144 if (!dd)
2145 return -ENODEV;
2146
2147 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2148 if (IS_ERR(ctx->auth))
2149 return PTR_ERR(ctx->auth);
2150
2151 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2152 auth_reqsize));
2153 ctx->base.dd = dd;
2154 ctx->base.start = atmel_aes_authenc_start;
2155
2156 return 0;
2157 }
2158
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)2159 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160 {
2161 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162 }
2163
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)2164 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165 {
2166 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167 }
2168
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)2169 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170 {
2171 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172 }
2173
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)2174 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175 {
2176 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177 }
2178
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)2179 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180 {
2181 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182 }
2183
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)2184 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185 {
2186 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187
2188 atmel_sha_authenc_free(ctx->auth);
2189 }
2190
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)2191 static int atmel_aes_authenc_crypt(struct aead_request *req,
2192 unsigned long mode)
2193 {
2194 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197 u32 authsize = crypto_aead_authsize(tfm);
2198 bool enc = (mode & AES_FLAGS_ENCRYPT);
2199
2200 /* Compute text length. */
2201 if (!enc && req->cryptlen < authsize)
2202 return -EINVAL;
2203 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2204
2205 /*
2206 * Currently, empty messages are not supported yet:
2207 * the SHA auto-padding can be used only on non-empty messages.
2208 * Hence a special case needs to be implemented for empty message.
2209 */
2210 if (!rctx->textlen && !req->assoclen)
2211 return -EINVAL;
2212
2213 rctx->base.mode = mode;
2214 ctx->block_size = AES_BLOCK_SIZE;
2215 ctx->is_aead = true;
2216
2217 return atmel_aes_handle_queue(ctx->dd, &req->base);
2218 }
2219
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2220 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2221 {
2222 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2223 }
2224
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2225 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2226 {
2227 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2228 }
2229
2230 static struct aead_alg aes_authenc_algs[] = {
2231 {
2232 .setkey = atmel_aes_authenc_setkey,
2233 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2234 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2235 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2236 .exit = atmel_aes_authenc_exit_tfm,
2237 .ivsize = AES_BLOCK_SIZE,
2238 .maxauthsize = SHA1_DIGEST_SIZE,
2239
2240 .base = {
2241 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2242 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2243 .cra_blocksize = AES_BLOCK_SIZE,
2244 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2245 },
2246 },
2247 {
2248 .setkey = atmel_aes_authenc_setkey,
2249 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2250 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2251 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2252 .exit = atmel_aes_authenc_exit_tfm,
2253 .ivsize = AES_BLOCK_SIZE,
2254 .maxauthsize = SHA224_DIGEST_SIZE,
2255
2256 .base = {
2257 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2258 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2259 .cra_blocksize = AES_BLOCK_SIZE,
2260 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2261 },
2262 },
2263 {
2264 .setkey = atmel_aes_authenc_setkey,
2265 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2266 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2267 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2268 .exit = atmel_aes_authenc_exit_tfm,
2269 .ivsize = AES_BLOCK_SIZE,
2270 .maxauthsize = SHA256_DIGEST_SIZE,
2271
2272 .base = {
2273 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2274 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2275 .cra_blocksize = AES_BLOCK_SIZE,
2276 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2277 },
2278 },
2279 {
2280 .setkey = atmel_aes_authenc_setkey,
2281 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2282 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2283 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2284 .exit = atmel_aes_authenc_exit_tfm,
2285 .ivsize = AES_BLOCK_SIZE,
2286 .maxauthsize = SHA384_DIGEST_SIZE,
2287
2288 .base = {
2289 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2290 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2291 .cra_blocksize = AES_BLOCK_SIZE,
2292 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2293 },
2294 },
2295 {
2296 .setkey = atmel_aes_authenc_setkey,
2297 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2298 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2299 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2300 .exit = atmel_aes_authenc_exit_tfm,
2301 .ivsize = AES_BLOCK_SIZE,
2302 .maxauthsize = SHA512_DIGEST_SIZE,
2303
2304 .base = {
2305 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2306 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2307 .cra_blocksize = AES_BLOCK_SIZE,
2308 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2309 },
2310 },
2311 };
2312 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2313
2314 /* Probe functions */
2315
atmel_aes_buff_init(struct atmel_aes_dev * dd)2316 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2317 {
2318 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2319 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2320 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2321
2322 if (!dd->buf) {
2323 dev_err(dd->dev, "unable to alloc pages.\n");
2324 return -ENOMEM;
2325 }
2326
2327 return 0;
2328 }
2329
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2330 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2331 {
2332 free_page((unsigned long)dd->buf);
2333 }
2334
atmel_aes_dma_init(struct atmel_aes_dev * dd)2335 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2336 {
2337 int ret;
2338
2339 /* Try to grab 2 DMA channels */
2340 dd->src.chan = dma_request_chan(dd->dev, "tx");
2341 if (IS_ERR(dd->src.chan)) {
2342 ret = PTR_ERR(dd->src.chan);
2343 goto err_dma_in;
2344 }
2345
2346 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2347 if (IS_ERR(dd->dst.chan)) {
2348 ret = PTR_ERR(dd->dst.chan);
2349 goto err_dma_out;
2350 }
2351
2352 return 0;
2353
2354 err_dma_out:
2355 dma_release_channel(dd->src.chan);
2356 err_dma_in:
2357 dev_err(dd->dev, "no DMA channel available\n");
2358 return ret;
2359 }
2360
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2361 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2362 {
2363 dma_release_channel(dd->dst.chan);
2364 dma_release_channel(dd->src.chan);
2365 }
2366
atmel_aes_queue_task(unsigned long data)2367 static void atmel_aes_queue_task(unsigned long data)
2368 {
2369 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2370
2371 atmel_aes_handle_queue(dd, NULL);
2372 }
2373
atmel_aes_done_task(unsigned long data)2374 static void atmel_aes_done_task(unsigned long data)
2375 {
2376 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2377
2378 dd->is_async = true;
2379 (void)dd->resume(dd);
2380 }
2381
atmel_aes_irq(int irq,void * dev_id)2382 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2383 {
2384 struct atmel_aes_dev *aes_dd = dev_id;
2385 u32 reg;
2386
2387 reg = atmel_aes_read(aes_dd, AES_ISR);
2388 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2389 atmel_aes_write(aes_dd, AES_IDR, reg);
2390 if (AES_FLAGS_BUSY & aes_dd->flags)
2391 tasklet_schedule(&aes_dd->done_task);
2392 else
2393 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394 return IRQ_HANDLED;
2395 }
2396
2397 return IRQ_NONE;
2398 }
2399
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2400 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2401 {
2402 int i;
2403
2404 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2405 if (dd->caps.has_authenc)
2406 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2407 crypto_unregister_aead(&aes_authenc_algs[i]);
2408 #endif
2409
2410 if (dd->caps.has_xts)
2411 crypto_unregister_skcipher(&aes_xts_alg);
2412
2413 if (dd->caps.has_gcm)
2414 crypto_unregister_aead(&aes_gcm_alg);
2415
2416 if (dd->caps.has_cfb64)
2417 crypto_unregister_skcipher(&aes_cfb64_alg);
2418
2419 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2420 crypto_unregister_skcipher(&aes_algs[i]);
2421 }
2422
atmel_aes_crypto_alg_init(struct crypto_alg * alg)2423 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2424 {
2425 alg->cra_flags |= CRYPTO_ALG_ASYNC;
2426 alg->cra_alignmask = 0xf;
2427 alg->cra_priority = ATMEL_AES_PRIORITY;
2428 alg->cra_module = THIS_MODULE;
2429 }
2430
atmel_aes_register_algs(struct atmel_aes_dev * dd)2431 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2432 {
2433 int err, i, j;
2434
2435 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2436 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2437
2438 err = crypto_register_skcipher(&aes_algs[i]);
2439 if (err)
2440 goto err_aes_algs;
2441 }
2442
2443 if (dd->caps.has_cfb64) {
2444 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2445
2446 err = crypto_register_skcipher(&aes_cfb64_alg);
2447 if (err)
2448 goto err_aes_cfb64_alg;
2449 }
2450
2451 if (dd->caps.has_gcm) {
2452 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2453
2454 err = crypto_register_aead(&aes_gcm_alg);
2455 if (err)
2456 goto err_aes_gcm_alg;
2457 }
2458
2459 if (dd->caps.has_xts) {
2460 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2461
2462 err = crypto_register_skcipher(&aes_xts_alg);
2463 if (err)
2464 goto err_aes_xts_alg;
2465 }
2466
2467 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2468 if (dd->caps.has_authenc) {
2469 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2470 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2471
2472 err = crypto_register_aead(&aes_authenc_algs[i]);
2473 if (err)
2474 goto err_aes_authenc_alg;
2475 }
2476 }
2477 #endif
2478
2479 return 0;
2480
2481 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2482 /* i = ARRAY_SIZE(aes_authenc_algs); */
2483 err_aes_authenc_alg:
2484 for (j = 0; j < i; j++)
2485 crypto_unregister_aead(&aes_authenc_algs[j]);
2486 crypto_unregister_skcipher(&aes_xts_alg);
2487 #endif
2488 err_aes_xts_alg:
2489 crypto_unregister_aead(&aes_gcm_alg);
2490 err_aes_gcm_alg:
2491 crypto_unregister_skcipher(&aes_cfb64_alg);
2492 err_aes_cfb64_alg:
2493 i = ARRAY_SIZE(aes_algs);
2494 err_aes_algs:
2495 for (j = 0; j < i; j++)
2496 crypto_unregister_skcipher(&aes_algs[j]);
2497
2498 return err;
2499 }
2500
atmel_aes_get_cap(struct atmel_aes_dev * dd)2501 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2502 {
2503 dd->caps.has_dualbuff = 0;
2504 dd->caps.has_cfb64 = 0;
2505 dd->caps.has_gcm = 0;
2506 dd->caps.has_xts = 0;
2507 dd->caps.has_authenc = 0;
2508 dd->caps.max_burst_size = 1;
2509
2510 /* keep only major version number */
2511 switch (dd->hw_version & 0xff0) {
2512 case 0x700:
2513 case 0x500:
2514 dd->caps.has_dualbuff = 1;
2515 dd->caps.has_cfb64 = 1;
2516 dd->caps.has_gcm = 1;
2517 dd->caps.has_xts = 1;
2518 dd->caps.has_authenc = 1;
2519 dd->caps.max_burst_size = 4;
2520 break;
2521 case 0x200:
2522 dd->caps.has_dualbuff = 1;
2523 dd->caps.has_cfb64 = 1;
2524 dd->caps.has_gcm = 1;
2525 dd->caps.max_burst_size = 4;
2526 break;
2527 case 0x130:
2528 dd->caps.has_dualbuff = 1;
2529 dd->caps.has_cfb64 = 1;
2530 dd->caps.max_burst_size = 4;
2531 break;
2532 case 0x120:
2533 break;
2534 default:
2535 dev_warn(dd->dev,
2536 "Unmanaged aes version, set minimum capabilities\n");
2537 break;
2538 }
2539 }
2540
2541 #if defined(CONFIG_OF)
2542 static const struct of_device_id atmel_aes_dt_ids[] = {
2543 { .compatible = "atmel,at91sam9g46-aes" },
2544 { /* sentinel */ }
2545 };
2546 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2547 #endif
2548
atmel_aes_probe(struct platform_device * pdev)2549 static int atmel_aes_probe(struct platform_device *pdev)
2550 {
2551 struct atmel_aes_dev *aes_dd;
2552 struct device *dev = &pdev->dev;
2553 struct resource *aes_res;
2554 int err;
2555
2556 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2557 if (!aes_dd)
2558 return -ENOMEM;
2559
2560 aes_dd->dev = dev;
2561
2562 platform_set_drvdata(pdev, aes_dd);
2563
2564 INIT_LIST_HEAD(&aes_dd->list);
2565 spin_lock_init(&aes_dd->lock);
2566
2567 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2568 (unsigned long)aes_dd);
2569 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2570 (unsigned long)aes_dd);
2571
2572 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2573
2574 /* Get the base address */
2575 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2576 if (!aes_res) {
2577 dev_err(dev, "no MEM resource info\n");
2578 err = -ENODEV;
2579 goto err_tasklet_kill;
2580 }
2581 aes_dd->phys_base = aes_res->start;
2582
2583 /* Get the IRQ */
2584 aes_dd->irq = platform_get_irq(pdev, 0);
2585 if (aes_dd->irq < 0) {
2586 err = aes_dd->irq;
2587 goto err_tasklet_kill;
2588 }
2589
2590 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2591 IRQF_SHARED, "atmel-aes", aes_dd);
2592 if (err) {
2593 dev_err(dev, "unable to request aes irq.\n");
2594 goto err_tasklet_kill;
2595 }
2596
2597 /* Initializing the clock */
2598 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2599 if (IS_ERR(aes_dd->iclk)) {
2600 dev_err(dev, "clock initialization failed.\n");
2601 err = PTR_ERR(aes_dd->iclk);
2602 goto err_tasklet_kill;
2603 }
2604
2605 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2606 if (IS_ERR(aes_dd->io_base)) {
2607 dev_err(dev, "can't ioremap\n");
2608 err = PTR_ERR(aes_dd->io_base);
2609 goto err_tasklet_kill;
2610 }
2611
2612 err = clk_prepare(aes_dd->iclk);
2613 if (err)
2614 goto err_tasklet_kill;
2615
2616 err = atmel_aes_hw_version_init(aes_dd);
2617 if (err)
2618 goto err_iclk_unprepare;
2619
2620 atmel_aes_get_cap(aes_dd);
2621
2622 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2623 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2624 err = -EPROBE_DEFER;
2625 goto err_iclk_unprepare;
2626 }
2627 #endif
2628
2629 err = atmel_aes_buff_init(aes_dd);
2630 if (err)
2631 goto err_iclk_unprepare;
2632
2633 err = atmel_aes_dma_init(aes_dd);
2634 if (err)
2635 goto err_buff_cleanup;
2636
2637 spin_lock(&atmel_aes.lock);
2638 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2639 spin_unlock(&atmel_aes.lock);
2640
2641 err = atmel_aes_register_algs(aes_dd);
2642 if (err)
2643 goto err_algs;
2644
2645 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2646 dma_chan_name(aes_dd->src.chan),
2647 dma_chan_name(aes_dd->dst.chan));
2648
2649 return 0;
2650
2651 err_algs:
2652 spin_lock(&atmel_aes.lock);
2653 list_del(&aes_dd->list);
2654 spin_unlock(&atmel_aes.lock);
2655 atmel_aes_dma_cleanup(aes_dd);
2656 err_buff_cleanup:
2657 atmel_aes_buff_cleanup(aes_dd);
2658 err_iclk_unprepare:
2659 clk_unprepare(aes_dd->iclk);
2660 err_tasklet_kill:
2661 tasklet_kill(&aes_dd->done_task);
2662 tasklet_kill(&aes_dd->queue_task);
2663
2664 return err;
2665 }
2666
atmel_aes_remove(struct platform_device * pdev)2667 static int atmel_aes_remove(struct platform_device *pdev)
2668 {
2669 struct atmel_aes_dev *aes_dd;
2670
2671 aes_dd = platform_get_drvdata(pdev);
2672
2673 spin_lock(&atmel_aes.lock);
2674 list_del(&aes_dd->list);
2675 spin_unlock(&atmel_aes.lock);
2676
2677 atmel_aes_unregister_algs(aes_dd);
2678
2679 tasklet_kill(&aes_dd->done_task);
2680 tasklet_kill(&aes_dd->queue_task);
2681
2682 atmel_aes_dma_cleanup(aes_dd);
2683 atmel_aes_buff_cleanup(aes_dd);
2684
2685 clk_unprepare(aes_dd->iclk);
2686
2687 return 0;
2688 }
2689
2690 static struct platform_driver atmel_aes_driver = {
2691 .probe = atmel_aes_probe,
2692 .remove = atmel_aes_remove,
2693 .driver = {
2694 .name = "atmel_aes",
2695 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2696 },
2697 };
2698
2699 module_platform_driver(atmel_aes_driver);
2700
2701 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2702 MODULE_LICENSE("GPL v2");
2703 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2704