1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/dmi.h>
20 #include <linux/irq_work.h>
21 #include <linux/kthread.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <uapi/linux/sched/types.h>
25
26 #include <asm/unaligned.h>
27
28 #include <acpi/cppc_acpi.h>
29
30 /* Minimum struct length needed for the DMI processor entry we want */
31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
32
33 /* Offset in the DMI processor structure for the max frequency */
34 #define DMI_PROCESSOR_MAX_SPEED 0x14
35
36 /*
37 * This list contains information parsed from per CPU ACPI _CPC and _PSD
38 * structures: e.g. the highest and lowest supported performance, capabilities,
39 * desired performance, level requested etc. Depending on the share_type, not
40 * all CPUs will have an entry in the list.
41 */
42 static LIST_HEAD(cpu_data_list);
43
44 static bool boost_supported;
45
46 struct cppc_workaround_oem_info {
47 char oem_id[ACPI_OEM_ID_SIZE + 1];
48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
49 u32 oem_revision;
50 };
51
52 static struct cppc_workaround_oem_info wa_info[] = {
53 {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP07 ",
56 .oem_revision = 0,
57 }, {
58 .oem_id = "HISI ",
59 .oem_table_id = "HIP08 ",
60 .oem_revision = 0,
61 }
62 };
63
64 static struct cpufreq_driver cppc_cpufreq_driver;
65
66 static enum {
67 FIE_UNSET = -1,
68 FIE_ENABLED,
69 FIE_DISABLED
70 } fie_disabled = FIE_UNSET;
71
72 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
73 module_param(fie_disabled, int, 0444);
74 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
75
76 /* Frequency invariance support */
77 struct cppc_freq_invariance {
78 int cpu;
79 struct irq_work irq_work;
80 struct kthread_work work;
81 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
82 struct cppc_cpudata *cpu_data;
83 };
84
85 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
86 static struct kthread_worker *kworker_fie;
87
88 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
89 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
90 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
91 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
92
93 /**
94 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
95 * @work: The work item.
96 *
97 * The CPPC driver register itself with the topology core to provide its own
98 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
99 * gets called by the scheduler on every tick.
100 *
101 * Note that the arch specific counters have higher priority than CPPC counters,
102 * if available, though the CPPC driver doesn't need to have any special
103 * handling for that.
104 *
105 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
106 * reach here from hard-irq context), which then schedules a normal work item
107 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
108 * based on the counter updates since the last tick.
109 */
cppc_scale_freq_workfn(struct kthread_work * work)110 static void cppc_scale_freq_workfn(struct kthread_work *work)
111 {
112 struct cppc_freq_invariance *cppc_fi;
113 struct cppc_perf_fb_ctrs fb_ctrs = {0};
114 struct cppc_cpudata *cpu_data;
115 unsigned long local_freq_scale;
116 u64 perf;
117
118 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
119 cpu_data = cppc_fi->cpu_data;
120
121 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
122 pr_warn("%s: failed to read perf counters\n", __func__);
123 return;
124 }
125
126 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
127 &fb_ctrs);
128 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
129
130 perf <<= SCHED_CAPACITY_SHIFT;
131 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
132
133 /* This can happen due to counter's overflow */
134 if (unlikely(local_freq_scale > 1024))
135 local_freq_scale = 1024;
136
137 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
138 }
139
cppc_irq_work(struct irq_work * irq_work)140 static void cppc_irq_work(struct irq_work *irq_work)
141 {
142 struct cppc_freq_invariance *cppc_fi;
143
144 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
145 kthread_queue_work(kworker_fie, &cppc_fi->work);
146 }
147
cppc_scale_freq_tick(void)148 static void cppc_scale_freq_tick(void)
149 {
150 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
151
152 /*
153 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
154 * context.
155 */
156 irq_work_queue(&cppc_fi->irq_work);
157 }
158
159 static struct scale_freq_data cppc_sftd = {
160 .source = SCALE_FREQ_SOURCE_CPPC,
161 .set_freq_scale = cppc_scale_freq_tick,
162 };
163
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)164 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
165 {
166 struct cppc_freq_invariance *cppc_fi;
167 int cpu, ret;
168
169 if (fie_disabled)
170 return;
171
172 for_each_cpu(cpu, policy->cpus) {
173 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
174 cppc_fi->cpu = cpu;
175 cppc_fi->cpu_data = policy->driver_data;
176 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
177 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
178
179 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
180 if (ret) {
181 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
182 __func__, cpu, ret);
183
184 /*
185 * Don't abort if the CPU was offline while the driver
186 * was getting registered.
187 */
188 if (cpu_online(cpu))
189 return;
190 }
191 }
192
193 /* Register for freq-invariance */
194 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
195 }
196
197 /*
198 * We free all the resources on policy's removal and not on CPU removal as the
199 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
200 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
201 * fires on another CPU after the concerned CPU is removed, it won't harm.
202 *
203 * We just need to make sure to remove them all on policy->exit().
204 */
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)205 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
206 {
207 struct cppc_freq_invariance *cppc_fi;
208 int cpu;
209
210 if (fie_disabled)
211 return;
212
213 /* policy->cpus will be empty here, use related_cpus instead */
214 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
215
216 for_each_cpu(cpu, policy->related_cpus) {
217 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
218 irq_work_sync(&cppc_fi->irq_work);
219 kthread_cancel_work_sync(&cppc_fi->work);
220 }
221 }
222
cppc_freq_invariance_init(void)223 static void __init cppc_freq_invariance_init(void)
224 {
225 struct sched_attr attr = {
226 .size = sizeof(struct sched_attr),
227 .sched_policy = SCHED_DEADLINE,
228 .sched_nice = 0,
229 .sched_priority = 0,
230 /*
231 * Fake (unused) bandwidth; workaround to "fix"
232 * priority inheritance.
233 */
234 .sched_runtime = 1000000,
235 .sched_deadline = 10000000,
236 .sched_period = 10000000,
237 };
238 int ret;
239
240 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
241 fie_disabled = FIE_ENABLED;
242 if (cppc_perf_ctrs_in_pcc()) {
243 pr_info("FIE not enabled on systems with registers in PCC\n");
244 fie_disabled = FIE_DISABLED;
245 }
246 }
247
248 if (fie_disabled)
249 return;
250
251 kworker_fie = kthread_create_worker(0, "cppc_fie");
252 if (IS_ERR(kworker_fie))
253 return;
254
255 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
256 if (ret) {
257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
258 ret);
259 kthread_destroy_worker(kworker_fie);
260 return;
261 }
262 }
263
cppc_freq_invariance_exit(void)264 static void cppc_freq_invariance_exit(void)
265 {
266 if (fie_disabled)
267 return;
268
269 kthread_destroy_worker(kworker_fie);
270 kworker_fie = NULL;
271 }
272
273 #else
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)274 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
275 {
276 }
277
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)278 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
279 {
280 }
281
cppc_freq_invariance_init(void)282 static inline void cppc_freq_invariance_init(void)
283 {
284 }
285
cppc_freq_invariance_exit(void)286 static inline void cppc_freq_invariance_exit(void)
287 {
288 }
289 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
290
291 /* Callback function used to retrieve the max frequency from DMI */
cppc_find_dmi_mhz(const struct dmi_header * dm,void * private)292 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
293 {
294 const u8 *dmi_data = (const u8 *)dm;
295 u16 *mhz = (u16 *)private;
296
297 if (dm->type == DMI_ENTRY_PROCESSOR &&
298 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
299 u16 val = (u16)get_unaligned((const u16 *)
300 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
301 *mhz = val > *mhz ? val : *mhz;
302 }
303 }
304
305 /* Look up the max frequency in DMI */
cppc_get_dmi_max_khz(void)306 static u64 cppc_get_dmi_max_khz(void)
307 {
308 u16 mhz = 0;
309
310 dmi_walk(cppc_find_dmi_mhz, &mhz);
311
312 /*
313 * Real stupid fallback value, just in case there is no
314 * actual value set.
315 */
316 mhz = mhz ? mhz : 1;
317
318 return (1000 * mhz);
319 }
320
321 /*
322 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
323 * use them to convert perf to freq and vice versa. The conversion is
324 * extrapolated as an affine function passing by the 2 points:
325 * - (Low perf, Low freq)
326 * - (Nominal perf, Nominal perf)
327 */
cppc_cpufreq_perf_to_khz(struct cppc_cpudata * cpu_data,unsigned int perf)328 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
329 unsigned int perf)
330 {
331 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
332 s64 retval, offset = 0;
333 static u64 max_khz;
334 u64 mul, div;
335
336 if (caps->lowest_freq && caps->nominal_freq) {
337 mul = caps->nominal_freq - caps->lowest_freq;
338 div = caps->nominal_perf - caps->lowest_perf;
339 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
340 } else {
341 if (!max_khz)
342 max_khz = cppc_get_dmi_max_khz();
343 mul = max_khz;
344 div = caps->highest_perf;
345 }
346
347 retval = offset + div64_u64(perf * mul, div);
348 if (retval >= 0)
349 return retval;
350 return 0;
351 }
352
cppc_cpufreq_khz_to_perf(struct cppc_cpudata * cpu_data,unsigned int freq)353 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
354 unsigned int freq)
355 {
356 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
357 s64 retval, offset = 0;
358 static u64 max_khz;
359 u64 mul, div;
360
361 if (caps->lowest_freq && caps->nominal_freq) {
362 mul = caps->nominal_perf - caps->lowest_perf;
363 div = caps->nominal_freq - caps->lowest_freq;
364 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
365 } else {
366 if (!max_khz)
367 max_khz = cppc_get_dmi_max_khz();
368 mul = caps->highest_perf;
369 div = max_khz;
370 }
371
372 retval = offset + div64_u64(freq * mul, div);
373 if (retval >= 0)
374 return retval;
375 return 0;
376 }
377
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)378 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
379 unsigned int target_freq,
380 unsigned int relation)
381
382 {
383 struct cppc_cpudata *cpu_data = policy->driver_data;
384 unsigned int cpu = policy->cpu;
385 struct cpufreq_freqs freqs;
386 u32 desired_perf;
387 int ret = 0;
388
389 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
390 /* Return if it is exactly the same perf */
391 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
392 return ret;
393
394 cpu_data->perf_ctrls.desired_perf = desired_perf;
395 freqs.old = policy->cur;
396 freqs.new = target_freq;
397
398 cpufreq_freq_transition_begin(policy, &freqs);
399 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
400 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
401
402 if (ret)
403 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
404 cpu, ret);
405
406 return ret;
407 }
408
cppc_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)409 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
410 unsigned int target_freq)
411 {
412 struct cppc_cpudata *cpu_data = policy->driver_data;
413 unsigned int cpu = policy->cpu;
414 u32 desired_perf;
415 int ret;
416
417 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
418 cpu_data->perf_ctrls.desired_perf = desired_perf;
419 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
420
421 if (ret) {
422 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
423 cpu, ret);
424 return 0;
425 }
426
427 return target_freq;
428 }
429
cppc_verify_policy(struct cpufreq_policy_data * policy)430 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
431 {
432 cpufreq_verify_within_cpu_limits(policy);
433 return 0;
434 }
435
436 /*
437 * The PCC subspace describes the rate at which platform can accept commands
438 * on the shared PCC channel (including READs which do not count towards freq
439 * transition requests), so ideally we need to use the PCC values as a fallback
440 * if we don't have a platform specific transition_delay_us
441 */
442 #ifdef CONFIG_ARM64
443 #include <asm/cputype.h>
444
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)445 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
446 {
447 unsigned long implementor = read_cpuid_implementor();
448 unsigned long part_num = read_cpuid_part_number();
449
450 switch (implementor) {
451 case ARM_CPU_IMP_QCOM:
452 switch (part_num) {
453 case QCOM_CPU_PART_FALKOR_V1:
454 case QCOM_CPU_PART_FALKOR:
455 return 10000;
456 }
457 }
458 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
459 }
460 #else
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)461 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
462 {
463 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
464 }
465 #endif
466
467 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
468
469 static DEFINE_PER_CPU(unsigned int, efficiency_class);
470 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
471
472 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
473 #define CPPC_EM_CAP_STEP (20)
474 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
475 #define CPPC_EM_COST_STEP (1)
476 /* Add a cost gap correspnding to the energy of 4 CPUs. */
477 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
478 / CPPC_EM_CAP_STEP)
479
get_perf_level_count(struct cpufreq_policy * policy)480 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
481 {
482 struct cppc_perf_caps *perf_caps;
483 unsigned int min_cap, max_cap;
484 struct cppc_cpudata *cpu_data;
485 int cpu = policy->cpu;
486
487 cpu_data = policy->driver_data;
488 perf_caps = &cpu_data->perf_caps;
489 max_cap = arch_scale_cpu_capacity(cpu);
490 min_cap = div_u64(max_cap * perf_caps->lowest_perf, perf_caps->highest_perf);
491 if ((min_cap == 0) || (max_cap < min_cap))
492 return 0;
493 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
494 }
495
496 /*
497 * The cost is defined as:
498 * cost = power * max_frequency / frequency
499 */
compute_cost(int cpu,int step)500 static inline unsigned long compute_cost(int cpu, int step)
501 {
502 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
503 step * CPPC_EM_COST_STEP;
504 }
505
cppc_get_cpu_power(struct device * cpu_dev,unsigned long * power,unsigned long * KHz)506 static int cppc_get_cpu_power(struct device *cpu_dev,
507 unsigned long *power, unsigned long *KHz)
508 {
509 unsigned long perf_step, perf_prev, perf, perf_check;
510 unsigned int min_step, max_step, step, step_check;
511 unsigned long prev_freq = *KHz;
512 unsigned int min_cap, max_cap;
513 struct cpufreq_policy *policy;
514
515 struct cppc_perf_caps *perf_caps;
516 struct cppc_cpudata *cpu_data;
517
518 policy = cpufreq_cpu_get_raw(cpu_dev->id);
519 cpu_data = policy->driver_data;
520 perf_caps = &cpu_data->perf_caps;
521 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
522 min_cap = div_u64(max_cap * perf_caps->lowest_perf,
523 perf_caps->highest_perf);
524
525 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
526 min_step = min_cap / CPPC_EM_CAP_STEP;
527 max_step = max_cap / CPPC_EM_CAP_STEP;
528
529 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
530 step = perf_prev / perf_step;
531
532 if (step > max_step)
533 return -EINVAL;
534
535 if (min_step == max_step) {
536 step = max_step;
537 perf = perf_caps->highest_perf;
538 } else if (step < min_step) {
539 step = min_step;
540 perf = perf_caps->lowest_perf;
541 } else {
542 step++;
543 if (step == max_step)
544 perf = perf_caps->highest_perf;
545 else
546 perf = step * perf_step;
547 }
548
549 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
550 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
551 step_check = perf_check / perf_step;
552
553 /*
554 * To avoid bad integer approximation, check that new frequency value
555 * increased and that the new frequency will be converted to the
556 * desired step value.
557 */
558 while ((*KHz == prev_freq) || (step_check != step)) {
559 perf++;
560 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
561 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
562 step_check = perf_check / perf_step;
563 }
564
565 /*
566 * With an artificial EM, only the cost value is used. Still the power
567 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
568 * more sense to the artificial performance states.
569 */
570 *power = compute_cost(cpu_dev->id, step);
571
572 return 0;
573 }
574
cppc_get_cpu_cost(struct device * cpu_dev,unsigned long KHz,unsigned long * cost)575 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
576 unsigned long *cost)
577 {
578 unsigned long perf_step, perf_prev;
579 struct cppc_perf_caps *perf_caps;
580 struct cpufreq_policy *policy;
581 struct cppc_cpudata *cpu_data;
582 unsigned int max_cap;
583 int step;
584
585 policy = cpufreq_cpu_get_raw(cpu_dev->id);
586 cpu_data = policy->driver_data;
587 perf_caps = &cpu_data->perf_caps;
588 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
589
590 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
591 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
592 step = perf_prev / perf_step;
593
594 *cost = compute_cost(cpu_dev->id, step);
595
596 return 0;
597 }
598
populate_efficiency_class(void)599 static int populate_efficiency_class(void)
600 {
601 struct acpi_madt_generic_interrupt *gicc;
602 DECLARE_BITMAP(used_classes, 256) = {};
603 int class, cpu, index;
604
605 for_each_possible_cpu(cpu) {
606 gicc = acpi_cpu_get_madt_gicc(cpu);
607 class = gicc->efficiency_class;
608 bitmap_set(used_classes, class, 1);
609 }
610
611 if (bitmap_weight(used_classes, 256) <= 1) {
612 pr_debug("Efficiency classes are all equal (=%d). "
613 "No EM registered", class);
614 return -EINVAL;
615 }
616
617 /*
618 * Squeeze efficiency class values on [0:#efficiency_class-1].
619 * Values are per spec in [0:255].
620 */
621 index = 0;
622 for_each_set_bit(class, used_classes, 256) {
623 for_each_possible_cpu(cpu) {
624 gicc = acpi_cpu_get_madt_gicc(cpu);
625 if (gicc->efficiency_class == class)
626 per_cpu(efficiency_class, cpu) = index;
627 }
628 index++;
629 }
630 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
631
632 return 0;
633 }
634
cppc_cpufreq_register_em(struct cpufreq_policy * policy)635 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
636 {
637 struct cppc_cpudata *cpu_data;
638 struct em_data_callback em_cb =
639 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
640
641 cpu_data = policy->driver_data;
642 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
643 get_perf_level_count(policy), &em_cb,
644 cpu_data->shared_cpu_map, 0);
645 }
646
647 #else
populate_efficiency_class(void)648 static int populate_efficiency_class(void)
649 {
650 return 0;
651 }
652 #endif
653
cppc_cpufreq_get_cpu_data(unsigned int cpu)654 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
655 {
656 struct cppc_cpudata *cpu_data;
657 int ret;
658
659 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
660 if (!cpu_data)
661 goto out;
662
663 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
664 goto free_cpu;
665
666 ret = acpi_get_psd_map(cpu, cpu_data);
667 if (ret) {
668 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
669 goto free_mask;
670 }
671
672 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
673 if (ret) {
674 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
675 goto free_mask;
676 }
677
678 /* Convert the lowest and nominal freq from MHz to KHz */
679 cpu_data->perf_caps.lowest_freq *= 1000;
680 cpu_data->perf_caps.nominal_freq *= 1000;
681
682 list_add(&cpu_data->node, &cpu_data_list);
683
684 return cpu_data;
685
686 free_mask:
687 free_cpumask_var(cpu_data->shared_cpu_map);
688 free_cpu:
689 kfree(cpu_data);
690 out:
691 return NULL;
692 }
693
cppc_cpufreq_put_cpu_data(struct cpufreq_policy * policy)694 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
695 {
696 struct cppc_cpudata *cpu_data = policy->driver_data;
697
698 list_del(&cpu_data->node);
699 free_cpumask_var(cpu_data->shared_cpu_map);
700 kfree(cpu_data);
701 policy->driver_data = NULL;
702 }
703
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)704 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
705 {
706 unsigned int cpu = policy->cpu;
707 struct cppc_cpudata *cpu_data;
708 struct cppc_perf_caps *caps;
709 int ret;
710
711 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
712 if (!cpu_data) {
713 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
714 return -ENODEV;
715 }
716 caps = &cpu_data->perf_caps;
717 policy->driver_data = cpu_data;
718
719 /*
720 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
721 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
722 */
723 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
724 caps->lowest_nonlinear_perf);
725 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
726 caps->nominal_perf);
727
728 /*
729 * Set cpuinfo.min_freq to Lowest to make the full range of performance
730 * available if userspace wants to use any perf between lowest & lowest
731 * nonlinear perf
732 */
733 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
734 caps->lowest_perf);
735 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
736 caps->nominal_perf);
737
738 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
739 policy->shared_type = cpu_data->shared_type;
740
741 switch (policy->shared_type) {
742 case CPUFREQ_SHARED_TYPE_HW:
743 case CPUFREQ_SHARED_TYPE_NONE:
744 /* Nothing to be done - we'll have a policy for each CPU */
745 break;
746 case CPUFREQ_SHARED_TYPE_ANY:
747 /*
748 * All CPUs in the domain will share a policy and all cpufreq
749 * operations will use a single cppc_cpudata structure stored
750 * in policy->driver_data.
751 */
752 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
753 break;
754 default:
755 pr_debug("Unsupported CPU co-ord type: %d\n",
756 policy->shared_type);
757 ret = -EFAULT;
758 goto out;
759 }
760
761 policy->fast_switch_possible = cppc_allow_fast_switch();
762 policy->dvfs_possible_from_any_cpu = true;
763
764 /*
765 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
766 * is supported.
767 */
768 if (caps->highest_perf > caps->nominal_perf)
769 boost_supported = true;
770
771 /* Set policy->cur to max now. The governors will adjust later. */
772 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
773 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
774
775 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
776 if (ret) {
777 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
778 caps->highest_perf, cpu, ret);
779 goto out;
780 }
781
782 cppc_cpufreq_cpu_fie_init(policy);
783 return 0;
784
785 out:
786 cppc_cpufreq_put_cpu_data(policy);
787 return ret;
788 }
789
cppc_cpufreq_cpu_exit(struct cpufreq_policy * policy)790 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
791 {
792 struct cppc_cpudata *cpu_data = policy->driver_data;
793 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
794 unsigned int cpu = policy->cpu;
795 int ret;
796
797 cppc_cpufreq_cpu_fie_exit(policy);
798
799 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
800
801 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
802 if (ret)
803 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
804 caps->lowest_perf, cpu, ret);
805
806 cppc_cpufreq_put_cpu_data(policy);
807 return 0;
808 }
809
get_delta(u64 t1,u64 t0)810 static inline u64 get_delta(u64 t1, u64 t0)
811 {
812 if (t1 > t0 || t0 > ~(u32)0)
813 return t1 - t0;
814
815 return (u32)t1 - (u32)t0;
816 }
817
cppc_perf_from_fbctrs(struct cppc_cpudata * cpu_data,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)818 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
819 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
820 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
821 {
822 u64 delta_reference, delta_delivered;
823 u64 reference_perf;
824
825 reference_perf = fb_ctrs_t0->reference_perf;
826
827 delta_reference = get_delta(fb_ctrs_t1->reference,
828 fb_ctrs_t0->reference);
829 delta_delivered = get_delta(fb_ctrs_t1->delivered,
830 fb_ctrs_t0->delivered);
831
832 /* Check to avoid divide-by zero and invalid delivered_perf */
833 if (!delta_reference || !delta_delivered)
834 return cpu_data->perf_ctrls.desired_perf;
835
836 return (reference_perf * delta_delivered) / delta_reference;
837 }
838
cppc_cpufreq_get_rate(unsigned int cpu)839 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
840 {
841 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
842 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
843 struct cppc_cpudata *cpu_data = policy->driver_data;
844 u64 delivered_perf;
845 int ret;
846
847 cpufreq_cpu_put(policy);
848
849 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
850 if (ret)
851 return ret;
852
853 udelay(2); /* 2usec delay between sampling */
854
855 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
856 if (ret)
857 return ret;
858
859 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
860 &fb_ctrs_t1);
861
862 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
863 }
864
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)865 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
866 {
867 struct cppc_cpudata *cpu_data = policy->driver_data;
868 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
869 int ret;
870
871 if (!boost_supported) {
872 pr_err("BOOST not supported by CPU or firmware\n");
873 return -EINVAL;
874 }
875
876 if (state)
877 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
878 caps->highest_perf);
879 else
880 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
881 caps->nominal_perf);
882 policy->cpuinfo.max_freq = policy->max;
883
884 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
885 if (ret < 0)
886 return ret;
887
888 return 0;
889 }
890
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)891 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
892 {
893 struct cppc_cpudata *cpu_data = policy->driver_data;
894
895 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
896 }
897 cpufreq_freq_attr_ro(freqdomain_cpus);
898
899 static struct freq_attr *cppc_cpufreq_attr[] = {
900 &freqdomain_cpus,
901 NULL,
902 };
903
904 static struct cpufreq_driver cppc_cpufreq_driver = {
905 .flags = CPUFREQ_CONST_LOOPS,
906 .verify = cppc_verify_policy,
907 .target = cppc_cpufreq_set_target,
908 .get = cppc_cpufreq_get_rate,
909 .fast_switch = cppc_cpufreq_fast_switch,
910 .init = cppc_cpufreq_cpu_init,
911 .exit = cppc_cpufreq_cpu_exit,
912 .set_boost = cppc_cpufreq_set_boost,
913 .attr = cppc_cpufreq_attr,
914 .name = "cppc_cpufreq",
915 };
916
917 /*
918 * HISI platform does not support delivered performance counter and
919 * reference performance counter. It can calculate the performance using the
920 * platform specific mechanism. We reuse the desired performance register to
921 * store the real performance calculated by the platform.
922 */
hisi_cppc_cpufreq_get_rate(unsigned int cpu)923 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
924 {
925 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
926 struct cppc_cpudata *cpu_data = policy->driver_data;
927 u64 desired_perf;
928 int ret;
929
930 cpufreq_cpu_put(policy);
931
932 ret = cppc_get_desired_perf(cpu, &desired_perf);
933 if (ret < 0)
934 return -EIO;
935
936 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
937 }
938
cppc_check_hisi_workaround(void)939 static void cppc_check_hisi_workaround(void)
940 {
941 struct acpi_table_header *tbl;
942 acpi_status status = AE_OK;
943 int i;
944
945 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
946 if (ACPI_FAILURE(status) || !tbl)
947 return;
948
949 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
950 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
951 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
952 wa_info[i].oem_revision == tbl->oem_revision) {
953 /* Overwrite the get() callback */
954 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
955 fie_disabled = FIE_DISABLED;
956 break;
957 }
958 }
959
960 acpi_put_table(tbl);
961 }
962
cppc_cpufreq_init(void)963 static int __init cppc_cpufreq_init(void)
964 {
965 int ret;
966
967 if (!acpi_cpc_valid())
968 return -ENODEV;
969
970 cppc_check_hisi_workaround();
971 cppc_freq_invariance_init();
972 populate_efficiency_class();
973
974 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
975 if (ret)
976 cppc_freq_invariance_exit();
977
978 return ret;
979 }
980
free_cpu_data(void)981 static inline void free_cpu_data(void)
982 {
983 struct cppc_cpudata *iter, *tmp;
984
985 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
986 free_cpumask_var(iter->shared_cpu_map);
987 list_del(&iter->node);
988 kfree(iter);
989 }
990
991 }
992
cppc_cpufreq_exit(void)993 static void __exit cppc_cpufreq_exit(void)
994 {
995 cpufreq_unregister_driver(&cppc_cpufreq_driver);
996 cppc_freq_invariance_exit();
997
998 free_cpu_data();
999 }
1000
1001 module_exit(cppc_cpufreq_exit);
1002 MODULE_AUTHOR("Ashwin Chaugule");
1003 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
1004 MODULE_LICENSE("GPL");
1005
1006 late_initcall(cppc_cpufreq_init);
1007
1008 static const struct acpi_device_id cppc_acpi_ids[] __used = {
1009 {ACPI_PROCESSOR_DEVICE_HID, },
1010 {}
1011 };
1012
1013 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
1014