1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/blk-crypto.h>
6 #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
7 #include <xen/xen.h>
8 #include "blk-crypto-internal.h"
9 
10 struct elevator_type;
11 
12 /* Max future timer expiry for timeouts */
13 #define BLK_MAX_TIMEOUT		(5 * HZ)
14 
15 extern struct dentry *blk_debugfs_root;
16 
17 struct blk_flush_queue {
18 	unsigned int		flush_pending_idx:1;
19 	unsigned int		flush_running_idx:1;
20 	blk_status_t 		rq_status;
21 	unsigned long		flush_pending_since;
22 	struct list_head	flush_queue[2];
23 	struct list_head	flush_data_in_flight;
24 	struct request		*flush_rq;
25 
26 	spinlock_t		mq_flush_lock;
27 };
28 
29 extern struct kmem_cache *blk_requestq_cachep;
30 extern struct kmem_cache *blk_requestq_srcu_cachep;
31 extern struct kobj_type blk_queue_ktype;
32 extern struct ida blk_queue_ida;
33 
34 bool is_flush_rq(struct request *req);
35 
36 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
37 					      gfp_t flags);
38 void blk_free_flush_queue(struct blk_flush_queue *q);
39 
40 void blk_freeze_queue(struct request_queue *q);
41 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
42 void blk_queue_start_drain(struct request_queue *q);
43 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
44 void submit_bio_noacct_nocheck(struct bio *bio);
45 
blk_try_enter_queue(struct request_queue * q,bool pm)46 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
47 {
48 	rcu_read_lock();
49 	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
50 		goto fail;
51 
52 	/*
53 	 * The code that increments the pm_only counter must ensure that the
54 	 * counter is globally visible before the queue is unfrozen.
55 	 */
56 	if (blk_queue_pm_only(q) &&
57 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
58 		goto fail_put;
59 
60 	rcu_read_unlock();
61 	return true;
62 
63 fail_put:
64 	blk_queue_exit(q);
65 fail:
66 	rcu_read_unlock();
67 	return false;
68 }
69 
bio_queue_enter(struct bio * bio)70 static inline int bio_queue_enter(struct bio *bio)
71 {
72 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
73 
74 	if (blk_try_enter_queue(q, false))
75 		return 0;
76 	return __bio_queue_enter(q, bio);
77 }
78 
79 #define BIO_INLINE_VECS 4
80 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
81 		gfp_t gfp_mask);
82 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
83 
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)84 static inline bool biovec_phys_mergeable(struct request_queue *q,
85 		struct bio_vec *vec1, struct bio_vec *vec2)
86 {
87 	unsigned long mask = queue_segment_boundary(q);
88 	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
89 	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
90 
91 	/*
92 	 * Merging adjacent physical pages may not work correctly under KMSAN
93 	 * if their metadata pages aren't adjacent. Just disable merging.
94 	 */
95 	if (IS_ENABLED(CONFIG_KMSAN))
96 		return false;
97 
98 	if (addr1 + vec1->bv_len != addr2)
99 		return false;
100 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
101 		return false;
102 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
103 		return false;
104 	return true;
105 }
106 
__bvec_gap_to_prev(struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)107 static inline bool __bvec_gap_to_prev(struct queue_limits *lim,
108 		struct bio_vec *bprv, unsigned int offset)
109 {
110 	return (offset & lim->virt_boundary_mask) ||
111 		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
112 }
113 
114 /*
115  * Check if adding a bio_vec after bprv with offset would create a gap in
116  * the SG list. Most drivers don't care about this, but some do.
117  */
bvec_gap_to_prev(struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)118 static inline bool bvec_gap_to_prev(struct queue_limits *lim,
119 		struct bio_vec *bprv, unsigned int offset)
120 {
121 	if (!lim->virt_boundary_mask)
122 		return false;
123 	return __bvec_gap_to_prev(lim, bprv, offset);
124 }
125 
rq_mergeable(struct request * rq)126 static inline bool rq_mergeable(struct request *rq)
127 {
128 	if (blk_rq_is_passthrough(rq))
129 		return false;
130 
131 	if (req_op(rq) == REQ_OP_FLUSH)
132 		return false;
133 
134 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
135 		return false;
136 
137 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
138 		return false;
139 
140 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
141 		return false;
142 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
143 		return false;
144 
145 	return true;
146 }
147 
148 /*
149  * There are two different ways to handle DISCARD merges:
150  *  1) If max_discard_segments > 1, the driver treats every bio as a range and
151  *     send the bios to controller together. The ranges don't need to be
152  *     contiguous.
153  *  2) Otherwise, the request will be normal read/write requests.  The ranges
154  *     need to be contiguous.
155  */
blk_discard_mergable(struct request * req)156 static inline bool blk_discard_mergable(struct request *req)
157 {
158 	if (req_op(req) == REQ_OP_DISCARD &&
159 	    queue_max_discard_segments(req->q) > 1)
160 		return true;
161 	return false;
162 }
163 
blk_queue_get_max_sectors(struct request_queue * q,enum req_op op)164 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
165 						     enum req_op op)
166 {
167 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
168 		return min(q->limits.max_discard_sectors,
169 			   UINT_MAX >> SECTOR_SHIFT);
170 
171 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
172 		return q->limits.max_write_zeroes_sectors;
173 
174 	return q->limits.max_sectors;
175 }
176 
177 #ifdef CONFIG_BLK_DEV_INTEGRITY
178 void blk_flush_integrity(void);
179 bool __bio_integrity_endio(struct bio *);
180 void bio_integrity_free(struct bio *bio);
bio_integrity_endio(struct bio * bio)181 static inline bool bio_integrity_endio(struct bio *bio)
182 {
183 	if (bio_integrity(bio))
184 		return __bio_integrity_endio(bio);
185 	return true;
186 }
187 
188 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
189 		struct request *);
190 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
191 		struct bio *);
192 
integrity_req_gap_back_merge(struct request * req,struct bio * next)193 static inline bool integrity_req_gap_back_merge(struct request *req,
194 		struct bio *next)
195 {
196 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
197 	struct bio_integrity_payload *bip_next = bio_integrity(next);
198 
199 	return bvec_gap_to_prev(&req->q->limits,
200 				&bip->bip_vec[bip->bip_vcnt - 1],
201 				bip_next->bip_vec[0].bv_offset);
202 }
203 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)204 static inline bool integrity_req_gap_front_merge(struct request *req,
205 		struct bio *bio)
206 {
207 	struct bio_integrity_payload *bip = bio_integrity(bio);
208 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
209 
210 	return bvec_gap_to_prev(&req->q->limits,
211 				&bip->bip_vec[bip->bip_vcnt - 1],
212 				bip_next->bip_vec[0].bv_offset);
213 }
214 
215 int blk_integrity_add(struct gendisk *disk);
216 void blk_integrity_del(struct gendisk *);
217 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)218 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
219 		struct request *r1, struct request *r2)
220 {
221 	return true;
222 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)223 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
224 		struct request *r, struct bio *b)
225 {
226 	return true;
227 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)228 static inline bool integrity_req_gap_back_merge(struct request *req,
229 		struct bio *next)
230 {
231 	return false;
232 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)233 static inline bool integrity_req_gap_front_merge(struct request *req,
234 		struct bio *bio)
235 {
236 	return false;
237 }
238 
blk_flush_integrity(void)239 static inline void blk_flush_integrity(void)
240 {
241 }
bio_integrity_endio(struct bio * bio)242 static inline bool bio_integrity_endio(struct bio *bio)
243 {
244 	return true;
245 }
bio_integrity_free(struct bio * bio)246 static inline void bio_integrity_free(struct bio *bio)
247 {
248 }
blk_integrity_add(struct gendisk * disk)249 static inline int blk_integrity_add(struct gendisk *disk)
250 {
251 	return 0;
252 }
blk_integrity_del(struct gendisk * disk)253 static inline void blk_integrity_del(struct gendisk *disk)
254 {
255 }
256 #endif /* CONFIG_BLK_DEV_INTEGRITY */
257 
258 unsigned long blk_rq_timeout(unsigned long timeout);
259 void blk_add_timer(struct request *req);
260 const char *blk_status_to_str(blk_status_t status);
261 
262 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
263 		unsigned int nr_segs);
264 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
265 			struct bio *bio, unsigned int nr_segs);
266 
267 /*
268  * Plug flush limits
269  */
270 #define BLK_MAX_REQUEST_COUNT	32
271 #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
272 
273 /*
274  * Internal elevator interface
275  */
276 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
277 
278 void blk_insert_flush(struct request *rq);
279 
280 int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
281 void elevator_exit(struct request_queue *q);
282 int elv_register_queue(struct request_queue *q, bool uevent);
283 void elv_unregister_queue(struct request_queue *q);
284 
285 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
286 		char *buf);
287 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
288 		char *buf);
289 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
290 		char *buf);
291 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
292 		char *buf);
293 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
294 		const char *buf, size_t count);
295 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
296 ssize_t part_timeout_store(struct device *, struct device_attribute *,
297 				const char *, size_t);
298 
bio_may_exceed_limits(struct bio * bio,struct queue_limits * lim)299 static inline bool bio_may_exceed_limits(struct bio *bio,
300 		struct queue_limits *lim)
301 {
302 	switch (bio_op(bio)) {
303 	case REQ_OP_DISCARD:
304 	case REQ_OP_SECURE_ERASE:
305 	case REQ_OP_WRITE_ZEROES:
306 		return true; /* non-trivial splitting decisions */
307 	default:
308 		break;
309 	}
310 
311 	/*
312 	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
313 	 * This is a quick and dirty check that relies on the fact that
314 	 * bi_io_vec[0] is always valid if a bio has data.  The check might
315 	 * lead to occasional false negatives when bios are cloned, but compared
316 	 * to the performance impact of cloned bios themselves the loop below
317 	 * doesn't matter anyway.
318 	 */
319 	return lim->chunk_sectors || bio->bi_vcnt != 1 ||
320 		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
321 }
322 
323 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim,
324 		       unsigned int *nr_segs);
325 int ll_back_merge_fn(struct request *req, struct bio *bio,
326 		unsigned int nr_segs);
327 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
328 				struct request *next);
329 unsigned int blk_recalc_rq_segments(struct request *rq);
330 void blk_rq_set_mixed_merge(struct request *rq);
331 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
332 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
333 
334 void blk_set_default_limits(struct queue_limits *lim);
335 int blk_dev_init(void);
336 
337 /*
338  * Contribute to IO statistics IFF:
339  *
340  *	a) it's attached to a gendisk, and
341  *	b) the queue had IO stats enabled when this request was started
342  */
blk_do_io_stat(struct request * rq)343 static inline bool blk_do_io_stat(struct request *rq)
344 {
345 	return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
346 }
347 
348 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
349 
req_set_nomerge(struct request_queue * q,struct request * req)350 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
351 {
352 	req->cmd_flags |= REQ_NOMERGE;
353 	if (req == q->last_merge)
354 		q->last_merge = NULL;
355 }
356 
357 /*
358  * Internal io_context interface
359  */
360 struct io_cq *ioc_find_get_icq(struct request_queue *q);
361 struct io_cq *ioc_lookup_icq(struct request_queue *q);
362 #ifdef CONFIG_BLK_ICQ
363 void ioc_clear_queue(struct request_queue *q);
364 #else
ioc_clear_queue(struct request_queue * q)365 static inline void ioc_clear_queue(struct request_queue *q)
366 {
367 }
368 #endif /* CONFIG_BLK_ICQ */
369 
370 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
371 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
372 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
373 	const char *page, size_t count);
374 extern void blk_throtl_bio_endio(struct bio *bio);
375 extern void blk_throtl_stat_add(struct request *rq, u64 time);
376 #else
blk_throtl_bio_endio(struct bio * bio)377 static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk_throtl_stat_add(struct request * rq,u64 time)378 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
379 #endif
380 
381 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
382 
blk_queue_may_bounce(struct request_queue * q)383 static inline bool blk_queue_may_bounce(struct request_queue *q)
384 {
385 	return IS_ENABLED(CONFIG_BOUNCE) &&
386 		q->limits.bounce == BLK_BOUNCE_HIGH &&
387 		max_low_pfn >= max_pfn;
388 }
389 
blk_queue_bounce(struct bio * bio,struct request_queue * q)390 static inline struct bio *blk_queue_bounce(struct bio *bio,
391 		struct request_queue *q)
392 {
393 	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
394 		return __blk_queue_bounce(bio, q);
395 	return bio;
396 }
397 
398 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
399 int blk_iolatency_init(struct gendisk *disk);
400 #else
blk_iolatency_init(struct gendisk * disk)401 static inline int blk_iolatency_init(struct gendisk *disk) { return 0; };
402 #endif
403 
404 #ifdef CONFIG_BLK_DEV_ZONED
405 void disk_free_zone_bitmaps(struct gendisk *disk);
406 void disk_clear_zone_settings(struct gendisk *disk);
407 #else
disk_free_zone_bitmaps(struct gendisk * disk)408 static inline void disk_free_zone_bitmaps(struct gendisk *disk) {}
disk_clear_zone_settings(struct gendisk * disk)409 static inline void disk_clear_zone_settings(struct gendisk *disk) {}
410 #endif
411 
412 int blk_alloc_ext_minor(void);
413 void blk_free_ext_minor(unsigned int minor);
414 #define ADDPART_FLAG_NONE	0
415 #define ADDPART_FLAG_RAID	1
416 #define ADDPART_FLAG_WHOLEDISK	2
417 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
418 		sector_t length);
419 int bdev_del_partition(struct gendisk *disk, int partno);
420 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
421 		sector_t length);
422 void blk_drop_partitions(struct gendisk *disk);
423 
424 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
425 		struct lock_class_key *lkclass);
426 
427 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
428 		struct page *page, unsigned int len, unsigned int offset,
429 		unsigned int max_sectors, bool *same_page);
430 
blk_get_queue_kmem_cache(bool srcu)431 static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu)
432 {
433 	if (srcu)
434 		return blk_requestq_srcu_cachep;
435 	return blk_requestq_cachep;
436 }
437 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu);
438 
439 int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
440 
441 int disk_alloc_events(struct gendisk *disk);
442 void disk_add_events(struct gendisk *disk);
443 void disk_del_events(struct gendisk *disk);
444 void disk_release_events(struct gendisk *disk);
445 void disk_block_events(struct gendisk *disk);
446 void disk_unblock_events(struct gendisk *disk);
447 void disk_flush_events(struct gendisk *disk, unsigned int mask);
448 extern struct device_attribute dev_attr_events;
449 extern struct device_attribute dev_attr_events_async;
450 extern struct device_attribute dev_attr_events_poll_msecs;
451 
452 extern struct attribute_group blk_trace_attr_group;
453 
454 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
455 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
456 
457 extern const struct address_space_operations def_blk_aops;
458 
459 int disk_register_independent_access_ranges(struct gendisk *disk);
460 void disk_unregister_independent_access_ranges(struct gendisk *disk);
461 
462 #ifdef CONFIG_FAIL_MAKE_REQUEST
463 bool should_fail_request(struct block_device *part, unsigned int bytes);
464 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)465 static inline bool should_fail_request(struct block_device *part,
466 					unsigned int bytes)
467 {
468 	return false;
469 }
470 #endif /* CONFIG_FAIL_MAKE_REQUEST */
471 
472 /*
473  * Optimized request reference counting. Ideally we'd make timeouts be more
474  * clever, as that's the only reason we need references at all... But until
475  * this happens, this is faster than using refcount_t. Also see:
476  *
477  * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
478  */
479 #define req_ref_zero_or_close_to_overflow(req)	\
480 	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
481 
req_ref_inc_not_zero(struct request * req)482 static inline bool req_ref_inc_not_zero(struct request *req)
483 {
484 	return atomic_inc_not_zero(&req->ref);
485 }
486 
req_ref_put_and_test(struct request * req)487 static inline bool req_ref_put_and_test(struct request *req)
488 {
489 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
490 	return atomic_dec_and_test(&req->ref);
491 }
492 
req_ref_set(struct request * req,int value)493 static inline void req_ref_set(struct request *req, int value)
494 {
495 	atomic_set(&req->ref, value);
496 }
497 
req_ref_read(struct request * req)498 static inline int req_ref_read(struct request *req)
499 {
500 	return atomic_read(&req->ref);
501 }
502 
503 #endif /* BLK_INTERNAL_H */
504