1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
blk_mq_poll_stats_bkt(const struct request * rq)52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 int ddir, sectors, bucket;
55
56 ddir = rq_data_dir(rq);
57 sectors = blk_rq_stats_sectors(rq);
58
59 bucket = ddir + 2 * ilog2(sectors);
60
61 if (bucket < 0)
62 return -1;
63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66 return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT 16
70 #define BLK_QC_T_INTERNAL (1U << 31)
71
blk_qc_to_hctx(struct request_queue * q,blk_qc_t qc)72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 blk_qc_t qc)
74 {
75 return xa_load(&q->hctx_table,
76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
blk_qc_to_rq(struct blk_mq_hw_ctx * hctx,blk_qc_t qc)79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 blk_qc_t qc)
81 {
82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84 if (qc & BLK_QC_T_INTERNAL)
85 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
blk_rq_to_qc(struct request * rq)89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 (rq->tag != -1 ?
93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97 * Check if any of the ctx, dispatch list or elevator
98 * have pending work in this hardware queue.
99 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 return !list_empty_careful(&hctx->dispatch) ||
103 sbitmap_any_bit_set(&hctx->ctx_map) ||
104 blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108 * Mark this ctx as having pending work in this hardware queue
109 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 struct blk_mq_ctx *ctx)
112 {
113 const int bit = ctx->index_hw[hctx->type];
114
115 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 struct blk_mq_ctx *ctx)
121 {
122 const int bit = ctx->index_hw[hctx->type];
123
124 sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128 struct block_device *part;
129 unsigned int inflight[2];
130 };
131
blk_mq_check_inflight(struct request * rq,void * priv)132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 struct mq_inflight *mi = priv;
135
136 if (rq->part && blk_do_io_stat(rq) &&
137 (!mi->part->bd_partno || rq->part == mi->part) &&
138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 mi->inflight[rq_data_dir(rq)]++;
140
141 return true;
142 }
143
blk_mq_in_flight(struct request_queue * q,struct block_device * part)144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 struct block_device *part)
146 {
147 struct mq_inflight mi = { .part = part };
148
149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151 return mi.inflight[0] + mi.inflight[1];
152 }
153
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 unsigned int inflight[2])
156 {
157 struct mq_inflight mi = { .part = part };
158
159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 inflight[0] = mi.inflight[0];
161 inflight[1] = mi.inflight[1];
162 }
163
blk_freeze_queue_start(struct request_queue * q)164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 mutex_lock(&q->mq_freeze_lock);
167 if (++q->mq_freeze_depth == 1) {
168 percpu_ref_kill(&q->q_usage_counter);
169 mutex_unlock(&q->mq_freeze_lock);
170 if (queue_is_mq(q))
171 blk_mq_run_hw_queues(q, false);
172 } else {
173 mutex_unlock(&q->mq_freeze_lock);
174 }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
blk_mq_freeze_queue_wait(struct request_queue * q)178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 unsigned long timeout)
186 {
187 return wait_event_timeout(q->mq_freeze_wq,
188 percpu_ref_is_zero(&q->q_usage_counter),
189 timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194 * Guarantee no request is in use, so we can change any data structure of
195 * the queue afterward.
196 */
blk_freeze_queue(struct request_queue * q)197 void blk_freeze_queue(struct request_queue *q)
198 {
199 /*
200 * In the !blk_mq case we are only calling this to kill the
201 * q_usage_counter, otherwise this increases the freeze depth
202 * and waits for it to return to zero. For this reason there is
203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 * exported to drivers as the only user for unfreeze is blk_mq.
205 */
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
208 }
209
blk_mq_freeze_queue(struct request_queue * q)210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 /*
213 * ...just an alias to keep freeze and unfreeze actions balanced
214 * in the blk_mq_* namespace
215 */
216 blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 mutex_lock(&q->mq_freeze_lock);
223 if (force_atomic)
224 q->q_usage_counter.data->force_atomic = true;
225 q->mq_freeze_depth--;
226 WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 if (!q->mq_freeze_depth) {
228 percpu_ref_resurrect(&q->q_usage_counter);
229 wake_up_all(&q->mq_freeze_wq);
230 }
231 mutex_unlock(&q->mq_freeze_lock);
232 }
233
blk_mq_unfreeze_queue(struct request_queue * q)234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242 * mpt3sas driver such that this function can be removed.
243 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 unsigned long flags;
247
248 spin_lock_irqsave(&q->queue_lock, flags);
249 if (!q->quiesce_depth++)
250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257 * @q: request queue.
258 *
259 * Note: it is driver's responsibility for making sure that quiesce has
260 * been started.
261 */
blk_mq_wait_quiesce_done(struct request_queue * q)262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 if (blk_queue_has_srcu(q))
265 synchronize_srcu(q->srcu);
266 else
267 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273 * @q: request queue.
274 *
275 * Note: this function does not prevent that the struct request end_io()
276 * callback function is invoked. Once this function is returned, we make
277 * sure no dispatch can happen until the queue is unquiesced via
278 * blk_mq_unquiesce_queue().
279 */
blk_mq_quiesce_queue(struct request_queue * q)280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 blk_mq_quiesce_queue_nowait(q);
283 blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289 * @q: request queue.
290 *
291 * This function recovers queue into the state before quiescing
292 * which is done by blk_mq_quiesce_queue.
293 */
blk_mq_unquiesce_queue(struct request_queue * q)294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 unsigned long flags;
297 bool run_queue = false;
298
299 spin_lock_irqsave(&q->queue_lock, flags);
300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 ;
302 } else if (!--q->quiesce_depth) {
303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 run_queue = true;
305 }
306 spin_unlock_irqrestore(&q->queue_lock, flags);
307
308 /* dispatch requests which are inserted during quiescing */
309 if (run_queue)
310 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
blk_mq_wake_waiters(struct request_queue * q)314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 struct blk_mq_hw_ctx *hctx;
317 unsigned long i;
318
319 queue_for_each_hw_ctx(q, hctx, i)
320 if (blk_mq_hw_queue_mapped(hctx))
321 blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
blk_rq_init(struct request_queue * q,struct request * rq)324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 memset(rq, 0, sizeof(*rq));
327
328 INIT_LIST_HEAD(&rq->queuelist);
329 rq->q = q;
330 rq->__sector = (sector_t) -1;
331 INIT_HLIST_NODE(&rq->hash);
332 RB_CLEAR_NODE(&rq->rb_node);
333 rq->tag = BLK_MQ_NO_TAG;
334 rq->internal_tag = BLK_MQ_NO_TAG;
335 rq->start_time_ns = ktime_get_ns();
336 rq->part = NULL;
337 blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag,u64 alloc_time_ns)341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 struct blk_mq_ctx *ctx = data->ctx;
345 struct blk_mq_hw_ctx *hctx = data->hctx;
346 struct request_queue *q = data->q;
347 struct request *rq = tags->static_rqs[tag];
348
349 rq->q = q;
350 rq->mq_ctx = ctx;
351 rq->mq_hctx = hctx;
352 rq->cmd_flags = data->cmd_flags;
353
354 if (data->flags & BLK_MQ_REQ_PM)
355 data->rq_flags |= RQF_PM;
356 if (blk_queue_io_stat(q))
357 data->rq_flags |= RQF_IO_STAT;
358 rq->rq_flags = data->rq_flags;
359
360 if (!(data->rq_flags & RQF_ELV)) {
361 rq->tag = tag;
362 rq->internal_tag = BLK_MQ_NO_TAG;
363 } else {
364 rq->tag = BLK_MQ_NO_TAG;
365 rq->internal_tag = tag;
366 }
367 rq->timeout = 0;
368
369 if (blk_mq_need_time_stamp(rq))
370 rq->start_time_ns = ktime_get_ns();
371 else
372 rq->start_time_ns = 0;
373 rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_ELV) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (!op_is_flush(data->cmd_flags) &&
399 e->type->ops.prepare_request) {
400 e->type->ops.prepare_request(rq);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404
405 return rq;
406 }
407
408 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data,u64 alloc_time_ns)409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 u64 alloc_time_ns)
411 {
412 unsigned int tag, tag_offset;
413 struct blk_mq_tags *tags;
414 struct request *rq;
415 unsigned long tag_mask;
416 int i, nr = 0;
417
418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 if (unlikely(!tag_mask))
420 return NULL;
421
422 tags = blk_mq_tags_from_data(data);
423 for (i = 0; tag_mask; i++) {
424 if (!(tag_mask & (1UL << i)))
425 continue;
426 tag = tag_offset + i;
427 prefetch(tags->static_rqs[tag]);
428 tag_mask &= ~(1UL << i);
429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 rq_list_add(data->cached_rq, rq);
431 nr++;
432 }
433 /* caller already holds a reference, add for remainder */
434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 data->nr_tags -= nr;
436
437 return rq_list_pop(data->cached_rq);
438 }
439
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 struct request_queue *q = data->q;
443 u64 alloc_time_ns = 0;
444 struct request *rq;
445 unsigned int tag;
446
447 /* alloc_time includes depth and tag waits */
448 if (blk_queue_rq_alloc_time(q))
449 alloc_time_ns = ktime_get_ns();
450
451 if (data->cmd_flags & REQ_NOWAIT)
452 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454 if (q->elevator) {
455 struct elevator_queue *e = q->elevator;
456
457 data->rq_flags |= RQF_ELV;
458
459 /*
460 * Flush/passthrough requests are special and go directly to the
461 * dispatch list. Don't include reserved tags in the
462 * limiting, as it isn't useful.
463 */
464 if (!op_is_flush(data->cmd_flags) &&
465 !blk_op_is_passthrough(data->cmd_flags) &&
466 e->type->ops.limit_depth &&
467 !(data->flags & BLK_MQ_REQ_RESERVED))
468 e->type->ops.limit_depth(data->cmd_flags, data);
469 }
470
471 retry:
472 data->ctx = blk_mq_get_ctx(q);
473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 if (!(data->rq_flags & RQF_ELV))
475 blk_mq_tag_busy(data->hctx);
476
477 if (data->flags & BLK_MQ_REQ_RESERVED)
478 data->rq_flags |= RQF_RESV;
479
480 /*
481 * Try batched alloc if we want more than 1 tag.
482 */
483 if (data->nr_tags > 1) {
484 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 if (rq)
486 return rq;
487 data->nr_tags = 1;
488 }
489
490 /*
491 * Waiting allocations only fail because of an inactive hctx. In that
492 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 * should have migrated us to an online CPU by now.
494 */
495 tag = blk_mq_get_tag(data);
496 if (tag == BLK_MQ_NO_TAG) {
497 if (data->flags & BLK_MQ_REQ_NOWAIT)
498 return NULL;
499 /*
500 * Give up the CPU and sleep for a random short time to
501 * ensure that thread using a realtime scheduling class
502 * are migrated off the CPU, and thus off the hctx that
503 * is going away.
504 */
505 msleep(3);
506 goto retry;
507 }
508
509 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 alloc_time_ns);
511 }
512
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514 struct blk_plug *plug,
515 blk_opf_t opf,
516 blk_mq_req_flags_t flags)
517 {
518 struct blk_mq_alloc_data data = {
519 .q = q,
520 .flags = flags,
521 .cmd_flags = opf,
522 .nr_tags = plug->nr_ios,
523 .cached_rq = &plug->cached_rq,
524 };
525 struct request *rq;
526
527 if (blk_queue_enter(q, flags))
528 return NULL;
529
530 plug->nr_ios = 1;
531
532 rq = __blk_mq_alloc_requests(&data);
533 if (unlikely(!rq))
534 blk_queue_exit(q);
535 return rq;
536 }
537
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539 blk_opf_t opf,
540 blk_mq_req_flags_t flags)
541 {
542 struct blk_plug *plug = current->plug;
543 struct request *rq;
544
545 if (!plug)
546 return NULL;
547 if (rq_list_empty(plug->cached_rq)) {
548 if (plug->nr_ios == 1)
549 return NULL;
550 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551 if (rq)
552 goto got_it;
553 return NULL;
554 }
555 rq = rq_list_peek(&plug->cached_rq);
556 if (!rq || rq->q != q)
557 return NULL;
558
559 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560 return NULL;
561 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562 return NULL;
563
564 plug->cached_rq = rq_list_next(rq);
565 got_it:
566 rq->cmd_flags = opf;
567 INIT_LIST_HEAD(&rq->queuelist);
568 return rq;
569 }
570
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572 blk_mq_req_flags_t flags)
573 {
574 struct request *rq;
575
576 rq = blk_mq_alloc_cached_request(q, opf, flags);
577 if (!rq) {
578 struct blk_mq_alloc_data data = {
579 .q = q,
580 .flags = flags,
581 .cmd_flags = opf,
582 .nr_tags = 1,
583 };
584 int ret;
585
586 ret = blk_queue_enter(q, flags);
587 if (ret)
588 return ERR_PTR(ret);
589
590 rq = __blk_mq_alloc_requests(&data);
591 if (!rq)
592 goto out_queue_exit;
593 }
594 rq->__data_len = 0;
595 rq->__sector = (sector_t) -1;
596 rq->bio = rq->biotail = NULL;
597 return rq;
598 out_queue_exit:
599 blk_queue_exit(q);
600 return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607 struct blk_mq_alloc_data data = {
608 .q = q,
609 .flags = flags,
610 .cmd_flags = opf,
611 .nr_tags = 1,
612 };
613 u64 alloc_time_ns = 0;
614 struct request *rq;
615 unsigned int cpu;
616 unsigned int tag;
617 int ret;
618
619 /* alloc_time includes depth and tag waits */
620 if (blk_queue_rq_alloc_time(q))
621 alloc_time_ns = ktime_get_ns();
622
623 /*
624 * If the tag allocator sleeps we could get an allocation for a
625 * different hardware context. No need to complicate the low level
626 * allocator for this for the rare use case of a command tied to
627 * a specific queue.
628 */
629 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
630 return ERR_PTR(-EINVAL);
631
632 if (hctx_idx >= q->nr_hw_queues)
633 return ERR_PTR(-EIO);
634
635 ret = blk_queue_enter(q, flags);
636 if (ret)
637 return ERR_PTR(ret);
638
639 /*
640 * Check if the hardware context is actually mapped to anything.
641 * If not tell the caller that it should skip this queue.
642 */
643 ret = -EXDEV;
644 data.hctx = xa_load(&q->hctx_table, hctx_idx);
645 if (!blk_mq_hw_queue_mapped(data.hctx))
646 goto out_queue_exit;
647 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
648 if (cpu >= nr_cpu_ids)
649 goto out_queue_exit;
650 data.ctx = __blk_mq_get_ctx(q, cpu);
651
652 if (!q->elevator)
653 blk_mq_tag_busy(data.hctx);
654 else
655 data.rq_flags |= RQF_ELV;
656
657 if (flags & BLK_MQ_REQ_RESERVED)
658 data.rq_flags |= RQF_RESV;
659
660 ret = -EWOULDBLOCK;
661 tag = blk_mq_get_tag(&data);
662 if (tag == BLK_MQ_NO_TAG)
663 goto out_queue_exit;
664 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
665 alloc_time_ns);
666 rq->__data_len = 0;
667 rq->__sector = (sector_t) -1;
668 rq->bio = rq->biotail = NULL;
669 return rq;
670
671 out_queue_exit:
672 blk_queue_exit(q);
673 return ERR_PTR(ret);
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
676
__blk_mq_free_request(struct request * rq)677 static void __blk_mq_free_request(struct request *rq)
678 {
679 struct request_queue *q = rq->q;
680 struct blk_mq_ctx *ctx = rq->mq_ctx;
681 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
682 const int sched_tag = rq->internal_tag;
683
684 blk_crypto_free_request(rq);
685 blk_pm_mark_last_busy(rq);
686 rq->mq_hctx = NULL;
687 if (rq->tag != BLK_MQ_NO_TAG)
688 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
689 if (sched_tag != BLK_MQ_NO_TAG)
690 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
691 blk_mq_sched_restart(hctx);
692 blk_queue_exit(q);
693 }
694
blk_mq_free_request(struct request * rq)695 void blk_mq_free_request(struct request *rq)
696 {
697 struct request_queue *q = rq->q;
698 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
699
700 if ((rq->rq_flags & RQF_ELVPRIV) &&
701 q->elevator->type->ops.finish_request)
702 q->elevator->type->ops.finish_request(rq);
703
704 if (rq->rq_flags & RQF_MQ_INFLIGHT)
705 __blk_mq_dec_active_requests(hctx);
706
707 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
708 laptop_io_completion(q->disk->bdi);
709
710 rq_qos_done(q, rq);
711
712 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
713 if (req_ref_put_and_test(rq))
714 __blk_mq_free_request(rq);
715 }
716 EXPORT_SYMBOL_GPL(blk_mq_free_request);
717
blk_mq_free_plug_rqs(struct blk_plug * plug)718 void blk_mq_free_plug_rqs(struct blk_plug *plug)
719 {
720 struct request *rq;
721
722 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
723 blk_mq_free_request(rq);
724 }
725
blk_dump_rq_flags(struct request * rq,char * msg)726 void blk_dump_rq_flags(struct request *rq, char *msg)
727 {
728 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
729 rq->q->disk ? rq->q->disk->disk_name : "?",
730 (__force unsigned long long) rq->cmd_flags);
731
732 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
733 (unsigned long long)blk_rq_pos(rq),
734 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
735 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
736 rq->bio, rq->biotail, blk_rq_bytes(rq));
737 }
738 EXPORT_SYMBOL(blk_dump_rq_flags);
739
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)740 static void req_bio_endio(struct request *rq, struct bio *bio,
741 unsigned int nbytes, blk_status_t error)
742 {
743 if (unlikely(error)) {
744 bio->bi_status = error;
745 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
746 /*
747 * Partial zone append completions cannot be supported as the
748 * BIO fragments may end up not being written sequentially.
749 */
750 if (bio->bi_iter.bi_size != nbytes)
751 bio->bi_status = BLK_STS_IOERR;
752 else
753 bio->bi_iter.bi_sector = rq->__sector;
754 }
755
756 bio_advance(bio, nbytes);
757
758 if (unlikely(rq->rq_flags & RQF_QUIET))
759 bio_set_flag(bio, BIO_QUIET);
760 /* don't actually finish bio if it's part of flush sequence */
761 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
762 bio_endio(bio);
763 }
764
blk_account_io_completion(struct request * req,unsigned int bytes)765 static void blk_account_io_completion(struct request *req, unsigned int bytes)
766 {
767 if (req->part && blk_do_io_stat(req)) {
768 const int sgrp = op_stat_group(req_op(req));
769
770 part_stat_lock();
771 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
772 part_stat_unlock();
773 }
774 }
775
blk_print_req_error(struct request * req,blk_status_t status)776 static void blk_print_req_error(struct request *req, blk_status_t status)
777 {
778 printk_ratelimited(KERN_ERR
779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780 "phys_seg %u prio class %u\n",
781 blk_status_to_str(status),
782 req->q->disk ? req->q->disk->disk_name : "?",
783 blk_rq_pos(req), (__force u32)req_op(req),
784 blk_op_str(req_op(req)),
785 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
786 req->nr_phys_segments,
787 IOPRIO_PRIO_CLASS(req->ioprio));
788 }
789
790 /*
791 * Fully end IO on a request. Does not support partial completions, or
792 * errors.
793 */
blk_complete_request(struct request * req)794 static void blk_complete_request(struct request *req)
795 {
796 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
797 int total_bytes = blk_rq_bytes(req);
798 struct bio *bio = req->bio;
799
800 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
801
802 if (!bio)
803 return;
804
805 #ifdef CONFIG_BLK_DEV_INTEGRITY
806 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
807 req->q->integrity.profile->complete_fn(req, total_bytes);
808 #endif
809
810 blk_account_io_completion(req, total_bytes);
811
812 do {
813 struct bio *next = bio->bi_next;
814
815 /* Completion has already been traced */
816 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
817
818 if (req_op(req) == REQ_OP_ZONE_APPEND)
819 bio->bi_iter.bi_sector = req->__sector;
820
821 if (!is_flush)
822 bio_endio(bio);
823 bio = next;
824 } while (bio);
825
826 /*
827 * Reset counters so that the request stacking driver
828 * can find how many bytes remain in the request
829 * later.
830 */
831 if (!req->end_io) {
832 req->bio = NULL;
833 req->__data_len = 0;
834 }
835 }
836
837 /**
838 * blk_update_request - Complete multiple bytes without completing the request
839 * @req: the request being processed
840 * @error: block status code
841 * @nr_bytes: number of bytes to complete for @req
842 *
843 * Description:
844 * Ends I/O on a number of bytes attached to @req, but doesn't complete
845 * the request structure even if @req doesn't have leftover.
846 * If @req has leftover, sets it up for the next range of segments.
847 *
848 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
849 * %false return from this function.
850 *
851 * Note:
852 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
853 * except in the consistency check at the end of this function.
854 *
855 * Return:
856 * %false - this request doesn't have any more data
857 * %true - this request has more data
858 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)859 bool blk_update_request(struct request *req, blk_status_t error,
860 unsigned int nr_bytes)
861 {
862 int total_bytes;
863
864 trace_block_rq_complete(req, error, nr_bytes);
865
866 if (!req->bio)
867 return false;
868
869 #ifdef CONFIG_BLK_DEV_INTEGRITY
870 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
871 error == BLK_STS_OK)
872 req->q->integrity.profile->complete_fn(req, nr_bytes);
873 #endif
874
875 if (unlikely(error && !blk_rq_is_passthrough(req) &&
876 !(req->rq_flags & RQF_QUIET)) &&
877 !test_bit(GD_DEAD, &req->q->disk->state)) {
878 blk_print_req_error(req, error);
879 trace_block_rq_error(req, error, nr_bytes);
880 }
881
882 blk_account_io_completion(req, nr_bytes);
883
884 total_bytes = 0;
885 while (req->bio) {
886 struct bio *bio = req->bio;
887 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
888
889 if (bio_bytes == bio->bi_iter.bi_size)
890 req->bio = bio->bi_next;
891
892 /* Completion has already been traced */
893 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
894 req_bio_endio(req, bio, bio_bytes, error);
895
896 total_bytes += bio_bytes;
897 nr_bytes -= bio_bytes;
898
899 if (!nr_bytes)
900 break;
901 }
902
903 /*
904 * completely done
905 */
906 if (!req->bio) {
907 /*
908 * Reset counters so that the request stacking driver
909 * can find how many bytes remain in the request
910 * later.
911 */
912 req->__data_len = 0;
913 return false;
914 }
915
916 req->__data_len -= total_bytes;
917
918 /* update sector only for requests with clear definition of sector */
919 if (!blk_rq_is_passthrough(req))
920 req->__sector += total_bytes >> 9;
921
922 /* mixed attributes always follow the first bio */
923 if (req->rq_flags & RQF_MIXED_MERGE) {
924 req->cmd_flags &= ~REQ_FAILFAST_MASK;
925 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
926 }
927
928 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
929 /*
930 * If total number of sectors is less than the first segment
931 * size, something has gone terribly wrong.
932 */
933 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
934 blk_dump_rq_flags(req, "request botched");
935 req->__data_len = blk_rq_cur_bytes(req);
936 }
937
938 /* recalculate the number of segments */
939 req->nr_phys_segments = blk_recalc_rq_segments(req);
940 }
941
942 return true;
943 }
944 EXPORT_SYMBOL_GPL(blk_update_request);
945
__blk_account_io_done(struct request * req,u64 now)946 static void __blk_account_io_done(struct request *req, u64 now)
947 {
948 const int sgrp = op_stat_group(req_op(req));
949
950 part_stat_lock();
951 update_io_ticks(req->part, jiffies, true);
952 part_stat_inc(req->part, ios[sgrp]);
953 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
954 part_stat_unlock();
955 }
956
blk_account_io_done(struct request * req,u64 now)957 static inline void blk_account_io_done(struct request *req, u64 now)
958 {
959 /*
960 * Account IO completion. flush_rq isn't accounted as a
961 * normal IO on queueing nor completion. Accounting the
962 * containing request is enough.
963 */
964 if (blk_do_io_stat(req) && req->part &&
965 !(req->rq_flags & RQF_FLUSH_SEQ))
966 __blk_account_io_done(req, now);
967 }
968
__blk_account_io_start(struct request * rq)969 static void __blk_account_io_start(struct request *rq)
970 {
971 /*
972 * All non-passthrough requests are created from a bio with one
973 * exception: when a flush command that is part of a flush sequence
974 * generated by the state machine in blk-flush.c is cloned onto the
975 * lower device by dm-multipath we can get here without a bio.
976 */
977 if (rq->bio)
978 rq->part = rq->bio->bi_bdev;
979 else
980 rq->part = rq->q->disk->part0;
981
982 part_stat_lock();
983 update_io_ticks(rq->part, jiffies, false);
984 part_stat_unlock();
985 }
986
blk_account_io_start(struct request * req)987 static inline void blk_account_io_start(struct request *req)
988 {
989 if (blk_do_io_stat(req))
990 __blk_account_io_start(req);
991 }
992
__blk_mq_end_request_acct(struct request * rq,u64 now)993 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
994 {
995 if (rq->rq_flags & RQF_STATS) {
996 blk_mq_poll_stats_start(rq->q);
997 blk_stat_add(rq, now);
998 }
999
1000 blk_mq_sched_completed_request(rq, now);
1001 blk_account_io_done(rq, now);
1002 }
1003
__blk_mq_end_request(struct request * rq,blk_status_t error)1004 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1005 {
1006 if (blk_mq_need_time_stamp(rq))
1007 __blk_mq_end_request_acct(rq, ktime_get_ns());
1008
1009 if (rq->end_io) {
1010 rq_qos_done(rq->q, rq);
1011 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1012 blk_mq_free_request(rq);
1013 } else {
1014 blk_mq_free_request(rq);
1015 }
1016 }
1017 EXPORT_SYMBOL(__blk_mq_end_request);
1018
blk_mq_end_request(struct request * rq,blk_status_t error)1019 void blk_mq_end_request(struct request *rq, blk_status_t error)
1020 {
1021 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1022 BUG();
1023 __blk_mq_end_request(rq, error);
1024 }
1025 EXPORT_SYMBOL(blk_mq_end_request);
1026
1027 #define TAG_COMP_BATCH 32
1028
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1029 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1030 int *tag_array, int nr_tags)
1031 {
1032 struct request_queue *q = hctx->queue;
1033
1034 /*
1035 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1036 * update hctx->nr_active in batch
1037 */
1038 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1039 __blk_mq_sub_active_requests(hctx, nr_tags);
1040
1041 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1042 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1043 }
1044
blk_mq_end_request_batch(struct io_comp_batch * iob)1045 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1046 {
1047 int tags[TAG_COMP_BATCH], nr_tags = 0;
1048 struct blk_mq_hw_ctx *cur_hctx = NULL;
1049 struct request *rq;
1050 u64 now = 0;
1051
1052 if (iob->need_ts)
1053 now = ktime_get_ns();
1054
1055 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1056 prefetch(rq->bio);
1057 prefetch(rq->rq_next);
1058
1059 blk_complete_request(rq);
1060 if (iob->need_ts)
1061 __blk_mq_end_request_acct(rq, now);
1062
1063 rq_qos_done(rq->q, rq);
1064
1065 /*
1066 * If end_io handler returns NONE, then it still has
1067 * ownership of the request.
1068 */
1069 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1070 continue;
1071
1072 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1073 if (!req_ref_put_and_test(rq))
1074 continue;
1075
1076 blk_crypto_free_request(rq);
1077 blk_pm_mark_last_busy(rq);
1078
1079 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1080 if (cur_hctx)
1081 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1082 nr_tags = 0;
1083 cur_hctx = rq->mq_hctx;
1084 }
1085 tags[nr_tags++] = rq->tag;
1086 }
1087
1088 if (nr_tags)
1089 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1090 }
1091 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1092
blk_complete_reqs(struct llist_head * list)1093 static void blk_complete_reqs(struct llist_head *list)
1094 {
1095 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1096 struct request *rq, *next;
1097
1098 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1099 rq->q->mq_ops->complete(rq);
1100 }
1101
blk_done_softirq(struct softirq_action * h)1102 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1103 {
1104 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1105 }
1106
blk_softirq_cpu_dead(unsigned int cpu)1107 static int blk_softirq_cpu_dead(unsigned int cpu)
1108 {
1109 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1110 return 0;
1111 }
1112
__blk_mq_complete_request_remote(void * data)1113 static void __blk_mq_complete_request_remote(void *data)
1114 {
1115 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1116 }
1117
blk_mq_complete_need_ipi(struct request * rq)1118 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1119 {
1120 int cpu = raw_smp_processor_id();
1121
1122 if (!IS_ENABLED(CONFIG_SMP) ||
1123 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1124 return false;
1125 /*
1126 * With force threaded interrupts enabled, raising softirq from an SMP
1127 * function call will always result in waking the ksoftirqd thread.
1128 * This is probably worse than completing the request on a different
1129 * cache domain.
1130 */
1131 if (force_irqthreads())
1132 return false;
1133
1134 /* same CPU or cache domain? Complete locally */
1135 if (cpu == rq->mq_ctx->cpu ||
1136 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1137 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1138 return false;
1139
1140 /* don't try to IPI to an offline CPU */
1141 return cpu_online(rq->mq_ctx->cpu);
1142 }
1143
blk_mq_complete_send_ipi(struct request * rq)1144 static void blk_mq_complete_send_ipi(struct request *rq)
1145 {
1146 struct llist_head *list;
1147 unsigned int cpu;
1148
1149 cpu = rq->mq_ctx->cpu;
1150 list = &per_cpu(blk_cpu_done, cpu);
1151 if (llist_add(&rq->ipi_list, list)) {
1152 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1153 smp_call_function_single_async(cpu, &rq->csd);
1154 }
1155 }
1156
blk_mq_raise_softirq(struct request * rq)1157 static void blk_mq_raise_softirq(struct request *rq)
1158 {
1159 struct llist_head *list;
1160
1161 preempt_disable();
1162 list = this_cpu_ptr(&blk_cpu_done);
1163 if (llist_add(&rq->ipi_list, list))
1164 raise_softirq(BLOCK_SOFTIRQ);
1165 preempt_enable();
1166 }
1167
blk_mq_complete_request_remote(struct request * rq)1168 bool blk_mq_complete_request_remote(struct request *rq)
1169 {
1170 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1171
1172 /*
1173 * For request which hctx has only one ctx mapping,
1174 * or a polled request, always complete locally,
1175 * it's pointless to redirect the completion.
1176 */
1177 if (rq->mq_hctx->nr_ctx == 1 ||
1178 rq->cmd_flags & REQ_POLLED)
1179 return false;
1180
1181 if (blk_mq_complete_need_ipi(rq)) {
1182 blk_mq_complete_send_ipi(rq);
1183 return true;
1184 }
1185
1186 if (rq->q->nr_hw_queues == 1) {
1187 blk_mq_raise_softirq(rq);
1188 return true;
1189 }
1190 return false;
1191 }
1192 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1193
1194 /**
1195 * blk_mq_complete_request - end I/O on a request
1196 * @rq: the request being processed
1197 *
1198 * Description:
1199 * Complete a request by scheduling the ->complete_rq operation.
1200 **/
blk_mq_complete_request(struct request * rq)1201 void blk_mq_complete_request(struct request *rq)
1202 {
1203 if (!blk_mq_complete_request_remote(rq))
1204 rq->q->mq_ops->complete(rq);
1205 }
1206 EXPORT_SYMBOL(blk_mq_complete_request);
1207
1208 /**
1209 * blk_mq_start_request - Start processing a request
1210 * @rq: Pointer to request to be started
1211 *
1212 * Function used by device drivers to notify the block layer that a request
1213 * is going to be processed now, so blk layer can do proper initializations
1214 * such as starting the timeout timer.
1215 */
blk_mq_start_request(struct request * rq)1216 void blk_mq_start_request(struct request *rq)
1217 {
1218 struct request_queue *q = rq->q;
1219
1220 trace_block_rq_issue(rq);
1221
1222 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1223 rq->io_start_time_ns = ktime_get_ns();
1224 rq->stats_sectors = blk_rq_sectors(rq);
1225 rq->rq_flags |= RQF_STATS;
1226 rq_qos_issue(q, rq);
1227 }
1228
1229 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1230
1231 blk_add_timer(rq);
1232 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1233
1234 #ifdef CONFIG_BLK_DEV_INTEGRITY
1235 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1236 q->integrity.profile->prepare_fn(rq);
1237 #endif
1238 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1239 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1240 }
1241 EXPORT_SYMBOL(blk_mq_start_request);
1242
1243 /*
1244 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1245 * queues. This is important for md arrays to benefit from merging
1246 * requests.
1247 */
blk_plug_max_rq_count(struct blk_plug * plug)1248 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1249 {
1250 if (plug->multiple_queues)
1251 return BLK_MAX_REQUEST_COUNT * 2;
1252 return BLK_MAX_REQUEST_COUNT;
1253 }
1254
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1255 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1256 {
1257 struct request *last = rq_list_peek(&plug->mq_list);
1258
1259 if (!plug->rq_count) {
1260 trace_block_plug(rq->q);
1261 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1262 (!blk_queue_nomerges(rq->q) &&
1263 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1264 blk_mq_flush_plug_list(plug, false);
1265 last = NULL;
1266 trace_block_plug(rq->q);
1267 }
1268
1269 if (!plug->multiple_queues && last && last->q != rq->q)
1270 plug->multiple_queues = true;
1271 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1272 plug->has_elevator = true;
1273 rq->rq_next = NULL;
1274 rq_list_add(&plug->mq_list, rq);
1275 plug->rq_count++;
1276 }
1277
1278 /**
1279 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1280 * @rq: request to insert
1281 * @at_head: insert request at head or tail of queue
1282 *
1283 * Description:
1284 * Insert a fully prepared request at the back of the I/O scheduler queue
1285 * for execution. Don't wait for completion.
1286 *
1287 * Note:
1288 * This function will invoke @done directly if the queue is dead.
1289 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1290 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1291 {
1292 WARN_ON(irqs_disabled());
1293 WARN_ON(!blk_rq_is_passthrough(rq));
1294
1295 blk_account_io_start(rq);
1296
1297 /*
1298 * As plugging can be enabled for passthrough requests on a zoned
1299 * device, directly accessing the plug instead of using blk_mq_plug()
1300 * should not have any consequences.
1301 */
1302 if (current->plug)
1303 blk_add_rq_to_plug(current->plug, rq);
1304 else
1305 blk_mq_sched_insert_request(rq, at_head, true, false);
1306 }
1307 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1308
1309 struct blk_rq_wait {
1310 struct completion done;
1311 blk_status_t ret;
1312 };
1313
blk_end_sync_rq(struct request * rq,blk_status_t ret)1314 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1315 {
1316 struct blk_rq_wait *wait = rq->end_io_data;
1317
1318 wait->ret = ret;
1319 complete(&wait->done);
1320 return RQ_END_IO_NONE;
1321 }
1322
blk_rq_is_poll(struct request * rq)1323 bool blk_rq_is_poll(struct request *rq)
1324 {
1325 if (!rq->mq_hctx)
1326 return false;
1327 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1328 return false;
1329 if (WARN_ON_ONCE(!rq->bio))
1330 return false;
1331 return true;
1332 }
1333 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1334
blk_rq_poll_completion(struct request * rq,struct completion * wait)1335 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1336 {
1337 do {
1338 bio_poll(rq->bio, NULL, 0);
1339 cond_resched();
1340 } while (!completion_done(wait));
1341 }
1342
1343 /**
1344 * blk_execute_rq - insert a request into queue for execution
1345 * @rq: request to insert
1346 * @at_head: insert request at head or tail of queue
1347 *
1348 * Description:
1349 * Insert a fully prepared request at the back of the I/O scheduler queue
1350 * for execution and wait for completion.
1351 * Return: The blk_status_t result provided to blk_mq_end_request().
1352 */
blk_execute_rq(struct request * rq,bool at_head)1353 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1354 {
1355 struct blk_rq_wait wait = {
1356 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1357 };
1358
1359 WARN_ON(irqs_disabled());
1360 WARN_ON(!blk_rq_is_passthrough(rq));
1361
1362 rq->end_io_data = &wait;
1363 rq->end_io = blk_end_sync_rq;
1364
1365 blk_account_io_start(rq);
1366 blk_mq_sched_insert_request(rq, at_head, true, false);
1367
1368 if (blk_rq_is_poll(rq)) {
1369 blk_rq_poll_completion(rq, &wait.done);
1370 } else {
1371 /*
1372 * Prevent hang_check timer from firing at us during very long
1373 * I/O
1374 */
1375 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1376
1377 if (hang_check)
1378 while (!wait_for_completion_io_timeout(&wait.done,
1379 hang_check * (HZ/2)))
1380 ;
1381 else
1382 wait_for_completion_io(&wait.done);
1383 }
1384
1385 return wait.ret;
1386 }
1387 EXPORT_SYMBOL(blk_execute_rq);
1388
__blk_mq_requeue_request(struct request * rq)1389 static void __blk_mq_requeue_request(struct request *rq)
1390 {
1391 struct request_queue *q = rq->q;
1392
1393 blk_mq_put_driver_tag(rq);
1394
1395 trace_block_rq_requeue(rq);
1396 rq_qos_requeue(q, rq);
1397
1398 if (blk_mq_request_started(rq)) {
1399 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1400 rq->rq_flags &= ~RQF_TIMED_OUT;
1401 }
1402 }
1403
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1404 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1405 {
1406 __blk_mq_requeue_request(rq);
1407
1408 /* this request will be re-inserted to io scheduler queue */
1409 blk_mq_sched_requeue_request(rq);
1410
1411 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1412 }
1413 EXPORT_SYMBOL(blk_mq_requeue_request);
1414
blk_mq_requeue_work(struct work_struct * work)1415 static void blk_mq_requeue_work(struct work_struct *work)
1416 {
1417 struct request_queue *q =
1418 container_of(work, struct request_queue, requeue_work.work);
1419 LIST_HEAD(rq_list);
1420 struct request *rq, *next;
1421
1422 spin_lock_irq(&q->requeue_lock);
1423 list_splice_init(&q->requeue_list, &rq_list);
1424 spin_unlock_irq(&q->requeue_lock);
1425
1426 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1427 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1428 continue;
1429
1430 rq->rq_flags &= ~RQF_SOFTBARRIER;
1431 list_del_init(&rq->queuelist);
1432 /*
1433 * If RQF_DONTPREP, rq has contained some driver specific
1434 * data, so insert it to hctx dispatch list to avoid any
1435 * merge.
1436 */
1437 if (rq->rq_flags & RQF_DONTPREP)
1438 blk_mq_request_bypass_insert(rq, false, false);
1439 else
1440 blk_mq_sched_insert_request(rq, true, false, false);
1441 }
1442
1443 while (!list_empty(&rq_list)) {
1444 rq = list_entry(rq_list.next, struct request, queuelist);
1445 list_del_init(&rq->queuelist);
1446 blk_mq_sched_insert_request(rq, false, false, false);
1447 }
1448
1449 blk_mq_run_hw_queues(q, false);
1450 }
1451
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)1452 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1453 bool kick_requeue_list)
1454 {
1455 struct request_queue *q = rq->q;
1456 unsigned long flags;
1457
1458 /*
1459 * We abuse this flag that is otherwise used by the I/O scheduler to
1460 * request head insertion from the workqueue.
1461 */
1462 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1463
1464 spin_lock_irqsave(&q->requeue_lock, flags);
1465 if (at_head) {
1466 rq->rq_flags |= RQF_SOFTBARRIER;
1467 list_add(&rq->queuelist, &q->requeue_list);
1468 } else {
1469 list_add_tail(&rq->queuelist, &q->requeue_list);
1470 }
1471 spin_unlock_irqrestore(&q->requeue_lock, flags);
1472
1473 if (kick_requeue_list)
1474 blk_mq_kick_requeue_list(q);
1475 }
1476
blk_mq_kick_requeue_list(struct request_queue * q)1477 void blk_mq_kick_requeue_list(struct request_queue *q)
1478 {
1479 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1480 }
1481 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1482
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1483 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1484 unsigned long msecs)
1485 {
1486 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1487 msecs_to_jiffies(msecs));
1488 }
1489 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1490
blk_mq_rq_inflight(struct request * rq,void * priv)1491 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1492 {
1493 /*
1494 * If we find a request that isn't idle we know the queue is busy
1495 * as it's checked in the iter.
1496 * Return false to stop the iteration.
1497 */
1498 if (blk_mq_request_started(rq)) {
1499 bool *busy = priv;
1500
1501 *busy = true;
1502 return false;
1503 }
1504
1505 return true;
1506 }
1507
blk_mq_queue_inflight(struct request_queue * q)1508 bool blk_mq_queue_inflight(struct request_queue *q)
1509 {
1510 bool busy = false;
1511
1512 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1513 return busy;
1514 }
1515 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1516
blk_mq_rq_timed_out(struct request * req)1517 static void blk_mq_rq_timed_out(struct request *req)
1518 {
1519 req->rq_flags |= RQF_TIMED_OUT;
1520 if (req->q->mq_ops->timeout) {
1521 enum blk_eh_timer_return ret;
1522
1523 ret = req->q->mq_ops->timeout(req);
1524 if (ret == BLK_EH_DONE)
1525 return;
1526 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1527 }
1528
1529 blk_add_timer(req);
1530 }
1531
blk_mq_req_expired(struct request * rq,unsigned long * next)1532 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1533 {
1534 unsigned long deadline;
1535
1536 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1537 return false;
1538 if (rq->rq_flags & RQF_TIMED_OUT)
1539 return false;
1540
1541 deadline = READ_ONCE(rq->deadline);
1542 if (time_after_eq(jiffies, deadline))
1543 return true;
1544
1545 if (*next == 0)
1546 *next = deadline;
1547 else if (time_after(*next, deadline))
1548 *next = deadline;
1549 return false;
1550 }
1551
blk_mq_put_rq_ref(struct request * rq)1552 void blk_mq_put_rq_ref(struct request *rq)
1553 {
1554 if (is_flush_rq(rq)) {
1555 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1556 blk_mq_free_request(rq);
1557 } else if (req_ref_put_and_test(rq)) {
1558 __blk_mq_free_request(rq);
1559 }
1560 }
1561
blk_mq_check_expired(struct request * rq,void * priv)1562 static bool blk_mq_check_expired(struct request *rq, void *priv)
1563 {
1564 unsigned long *next = priv;
1565
1566 /*
1567 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1568 * be reallocated underneath the timeout handler's processing, then
1569 * the expire check is reliable. If the request is not expired, then
1570 * it was completed and reallocated as a new request after returning
1571 * from blk_mq_check_expired().
1572 */
1573 if (blk_mq_req_expired(rq, next))
1574 blk_mq_rq_timed_out(rq);
1575 return true;
1576 }
1577
blk_mq_timeout_work(struct work_struct * work)1578 static void blk_mq_timeout_work(struct work_struct *work)
1579 {
1580 struct request_queue *q =
1581 container_of(work, struct request_queue, timeout_work);
1582 unsigned long next = 0;
1583 struct blk_mq_hw_ctx *hctx;
1584 unsigned long i;
1585
1586 /* A deadlock might occur if a request is stuck requiring a
1587 * timeout at the same time a queue freeze is waiting
1588 * completion, since the timeout code would not be able to
1589 * acquire the queue reference here.
1590 *
1591 * That's why we don't use blk_queue_enter here; instead, we use
1592 * percpu_ref_tryget directly, because we need to be able to
1593 * obtain a reference even in the short window between the queue
1594 * starting to freeze, by dropping the first reference in
1595 * blk_freeze_queue_start, and the moment the last request is
1596 * consumed, marked by the instant q_usage_counter reaches
1597 * zero.
1598 */
1599 if (!percpu_ref_tryget(&q->q_usage_counter))
1600 return;
1601
1602 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1603
1604 if (next != 0) {
1605 mod_timer(&q->timeout, next);
1606 } else {
1607 /*
1608 * Request timeouts are handled as a forward rolling timer. If
1609 * we end up here it means that no requests are pending and
1610 * also that no request has been pending for a while. Mark
1611 * each hctx as idle.
1612 */
1613 queue_for_each_hw_ctx(q, hctx, i) {
1614 /* the hctx may be unmapped, so check it here */
1615 if (blk_mq_hw_queue_mapped(hctx))
1616 blk_mq_tag_idle(hctx);
1617 }
1618 }
1619 blk_queue_exit(q);
1620 }
1621
1622 struct flush_busy_ctx_data {
1623 struct blk_mq_hw_ctx *hctx;
1624 struct list_head *list;
1625 };
1626
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1627 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1628 {
1629 struct flush_busy_ctx_data *flush_data = data;
1630 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1631 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1632 enum hctx_type type = hctx->type;
1633
1634 spin_lock(&ctx->lock);
1635 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1636 sbitmap_clear_bit(sb, bitnr);
1637 spin_unlock(&ctx->lock);
1638 return true;
1639 }
1640
1641 /*
1642 * Process software queues that have been marked busy, splicing them
1643 * to the for-dispatch
1644 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1645 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1646 {
1647 struct flush_busy_ctx_data data = {
1648 .hctx = hctx,
1649 .list = list,
1650 };
1651
1652 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1653 }
1654 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1655
1656 struct dispatch_rq_data {
1657 struct blk_mq_hw_ctx *hctx;
1658 struct request *rq;
1659 };
1660
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1661 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1662 void *data)
1663 {
1664 struct dispatch_rq_data *dispatch_data = data;
1665 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1666 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1667 enum hctx_type type = hctx->type;
1668
1669 spin_lock(&ctx->lock);
1670 if (!list_empty(&ctx->rq_lists[type])) {
1671 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1672 list_del_init(&dispatch_data->rq->queuelist);
1673 if (list_empty(&ctx->rq_lists[type]))
1674 sbitmap_clear_bit(sb, bitnr);
1675 }
1676 spin_unlock(&ctx->lock);
1677
1678 return !dispatch_data->rq;
1679 }
1680
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1681 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1682 struct blk_mq_ctx *start)
1683 {
1684 unsigned off = start ? start->index_hw[hctx->type] : 0;
1685 struct dispatch_rq_data data = {
1686 .hctx = hctx,
1687 .rq = NULL,
1688 };
1689
1690 __sbitmap_for_each_set(&hctx->ctx_map, off,
1691 dispatch_rq_from_ctx, &data);
1692
1693 return data.rq;
1694 }
1695
__blk_mq_alloc_driver_tag(struct request * rq)1696 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1697 {
1698 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1699 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1700 int tag;
1701
1702 blk_mq_tag_busy(rq->mq_hctx);
1703
1704 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1705 bt = &rq->mq_hctx->tags->breserved_tags;
1706 tag_offset = 0;
1707 } else {
1708 if (!hctx_may_queue(rq->mq_hctx, bt))
1709 return false;
1710 }
1711
1712 tag = __sbitmap_queue_get(bt);
1713 if (tag == BLK_MQ_NO_TAG)
1714 return false;
1715
1716 rq->tag = tag + tag_offset;
1717 return true;
1718 }
1719
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1720 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1721 {
1722 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1723 return false;
1724
1725 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1726 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1727 rq->rq_flags |= RQF_MQ_INFLIGHT;
1728 __blk_mq_inc_active_requests(hctx);
1729 }
1730 hctx->tags->rqs[rq->tag] = rq;
1731 return true;
1732 }
1733
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1734 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1735 int flags, void *key)
1736 {
1737 struct blk_mq_hw_ctx *hctx;
1738
1739 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1740
1741 spin_lock(&hctx->dispatch_wait_lock);
1742 if (!list_empty(&wait->entry)) {
1743 struct sbitmap_queue *sbq;
1744
1745 list_del_init(&wait->entry);
1746 sbq = &hctx->tags->bitmap_tags;
1747 atomic_dec(&sbq->ws_active);
1748 }
1749 spin_unlock(&hctx->dispatch_wait_lock);
1750
1751 blk_mq_run_hw_queue(hctx, true);
1752 return 1;
1753 }
1754
1755 /*
1756 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1757 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1758 * restart. For both cases, take care to check the condition again after
1759 * marking us as waiting.
1760 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1761 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1762 struct request *rq)
1763 {
1764 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1765 struct wait_queue_head *wq;
1766 wait_queue_entry_t *wait;
1767 bool ret;
1768
1769 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1770 blk_mq_sched_mark_restart_hctx(hctx);
1771
1772 /*
1773 * It's possible that a tag was freed in the window between the
1774 * allocation failure and adding the hardware queue to the wait
1775 * queue.
1776 *
1777 * Don't clear RESTART here, someone else could have set it.
1778 * At most this will cost an extra queue run.
1779 */
1780 return blk_mq_get_driver_tag(rq);
1781 }
1782
1783 wait = &hctx->dispatch_wait;
1784 if (!list_empty_careful(&wait->entry))
1785 return false;
1786
1787 wq = &bt_wait_ptr(sbq, hctx)->wait;
1788
1789 spin_lock_irq(&wq->lock);
1790 spin_lock(&hctx->dispatch_wait_lock);
1791 if (!list_empty(&wait->entry)) {
1792 spin_unlock(&hctx->dispatch_wait_lock);
1793 spin_unlock_irq(&wq->lock);
1794 return false;
1795 }
1796
1797 atomic_inc(&sbq->ws_active);
1798 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1799 __add_wait_queue(wq, wait);
1800
1801 /*
1802 * It's possible that a tag was freed in the window between the
1803 * allocation failure and adding the hardware queue to the wait
1804 * queue.
1805 */
1806 ret = blk_mq_get_driver_tag(rq);
1807 if (!ret) {
1808 spin_unlock(&hctx->dispatch_wait_lock);
1809 spin_unlock_irq(&wq->lock);
1810 return false;
1811 }
1812
1813 /*
1814 * We got a tag, remove ourselves from the wait queue to ensure
1815 * someone else gets the wakeup.
1816 */
1817 list_del_init(&wait->entry);
1818 atomic_dec(&sbq->ws_active);
1819 spin_unlock(&hctx->dispatch_wait_lock);
1820 spin_unlock_irq(&wq->lock);
1821
1822 return true;
1823 }
1824
1825 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1826 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1827 /*
1828 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1829 * - EWMA is one simple way to compute running average value
1830 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1831 * - take 4 as factor for avoiding to get too small(0) result, and this
1832 * factor doesn't matter because EWMA decreases exponentially
1833 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1834 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1835 {
1836 unsigned int ewma;
1837
1838 ewma = hctx->dispatch_busy;
1839
1840 if (!ewma && !busy)
1841 return;
1842
1843 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1844 if (busy)
1845 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1846 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1847
1848 hctx->dispatch_busy = ewma;
1849 }
1850
1851 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1852
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1853 static void blk_mq_handle_dev_resource(struct request *rq,
1854 struct list_head *list)
1855 {
1856 struct request *next =
1857 list_first_entry_or_null(list, struct request, queuelist);
1858
1859 /*
1860 * If an I/O scheduler has been configured and we got a driver tag for
1861 * the next request already, free it.
1862 */
1863 if (next)
1864 blk_mq_put_driver_tag(next);
1865
1866 list_add(&rq->queuelist, list);
1867 __blk_mq_requeue_request(rq);
1868 }
1869
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1870 static void blk_mq_handle_zone_resource(struct request *rq,
1871 struct list_head *zone_list)
1872 {
1873 /*
1874 * If we end up here it is because we cannot dispatch a request to a
1875 * specific zone due to LLD level zone-write locking or other zone
1876 * related resource not being available. In this case, set the request
1877 * aside in zone_list for retrying it later.
1878 */
1879 list_add(&rq->queuelist, zone_list);
1880 __blk_mq_requeue_request(rq);
1881 }
1882
1883 enum prep_dispatch {
1884 PREP_DISPATCH_OK,
1885 PREP_DISPATCH_NO_TAG,
1886 PREP_DISPATCH_NO_BUDGET,
1887 };
1888
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1889 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1890 bool need_budget)
1891 {
1892 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1893 int budget_token = -1;
1894
1895 if (need_budget) {
1896 budget_token = blk_mq_get_dispatch_budget(rq->q);
1897 if (budget_token < 0) {
1898 blk_mq_put_driver_tag(rq);
1899 return PREP_DISPATCH_NO_BUDGET;
1900 }
1901 blk_mq_set_rq_budget_token(rq, budget_token);
1902 }
1903
1904 if (!blk_mq_get_driver_tag(rq)) {
1905 /*
1906 * The initial allocation attempt failed, so we need to
1907 * rerun the hardware queue when a tag is freed. The
1908 * waitqueue takes care of that. If the queue is run
1909 * before we add this entry back on the dispatch list,
1910 * we'll re-run it below.
1911 */
1912 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1913 /*
1914 * All budgets not got from this function will be put
1915 * together during handling partial dispatch
1916 */
1917 if (need_budget)
1918 blk_mq_put_dispatch_budget(rq->q, budget_token);
1919 return PREP_DISPATCH_NO_TAG;
1920 }
1921 }
1922
1923 return PREP_DISPATCH_OK;
1924 }
1925
1926 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)1927 static void blk_mq_release_budgets(struct request_queue *q,
1928 struct list_head *list)
1929 {
1930 struct request *rq;
1931
1932 list_for_each_entry(rq, list, queuelist) {
1933 int budget_token = blk_mq_get_rq_budget_token(rq);
1934
1935 if (budget_token >= 0)
1936 blk_mq_put_dispatch_budget(q, budget_token);
1937 }
1938 }
1939
1940 /*
1941 * Returns true if we did some work AND can potentially do more.
1942 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1943 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1944 unsigned int nr_budgets)
1945 {
1946 enum prep_dispatch prep;
1947 struct request_queue *q = hctx->queue;
1948 struct request *rq, *nxt;
1949 int errors, queued;
1950 blk_status_t ret = BLK_STS_OK;
1951 LIST_HEAD(zone_list);
1952 bool needs_resource = false;
1953
1954 if (list_empty(list))
1955 return false;
1956
1957 /*
1958 * Now process all the entries, sending them to the driver.
1959 */
1960 errors = queued = 0;
1961 do {
1962 struct blk_mq_queue_data bd;
1963
1964 rq = list_first_entry(list, struct request, queuelist);
1965
1966 WARN_ON_ONCE(hctx != rq->mq_hctx);
1967 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1968 if (prep != PREP_DISPATCH_OK)
1969 break;
1970
1971 list_del_init(&rq->queuelist);
1972
1973 bd.rq = rq;
1974
1975 /*
1976 * Flag last if we have no more requests, or if we have more
1977 * but can't assign a driver tag to it.
1978 */
1979 if (list_empty(list))
1980 bd.last = true;
1981 else {
1982 nxt = list_first_entry(list, struct request, queuelist);
1983 bd.last = !blk_mq_get_driver_tag(nxt);
1984 }
1985
1986 /*
1987 * once the request is queued to lld, no need to cover the
1988 * budget any more
1989 */
1990 if (nr_budgets)
1991 nr_budgets--;
1992 ret = q->mq_ops->queue_rq(hctx, &bd);
1993 switch (ret) {
1994 case BLK_STS_OK:
1995 queued++;
1996 break;
1997 case BLK_STS_RESOURCE:
1998 needs_resource = true;
1999 fallthrough;
2000 case BLK_STS_DEV_RESOURCE:
2001 blk_mq_handle_dev_resource(rq, list);
2002 goto out;
2003 case BLK_STS_ZONE_RESOURCE:
2004 /*
2005 * Move the request to zone_list and keep going through
2006 * the dispatch list to find more requests the drive can
2007 * accept.
2008 */
2009 blk_mq_handle_zone_resource(rq, &zone_list);
2010 needs_resource = true;
2011 break;
2012 default:
2013 errors++;
2014 blk_mq_end_request(rq, ret);
2015 }
2016 } while (!list_empty(list));
2017 out:
2018 if (!list_empty(&zone_list))
2019 list_splice_tail_init(&zone_list, list);
2020
2021 /* If we didn't flush the entire list, we could have told the driver
2022 * there was more coming, but that turned out to be a lie.
2023 */
2024 if ((!list_empty(list) || errors || needs_resource ||
2025 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2026 q->mq_ops->commit_rqs(hctx);
2027 /*
2028 * Any items that need requeuing? Stuff them into hctx->dispatch,
2029 * that is where we will continue on next queue run.
2030 */
2031 if (!list_empty(list)) {
2032 bool needs_restart;
2033 /* For non-shared tags, the RESTART check will suffice */
2034 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2035 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2036
2037 if (nr_budgets)
2038 blk_mq_release_budgets(q, list);
2039
2040 spin_lock(&hctx->lock);
2041 list_splice_tail_init(list, &hctx->dispatch);
2042 spin_unlock(&hctx->lock);
2043
2044 /*
2045 * Order adding requests to hctx->dispatch and checking
2046 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2047 * in blk_mq_sched_restart(). Avoid restart code path to
2048 * miss the new added requests to hctx->dispatch, meantime
2049 * SCHED_RESTART is observed here.
2050 */
2051 smp_mb();
2052
2053 /*
2054 * If SCHED_RESTART was set by the caller of this function and
2055 * it is no longer set that means that it was cleared by another
2056 * thread and hence that a queue rerun is needed.
2057 *
2058 * If 'no_tag' is set, that means that we failed getting
2059 * a driver tag with an I/O scheduler attached. If our dispatch
2060 * waitqueue is no longer active, ensure that we run the queue
2061 * AFTER adding our entries back to the list.
2062 *
2063 * If no I/O scheduler has been configured it is possible that
2064 * the hardware queue got stopped and restarted before requests
2065 * were pushed back onto the dispatch list. Rerun the queue to
2066 * avoid starvation. Notes:
2067 * - blk_mq_run_hw_queue() checks whether or not a queue has
2068 * been stopped before rerunning a queue.
2069 * - Some but not all block drivers stop a queue before
2070 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2071 * and dm-rq.
2072 *
2073 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2074 * bit is set, run queue after a delay to avoid IO stalls
2075 * that could otherwise occur if the queue is idle. We'll do
2076 * similar if we couldn't get budget or couldn't lock a zone
2077 * and SCHED_RESTART is set.
2078 */
2079 needs_restart = blk_mq_sched_needs_restart(hctx);
2080 if (prep == PREP_DISPATCH_NO_BUDGET)
2081 needs_resource = true;
2082 if (!needs_restart ||
2083 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2084 blk_mq_run_hw_queue(hctx, true);
2085 else if (needs_resource)
2086 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2087
2088 blk_mq_update_dispatch_busy(hctx, true);
2089 return false;
2090 } else
2091 blk_mq_update_dispatch_busy(hctx, false);
2092
2093 return (queued + errors) != 0;
2094 }
2095
2096 /**
2097 * __blk_mq_run_hw_queue - Run a hardware queue.
2098 * @hctx: Pointer to the hardware queue to run.
2099 *
2100 * Send pending requests to the hardware.
2101 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)2102 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2103 {
2104 /*
2105 * We can't run the queue inline with ints disabled. Ensure that
2106 * we catch bad users of this early.
2107 */
2108 WARN_ON_ONCE(in_interrupt());
2109
2110 blk_mq_run_dispatch_ops(hctx->queue,
2111 blk_mq_sched_dispatch_requests(hctx));
2112 }
2113
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2114 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2115 {
2116 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2117
2118 if (cpu >= nr_cpu_ids)
2119 cpu = cpumask_first(hctx->cpumask);
2120 return cpu;
2121 }
2122
2123 /*
2124 * It'd be great if the workqueue API had a way to pass
2125 * in a mask and had some smarts for more clever placement.
2126 * For now we just round-robin here, switching for every
2127 * BLK_MQ_CPU_WORK_BATCH queued items.
2128 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2129 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2130 {
2131 bool tried = false;
2132 int next_cpu = hctx->next_cpu;
2133
2134 if (hctx->queue->nr_hw_queues == 1)
2135 return WORK_CPU_UNBOUND;
2136
2137 if (--hctx->next_cpu_batch <= 0) {
2138 select_cpu:
2139 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2140 cpu_online_mask);
2141 if (next_cpu >= nr_cpu_ids)
2142 next_cpu = blk_mq_first_mapped_cpu(hctx);
2143 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2144 }
2145
2146 /*
2147 * Do unbound schedule if we can't find a online CPU for this hctx,
2148 * and it should only happen in the path of handling CPU DEAD.
2149 */
2150 if (!cpu_online(next_cpu)) {
2151 if (!tried) {
2152 tried = true;
2153 goto select_cpu;
2154 }
2155
2156 /*
2157 * Make sure to re-select CPU next time once after CPUs
2158 * in hctx->cpumask become online again.
2159 */
2160 hctx->next_cpu = next_cpu;
2161 hctx->next_cpu_batch = 1;
2162 return WORK_CPU_UNBOUND;
2163 }
2164
2165 hctx->next_cpu = next_cpu;
2166 return next_cpu;
2167 }
2168
2169 /**
2170 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2171 * @hctx: Pointer to the hardware queue to run.
2172 * @async: If we want to run the queue asynchronously.
2173 * @msecs: Milliseconds of delay to wait before running the queue.
2174 *
2175 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2176 * with a delay of @msecs.
2177 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)2178 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2179 unsigned long msecs)
2180 {
2181 if (unlikely(blk_mq_hctx_stopped(hctx)))
2182 return;
2183
2184 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2185 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2186 __blk_mq_run_hw_queue(hctx);
2187 return;
2188 }
2189 }
2190
2191 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2192 msecs_to_jiffies(msecs));
2193 }
2194
2195 /**
2196 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2197 * @hctx: Pointer to the hardware queue to run.
2198 * @msecs: Milliseconds of delay to wait before running the queue.
2199 *
2200 * Run a hardware queue asynchronously with a delay of @msecs.
2201 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2202 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2203 {
2204 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2205 }
2206 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2207
2208 /**
2209 * blk_mq_run_hw_queue - Start to run a hardware queue.
2210 * @hctx: Pointer to the hardware queue to run.
2211 * @async: If we want to run the queue asynchronously.
2212 *
2213 * Check if the request queue is not in a quiesced state and if there are
2214 * pending requests to be sent. If this is true, run the queue to send requests
2215 * to hardware.
2216 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2217 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2218 {
2219 bool need_run;
2220
2221 /*
2222 * When queue is quiesced, we may be switching io scheduler, or
2223 * updating nr_hw_queues, or other things, and we can't run queue
2224 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2225 *
2226 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2227 * quiesced.
2228 */
2229 __blk_mq_run_dispatch_ops(hctx->queue, false,
2230 need_run = !blk_queue_quiesced(hctx->queue) &&
2231 blk_mq_hctx_has_pending(hctx));
2232
2233 if (need_run)
2234 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2235 }
2236 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2237
2238 /*
2239 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2240 * scheduler.
2241 */
blk_mq_get_sq_hctx(struct request_queue * q)2242 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2243 {
2244 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2245 /*
2246 * If the IO scheduler does not respect hardware queues when
2247 * dispatching, we just don't bother with multiple HW queues and
2248 * dispatch from hctx for the current CPU since running multiple queues
2249 * just causes lock contention inside the scheduler and pointless cache
2250 * bouncing.
2251 */
2252 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2253
2254 if (!blk_mq_hctx_stopped(hctx))
2255 return hctx;
2256 return NULL;
2257 }
2258
2259 /**
2260 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2261 * @q: Pointer to the request queue to run.
2262 * @async: If we want to run the queue asynchronously.
2263 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2264 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2265 {
2266 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2267 unsigned long i;
2268
2269 sq_hctx = NULL;
2270 if (blk_queue_sq_sched(q))
2271 sq_hctx = blk_mq_get_sq_hctx(q);
2272 queue_for_each_hw_ctx(q, hctx, i) {
2273 if (blk_mq_hctx_stopped(hctx))
2274 continue;
2275 /*
2276 * Dispatch from this hctx either if there's no hctx preferred
2277 * by IO scheduler or if it has requests that bypass the
2278 * scheduler.
2279 */
2280 if (!sq_hctx || sq_hctx == hctx ||
2281 !list_empty_careful(&hctx->dispatch))
2282 blk_mq_run_hw_queue(hctx, async);
2283 }
2284 }
2285 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2286
2287 /**
2288 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2289 * @q: Pointer to the request queue to run.
2290 * @msecs: Milliseconds of delay to wait before running the queues.
2291 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2292 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2293 {
2294 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2295 unsigned long i;
2296
2297 sq_hctx = NULL;
2298 if (blk_queue_sq_sched(q))
2299 sq_hctx = blk_mq_get_sq_hctx(q);
2300 queue_for_each_hw_ctx(q, hctx, i) {
2301 if (blk_mq_hctx_stopped(hctx))
2302 continue;
2303 /*
2304 * If there is already a run_work pending, leave the
2305 * pending delay untouched. Otherwise, a hctx can stall
2306 * if another hctx is re-delaying the other's work
2307 * before the work executes.
2308 */
2309 if (delayed_work_pending(&hctx->run_work))
2310 continue;
2311 /*
2312 * Dispatch from this hctx either if there's no hctx preferred
2313 * by IO scheduler or if it has requests that bypass the
2314 * scheduler.
2315 */
2316 if (!sq_hctx || sq_hctx == hctx ||
2317 !list_empty_careful(&hctx->dispatch))
2318 blk_mq_delay_run_hw_queue(hctx, msecs);
2319 }
2320 }
2321 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2322
2323 /*
2324 * This function is often used for pausing .queue_rq() by driver when
2325 * there isn't enough resource or some conditions aren't satisfied, and
2326 * BLK_STS_RESOURCE is usually returned.
2327 *
2328 * We do not guarantee that dispatch can be drained or blocked
2329 * after blk_mq_stop_hw_queue() returns. Please use
2330 * blk_mq_quiesce_queue() for that requirement.
2331 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2332 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2333 {
2334 cancel_delayed_work(&hctx->run_work);
2335
2336 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2337 }
2338 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2339
2340 /*
2341 * This function is often used for pausing .queue_rq() by driver when
2342 * there isn't enough resource or some conditions aren't satisfied, and
2343 * BLK_STS_RESOURCE is usually returned.
2344 *
2345 * We do not guarantee that dispatch can be drained or blocked
2346 * after blk_mq_stop_hw_queues() returns. Please use
2347 * blk_mq_quiesce_queue() for that requirement.
2348 */
blk_mq_stop_hw_queues(struct request_queue * q)2349 void blk_mq_stop_hw_queues(struct request_queue *q)
2350 {
2351 struct blk_mq_hw_ctx *hctx;
2352 unsigned long i;
2353
2354 queue_for_each_hw_ctx(q, hctx, i)
2355 blk_mq_stop_hw_queue(hctx);
2356 }
2357 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2358
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2359 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2360 {
2361 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2362
2363 blk_mq_run_hw_queue(hctx, false);
2364 }
2365 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2366
blk_mq_start_hw_queues(struct request_queue * q)2367 void blk_mq_start_hw_queues(struct request_queue *q)
2368 {
2369 struct blk_mq_hw_ctx *hctx;
2370 unsigned long i;
2371
2372 queue_for_each_hw_ctx(q, hctx, i)
2373 blk_mq_start_hw_queue(hctx);
2374 }
2375 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2376
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2377 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2378 {
2379 if (!blk_mq_hctx_stopped(hctx))
2380 return;
2381
2382 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2383 blk_mq_run_hw_queue(hctx, async);
2384 }
2385 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2386
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2387 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2388 {
2389 struct blk_mq_hw_ctx *hctx;
2390 unsigned long i;
2391
2392 queue_for_each_hw_ctx(q, hctx, i)
2393 blk_mq_start_stopped_hw_queue(hctx, async);
2394 }
2395 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2396
blk_mq_run_work_fn(struct work_struct * work)2397 static void blk_mq_run_work_fn(struct work_struct *work)
2398 {
2399 struct blk_mq_hw_ctx *hctx;
2400
2401 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2402
2403 /*
2404 * If we are stopped, don't run the queue.
2405 */
2406 if (blk_mq_hctx_stopped(hctx))
2407 return;
2408
2409 __blk_mq_run_hw_queue(hctx);
2410 }
2411
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2412 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2413 struct request *rq,
2414 bool at_head)
2415 {
2416 struct blk_mq_ctx *ctx = rq->mq_ctx;
2417 enum hctx_type type = hctx->type;
2418
2419 lockdep_assert_held(&ctx->lock);
2420
2421 trace_block_rq_insert(rq);
2422
2423 if (at_head)
2424 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2425 else
2426 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2427 }
2428
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2429 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2430 bool at_head)
2431 {
2432 struct blk_mq_ctx *ctx = rq->mq_ctx;
2433
2434 lockdep_assert_held(&ctx->lock);
2435
2436 __blk_mq_insert_req_list(hctx, rq, at_head);
2437 blk_mq_hctx_mark_pending(hctx, ctx);
2438 }
2439
2440 /**
2441 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2442 * @rq: Pointer to request to be inserted.
2443 * @at_head: true if the request should be inserted at the head of the list.
2444 * @run_queue: If we should run the hardware queue after inserting the request.
2445 *
2446 * Should only be used carefully, when the caller knows we want to
2447 * bypass a potential IO scheduler on the target device.
2448 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)2449 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2450 bool run_queue)
2451 {
2452 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2453
2454 spin_lock(&hctx->lock);
2455 if (at_head)
2456 list_add(&rq->queuelist, &hctx->dispatch);
2457 else
2458 list_add_tail(&rq->queuelist, &hctx->dispatch);
2459 spin_unlock(&hctx->lock);
2460
2461 if (run_queue)
2462 blk_mq_run_hw_queue(hctx, false);
2463 }
2464
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)2465 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2466 struct list_head *list)
2467
2468 {
2469 struct request *rq;
2470 enum hctx_type type = hctx->type;
2471
2472 /*
2473 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2474 * offline now
2475 */
2476 list_for_each_entry(rq, list, queuelist) {
2477 BUG_ON(rq->mq_ctx != ctx);
2478 trace_block_rq_insert(rq);
2479 }
2480
2481 spin_lock(&ctx->lock);
2482 list_splice_tail_init(list, &ctx->rq_lists[type]);
2483 blk_mq_hctx_mark_pending(hctx, ctx);
2484 spin_unlock(&ctx->lock);
2485 }
2486
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int * queued,bool from_schedule)2487 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2488 bool from_schedule)
2489 {
2490 if (hctx->queue->mq_ops->commit_rqs) {
2491 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2492 hctx->queue->mq_ops->commit_rqs(hctx);
2493 }
2494 *queued = 0;
2495 }
2496
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2497 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2498 unsigned int nr_segs)
2499 {
2500 int err;
2501
2502 if (bio->bi_opf & REQ_RAHEAD)
2503 rq->cmd_flags |= REQ_FAILFAST_MASK;
2504
2505 rq->__sector = bio->bi_iter.bi_sector;
2506 blk_rq_bio_prep(rq, bio, nr_segs);
2507
2508 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2509 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2510 WARN_ON_ONCE(err);
2511
2512 blk_account_io_start(rq);
2513 }
2514
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2515 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2516 struct request *rq, bool last)
2517 {
2518 struct request_queue *q = rq->q;
2519 struct blk_mq_queue_data bd = {
2520 .rq = rq,
2521 .last = last,
2522 };
2523 blk_status_t ret;
2524
2525 /*
2526 * For OK queue, we are done. For error, caller may kill it.
2527 * Any other error (busy), just add it to our list as we
2528 * previously would have done.
2529 */
2530 ret = q->mq_ops->queue_rq(hctx, &bd);
2531 switch (ret) {
2532 case BLK_STS_OK:
2533 blk_mq_update_dispatch_busy(hctx, false);
2534 break;
2535 case BLK_STS_RESOURCE:
2536 case BLK_STS_DEV_RESOURCE:
2537 blk_mq_update_dispatch_busy(hctx, true);
2538 __blk_mq_requeue_request(rq);
2539 break;
2540 default:
2541 blk_mq_update_dispatch_busy(hctx, false);
2542 break;
2543 }
2544
2545 return ret;
2546 }
2547
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool bypass_insert,bool last)2548 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2549 struct request *rq,
2550 bool bypass_insert, bool last)
2551 {
2552 struct request_queue *q = rq->q;
2553 bool run_queue = true;
2554 int budget_token;
2555
2556 /*
2557 * RCU or SRCU read lock is needed before checking quiesced flag.
2558 *
2559 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2560 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2561 * and avoid driver to try to dispatch again.
2562 */
2563 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2564 run_queue = false;
2565 bypass_insert = false;
2566 goto insert;
2567 }
2568
2569 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2570 goto insert;
2571
2572 budget_token = blk_mq_get_dispatch_budget(q);
2573 if (budget_token < 0)
2574 goto insert;
2575
2576 blk_mq_set_rq_budget_token(rq, budget_token);
2577
2578 if (!blk_mq_get_driver_tag(rq)) {
2579 blk_mq_put_dispatch_budget(q, budget_token);
2580 goto insert;
2581 }
2582
2583 return __blk_mq_issue_directly(hctx, rq, last);
2584 insert:
2585 if (bypass_insert)
2586 return BLK_STS_RESOURCE;
2587
2588 blk_mq_sched_insert_request(rq, false, run_queue, false);
2589
2590 return BLK_STS_OK;
2591 }
2592
2593 /**
2594 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2595 * @hctx: Pointer of the associated hardware queue.
2596 * @rq: Pointer to request to be sent.
2597 *
2598 * If the device has enough resources to accept a new request now, send the
2599 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2600 * we can try send it another time in the future. Requests inserted at this
2601 * queue have higher priority.
2602 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2603 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2604 struct request *rq)
2605 {
2606 blk_status_t ret =
2607 __blk_mq_try_issue_directly(hctx, rq, false, true);
2608
2609 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2610 blk_mq_request_bypass_insert(rq, false, true);
2611 else if (ret != BLK_STS_OK)
2612 blk_mq_end_request(rq, ret);
2613 }
2614
blk_mq_request_issue_directly(struct request * rq,bool last)2615 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2616 {
2617 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2618 }
2619
blk_mq_plug_issue_direct(struct blk_plug * plug,bool from_schedule)2620 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2621 {
2622 struct blk_mq_hw_ctx *hctx = NULL;
2623 struct request *rq;
2624 int queued = 0;
2625 int errors = 0;
2626
2627 while ((rq = rq_list_pop(&plug->mq_list))) {
2628 bool last = rq_list_empty(plug->mq_list);
2629 blk_status_t ret;
2630
2631 if (hctx != rq->mq_hctx) {
2632 if (hctx)
2633 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2634 hctx = rq->mq_hctx;
2635 }
2636
2637 ret = blk_mq_request_issue_directly(rq, last);
2638 switch (ret) {
2639 case BLK_STS_OK:
2640 queued++;
2641 break;
2642 case BLK_STS_RESOURCE:
2643 case BLK_STS_DEV_RESOURCE:
2644 blk_mq_request_bypass_insert(rq, false, true);
2645 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2646 return;
2647 default:
2648 blk_mq_end_request(rq, ret);
2649 errors++;
2650 break;
2651 }
2652 }
2653
2654 /*
2655 * If we didn't flush the entire list, we could have told the driver
2656 * there was more coming, but that turned out to be a lie.
2657 */
2658 if (errors)
2659 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2660 }
2661
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2662 static void __blk_mq_flush_plug_list(struct request_queue *q,
2663 struct blk_plug *plug)
2664 {
2665 if (blk_queue_quiesced(q))
2666 return;
2667 q->mq_ops->queue_rqs(&plug->mq_list);
2668 }
2669
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2670 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2671 {
2672 struct blk_mq_hw_ctx *this_hctx = NULL;
2673 struct blk_mq_ctx *this_ctx = NULL;
2674 struct request *requeue_list = NULL;
2675 unsigned int depth = 0;
2676 LIST_HEAD(list);
2677
2678 do {
2679 struct request *rq = rq_list_pop(&plug->mq_list);
2680
2681 if (!this_hctx) {
2682 this_hctx = rq->mq_hctx;
2683 this_ctx = rq->mq_ctx;
2684 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2685 rq_list_add(&requeue_list, rq);
2686 continue;
2687 }
2688 list_add_tail(&rq->queuelist, &list);
2689 depth++;
2690 } while (!rq_list_empty(plug->mq_list));
2691
2692 plug->mq_list = requeue_list;
2693 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2694 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2695 }
2696
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2697 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2698 {
2699 struct request *rq;
2700
2701 if (rq_list_empty(plug->mq_list))
2702 return;
2703 plug->rq_count = 0;
2704
2705 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2706 struct request_queue *q;
2707
2708 rq = rq_list_peek(&plug->mq_list);
2709 q = rq->q;
2710
2711 /*
2712 * Peek first request and see if we have a ->queue_rqs() hook.
2713 * If we do, we can dispatch the whole plug list in one go. We
2714 * already know at this point that all requests belong to the
2715 * same queue, caller must ensure that's the case.
2716 *
2717 * Since we pass off the full list to the driver at this point,
2718 * we do not increment the active request count for the queue.
2719 * Bypass shared tags for now because of that.
2720 */
2721 if (q->mq_ops->queue_rqs &&
2722 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2723 blk_mq_run_dispatch_ops(q,
2724 __blk_mq_flush_plug_list(q, plug));
2725 if (rq_list_empty(plug->mq_list))
2726 return;
2727 }
2728
2729 blk_mq_run_dispatch_ops(q,
2730 blk_mq_plug_issue_direct(plug, false));
2731 if (rq_list_empty(plug->mq_list))
2732 return;
2733 }
2734
2735 do {
2736 blk_mq_dispatch_plug_list(plug, from_schedule);
2737 } while (!rq_list_empty(plug->mq_list));
2738 }
2739
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2740 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2741 struct list_head *list)
2742 {
2743 int queued = 0;
2744 int errors = 0;
2745
2746 while (!list_empty(list)) {
2747 blk_status_t ret;
2748 struct request *rq = list_first_entry(list, struct request,
2749 queuelist);
2750
2751 list_del_init(&rq->queuelist);
2752 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2753 if (ret != BLK_STS_OK) {
2754 errors++;
2755 if (ret == BLK_STS_RESOURCE ||
2756 ret == BLK_STS_DEV_RESOURCE) {
2757 blk_mq_request_bypass_insert(rq, false,
2758 list_empty(list));
2759 break;
2760 }
2761 blk_mq_end_request(rq, ret);
2762 } else
2763 queued++;
2764 }
2765
2766 /*
2767 * If we didn't flush the entire list, we could have told
2768 * the driver there was more coming, but that turned out to
2769 * be a lie.
2770 */
2771 if ((!list_empty(list) || errors) &&
2772 hctx->queue->mq_ops->commit_rqs && queued)
2773 hctx->queue->mq_ops->commit_rqs(hctx);
2774 }
2775
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2776 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2777 struct bio *bio, unsigned int nr_segs)
2778 {
2779 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2780 if (blk_attempt_plug_merge(q, bio, nr_segs))
2781 return true;
2782 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2783 return true;
2784 }
2785 return false;
2786 }
2787
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2788 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2789 struct blk_plug *plug,
2790 struct bio *bio,
2791 unsigned int nsegs)
2792 {
2793 struct blk_mq_alloc_data data = {
2794 .q = q,
2795 .nr_tags = 1,
2796 .cmd_flags = bio->bi_opf,
2797 };
2798 struct request *rq;
2799
2800 if (unlikely(bio_queue_enter(bio)))
2801 return NULL;
2802
2803 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2804 goto queue_exit;
2805
2806 rq_qos_throttle(q, bio);
2807
2808 if (plug) {
2809 data.nr_tags = plug->nr_ios;
2810 plug->nr_ios = 1;
2811 data.cached_rq = &plug->cached_rq;
2812 }
2813
2814 rq = __blk_mq_alloc_requests(&data);
2815 if (rq)
2816 return rq;
2817 rq_qos_cleanup(q, bio);
2818 if (bio->bi_opf & REQ_NOWAIT)
2819 bio_wouldblock_error(bio);
2820 queue_exit:
2821 blk_queue_exit(q);
2822 return NULL;
2823 }
2824
blk_mq_get_cached_request(struct request_queue * q,struct blk_plug * plug,struct bio ** bio,unsigned int nsegs)2825 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2826 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2827 {
2828 struct request *rq;
2829
2830 if (!plug)
2831 return NULL;
2832 rq = rq_list_peek(&plug->cached_rq);
2833 if (!rq || rq->q != q)
2834 return NULL;
2835
2836 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2837 *bio = NULL;
2838 return NULL;
2839 }
2840
2841 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2842 return NULL;
2843 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2844 return NULL;
2845
2846 /*
2847 * If any qos ->throttle() end up blocking, we will have flushed the
2848 * plug and hence killed the cached_rq list as well. Pop this entry
2849 * before we throttle.
2850 */
2851 plug->cached_rq = rq_list_next(rq);
2852 rq_qos_throttle(q, *bio);
2853
2854 rq->cmd_flags = (*bio)->bi_opf;
2855 INIT_LIST_HEAD(&rq->queuelist);
2856 return rq;
2857 }
2858
bio_set_ioprio(struct bio * bio)2859 static void bio_set_ioprio(struct bio *bio)
2860 {
2861 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2862 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2863 bio->bi_ioprio = get_current_ioprio();
2864 blkcg_set_ioprio(bio);
2865 }
2866
2867 /**
2868 * blk_mq_submit_bio - Create and send a request to block device.
2869 * @bio: Bio pointer.
2870 *
2871 * Builds up a request structure from @q and @bio and send to the device. The
2872 * request may not be queued directly to hardware if:
2873 * * This request can be merged with another one
2874 * * We want to place request at plug queue for possible future merging
2875 * * There is an IO scheduler active at this queue
2876 *
2877 * It will not queue the request if there is an error with the bio, or at the
2878 * request creation.
2879 */
blk_mq_submit_bio(struct bio * bio)2880 void blk_mq_submit_bio(struct bio *bio)
2881 {
2882 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2883 struct blk_plug *plug = blk_mq_plug(bio);
2884 const int is_sync = op_is_sync(bio->bi_opf);
2885 struct request *rq;
2886 unsigned int nr_segs = 1;
2887 blk_status_t ret;
2888
2889 bio = blk_queue_bounce(bio, q);
2890 if (bio_may_exceed_limits(bio, &q->limits))
2891 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2892
2893 if (!bio_integrity_prep(bio))
2894 return;
2895
2896 bio_set_ioprio(bio);
2897
2898 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2899 if (!rq) {
2900 if (!bio)
2901 return;
2902 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2903 if (unlikely(!rq))
2904 return;
2905 }
2906
2907 trace_block_getrq(bio);
2908
2909 rq_qos_track(q, rq, bio);
2910
2911 blk_mq_bio_to_request(rq, bio, nr_segs);
2912
2913 ret = blk_crypto_init_request(rq);
2914 if (ret != BLK_STS_OK) {
2915 bio->bi_status = ret;
2916 bio_endio(bio);
2917 blk_mq_free_request(rq);
2918 return;
2919 }
2920
2921 if (op_is_flush(bio->bi_opf)) {
2922 blk_insert_flush(rq);
2923 return;
2924 }
2925
2926 if (plug)
2927 blk_add_rq_to_plug(plug, rq);
2928 else if ((rq->rq_flags & RQF_ELV) ||
2929 (rq->mq_hctx->dispatch_busy &&
2930 (q->nr_hw_queues == 1 || !is_sync)))
2931 blk_mq_sched_insert_request(rq, false, true, true);
2932 else
2933 blk_mq_run_dispatch_ops(rq->q,
2934 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2935 }
2936
2937 #ifdef CONFIG_BLK_MQ_STACKING
2938 /**
2939 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2940 * @rq: the request being queued
2941 */
blk_insert_cloned_request(struct request * rq)2942 blk_status_t blk_insert_cloned_request(struct request *rq)
2943 {
2944 struct request_queue *q = rq->q;
2945 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2946 blk_status_t ret;
2947
2948 if (blk_rq_sectors(rq) > max_sectors) {
2949 /*
2950 * SCSI device does not have a good way to return if
2951 * Write Same/Zero is actually supported. If a device rejects
2952 * a non-read/write command (discard, write same,etc.) the
2953 * low-level device driver will set the relevant queue limit to
2954 * 0 to prevent blk-lib from issuing more of the offending
2955 * operations. Commands queued prior to the queue limit being
2956 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2957 * errors being propagated to upper layers.
2958 */
2959 if (max_sectors == 0)
2960 return BLK_STS_NOTSUPP;
2961
2962 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2963 __func__, blk_rq_sectors(rq), max_sectors);
2964 return BLK_STS_IOERR;
2965 }
2966
2967 /*
2968 * The queue settings related to segment counting may differ from the
2969 * original queue.
2970 */
2971 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2972 if (rq->nr_phys_segments > queue_max_segments(q)) {
2973 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2974 __func__, rq->nr_phys_segments, queue_max_segments(q));
2975 return BLK_STS_IOERR;
2976 }
2977
2978 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2979 return BLK_STS_IOERR;
2980
2981 if (blk_crypto_insert_cloned_request(rq))
2982 return BLK_STS_IOERR;
2983
2984 blk_account_io_start(rq);
2985
2986 /*
2987 * Since we have a scheduler attached on the top device,
2988 * bypass a potential scheduler on the bottom device for
2989 * insert.
2990 */
2991 blk_mq_run_dispatch_ops(q,
2992 ret = blk_mq_request_issue_directly(rq, true));
2993 if (ret)
2994 blk_account_io_done(rq, ktime_get_ns());
2995 return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2998
2999 /**
3000 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3001 * @rq: the clone request to be cleaned up
3002 *
3003 * Description:
3004 * Free all bios in @rq for a cloned request.
3005 */
blk_rq_unprep_clone(struct request * rq)3006 void blk_rq_unprep_clone(struct request *rq)
3007 {
3008 struct bio *bio;
3009
3010 while ((bio = rq->bio) != NULL) {
3011 rq->bio = bio->bi_next;
3012
3013 bio_put(bio);
3014 }
3015 }
3016 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3017
3018 /**
3019 * blk_rq_prep_clone - Helper function to setup clone request
3020 * @rq: the request to be setup
3021 * @rq_src: original request to be cloned
3022 * @bs: bio_set that bios for clone are allocated from
3023 * @gfp_mask: memory allocation mask for bio
3024 * @bio_ctr: setup function to be called for each clone bio.
3025 * Returns %0 for success, non %0 for failure.
3026 * @data: private data to be passed to @bio_ctr
3027 *
3028 * Description:
3029 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3030 * Also, pages which the original bios are pointing to are not copied
3031 * and the cloned bios just point same pages.
3032 * So cloned bios must be completed before original bios, which means
3033 * the caller must complete @rq before @rq_src.
3034 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3035 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3036 struct bio_set *bs, gfp_t gfp_mask,
3037 int (*bio_ctr)(struct bio *, struct bio *, void *),
3038 void *data)
3039 {
3040 struct bio *bio, *bio_src;
3041
3042 if (!bs)
3043 bs = &fs_bio_set;
3044
3045 __rq_for_each_bio(bio_src, rq_src) {
3046 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3047 bs);
3048 if (!bio)
3049 goto free_and_out;
3050
3051 if (bio_ctr && bio_ctr(bio, bio_src, data))
3052 goto free_and_out;
3053
3054 if (rq->bio) {
3055 rq->biotail->bi_next = bio;
3056 rq->biotail = bio;
3057 } else {
3058 rq->bio = rq->biotail = bio;
3059 }
3060 bio = NULL;
3061 }
3062
3063 /* Copy attributes of the original request to the clone request. */
3064 rq->__sector = blk_rq_pos(rq_src);
3065 rq->__data_len = blk_rq_bytes(rq_src);
3066 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3067 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3068 rq->special_vec = rq_src->special_vec;
3069 }
3070 rq->nr_phys_segments = rq_src->nr_phys_segments;
3071 rq->ioprio = rq_src->ioprio;
3072
3073 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3074 goto free_and_out;
3075
3076 return 0;
3077
3078 free_and_out:
3079 if (bio)
3080 bio_put(bio);
3081 blk_rq_unprep_clone(rq);
3082
3083 return -ENOMEM;
3084 }
3085 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3086 #endif /* CONFIG_BLK_MQ_STACKING */
3087
3088 /*
3089 * Steal bios from a request and add them to a bio list.
3090 * The request must not have been partially completed before.
3091 */
blk_steal_bios(struct bio_list * list,struct request * rq)3092 void blk_steal_bios(struct bio_list *list, struct request *rq)
3093 {
3094 if (rq->bio) {
3095 if (list->tail)
3096 list->tail->bi_next = rq->bio;
3097 else
3098 list->head = rq->bio;
3099 list->tail = rq->biotail;
3100
3101 rq->bio = NULL;
3102 rq->biotail = NULL;
3103 }
3104
3105 rq->__data_len = 0;
3106 }
3107 EXPORT_SYMBOL_GPL(blk_steal_bios);
3108
order_to_size(unsigned int order)3109 static size_t order_to_size(unsigned int order)
3110 {
3111 return (size_t)PAGE_SIZE << order;
3112 }
3113
3114 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3115 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3116 struct blk_mq_tags *tags)
3117 {
3118 struct page *page;
3119 unsigned long flags;
3120
3121 /*
3122 * There is no need to clear mapping if driver tags is not initialized
3123 * or the mapping belongs to the driver tags.
3124 */
3125 if (!drv_tags || drv_tags == tags)
3126 return;
3127
3128 list_for_each_entry(page, &tags->page_list, lru) {
3129 unsigned long start = (unsigned long)page_address(page);
3130 unsigned long end = start + order_to_size(page->private);
3131 int i;
3132
3133 for (i = 0; i < drv_tags->nr_tags; i++) {
3134 struct request *rq = drv_tags->rqs[i];
3135 unsigned long rq_addr = (unsigned long)rq;
3136
3137 if (rq_addr >= start && rq_addr < end) {
3138 WARN_ON_ONCE(req_ref_read(rq) != 0);
3139 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3140 }
3141 }
3142 }
3143
3144 /*
3145 * Wait until all pending iteration is done.
3146 *
3147 * Request reference is cleared and it is guaranteed to be observed
3148 * after the ->lock is released.
3149 */
3150 spin_lock_irqsave(&drv_tags->lock, flags);
3151 spin_unlock_irqrestore(&drv_tags->lock, flags);
3152 }
3153
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3154 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3155 unsigned int hctx_idx)
3156 {
3157 struct blk_mq_tags *drv_tags;
3158 struct page *page;
3159
3160 if (list_empty(&tags->page_list))
3161 return;
3162
3163 if (blk_mq_is_shared_tags(set->flags))
3164 drv_tags = set->shared_tags;
3165 else
3166 drv_tags = set->tags[hctx_idx];
3167
3168 if (tags->static_rqs && set->ops->exit_request) {
3169 int i;
3170
3171 for (i = 0; i < tags->nr_tags; i++) {
3172 struct request *rq = tags->static_rqs[i];
3173
3174 if (!rq)
3175 continue;
3176 set->ops->exit_request(set, rq, hctx_idx);
3177 tags->static_rqs[i] = NULL;
3178 }
3179 }
3180
3181 blk_mq_clear_rq_mapping(drv_tags, tags);
3182
3183 while (!list_empty(&tags->page_list)) {
3184 page = list_first_entry(&tags->page_list, struct page, lru);
3185 list_del_init(&page->lru);
3186 /*
3187 * Remove kmemleak object previously allocated in
3188 * blk_mq_alloc_rqs().
3189 */
3190 kmemleak_free(page_address(page));
3191 __free_pages(page, page->private);
3192 }
3193 }
3194
blk_mq_free_rq_map(struct blk_mq_tags * tags)3195 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3196 {
3197 kfree(tags->rqs);
3198 tags->rqs = NULL;
3199 kfree(tags->static_rqs);
3200 tags->static_rqs = NULL;
3201
3202 blk_mq_free_tags(tags);
3203 }
3204
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3205 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3206 unsigned int hctx_idx)
3207 {
3208 int i;
3209
3210 for (i = 0; i < set->nr_maps; i++) {
3211 unsigned int start = set->map[i].queue_offset;
3212 unsigned int end = start + set->map[i].nr_queues;
3213
3214 if (hctx_idx >= start && hctx_idx < end)
3215 break;
3216 }
3217
3218 if (i >= set->nr_maps)
3219 i = HCTX_TYPE_DEFAULT;
3220
3221 return i;
3222 }
3223
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3224 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3225 unsigned int hctx_idx)
3226 {
3227 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3228
3229 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3230 }
3231
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3232 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3233 unsigned int hctx_idx,
3234 unsigned int nr_tags,
3235 unsigned int reserved_tags)
3236 {
3237 int node = blk_mq_get_hctx_node(set, hctx_idx);
3238 struct blk_mq_tags *tags;
3239
3240 if (node == NUMA_NO_NODE)
3241 node = set->numa_node;
3242
3243 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3244 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3245 if (!tags)
3246 return NULL;
3247
3248 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3249 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3250 node);
3251 if (!tags->rqs) {
3252 blk_mq_free_tags(tags);
3253 return NULL;
3254 }
3255
3256 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3257 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3258 node);
3259 if (!tags->static_rqs) {
3260 kfree(tags->rqs);
3261 blk_mq_free_tags(tags);
3262 return NULL;
3263 }
3264
3265 return tags;
3266 }
3267
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3268 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3269 unsigned int hctx_idx, int node)
3270 {
3271 int ret;
3272
3273 if (set->ops->init_request) {
3274 ret = set->ops->init_request(set, rq, hctx_idx, node);
3275 if (ret)
3276 return ret;
3277 }
3278
3279 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3280 return 0;
3281 }
3282
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3283 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3284 struct blk_mq_tags *tags,
3285 unsigned int hctx_idx, unsigned int depth)
3286 {
3287 unsigned int i, j, entries_per_page, max_order = 4;
3288 int node = blk_mq_get_hctx_node(set, hctx_idx);
3289 size_t rq_size, left;
3290
3291 if (node == NUMA_NO_NODE)
3292 node = set->numa_node;
3293
3294 INIT_LIST_HEAD(&tags->page_list);
3295
3296 /*
3297 * rq_size is the size of the request plus driver payload, rounded
3298 * to the cacheline size
3299 */
3300 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3301 cache_line_size());
3302 left = rq_size * depth;
3303
3304 for (i = 0; i < depth; ) {
3305 int this_order = max_order;
3306 struct page *page;
3307 int to_do;
3308 void *p;
3309
3310 while (this_order && left < order_to_size(this_order - 1))
3311 this_order--;
3312
3313 do {
3314 page = alloc_pages_node(node,
3315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3316 this_order);
3317 if (page)
3318 break;
3319 if (!this_order--)
3320 break;
3321 if (order_to_size(this_order) < rq_size)
3322 break;
3323 } while (1);
3324
3325 if (!page)
3326 goto fail;
3327
3328 page->private = this_order;
3329 list_add_tail(&page->lru, &tags->page_list);
3330
3331 p = page_address(page);
3332 /*
3333 * Allow kmemleak to scan these pages as they contain pointers
3334 * to additional allocations like via ops->init_request().
3335 */
3336 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3337 entries_per_page = order_to_size(this_order) / rq_size;
3338 to_do = min(entries_per_page, depth - i);
3339 left -= to_do * rq_size;
3340 for (j = 0; j < to_do; j++) {
3341 struct request *rq = p;
3342
3343 tags->static_rqs[i] = rq;
3344 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3345 tags->static_rqs[i] = NULL;
3346 goto fail;
3347 }
3348
3349 p += rq_size;
3350 i++;
3351 }
3352 }
3353 return 0;
3354
3355 fail:
3356 blk_mq_free_rqs(set, tags, hctx_idx);
3357 return -ENOMEM;
3358 }
3359
3360 struct rq_iter_data {
3361 struct blk_mq_hw_ctx *hctx;
3362 bool has_rq;
3363 };
3364
blk_mq_has_request(struct request * rq,void * data)3365 static bool blk_mq_has_request(struct request *rq, void *data)
3366 {
3367 struct rq_iter_data *iter_data = data;
3368
3369 if (rq->mq_hctx != iter_data->hctx)
3370 return true;
3371 iter_data->has_rq = true;
3372 return false;
3373 }
3374
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3375 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3376 {
3377 struct blk_mq_tags *tags = hctx->sched_tags ?
3378 hctx->sched_tags : hctx->tags;
3379 struct rq_iter_data data = {
3380 .hctx = hctx,
3381 };
3382
3383 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3384 return data.has_rq;
3385 }
3386
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3387 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3388 struct blk_mq_hw_ctx *hctx)
3389 {
3390 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3391 return false;
3392 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3393 return false;
3394 return true;
3395 }
3396
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3397 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3398 {
3399 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3400 struct blk_mq_hw_ctx, cpuhp_online);
3401
3402 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3403 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3404 return 0;
3405
3406 /*
3407 * Prevent new request from being allocated on the current hctx.
3408 *
3409 * The smp_mb__after_atomic() Pairs with the implied barrier in
3410 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3411 * seen once we return from the tag allocator.
3412 */
3413 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3414 smp_mb__after_atomic();
3415
3416 /*
3417 * Try to grab a reference to the queue and wait for any outstanding
3418 * requests. If we could not grab a reference the queue has been
3419 * frozen and there are no requests.
3420 */
3421 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3422 while (blk_mq_hctx_has_requests(hctx))
3423 msleep(5);
3424 percpu_ref_put(&hctx->queue->q_usage_counter);
3425 }
3426
3427 return 0;
3428 }
3429
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3430 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3431 {
3432 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3433 struct blk_mq_hw_ctx, cpuhp_online);
3434
3435 if (cpumask_test_cpu(cpu, hctx->cpumask))
3436 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3437 return 0;
3438 }
3439
3440 /*
3441 * 'cpu' is going away. splice any existing rq_list entries from this
3442 * software queue to the hw queue dispatch list, and ensure that it
3443 * gets run.
3444 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3445 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3446 {
3447 struct blk_mq_hw_ctx *hctx;
3448 struct blk_mq_ctx *ctx;
3449 LIST_HEAD(tmp);
3450 enum hctx_type type;
3451
3452 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3453 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3454 return 0;
3455
3456 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3457 type = hctx->type;
3458
3459 spin_lock(&ctx->lock);
3460 if (!list_empty(&ctx->rq_lists[type])) {
3461 list_splice_init(&ctx->rq_lists[type], &tmp);
3462 blk_mq_hctx_clear_pending(hctx, ctx);
3463 }
3464 spin_unlock(&ctx->lock);
3465
3466 if (list_empty(&tmp))
3467 return 0;
3468
3469 spin_lock(&hctx->lock);
3470 list_splice_tail_init(&tmp, &hctx->dispatch);
3471 spin_unlock(&hctx->lock);
3472
3473 blk_mq_run_hw_queue(hctx, true);
3474 return 0;
3475 }
3476
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3477 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3478 {
3479 if (!(hctx->flags & BLK_MQ_F_STACKING))
3480 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3481 &hctx->cpuhp_online);
3482 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3483 &hctx->cpuhp_dead);
3484 }
3485
3486 /*
3487 * Before freeing hw queue, clearing the flush request reference in
3488 * tags->rqs[] for avoiding potential UAF.
3489 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3490 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3491 unsigned int queue_depth, struct request *flush_rq)
3492 {
3493 int i;
3494 unsigned long flags;
3495
3496 /* The hw queue may not be mapped yet */
3497 if (!tags)
3498 return;
3499
3500 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3501
3502 for (i = 0; i < queue_depth; i++)
3503 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3504
3505 /*
3506 * Wait until all pending iteration is done.
3507 *
3508 * Request reference is cleared and it is guaranteed to be observed
3509 * after the ->lock is released.
3510 */
3511 spin_lock_irqsave(&tags->lock, flags);
3512 spin_unlock_irqrestore(&tags->lock, flags);
3513 }
3514
3515 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3516 static void blk_mq_exit_hctx(struct request_queue *q,
3517 struct blk_mq_tag_set *set,
3518 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3519 {
3520 struct request *flush_rq = hctx->fq->flush_rq;
3521
3522 if (blk_mq_hw_queue_mapped(hctx))
3523 blk_mq_tag_idle(hctx);
3524
3525 if (blk_queue_init_done(q))
3526 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3527 set->queue_depth, flush_rq);
3528 if (set->ops->exit_request)
3529 set->ops->exit_request(set, flush_rq, hctx_idx);
3530
3531 if (set->ops->exit_hctx)
3532 set->ops->exit_hctx(hctx, hctx_idx);
3533
3534 blk_mq_remove_cpuhp(hctx);
3535
3536 xa_erase(&q->hctx_table, hctx_idx);
3537
3538 spin_lock(&q->unused_hctx_lock);
3539 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3540 spin_unlock(&q->unused_hctx_lock);
3541 }
3542
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3543 static void blk_mq_exit_hw_queues(struct request_queue *q,
3544 struct blk_mq_tag_set *set, int nr_queue)
3545 {
3546 struct blk_mq_hw_ctx *hctx;
3547 unsigned long i;
3548
3549 queue_for_each_hw_ctx(q, hctx, i) {
3550 if (i == nr_queue)
3551 break;
3552 blk_mq_exit_hctx(q, set, hctx, i);
3553 }
3554 }
3555
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3556 static int blk_mq_init_hctx(struct request_queue *q,
3557 struct blk_mq_tag_set *set,
3558 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3559 {
3560 hctx->queue_num = hctx_idx;
3561
3562 if (!(hctx->flags & BLK_MQ_F_STACKING))
3563 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3564 &hctx->cpuhp_online);
3565 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3566
3567 hctx->tags = set->tags[hctx_idx];
3568
3569 if (set->ops->init_hctx &&
3570 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3571 goto unregister_cpu_notifier;
3572
3573 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3574 hctx->numa_node))
3575 goto exit_hctx;
3576
3577 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3578 goto exit_flush_rq;
3579
3580 return 0;
3581
3582 exit_flush_rq:
3583 if (set->ops->exit_request)
3584 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3585 exit_hctx:
3586 if (set->ops->exit_hctx)
3587 set->ops->exit_hctx(hctx, hctx_idx);
3588 unregister_cpu_notifier:
3589 blk_mq_remove_cpuhp(hctx);
3590 return -1;
3591 }
3592
3593 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3594 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3595 int node)
3596 {
3597 struct blk_mq_hw_ctx *hctx;
3598 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3599
3600 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3601 if (!hctx)
3602 goto fail_alloc_hctx;
3603
3604 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3605 goto free_hctx;
3606
3607 atomic_set(&hctx->nr_active, 0);
3608 if (node == NUMA_NO_NODE)
3609 node = set->numa_node;
3610 hctx->numa_node = node;
3611
3612 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3613 spin_lock_init(&hctx->lock);
3614 INIT_LIST_HEAD(&hctx->dispatch);
3615 hctx->queue = q;
3616 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3617
3618 INIT_LIST_HEAD(&hctx->hctx_list);
3619
3620 /*
3621 * Allocate space for all possible cpus to avoid allocation at
3622 * runtime
3623 */
3624 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3625 gfp, node);
3626 if (!hctx->ctxs)
3627 goto free_cpumask;
3628
3629 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3630 gfp, node, false, false))
3631 goto free_ctxs;
3632 hctx->nr_ctx = 0;
3633
3634 spin_lock_init(&hctx->dispatch_wait_lock);
3635 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3636 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3637
3638 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3639 if (!hctx->fq)
3640 goto free_bitmap;
3641
3642 blk_mq_hctx_kobj_init(hctx);
3643
3644 return hctx;
3645
3646 free_bitmap:
3647 sbitmap_free(&hctx->ctx_map);
3648 free_ctxs:
3649 kfree(hctx->ctxs);
3650 free_cpumask:
3651 free_cpumask_var(hctx->cpumask);
3652 free_hctx:
3653 kfree(hctx);
3654 fail_alloc_hctx:
3655 return NULL;
3656 }
3657
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3658 static void blk_mq_init_cpu_queues(struct request_queue *q,
3659 unsigned int nr_hw_queues)
3660 {
3661 struct blk_mq_tag_set *set = q->tag_set;
3662 unsigned int i, j;
3663
3664 for_each_possible_cpu(i) {
3665 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3666 struct blk_mq_hw_ctx *hctx;
3667 int k;
3668
3669 __ctx->cpu = i;
3670 spin_lock_init(&__ctx->lock);
3671 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3672 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3673
3674 __ctx->queue = q;
3675
3676 /*
3677 * Set local node, IFF we have more than one hw queue. If
3678 * not, we remain on the home node of the device
3679 */
3680 for (j = 0; j < set->nr_maps; j++) {
3681 hctx = blk_mq_map_queue_type(q, j, i);
3682 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3683 hctx->numa_node = cpu_to_node(i);
3684 }
3685 }
3686 }
3687
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3688 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3689 unsigned int hctx_idx,
3690 unsigned int depth)
3691 {
3692 struct blk_mq_tags *tags;
3693 int ret;
3694
3695 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3696 if (!tags)
3697 return NULL;
3698
3699 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3700 if (ret) {
3701 blk_mq_free_rq_map(tags);
3702 return NULL;
3703 }
3704
3705 return tags;
3706 }
3707
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3708 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3709 int hctx_idx)
3710 {
3711 if (blk_mq_is_shared_tags(set->flags)) {
3712 set->tags[hctx_idx] = set->shared_tags;
3713
3714 return true;
3715 }
3716
3717 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3718 set->queue_depth);
3719
3720 return set->tags[hctx_idx];
3721 }
3722
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3723 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3724 struct blk_mq_tags *tags,
3725 unsigned int hctx_idx)
3726 {
3727 if (tags) {
3728 blk_mq_free_rqs(set, tags, hctx_idx);
3729 blk_mq_free_rq_map(tags);
3730 }
3731 }
3732
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3733 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3734 unsigned int hctx_idx)
3735 {
3736 if (!blk_mq_is_shared_tags(set->flags))
3737 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3738
3739 set->tags[hctx_idx] = NULL;
3740 }
3741
blk_mq_map_swqueue(struct request_queue * q)3742 static void blk_mq_map_swqueue(struct request_queue *q)
3743 {
3744 unsigned int j, hctx_idx;
3745 unsigned long i;
3746 struct blk_mq_hw_ctx *hctx;
3747 struct blk_mq_ctx *ctx;
3748 struct blk_mq_tag_set *set = q->tag_set;
3749
3750 queue_for_each_hw_ctx(q, hctx, i) {
3751 cpumask_clear(hctx->cpumask);
3752 hctx->nr_ctx = 0;
3753 hctx->dispatch_from = NULL;
3754 }
3755
3756 /*
3757 * Map software to hardware queues.
3758 *
3759 * If the cpu isn't present, the cpu is mapped to first hctx.
3760 */
3761 for_each_possible_cpu(i) {
3762
3763 ctx = per_cpu_ptr(q->queue_ctx, i);
3764 for (j = 0; j < set->nr_maps; j++) {
3765 if (!set->map[j].nr_queues) {
3766 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3767 HCTX_TYPE_DEFAULT, i);
3768 continue;
3769 }
3770 hctx_idx = set->map[j].mq_map[i];
3771 /* unmapped hw queue can be remapped after CPU topo changed */
3772 if (!set->tags[hctx_idx] &&
3773 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3774 /*
3775 * If tags initialization fail for some hctx,
3776 * that hctx won't be brought online. In this
3777 * case, remap the current ctx to hctx[0] which
3778 * is guaranteed to always have tags allocated
3779 */
3780 set->map[j].mq_map[i] = 0;
3781 }
3782
3783 hctx = blk_mq_map_queue_type(q, j, i);
3784 ctx->hctxs[j] = hctx;
3785 /*
3786 * If the CPU is already set in the mask, then we've
3787 * mapped this one already. This can happen if
3788 * devices share queues across queue maps.
3789 */
3790 if (cpumask_test_cpu(i, hctx->cpumask))
3791 continue;
3792
3793 cpumask_set_cpu(i, hctx->cpumask);
3794 hctx->type = j;
3795 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3796 hctx->ctxs[hctx->nr_ctx++] = ctx;
3797
3798 /*
3799 * If the nr_ctx type overflows, we have exceeded the
3800 * amount of sw queues we can support.
3801 */
3802 BUG_ON(!hctx->nr_ctx);
3803 }
3804
3805 for (; j < HCTX_MAX_TYPES; j++)
3806 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3807 HCTX_TYPE_DEFAULT, i);
3808 }
3809
3810 queue_for_each_hw_ctx(q, hctx, i) {
3811 /*
3812 * If no software queues are mapped to this hardware queue,
3813 * disable it and free the request entries.
3814 */
3815 if (!hctx->nr_ctx) {
3816 /* Never unmap queue 0. We need it as a
3817 * fallback in case of a new remap fails
3818 * allocation
3819 */
3820 if (i)
3821 __blk_mq_free_map_and_rqs(set, i);
3822
3823 hctx->tags = NULL;
3824 continue;
3825 }
3826
3827 hctx->tags = set->tags[i];
3828 WARN_ON(!hctx->tags);
3829
3830 /*
3831 * Set the map size to the number of mapped software queues.
3832 * This is more accurate and more efficient than looping
3833 * over all possibly mapped software queues.
3834 */
3835 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3836
3837 /*
3838 * Initialize batch roundrobin counts
3839 */
3840 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3841 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3842 }
3843 }
3844
3845 /*
3846 * Caller needs to ensure that we're either frozen/quiesced, or that
3847 * the queue isn't live yet.
3848 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3849 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3850 {
3851 struct blk_mq_hw_ctx *hctx;
3852 unsigned long i;
3853
3854 queue_for_each_hw_ctx(q, hctx, i) {
3855 if (shared) {
3856 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3857 } else {
3858 blk_mq_tag_idle(hctx);
3859 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3860 }
3861 }
3862 }
3863
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3864 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3865 bool shared)
3866 {
3867 struct request_queue *q;
3868
3869 lockdep_assert_held(&set->tag_list_lock);
3870
3871 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3872 blk_mq_freeze_queue(q);
3873 queue_set_hctx_shared(q, shared);
3874 blk_mq_unfreeze_queue(q);
3875 }
3876 }
3877
blk_mq_del_queue_tag_set(struct request_queue * q)3878 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3879 {
3880 struct blk_mq_tag_set *set = q->tag_set;
3881
3882 mutex_lock(&set->tag_list_lock);
3883 list_del(&q->tag_set_list);
3884 if (list_is_singular(&set->tag_list)) {
3885 /* just transitioned to unshared */
3886 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3887 /* update existing queue */
3888 blk_mq_update_tag_set_shared(set, false);
3889 }
3890 mutex_unlock(&set->tag_list_lock);
3891 INIT_LIST_HEAD(&q->tag_set_list);
3892 }
3893
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3894 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3895 struct request_queue *q)
3896 {
3897 mutex_lock(&set->tag_list_lock);
3898
3899 /*
3900 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3901 */
3902 if (!list_empty(&set->tag_list) &&
3903 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3904 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3905 /* update existing queue */
3906 blk_mq_update_tag_set_shared(set, true);
3907 }
3908 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3909 queue_set_hctx_shared(q, true);
3910 list_add_tail(&q->tag_set_list, &set->tag_list);
3911
3912 mutex_unlock(&set->tag_list_lock);
3913 }
3914
3915 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3916 static int blk_mq_alloc_ctxs(struct request_queue *q)
3917 {
3918 struct blk_mq_ctxs *ctxs;
3919 int cpu;
3920
3921 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3922 if (!ctxs)
3923 return -ENOMEM;
3924
3925 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3926 if (!ctxs->queue_ctx)
3927 goto fail;
3928
3929 for_each_possible_cpu(cpu) {
3930 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3931 ctx->ctxs = ctxs;
3932 }
3933
3934 q->mq_kobj = &ctxs->kobj;
3935 q->queue_ctx = ctxs->queue_ctx;
3936
3937 return 0;
3938 fail:
3939 kfree(ctxs);
3940 return -ENOMEM;
3941 }
3942
3943 /*
3944 * It is the actual release handler for mq, but we do it from
3945 * request queue's release handler for avoiding use-after-free
3946 * and headache because q->mq_kobj shouldn't have been introduced,
3947 * but we can't group ctx/kctx kobj without it.
3948 */
blk_mq_release(struct request_queue * q)3949 void blk_mq_release(struct request_queue *q)
3950 {
3951 struct blk_mq_hw_ctx *hctx, *next;
3952 unsigned long i;
3953
3954 queue_for_each_hw_ctx(q, hctx, i)
3955 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3956
3957 /* all hctx are in .unused_hctx_list now */
3958 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3959 list_del_init(&hctx->hctx_list);
3960 kobject_put(&hctx->kobj);
3961 }
3962
3963 xa_destroy(&q->hctx_table);
3964
3965 /*
3966 * release .mq_kobj and sw queue's kobject now because
3967 * both share lifetime with request queue.
3968 */
3969 blk_mq_sysfs_deinit(q);
3970 }
3971
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3972 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3973 void *queuedata)
3974 {
3975 struct request_queue *q;
3976 int ret;
3977
3978 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3979 if (!q)
3980 return ERR_PTR(-ENOMEM);
3981 q->queuedata = queuedata;
3982 ret = blk_mq_init_allocated_queue(set, q);
3983 if (ret) {
3984 blk_put_queue(q);
3985 return ERR_PTR(ret);
3986 }
3987 return q;
3988 }
3989
blk_mq_init_queue(struct blk_mq_tag_set * set)3990 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3991 {
3992 return blk_mq_init_queue_data(set, NULL);
3993 }
3994 EXPORT_SYMBOL(blk_mq_init_queue);
3995
3996 /**
3997 * blk_mq_destroy_queue - shutdown a request queue
3998 * @q: request queue to shutdown
3999 *
4000 * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4001 * the initial reference. All future requests will failed with -ENODEV.
4002 *
4003 * Context: can sleep
4004 */
blk_mq_destroy_queue(struct request_queue * q)4005 void blk_mq_destroy_queue(struct request_queue *q)
4006 {
4007 WARN_ON_ONCE(!queue_is_mq(q));
4008 WARN_ON_ONCE(blk_queue_registered(q));
4009
4010 might_sleep();
4011
4012 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4013 blk_queue_start_drain(q);
4014 blk_freeze_queue(q);
4015
4016 blk_sync_queue(q);
4017 blk_mq_cancel_work_sync(q);
4018 blk_mq_exit_queue(q);
4019
4020 /* @q is and will stay empty, shutdown and put */
4021 blk_put_queue(q);
4022 }
4023 EXPORT_SYMBOL(blk_mq_destroy_queue);
4024
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4025 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4026 struct lock_class_key *lkclass)
4027 {
4028 struct request_queue *q;
4029 struct gendisk *disk;
4030
4031 q = blk_mq_init_queue_data(set, queuedata);
4032 if (IS_ERR(q))
4033 return ERR_CAST(q);
4034
4035 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4036 if (!disk) {
4037 blk_mq_destroy_queue(q);
4038 return ERR_PTR(-ENOMEM);
4039 }
4040 set_bit(GD_OWNS_QUEUE, &disk->state);
4041 return disk;
4042 }
4043 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4044
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4045 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4046 struct lock_class_key *lkclass)
4047 {
4048 struct gendisk *disk;
4049
4050 if (!blk_get_queue(q))
4051 return NULL;
4052 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4053 if (!disk)
4054 blk_put_queue(q);
4055 return disk;
4056 }
4057 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4058
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4059 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4060 struct blk_mq_tag_set *set, struct request_queue *q,
4061 int hctx_idx, int node)
4062 {
4063 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4064
4065 /* reuse dead hctx first */
4066 spin_lock(&q->unused_hctx_lock);
4067 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4068 if (tmp->numa_node == node) {
4069 hctx = tmp;
4070 break;
4071 }
4072 }
4073 if (hctx)
4074 list_del_init(&hctx->hctx_list);
4075 spin_unlock(&q->unused_hctx_lock);
4076
4077 if (!hctx)
4078 hctx = blk_mq_alloc_hctx(q, set, node);
4079 if (!hctx)
4080 goto fail;
4081
4082 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4083 goto free_hctx;
4084
4085 return hctx;
4086
4087 free_hctx:
4088 kobject_put(&hctx->kobj);
4089 fail:
4090 return NULL;
4091 }
4092
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4093 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4094 struct request_queue *q)
4095 {
4096 struct blk_mq_hw_ctx *hctx;
4097 unsigned long i, j;
4098
4099 /* protect against switching io scheduler */
4100 mutex_lock(&q->sysfs_lock);
4101 for (i = 0; i < set->nr_hw_queues; i++) {
4102 int old_node;
4103 int node = blk_mq_get_hctx_node(set, i);
4104 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4105
4106 if (old_hctx) {
4107 old_node = old_hctx->numa_node;
4108 blk_mq_exit_hctx(q, set, old_hctx, i);
4109 }
4110
4111 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4112 if (!old_hctx)
4113 break;
4114 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4115 node, old_node);
4116 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4117 WARN_ON_ONCE(!hctx);
4118 }
4119 }
4120 /*
4121 * Increasing nr_hw_queues fails. Free the newly allocated
4122 * hctxs and keep the previous q->nr_hw_queues.
4123 */
4124 if (i != set->nr_hw_queues) {
4125 j = q->nr_hw_queues;
4126 } else {
4127 j = i;
4128 q->nr_hw_queues = set->nr_hw_queues;
4129 }
4130
4131 xa_for_each_start(&q->hctx_table, j, hctx, j)
4132 blk_mq_exit_hctx(q, set, hctx, j);
4133 mutex_unlock(&q->sysfs_lock);
4134 }
4135
blk_mq_update_poll_flag(struct request_queue * q)4136 static void blk_mq_update_poll_flag(struct request_queue *q)
4137 {
4138 struct blk_mq_tag_set *set = q->tag_set;
4139
4140 if (set->nr_maps > HCTX_TYPE_POLL &&
4141 set->map[HCTX_TYPE_POLL].nr_queues)
4142 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4143 else
4144 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4145 }
4146
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4147 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4148 struct request_queue *q)
4149 {
4150 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4151 !!(set->flags & BLK_MQ_F_BLOCKING));
4152
4153 /* mark the queue as mq asap */
4154 q->mq_ops = set->ops;
4155
4156 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4157 blk_mq_poll_stats_bkt,
4158 BLK_MQ_POLL_STATS_BKTS, q);
4159 if (!q->poll_cb)
4160 goto err_exit;
4161
4162 if (blk_mq_alloc_ctxs(q))
4163 goto err_poll;
4164
4165 /* init q->mq_kobj and sw queues' kobjects */
4166 blk_mq_sysfs_init(q);
4167
4168 INIT_LIST_HEAD(&q->unused_hctx_list);
4169 spin_lock_init(&q->unused_hctx_lock);
4170
4171 xa_init(&q->hctx_table);
4172
4173 blk_mq_realloc_hw_ctxs(set, q);
4174 if (!q->nr_hw_queues)
4175 goto err_hctxs;
4176
4177 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4178 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4179
4180 q->tag_set = set;
4181
4182 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4183 blk_mq_update_poll_flag(q);
4184
4185 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4186 INIT_LIST_HEAD(&q->requeue_list);
4187 spin_lock_init(&q->requeue_lock);
4188
4189 q->nr_requests = set->queue_depth;
4190
4191 /*
4192 * Default to classic polling
4193 */
4194 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4195
4196 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4197 blk_mq_add_queue_tag_set(set, q);
4198 blk_mq_map_swqueue(q);
4199 return 0;
4200
4201 err_hctxs:
4202 blk_mq_release(q);
4203 err_poll:
4204 blk_stat_free_callback(q->poll_cb);
4205 q->poll_cb = NULL;
4206 err_exit:
4207 q->mq_ops = NULL;
4208 return -ENOMEM;
4209 }
4210 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4211
4212 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4213 void blk_mq_exit_queue(struct request_queue *q)
4214 {
4215 struct blk_mq_tag_set *set = q->tag_set;
4216
4217 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4218 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4219 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4220 blk_mq_del_queue_tag_set(q);
4221 }
4222
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4223 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4224 {
4225 int i;
4226
4227 if (blk_mq_is_shared_tags(set->flags)) {
4228 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4229 BLK_MQ_NO_HCTX_IDX,
4230 set->queue_depth);
4231 if (!set->shared_tags)
4232 return -ENOMEM;
4233 }
4234
4235 for (i = 0; i < set->nr_hw_queues; i++) {
4236 if (!__blk_mq_alloc_map_and_rqs(set, i))
4237 goto out_unwind;
4238 cond_resched();
4239 }
4240
4241 return 0;
4242
4243 out_unwind:
4244 while (--i >= 0)
4245 __blk_mq_free_map_and_rqs(set, i);
4246
4247 if (blk_mq_is_shared_tags(set->flags)) {
4248 blk_mq_free_map_and_rqs(set, set->shared_tags,
4249 BLK_MQ_NO_HCTX_IDX);
4250 }
4251
4252 return -ENOMEM;
4253 }
4254
4255 /*
4256 * Allocate the request maps associated with this tag_set. Note that this
4257 * may reduce the depth asked for, if memory is tight. set->queue_depth
4258 * will be updated to reflect the allocated depth.
4259 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4260 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4261 {
4262 unsigned int depth;
4263 int err;
4264
4265 depth = set->queue_depth;
4266 do {
4267 err = __blk_mq_alloc_rq_maps(set);
4268 if (!err)
4269 break;
4270
4271 set->queue_depth >>= 1;
4272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4273 err = -ENOMEM;
4274 break;
4275 }
4276 } while (set->queue_depth);
4277
4278 if (!set->queue_depth || err) {
4279 pr_err("blk-mq: failed to allocate request map\n");
4280 return -ENOMEM;
4281 }
4282
4283 if (depth != set->queue_depth)
4284 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4285 depth, set->queue_depth);
4286
4287 return 0;
4288 }
4289
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4290 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4291 {
4292 /*
4293 * blk_mq_map_queues() and multiple .map_queues() implementations
4294 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4295 * number of hardware queues.
4296 */
4297 if (set->nr_maps == 1)
4298 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4299
4300 if (set->ops->map_queues && !is_kdump_kernel()) {
4301 int i;
4302
4303 /*
4304 * transport .map_queues is usually done in the following
4305 * way:
4306 *
4307 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4308 * mask = get_cpu_mask(queue)
4309 * for_each_cpu(cpu, mask)
4310 * set->map[x].mq_map[cpu] = queue;
4311 * }
4312 *
4313 * When we need to remap, the table has to be cleared for
4314 * killing stale mapping since one CPU may not be mapped
4315 * to any hw queue.
4316 */
4317 for (i = 0; i < set->nr_maps; i++)
4318 blk_mq_clear_mq_map(&set->map[i]);
4319
4320 set->ops->map_queues(set);
4321 } else {
4322 BUG_ON(set->nr_maps > 1);
4323 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4324 }
4325 }
4326
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)4327 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4328 int cur_nr_hw_queues, int new_nr_hw_queues)
4329 {
4330 struct blk_mq_tags **new_tags;
4331
4332 if (cur_nr_hw_queues >= new_nr_hw_queues)
4333 return 0;
4334
4335 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4336 GFP_KERNEL, set->numa_node);
4337 if (!new_tags)
4338 return -ENOMEM;
4339
4340 if (set->tags)
4341 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4342 sizeof(*set->tags));
4343 kfree(set->tags);
4344 set->tags = new_tags;
4345 set->nr_hw_queues = new_nr_hw_queues;
4346
4347 return 0;
4348 }
4349
blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4350 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4351 int new_nr_hw_queues)
4352 {
4353 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4354 }
4355
4356 /*
4357 * Alloc a tag set to be associated with one or more request queues.
4358 * May fail with EINVAL for various error conditions. May adjust the
4359 * requested depth down, if it's too large. In that case, the set
4360 * value will be stored in set->queue_depth.
4361 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4362 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4363 {
4364 int i, ret;
4365
4366 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4367
4368 if (!set->nr_hw_queues)
4369 return -EINVAL;
4370 if (!set->queue_depth)
4371 return -EINVAL;
4372 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4373 return -EINVAL;
4374
4375 if (!set->ops->queue_rq)
4376 return -EINVAL;
4377
4378 if (!set->ops->get_budget ^ !set->ops->put_budget)
4379 return -EINVAL;
4380
4381 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4382 pr_info("blk-mq: reduced tag depth to %u\n",
4383 BLK_MQ_MAX_DEPTH);
4384 set->queue_depth = BLK_MQ_MAX_DEPTH;
4385 }
4386
4387 if (!set->nr_maps)
4388 set->nr_maps = 1;
4389 else if (set->nr_maps > HCTX_MAX_TYPES)
4390 return -EINVAL;
4391
4392 /*
4393 * If a crashdump is active, then we are potentially in a very
4394 * memory constrained environment. Limit us to 1 queue and
4395 * 64 tags to prevent using too much memory.
4396 */
4397 if (is_kdump_kernel()) {
4398 set->nr_hw_queues = 1;
4399 set->nr_maps = 1;
4400 set->queue_depth = min(64U, set->queue_depth);
4401 }
4402 /*
4403 * There is no use for more h/w queues than cpus if we just have
4404 * a single map
4405 */
4406 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4407 set->nr_hw_queues = nr_cpu_ids;
4408
4409 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4410 return -ENOMEM;
4411
4412 ret = -ENOMEM;
4413 for (i = 0; i < set->nr_maps; i++) {
4414 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4415 sizeof(set->map[i].mq_map[0]),
4416 GFP_KERNEL, set->numa_node);
4417 if (!set->map[i].mq_map)
4418 goto out_free_mq_map;
4419 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4420 }
4421
4422 blk_mq_update_queue_map(set);
4423
4424 ret = blk_mq_alloc_set_map_and_rqs(set);
4425 if (ret)
4426 goto out_free_mq_map;
4427
4428 mutex_init(&set->tag_list_lock);
4429 INIT_LIST_HEAD(&set->tag_list);
4430
4431 return 0;
4432
4433 out_free_mq_map:
4434 for (i = 0; i < set->nr_maps; i++) {
4435 kfree(set->map[i].mq_map);
4436 set->map[i].mq_map = NULL;
4437 }
4438 kfree(set->tags);
4439 set->tags = NULL;
4440 return ret;
4441 }
4442 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4443
4444 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4445 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4446 const struct blk_mq_ops *ops, unsigned int queue_depth,
4447 unsigned int set_flags)
4448 {
4449 memset(set, 0, sizeof(*set));
4450 set->ops = ops;
4451 set->nr_hw_queues = 1;
4452 set->nr_maps = 1;
4453 set->queue_depth = queue_depth;
4454 set->numa_node = NUMA_NO_NODE;
4455 set->flags = set_flags;
4456 return blk_mq_alloc_tag_set(set);
4457 }
4458 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4459
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4460 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4461 {
4462 int i, j;
4463
4464 for (i = 0; i < set->nr_hw_queues; i++)
4465 __blk_mq_free_map_and_rqs(set, i);
4466
4467 if (blk_mq_is_shared_tags(set->flags)) {
4468 blk_mq_free_map_and_rqs(set, set->shared_tags,
4469 BLK_MQ_NO_HCTX_IDX);
4470 }
4471
4472 for (j = 0; j < set->nr_maps; j++) {
4473 kfree(set->map[j].mq_map);
4474 set->map[j].mq_map = NULL;
4475 }
4476
4477 kfree(set->tags);
4478 set->tags = NULL;
4479 }
4480 EXPORT_SYMBOL(blk_mq_free_tag_set);
4481
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4482 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4483 {
4484 struct blk_mq_tag_set *set = q->tag_set;
4485 struct blk_mq_hw_ctx *hctx;
4486 int ret;
4487 unsigned long i;
4488
4489 if (!set)
4490 return -EINVAL;
4491
4492 if (q->nr_requests == nr)
4493 return 0;
4494
4495 blk_mq_freeze_queue(q);
4496 blk_mq_quiesce_queue(q);
4497
4498 ret = 0;
4499 queue_for_each_hw_ctx(q, hctx, i) {
4500 if (!hctx->tags)
4501 continue;
4502 /*
4503 * If we're using an MQ scheduler, just update the scheduler
4504 * queue depth. This is similar to what the old code would do.
4505 */
4506 if (hctx->sched_tags) {
4507 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4508 nr, true);
4509 } else {
4510 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4511 false);
4512 }
4513 if (ret)
4514 break;
4515 if (q->elevator && q->elevator->type->ops.depth_updated)
4516 q->elevator->type->ops.depth_updated(hctx);
4517 }
4518 if (!ret) {
4519 q->nr_requests = nr;
4520 if (blk_mq_is_shared_tags(set->flags)) {
4521 if (q->elevator)
4522 blk_mq_tag_update_sched_shared_tags(q);
4523 else
4524 blk_mq_tag_resize_shared_tags(set, nr);
4525 }
4526 }
4527
4528 blk_mq_unquiesce_queue(q);
4529 blk_mq_unfreeze_queue(q);
4530
4531 return ret;
4532 }
4533
4534 /*
4535 * request_queue and elevator_type pair.
4536 * It is just used by __blk_mq_update_nr_hw_queues to cache
4537 * the elevator_type associated with a request_queue.
4538 */
4539 struct blk_mq_qe_pair {
4540 struct list_head node;
4541 struct request_queue *q;
4542 struct elevator_type *type;
4543 };
4544
4545 /*
4546 * Cache the elevator_type in qe pair list and switch the
4547 * io scheduler to 'none'
4548 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4549 static bool blk_mq_elv_switch_none(struct list_head *head,
4550 struct request_queue *q)
4551 {
4552 struct blk_mq_qe_pair *qe;
4553
4554 if (!q->elevator)
4555 return true;
4556
4557 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4558 if (!qe)
4559 return false;
4560
4561 /* q->elevator needs protection from ->sysfs_lock */
4562 mutex_lock(&q->sysfs_lock);
4563
4564 INIT_LIST_HEAD(&qe->node);
4565 qe->q = q;
4566 qe->type = q->elevator->type;
4567 list_add(&qe->node, head);
4568
4569 /*
4570 * After elevator_switch, the previous elevator_queue will be
4571 * released by elevator_release. The reference of the io scheduler
4572 * module get by elevator_get will also be put. So we need to get
4573 * a reference of the io scheduler module here to prevent it to be
4574 * removed.
4575 */
4576 __module_get(qe->type->elevator_owner);
4577 elevator_switch(q, NULL);
4578 mutex_unlock(&q->sysfs_lock);
4579
4580 return true;
4581 }
4582
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4583 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4584 struct request_queue *q)
4585 {
4586 struct blk_mq_qe_pair *qe;
4587
4588 list_for_each_entry(qe, head, node)
4589 if (qe->q == q)
4590 return qe;
4591
4592 return NULL;
4593 }
4594
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4595 static void blk_mq_elv_switch_back(struct list_head *head,
4596 struct request_queue *q)
4597 {
4598 struct blk_mq_qe_pair *qe;
4599 struct elevator_type *t;
4600
4601 qe = blk_lookup_qe_pair(head, q);
4602 if (!qe)
4603 return;
4604 t = qe->type;
4605 list_del(&qe->node);
4606 kfree(qe);
4607
4608 mutex_lock(&q->sysfs_lock);
4609 elevator_switch(q, t);
4610 mutex_unlock(&q->sysfs_lock);
4611 }
4612
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4613 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4614 int nr_hw_queues)
4615 {
4616 struct request_queue *q;
4617 LIST_HEAD(head);
4618 int prev_nr_hw_queues;
4619
4620 lockdep_assert_held(&set->tag_list_lock);
4621
4622 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4623 nr_hw_queues = nr_cpu_ids;
4624 if (nr_hw_queues < 1)
4625 return;
4626 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4627 return;
4628
4629 list_for_each_entry(q, &set->tag_list, tag_set_list)
4630 blk_mq_freeze_queue(q);
4631 /*
4632 * Switch IO scheduler to 'none', cleaning up the data associated
4633 * with the previous scheduler. We will switch back once we are done
4634 * updating the new sw to hw queue mappings.
4635 */
4636 list_for_each_entry(q, &set->tag_list, tag_set_list)
4637 if (!blk_mq_elv_switch_none(&head, q))
4638 goto switch_back;
4639
4640 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4641 blk_mq_debugfs_unregister_hctxs(q);
4642 blk_mq_sysfs_unregister_hctxs(q);
4643 }
4644
4645 prev_nr_hw_queues = set->nr_hw_queues;
4646 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4647 0)
4648 goto reregister;
4649
4650 set->nr_hw_queues = nr_hw_queues;
4651 fallback:
4652 blk_mq_update_queue_map(set);
4653 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4654 blk_mq_realloc_hw_ctxs(set, q);
4655 blk_mq_update_poll_flag(q);
4656 if (q->nr_hw_queues != set->nr_hw_queues) {
4657 int i = prev_nr_hw_queues;
4658
4659 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4660 nr_hw_queues, prev_nr_hw_queues);
4661 for (; i < set->nr_hw_queues; i++)
4662 __blk_mq_free_map_and_rqs(set, i);
4663
4664 set->nr_hw_queues = prev_nr_hw_queues;
4665 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4666 goto fallback;
4667 }
4668 blk_mq_map_swqueue(q);
4669 }
4670
4671 reregister:
4672 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4673 blk_mq_sysfs_register_hctxs(q);
4674 blk_mq_debugfs_register_hctxs(q);
4675 }
4676
4677 switch_back:
4678 list_for_each_entry(q, &set->tag_list, tag_set_list)
4679 blk_mq_elv_switch_back(&head, q);
4680
4681 list_for_each_entry(q, &set->tag_list, tag_set_list)
4682 blk_mq_unfreeze_queue(q);
4683 }
4684
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4685 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4686 {
4687 mutex_lock(&set->tag_list_lock);
4688 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4689 mutex_unlock(&set->tag_list_lock);
4690 }
4691 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4692
4693 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)4694 static bool blk_poll_stats_enable(struct request_queue *q)
4695 {
4696 if (q->poll_stat)
4697 return true;
4698
4699 return blk_stats_alloc_enable(q);
4700 }
4701
blk_mq_poll_stats_start(struct request_queue * q)4702 static void blk_mq_poll_stats_start(struct request_queue *q)
4703 {
4704 /*
4705 * We don't arm the callback if polling stats are not enabled or the
4706 * callback is already active.
4707 */
4708 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4709 return;
4710
4711 blk_stat_activate_msecs(q->poll_cb, 100);
4712 }
4713
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)4714 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4715 {
4716 struct request_queue *q = cb->data;
4717 int bucket;
4718
4719 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4720 if (cb->stat[bucket].nr_samples)
4721 q->poll_stat[bucket] = cb->stat[bucket];
4722 }
4723 }
4724
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)4725 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4726 struct request *rq)
4727 {
4728 unsigned long ret = 0;
4729 int bucket;
4730
4731 /*
4732 * If stats collection isn't on, don't sleep but turn it on for
4733 * future users
4734 */
4735 if (!blk_poll_stats_enable(q))
4736 return 0;
4737
4738 /*
4739 * As an optimistic guess, use half of the mean service time
4740 * for this type of request. We can (and should) make this smarter.
4741 * For instance, if the completion latencies are tight, we can
4742 * get closer than just half the mean. This is especially
4743 * important on devices where the completion latencies are longer
4744 * than ~10 usec. We do use the stats for the relevant IO size
4745 * if available which does lead to better estimates.
4746 */
4747 bucket = blk_mq_poll_stats_bkt(rq);
4748 if (bucket < 0)
4749 return ret;
4750
4751 if (q->poll_stat[bucket].nr_samples)
4752 ret = (q->poll_stat[bucket].mean + 1) / 2;
4753
4754 return ret;
4755 }
4756
blk_mq_poll_hybrid(struct request_queue * q,blk_qc_t qc)4757 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4758 {
4759 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4760 struct request *rq = blk_qc_to_rq(hctx, qc);
4761 struct hrtimer_sleeper hs;
4762 enum hrtimer_mode mode;
4763 unsigned int nsecs;
4764 ktime_t kt;
4765
4766 /*
4767 * If a request has completed on queue that uses an I/O scheduler, we
4768 * won't get back a request from blk_qc_to_rq.
4769 */
4770 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4771 return false;
4772
4773 /*
4774 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4775 *
4776 * 0: use half of prev avg
4777 * >0: use this specific value
4778 */
4779 if (q->poll_nsec > 0)
4780 nsecs = q->poll_nsec;
4781 else
4782 nsecs = blk_mq_poll_nsecs(q, rq);
4783
4784 if (!nsecs)
4785 return false;
4786
4787 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4788
4789 /*
4790 * This will be replaced with the stats tracking code, using
4791 * 'avg_completion_time / 2' as the pre-sleep target.
4792 */
4793 kt = nsecs;
4794
4795 mode = HRTIMER_MODE_REL;
4796 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4797 hrtimer_set_expires(&hs.timer, kt);
4798
4799 do {
4800 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4801 break;
4802 set_current_state(TASK_UNINTERRUPTIBLE);
4803 hrtimer_sleeper_start_expires(&hs, mode);
4804 if (hs.task)
4805 io_schedule();
4806 hrtimer_cancel(&hs.timer);
4807 mode = HRTIMER_MODE_ABS;
4808 } while (hs.task && !signal_pending(current));
4809
4810 __set_current_state(TASK_RUNNING);
4811 destroy_hrtimer_on_stack(&hs.timer);
4812
4813 /*
4814 * If we sleep, have the caller restart the poll loop to reset the
4815 * state. Like for the other success return cases, the caller is
4816 * responsible for checking if the IO completed. If the IO isn't
4817 * complete, we'll get called again and will go straight to the busy
4818 * poll loop.
4819 */
4820 return true;
4821 }
4822
blk_mq_poll_classic(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4823 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4824 struct io_comp_batch *iob, unsigned int flags)
4825 {
4826 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4827 long state = get_current_state();
4828 int ret;
4829
4830 do {
4831 ret = q->mq_ops->poll(hctx, iob);
4832 if (ret > 0) {
4833 __set_current_state(TASK_RUNNING);
4834 return ret;
4835 }
4836
4837 if (signal_pending_state(state, current))
4838 __set_current_state(TASK_RUNNING);
4839 if (task_is_running(current))
4840 return 1;
4841
4842 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4843 break;
4844 cpu_relax();
4845 } while (!need_resched());
4846
4847 __set_current_state(TASK_RUNNING);
4848 return 0;
4849 }
4850
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4851 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4852 unsigned int flags)
4853 {
4854 if (!(flags & BLK_POLL_NOSLEEP) &&
4855 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4856 if (blk_mq_poll_hybrid(q, cookie))
4857 return 1;
4858 }
4859 return blk_mq_poll_classic(q, cookie, iob, flags);
4860 }
4861
blk_mq_rq_cpu(struct request * rq)4862 unsigned int blk_mq_rq_cpu(struct request *rq)
4863 {
4864 return rq->mq_ctx->cpu;
4865 }
4866 EXPORT_SYMBOL(blk_mq_rq_cpu);
4867
blk_mq_cancel_work_sync(struct request_queue * q)4868 void blk_mq_cancel_work_sync(struct request_queue *q)
4869 {
4870 if (queue_is_mq(q)) {
4871 struct blk_mq_hw_ctx *hctx;
4872 unsigned long i;
4873
4874 cancel_delayed_work_sync(&q->requeue_work);
4875
4876 queue_for_each_hw_ctx(q, hctx, i)
4877 cancel_delayed_work_sync(&hctx->run_work);
4878 }
4879 }
4880
blk_mq_init(void)4881 static int __init blk_mq_init(void)
4882 {
4883 int i;
4884
4885 for_each_possible_cpu(i)
4886 init_llist_head(&per_cpu(blk_cpu_done, i));
4887 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4888
4889 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4890 "block/softirq:dead", NULL,
4891 blk_softirq_cpu_dead);
4892 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4893 blk_mq_hctx_notify_dead);
4894 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4895 blk_mq_hctx_notify_online,
4896 blk_mq_hctx_notify_offline);
4897 return 0;
4898 }
4899 subsys_initcall(blk_mq_init);
4900