1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13
14 #include <trace/events/block.h>
15
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 struct bvec_iter iter = bio->bi_iter;
29 int idx;
30
31 bio_get_first_bvec(bio, bv);
32 if (bv->bv_len == bio->bi_iter.bi_size)
33 return; /* this bio only has a single bvec */
34
35 bio_advance_iter(bio, &iter, iter.bi_size);
36
37 if (!iter.bi_bvec_done)
38 idx = iter.bi_idx - 1;
39 else /* in the middle of bvec */
40 idx = iter.bi_idx;
41
42 *bv = bio->bi_io_vec[idx];
43
44 /*
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
47 */
48 if (iter.bi_bvec_done)
49 bv->bv_len = iter.bi_bvec_done;
50 }
51
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 struct bio_vec pb, nb;
56
57 if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 return false;
59
60 /*
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
64 */
65 if (prev_rq)
66 bio_get_first_bvec(prev_rq->bio, &pb);
67 else
68 bio_get_first_bvec(prev, &pb);
69 if (pb.bv_offset & queue_virt_boundary(q))
70 return true;
71
72 /*
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
75 *
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
79 * merge with 'pb'
80 */
81 bio_get_last_bvec(prev, &pb);
82 bio_get_first_bvec(next, &nb);
83 if (biovec_phys_mergeable(q, &pb, &nb))
84 return false;
85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97
98 /*
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
102 */
bio_allowed_max_sectors(struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(struct queue_limits *lim)
104 {
105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107
bio_split_discard(struct bio * bio,struct queue_limits * lim,unsigned * nsegs,struct bio_set * bs)108 static struct bio *bio_split_discard(struct bio *bio, struct queue_limits *lim,
109 unsigned *nsegs, struct bio_set *bs)
110 {
111 unsigned int max_discard_sectors, granularity;
112 sector_t tmp;
113 unsigned split_sectors;
114
115 *nsegs = 1;
116
117 /* Zero-sector (unknown) and one-sector granularities are the same. */
118 granularity = max(lim->discard_granularity >> 9, 1U);
119
120 max_discard_sectors =
121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122 max_discard_sectors -= max_discard_sectors % granularity;
123
124 if (unlikely(!max_discard_sectors)) {
125 /* XXX: warn */
126 return NULL;
127 }
128
129 if (bio_sectors(bio) <= max_discard_sectors)
130 return NULL;
131
132 split_sectors = max_discard_sectors;
133
134 /*
135 * If the next starting sector would be misaligned, stop the discard at
136 * the previous aligned sector.
137 */
138 tmp = bio->bi_iter.bi_sector + split_sectors -
139 ((lim->discard_alignment >> 9) % granularity);
140 tmp = sector_div(tmp, granularity);
141
142 if (split_sectors > tmp)
143 split_sectors -= tmp;
144
145 return bio_split(bio, split_sectors, GFP_NOIO, bs);
146 }
147
bio_split_write_zeroes(struct bio * bio,struct queue_limits * lim,unsigned * nsegs,struct bio_set * bs)148 static struct bio *bio_split_write_zeroes(struct bio *bio,
149 struct queue_limits *lim, unsigned *nsegs, struct bio_set *bs)
150 {
151 *nsegs = 0;
152 if (!lim->max_write_zeroes_sectors)
153 return NULL;
154 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
155 return NULL;
156 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
157 }
158
159 /*
160 * Return the maximum number of sectors from the start of a bio that may be
161 * submitted as a single request to a block device. If enough sectors remain,
162 * align the end to the physical block size. Otherwise align the end to the
163 * logical block size. This approach minimizes the number of non-aligned
164 * requests that are submitted to a block device if the start of a bio is not
165 * aligned to a physical block boundary.
166 */
get_max_io_size(struct bio * bio,struct queue_limits * lim)167 static inline unsigned get_max_io_size(struct bio *bio,
168 struct queue_limits *lim)
169 {
170 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
171 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
172 unsigned max_sectors = lim->max_sectors, start, end;
173
174 if (lim->chunk_sectors) {
175 max_sectors = min(max_sectors,
176 blk_chunk_sectors_left(bio->bi_iter.bi_sector,
177 lim->chunk_sectors));
178 }
179
180 start = bio->bi_iter.bi_sector & (pbs - 1);
181 end = (start + max_sectors) & ~(pbs - 1);
182 if (end > start)
183 return end - start;
184 return max_sectors & ~(lbs - 1);
185 }
186
get_max_segment_size(struct queue_limits * lim,struct page * start_page,unsigned long offset)187 static inline unsigned get_max_segment_size(struct queue_limits *lim,
188 struct page *start_page, unsigned long offset)
189 {
190 unsigned long mask = lim->seg_boundary_mask;
191
192 offset = mask & (page_to_phys(start_page) + offset);
193
194 /*
195 * overflow may be triggered in case of zero page physical address
196 * on 32bit arch, use queue's max segment size when that happens.
197 */
198 return min_not_zero(mask - offset + 1,
199 (unsigned long)lim->max_segment_size);
200 }
201
202 /**
203 * bvec_split_segs - verify whether or not a bvec should be split in the middle
204 * @lim: [in] queue limits to split based on
205 * @bv: [in] bvec to examine
206 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
207 * by the number of segments from @bv that may be appended to that
208 * bio without exceeding @max_segs
209 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
210 * by the number of bytes from @bv that may be appended to that
211 * bio without exceeding @max_bytes
212 * @max_segs: [in] upper bound for *@nsegs
213 * @max_bytes: [in] upper bound for *@bytes
214 *
215 * When splitting a bio, it can happen that a bvec is encountered that is too
216 * big to fit in a single segment and hence that it has to be split in the
217 * middle. This function verifies whether or not that should happen. The value
218 * %true is returned if and only if appending the entire @bv to a bio with
219 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
220 * the block driver.
221 */
bvec_split_segs(struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)222 static bool bvec_split_segs(struct queue_limits *lim, const struct bio_vec *bv,
223 unsigned *nsegs, unsigned *bytes, unsigned max_segs,
224 unsigned max_bytes)
225 {
226 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
227 unsigned len = min(bv->bv_len, max_len);
228 unsigned total_len = 0;
229 unsigned seg_size = 0;
230
231 while (len && *nsegs < max_segs) {
232 seg_size = get_max_segment_size(lim, bv->bv_page,
233 bv->bv_offset + total_len);
234 seg_size = min(seg_size, len);
235
236 (*nsegs)++;
237 total_len += seg_size;
238 len -= seg_size;
239
240 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
241 break;
242 }
243
244 *bytes += total_len;
245
246 /* tell the caller to split the bvec if it is too big to fit */
247 return len > 0 || bv->bv_len > max_len;
248 }
249
250 /**
251 * bio_split_rw - split a bio in two bios
252 * @bio: [in] bio to be split
253 * @lim: [in] queue limits to split based on
254 * @segs: [out] number of segments in the bio with the first half of the sectors
255 * @bs: [in] bio set to allocate the clone from
256 * @max_bytes: [in] maximum number of bytes per bio
257 *
258 * Clone @bio, update the bi_iter of the clone to represent the first sectors
259 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
260 * following is guaranteed for the cloned bio:
261 * - That it has at most @max_bytes worth of data
262 * - That it has at most queue_max_segments(@q) segments.
263 *
264 * Except for discard requests the cloned bio will point at the bi_io_vec of
265 * the original bio. It is the responsibility of the caller to ensure that the
266 * original bio is not freed before the cloned bio. The caller is also
267 * responsible for ensuring that @bs is only destroyed after processing of the
268 * split bio has finished.
269 */
bio_split_rw(struct bio * bio,struct queue_limits * lim,unsigned * segs,struct bio_set * bs,unsigned max_bytes)270 static struct bio *bio_split_rw(struct bio *bio, struct queue_limits *lim,
271 unsigned *segs, struct bio_set *bs, unsigned max_bytes)
272 {
273 struct bio_vec bv, bvprv, *bvprvp = NULL;
274 struct bvec_iter iter;
275 unsigned nsegs = 0, bytes = 0;
276
277 bio_for_each_bvec(bv, bio, iter) {
278 /*
279 * If the queue doesn't support SG gaps and adding this
280 * offset would create a gap, disallow it.
281 */
282 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
283 goto split;
284
285 if (nsegs < lim->max_segments &&
286 bytes + bv.bv_len <= max_bytes &&
287 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
288 nsegs++;
289 bytes += bv.bv_len;
290 } else {
291 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
292 lim->max_segments, max_bytes))
293 goto split;
294 }
295
296 bvprv = bv;
297 bvprvp = &bvprv;
298 }
299
300 *segs = nsegs;
301 return NULL;
302 split:
303 *segs = nsegs;
304
305 /*
306 * Individual bvecs might not be logical block aligned. Round down the
307 * split size so that each bio is properly block size aligned, even if
308 * we do not use the full hardware limits.
309 */
310 bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
311
312 /*
313 * Bio splitting may cause subtle trouble such as hang when doing sync
314 * iopoll in direct IO routine. Given performance gain of iopoll for
315 * big IO can be trival, disable iopoll when split needed.
316 */
317 bio_clear_polled(bio);
318 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
319 }
320
321 /**
322 * __bio_split_to_limits - split a bio to fit the queue limits
323 * @bio: bio to be split
324 * @lim: queue limits to split based on
325 * @nr_segs: returns the number of segments in the returned bio
326 *
327 * Check if @bio needs splitting based on the queue limits, and if so split off
328 * a bio fitting the limits from the beginning of @bio and return it. @bio is
329 * shortened to the remainder and re-submitted.
330 *
331 * The split bio is allocated from @q->bio_split, which is provided by the
332 * block layer.
333 */
__bio_split_to_limits(struct bio * bio,struct queue_limits * lim,unsigned int * nr_segs)334 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim,
335 unsigned int *nr_segs)
336 {
337 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
338 struct bio *split;
339
340 switch (bio_op(bio)) {
341 case REQ_OP_DISCARD:
342 case REQ_OP_SECURE_ERASE:
343 split = bio_split_discard(bio, lim, nr_segs, bs);
344 break;
345 case REQ_OP_WRITE_ZEROES:
346 split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
347 break;
348 default:
349 split = bio_split_rw(bio, lim, nr_segs, bs,
350 get_max_io_size(bio, lim) << SECTOR_SHIFT);
351 break;
352 }
353
354 if (split) {
355 /* there isn't chance to merge the splitted bio */
356 split->bi_opf |= REQ_NOMERGE;
357
358 blkcg_bio_issue_init(split);
359 bio_chain(split, bio);
360 trace_block_split(split, bio->bi_iter.bi_sector);
361 submit_bio_noacct(bio);
362 return split;
363 }
364 return bio;
365 }
366
367 /**
368 * bio_split_to_limits - split a bio to fit the queue limits
369 * @bio: bio to be split
370 *
371 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
372 * if so split off a bio fitting the limits from the beginning of @bio and
373 * return it. @bio is shortened to the remainder and re-submitted.
374 *
375 * The split bio is allocated from @q->bio_split, which is provided by the
376 * block layer.
377 */
bio_split_to_limits(struct bio * bio)378 struct bio *bio_split_to_limits(struct bio *bio)
379 {
380 struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
381 unsigned int nr_segs;
382
383 if (bio_may_exceed_limits(bio, lim))
384 return __bio_split_to_limits(bio, lim, &nr_segs);
385 return bio;
386 }
387 EXPORT_SYMBOL(bio_split_to_limits);
388
blk_recalc_rq_segments(struct request * rq)389 unsigned int blk_recalc_rq_segments(struct request *rq)
390 {
391 unsigned int nr_phys_segs = 0;
392 unsigned int bytes = 0;
393 struct req_iterator iter;
394 struct bio_vec bv;
395
396 if (!rq->bio)
397 return 0;
398
399 switch (bio_op(rq->bio)) {
400 case REQ_OP_DISCARD:
401 case REQ_OP_SECURE_ERASE:
402 if (queue_max_discard_segments(rq->q) > 1) {
403 struct bio *bio = rq->bio;
404
405 for_each_bio(bio)
406 nr_phys_segs++;
407 return nr_phys_segs;
408 }
409 return 1;
410 case REQ_OP_WRITE_ZEROES:
411 return 0;
412 default:
413 break;
414 }
415
416 rq_for_each_bvec(bv, rq, iter)
417 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
418 UINT_MAX, UINT_MAX);
419 return nr_phys_segs;
420 }
421
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)422 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
423 struct scatterlist *sglist)
424 {
425 if (!*sg)
426 return sglist;
427
428 /*
429 * If the driver previously mapped a shorter list, we could see a
430 * termination bit prematurely unless it fully inits the sg table
431 * on each mapping. We KNOW that there must be more entries here
432 * or the driver would be buggy, so force clear the termination bit
433 * to avoid doing a full sg_init_table() in drivers for each command.
434 */
435 sg_unmark_end(*sg);
436 return sg_next(*sg);
437 }
438
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)439 static unsigned blk_bvec_map_sg(struct request_queue *q,
440 struct bio_vec *bvec, struct scatterlist *sglist,
441 struct scatterlist **sg)
442 {
443 unsigned nbytes = bvec->bv_len;
444 unsigned nsegs = 0, total = 0;
445
446 while (nbytes > 0) {
447 unsigned offset = bvec->bv_offset + total;
448 unsigned len = min(get_max_segment_size(&q->limits,
449 bvec->bv_page, offset), nbytes);
450 struct page *page = bvec->bv_page;
451
452 /*
453 * Unfortunately a fair number of drivers barf on scatterlists
454 * that have an offset larger than PAGE_SIZE, despite other
455 * subsystems dealing with that invariant just fine. For now
456 * stick to the legacy format where we never present those from
457 * the block layer, but the code below should be removed once
458 * these offenders (mostly MMC/SD drivers) are fixed.
459 */
460 page += (offset >> PAGE_SHIFT);
461 offset &= ~PAGE_MASK;
462
463 *sg = blk_next_sg(sg, sglist);
464 sg_set_page(*sg, page, len, offset);
465
466 total += len;
467 nbytes -= len;
468 nsegs++;
469 }
470
471 return nsegs;
472 }
473
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)474 static inline int __blk_bvec_map_sg(struct bio_vec bv,
475 struct scatterlist *sglist, struct scatterlist **sg)
476 {
477 *sg = blk_next_sg(sg, sglist);
478 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
479 return 1;
480 }
481
482 /* only try to merge bvecs into one sg if they are from two bios */
483 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)484 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
485 struct bio_vec *bvprv, struct scatterlist **sg)
486 {
487
488 int nbytes = bvec->bv_len;
489
490 if (!*sg)
491 return false;
492
493 if ((*sg)->length + nbytes > queue_max_segment_size(q))
494 return false;
495
496 if (!biovec_phys_mergeable(q, bvprv, bvec))
497 return false;
498
499 (*sg)->length += nbytes;
500
501 return true;
502 }
503
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)504 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
505 struct scatterlist *sglist,
506 struct scatterlist **sg)
507 {
508 struct bio_vec bvec, bvprv = { NULL };
509 struct bvec_iter iter;
510 int nsegs = 0;
511 bool new_bio = false;
512
513 for_each_bio(bio) {
514 bio_for_each_bvec(bvec, bio, iter) {
515 /*
516 * Only try to merge bvecs from two bios given we
517 * have done bio internal merge when adding pages
518 * to bio
519 */
520 if (new_bio &&
521 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
522 goto next_bvec;
523
524 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
525 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
526 else
527 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
528 next_bvec:
529 new_bio = false;
530 }
531 if (likely(bio->bi_iter.bi_size)) {
532 bvprv = bvec;
533 new_bio = true;
534 }
535 }
536
537 return nsegs;
538 }
539
540 /*
541 * map a request to scatterlist, return number of sg entries setup. Caller
542 * must make sure sg can hold rq->nr_phys_segments entries
543 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)544 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
545 struct scatterlist *sglist, struct scatterlist **last_sg)
546 {
547 int nsegs = 0;
548
549 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
550 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
551 else if (rq->bio)
552 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
553
554 if (*last_sg)
555 sg_mark_end(*last_sg);
556
557 /*
558 * Something must have been wrong if the figured number of
559 * segment is bigger than number of req's physical segments
560 */
561 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
562
563 return nsegs;
564 }
565 EXPORT_SYMBOL(__blk_rq_map_sg);
566
blk_rq_get_max_segments(struct request * rq)567 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
568 {
569 if (req_op(rq) == REQ_OP_DISCARD)
570 return queue_max_discard_segments(rq->q);
571 return queue_max_segments(rq->q);
572 }
573
blk_rq_get_max_sectors(struct request * rq,sector_t offset)574 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
575 sector_t offset)
576 {
577 struct request_queue *q = rq->q;
578 unsigned int max_sectors;
579
580 if (blk_rq_is_passthrough(rq))
581 return q->limits.max_hw_sectors;
582
583 max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
584 if (!q->limits.chunk_sectors ||
585 req_op(rq) == REQ_OP_DISCARD ||
586 req_op(rq) == REQ_OP_SECURE_ERASE)
587 return max_sectors;
588 return min(max_sectors,
589 blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
590 }
591
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)592 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
593 unsigned int nr_phys_segs)
594 {
595 if (!blk_cgroup_mergeable(req, bio))
596 goto no_merge;
597
598 if (blk_integrity_merge_bio(req->q, req, bio) == false)
599 goto no_merge;
600
601 /* discard request merge won't add new segment */
602 if (req_op(req) == REQ_OP_DISCARD)
603 return 1;
604
605 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
606 goto no_merge;
607
608 /*
609 * This will form the start of a new hw segment. Bump both
610 * counters.
611 */
612 req->nr_phys_segments += nr_phys_segs;
613 return 1;
614
615 no_merge:
616 req_set_nomerge(req->q, req);
617 return 0;
618 }
619
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)620 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
621 {
622 if (req_gap_back_merge(req, bio))
623 return 0;
624 if (blk_integrity_rq(req) &&
625 integrity_req_gap_back_merge(req, bio))
626 return 0;
627 if (!bio_crypt_ctx_back_mergeable(req, bio))
628 return 0;
629 if (blk_rq_sectors(req) + bio_sectors(bio) >
630 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
631 req_set_nomerge(req->q, req);
632 return 0;
633 }
634
635 return ll_new_hw_segment(req, bio, nr_segs);
636 }
637
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)638 static int ll_front_merge_fn(struct request *req, struct bio *bio,
639 unsigned int nr_segs)
640 {
641 if (req_gap_front_merge(req, bio))
642 return 0;
643 if (blk_integrity_rq(req) &&
644 integrity_req_gap_front_merge(req, bio))
645 return 0;
646 if (!bio_crypt_ctx_front_mergeable(req, bio))
647 return 0;
648 if (blk_rq_sectors(req) + bio_sectors(bio) >
649 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
650 req_set_nomerge(req->q, req);
651 return 0;
652 }
653
654 return ll_new_hw_segment(req, bio, nr_segs);
655 }
656
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)657 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
658 struct request *next)
659 {
660 unsigned short segments = blk_rq_nr_discard_segments(req);
661
662 if (segments >= queue_max_discard_segments(q))
663 goto no_merge;
664 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
665 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
666 goto no_merge;
667
668 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
669 return true;
670 no_merge:
671 req_set_nomerge(q, req);
672 return false;
673 }
674
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)675 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
676 struct request *next)
677 {
678 int total_phys_segments;
679
680 if (req_gap_back_merge(req, next->bio))
681 return 0;
682
683 /*
684 * Will it become too large?
685 */
686 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
687 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
688 return 0;
689
690 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
691 if (total_phys_segments > blk_rq_get_max_segments(req))
692 return 0;
693
694 if (!blk_cgroup_mergeable(req, next->bio))
695 return 0;
696
697 if (blk_integrity_merge_rq(q, req, next) == false)
698 return 0;
699
700 if (!bio_crypt_ctx_merge_rq(req, next))
701 return 0;
702
703 /* Merge is OK... */
704 req->nr_phys_segments = total_phys_segments;
705 return 1;
706 }
707
708 /**
709 * blk_rq_set_mixed_merge - mark a request as mixed merge
710 * @rq: request to mark as mixed merge
711 *
712 * Description:
713 * @rq is about to be mixed merged. Make sure the attributes
714 * which can be mixed are set in each bio and mark @rq as mixed
715 * merged.
716 */
blk_rq_set_mixed_merge(struct request * rq)717 void blk_rq_set_mixed_merge(struct request *rq)
718 {
719 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
720 struct bio *bio;
721
722 if (rq->rq_flags & RQF_MIXED_MERGE)
723 return;
724
725 /*
726 * @rq will no longer represent mixable attributes for all the
727 * contained bios. It will just track those of the first one.
728 * Distributes the attributs to each bio.
729 */
730 for (bio = rq->bio; bio; bio = bio->bi_next) {
731 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
732 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
733 bio->bi_opf |= ff;
734 }
735 rq->rq_flags |= RQF_MIXED_MERGE;
736 }
737
blk_account_io_merge_request(struct request * req)738 static void blk_account_io_merge_request(struct request *req)
739 {
740 if (blk_do_io_stat(req)) {
741 part_stat_lock();
742 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
743 part_stat_unlock();
744 }
745 }
746
blk_try_req_merge(struct request * req,struct request * next)747 static enum elv_merge blk_try_req_merge(struct request *req,
748 struct request *next)
749 {
750 if (blk_discard_mergable(req))
751 return ELEVATOR_DISCARD_MERGE;
752 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
753 return ELEVATOR_BACK_MERGE;
754
755 return ELEVATOR_NO_MERGE;
756 }
757
758 /*
759 * For non-mq, this has to be called with the request spinlock acquired.
760 * For mq with scheduling, the appropriate queue wide lock should be held.
761 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)762 static struct request *attempt_merge(struct request_queue *q,
763 struct request *req, struct request *next)
764 {
765 if (!rq_mergeable(req) || !rq_mergeable(next))
766 return NULL;
767
768 if (req_op(req) != req_op(next))
769 return NULL;
770
771 if (rq_data_dir(req) != rq_data_dir(next))
772 return NULL;
773
774 if (req->ioprio != next->ioprio)
775 return NULL;
776
777 /*
778 * If we are allowed to merge, then append bio list
779 * from next to rq and release next. merge_requests_fn
780 * will have updated segment counts, update sector
781 * counts here. Handle DISCARDs separately, as they
782 * have separate settings.
783 */
784
785 switch (blk_try_req_merge(req, next)) {
786 case ELEVATOR_DISCARD_MERGE:
787 if (!req_attempt_discard_merge(q, req, next))
788 return NULL;
789 break;
790 case ELEVATOR_BACK_MERGE:
791 if (!ll_merge_requests_fn(q, req, next))
792 return NULL;
793 break;
794 default:
795 return NULL;
796 }
797
798 /*
799 * If failfast settings disagree or any of the two is already
800 * a mixed merge, mark both as mixed before proceeding. This
801 * makes sure that all involved bios have mixable attributes
802 * set properly.
803 */
804 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
805 (req->cmd_flags & REQ_FAILFAST_MASK) !=
806 (next->cmd_flags & REQ_FAILFAST_MASK)) {
807 blk_rq_set_mixed_merge(req);
808 blk_rq_set_mixed_merge(next);
809 }
810
811 /*
812 * At this point we have either done a back merge or front merge. We
813 * need the smaller start_time_ns of the merged requests to be the
814 * current request for accounting purposes.
815 */
816 if (next->start_time_ns < req->start_time_ns)
817 req->start_time_ns = next->start_time_ns;
818
819 req->biotail->bi_next = next->bio;
820 req->biotail = next->biotail;
821
822 req->__data_len += blk_rq_bytes(next);
823
824 if (!blk_discard_mergable(req))
825 elv_merge_requests(q, req, next);
826
827 /*
828 * 'next' is going away, so update stats accordingly
829 */
830 blk_account_io_merge_request(next);
831
832 trace_block_rq_merge(next);
833
834 /*
835 * ownership of bio passed from next to req, return 'next' for
836 * the caller to free
837 */
838 next->bio = NULL;
839 return next;
840 }
841
attempt_back_merge(struct request_queue * q,struct request * rq)842 static struct request *attempt_back_merge(struct request_queue *q,
843 struct request *rq)
844 {
845 struct request *next = elv_latter_request(q, rq);
846
847 if (next)
848 return attempt_merge(q, rq, next);
849
850 return NULL;
851 }
852
attempt_front_merge(struct request_queue * q,struct request * rq)853 static struct request *attempt_front_merge(struct request_queue *q,
854 struct request *rq)
855 {
856 struct request *prev = elv_former_request(q, rq);
857
858 if (prev)
859 return attempt_merge(q, prev, rq);
860
861 return NULL;
862 }
863
864 /*
865 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
866 * otherwise. The caller is responsible for freeing 'next' if the merge
867 * happened.
868 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)869 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
870 struct request *next)
871 {
872 return attempt_merge(q, rq, next);
873 }
874
blk_rq_merge_ok(struct request * rq,struct bio * bio)875 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
876 {
877 if (!rq_mergeable(rq) || !bio_mergeable(bio))
878 return false;
879
880 if (req_op(rq) != bio_op(bio))
881 return false;
882
883 /* different data direction or already started, don't merge */
884 if (bio_data_dir(bio) != rq_data_dir(rq))
885 return false;
886
887 /* don't merge across cgroup boundaries */
888 if (!blk_cgroup_mergeable(rq, bio))
889 return false;
890
891 /* only merge integrity protected bio into ditto rq */
892 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
893 return false;
894
895 /* Only merge if the crypt contexts are compatible */
896 if (!bio_crypt_rq_ctx_compatible(rq, bio))
897 return false;
898
899 if (rq->ioprio != bio_prio(bio))
900 return false;
901
902 return true;
903 }
904
blk_try_merge(struct request * rq,struct bio * bio)905 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
906 {
907 if (blk_discard_mergable(rq))
908 return ELEVATOR_DISCARD_MERGE;
909 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
910 return ELEVATOR_BACK_MERGE;
911 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
912 return ELEVATOR_FRONT_MERGE;
913 return ELEVATOR_NO_MERGE;
914 }
915
blk_account_io_merge_bio(struct request * req)916 static void blk_account_io_merge_bio(struct request *req)
917 {
918 if (!blk_do_io_stat(req))
919 return;
920
921 part_stat_lock();
922 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
923 part_stat_unlock();
924 }
925
926 enum bio_merge_status {
927 BIO_MERGE_OK,
928 BIO_MERGE_NONE,
929 BIO_MERGE_FAILED,
930 };
931
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)932 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
933 struct bio *bio, unsigned int nr_segs)
934 {
935 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
936
937 if (!ll_back_merge_fn(req, bio, nr_segs))
938 return BIO_MERGE_FAILED;
939
940 trace_block_bio_backmerge(bio);
941 rq_qos_merge(req->q, req, bio);
942
943 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
944 blk_rq_set_mixed_merge(req);
945
946 req->biotail->bi_next = bio;
947 req->biotail = bio;
948 req->__data_len += bio->bi_iter.bi_size;
949
950 bio_crypt_free_ctx(bio);
951
952 blk_account_io_merge_bio(req);
953 return BIO_MERGE_OK;
954 }
955
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)956 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
957 struct bio *bio, unsigned int nr_segs)
958 {
959 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
960
961 if (!ll_front_merge_fn(req, bio, nr_segs))
962 return BIO_MERGE_FAILED;
963
964 trace_block_bio_frontmerge(bio);
965 rq_qos_merge(req->q, req, bio);
966
967 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
968 blk_rq_set_mixed_merge(req);
969
970 bio->bi_next = req->bio;
971 req->bio = bio;
972
973 req->__sector = bio->bi_iter.bi_sector;
974 req->__data_len += bio->bi_iter.bi_size;
975
976 bio_crypt_do_front_merge(req, bio);
977
978 blk_account_io_merge_bio(req);
979 return BIO_MERGE_OK;
980 }
981
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)982 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
983 struct request *req, struct bio *bio)
984 {
985 unsigned short segments = blk_rq_nr_discard_segments(req);
986
987 if (segments >= queue_max_discard_segments(q))
988 goto no_merge;
989 if (blk_rq_sectors(req) + bio_sectors(bio) >
990 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
991 goto no_merge;
992
993 rq_qos_merge(q, req, bio);
994
995 req->biotail->bi_next = bio;
996 req->biotail = bio;
997 req->__data_len += bio->bi_iter.bi_size;
998 req->nr_phys_segments = segments + 1;
999
1000 blk_account_io_merge_bio(req);
1001 return BIO_MERGE_OK;
1002 no_merge:
1003 req_set_nomerge(q, req);
1004 return BIO_MERGE_FAILED;
1005 }
1006
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1007 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1008 struct request *rq,
1009 struct bio *bio,
1010 unsigned int nr_segs,
1011 bool sched_allow_merge)
1012 {
1013 if (!blk_rq_merge_ok(rq, bio))
1014 return BIO_MERGE_NONE;
1015
1016 switch (blk_try_merge(rq, bio)) {
1017 case ELEVATOR_BACK_MERGE:
1018 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1019 return bio_attempt_back_merge(rq, bio, nr_segs);
1020 break;
1021 case ELEVATOR_FRONT_MERGE:
1022 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1023 return bio_attempt_front_merge(rq, bio, nr_segs);
1024 break;
1025 case ELEVATOR_DISCARD_MERGE:
1026 return bio_attempt_discard_merge(q, rq, bio);
1027 default:
1028 return BIO_MERGE_NONE;
1029 }
1030
1031 return BIO_MERGE_FAILED;
1032 }
1033
1034 /**
1035 * blk_attempt_plug_merge - try to merge with %current's plugged list
1036 * @q: request_queue new bio is being queued at
1037 * @bio: new bio being queued
1038 * @nr_segs: number of segments in @bio
1039 * from the passed in @q already in the plug list
1040 *
1041 * Determine whether @bio being queued on @q can be merged with the previous
1042 * request on %current's plugged list. Returns %true if merge was successful,
1043 * otherwise %false.
1044 *
1045 * Plugging coalesces IOs from the same issuer for the same purpose without
1046 * going through @q->queue_lock. As such it's more of an issuing mechanism
1047 * than scheduling, and the request, while may have elvpriv data, is not
1048 * added on the elevator at this point. In addition, we don't have
1049 * reliable access to the elevator outside queue lock. Only check basic
1050 * merging parameters without querying the elevator.
1051 *
1052 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1053 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1054 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1055 unsigned int nr_segs)
1056 {
1057 struct blk_plug *plug;
1058 struct request *rq;
1059
1060 plug = blk_mq_plug(bio);
1061 if (!plug || rq_list_empty(plug->mq_list))
1062 return false;
1063
1064 rq_list_for_each(&plug->mq_list, rq) {
1065 if (rq->q == q) {
1066 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1067 BIO_MERGE_OK)
1068 return true;
1069 break;
1070 }
1071
1072 /*
1073 * Only keep iterating plug list for merges if we have multiple
1074 * queues
1075 */
1076 if (!plug->multiple_queues)
1077 break;
1078 }
1079 return false;
1080 }
1081
1082 /*
1083 * Iterate list of requests and see if we can merge this bio with any
1084 * of them.
1085 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1086 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1087 struct bio *bio, unsigned int nr_segs)
1088 {
1089 struct request *rq;
1090 int checked = 8;
1091
1092 list_for_each_entry_reverse(rq, list, queuelist) {
1093 if (!checked--)
1094 break;
1095
1096 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1097 case BIO_MERGE_NONE:
1098 continue;
1099 case BIO_MERGE_OK:
1100 return true;
1101 case BIO_MERGE_FAILED:
1102 return false;
1103 }
1104
1105 }
1106
1107 return false;
1108 }
1109 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1110
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1111 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1112 unsigned int nr_segs, struct request **merged_request)
1113 {
1114 struct request *rq;
1115
1116 switch (elv_merge(q, &rq, bio)) {
1117 case ELEVATOR_BACK_MERGE:
1118 if (!blk_mq_sched_allow_merge(q, rq, bio))
1119 return false;
1120 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1121 return false;
1122 *merged_request = attempt_back_merge(q, rq);
1123 if (!*merged_request)
1124 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1125 return true;
1126 case ELEVATOR_FRONT_MERGE:
1127 if (!blk_mq_sched_allow_merge(q, rq, bio))
1128 return false;
1129 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1130 return false;
1131 *merged_request = attempt_front_merge(q, rq);
1132 if (!*merged_request)
1133 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1134 return true;
1135 case ELEVATOR_DISCARD_MERGE:
1136 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1137 default:
1138 return false;
1139 }
1140 }
1141 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1142