1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block rq-qos base io controller
4 *
5 * This works similar to wbt with a few exceptions
6 *
7 * - It's bio based, so the latency covers the whole block layer in addition to
8 * the actual io.
9 * - We will throttle all IO that comes in here if we need to.
10 * - We use the mean latency over the 100ms window. This is because writes can
11 * be particularly fast, which could give us a false sense of the impact of
12 * other workloads on our protected workload.
13 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
14 * that we can have as many outstanding bio's as we're allowed to. Only at
15 * throttle time do we pay attention to the actual queue depth.
16 *
17 * The hierarchy works like the cpu controller does, we track the latency at
18 * every configured node, and each configured node has it's own independent
19 * queue depth. This means that we only care about our latency targets at the
20 * peer level. Some group at the bottom of the hierarchy isn't going to affect
21 * a group at the end of some other path if we're only configred at leaf level.
22 *
23 * Consider the following
24 *
25 * root blkg
26 * / \
27 * fast (target=5ms) slow (target=10ms)
28 * / \ / \
29 * a b normal(15ms) unloved
30 *
31 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
32 * an average latency of 5ms. If it does then we will throttle the "slow"
33 * group. In the case of "normal", if it exceeds its 15ms target, we will
34 * throttle "unloved", but nobody else.
35 *
36 * In this example "fast", "slow", and "normal" will be the only groups actually
37 * accounting their io latencies. We have to walk up the heirarchy to the root
38 * on every submit and complete so we can do the appropriate stat recording and
39 * adjust the queue depth of ourselves if needed.
40 *
41 * There are 2 ways we throttle IO.
42 *
43 * 1) Queue depth throttling. As we throttle down we will adjust the maximum
44 * number of IO's we're allowed to have in flight. This starts at (u64)-1 down
45 * to 1. If the group is only ever submitting IO for itself then this is the
46 * only way we throttle.
47 *
48 * 2) Induced delay throttling. This is for the case that a group is generating
49 * IO that has to be issued by the root cg to avoid priority inversion. So think
50 * REQ_META or REQ_SWAP. If we are already at qd == 1 and we're getting a lot
51 * of work done for us on behalf of the root cg and are being asked to scale
52 * down more then we induce a latency at userspace return. We accumulate the
53 * total amount of time we need to be punished by doing
54 *
55 * total_time += min_lat_nsec - actual_io_completion
56 *
57 * and then at throttle time will do
58 *
59 * throttle_time = min(total_time, NSEC_PER_SEC)
60 *
61 * This induced delay will throttle back the activity that is generating the
62 * root cg issued io's, wethere that's some metadata intensive operation or the
63 * group is using so much memory that it is pushing us into swap.
64 *
65 * Copyright (C) 2018 Josef Bacik
66 */
67 #include <linux/kernel.h>
68 #include <linux/blk_types.h>
69 #include <linux/backing-dev.h>
70 #include <linux/module.h>
71 #include <linux/timer.h>
72 #include <linux/memcontrol.h>
73 #include <linux/sched/loadavg.h>
74 #include <linux/sched/signal.h>
75 #include <trace/events/block.h>
76 #include <linux/blk-mq.h>
77 #include "blk-rq-qos.h"
78 #include "blk-stat.h"
79 #include "blk-cgroup.h"
80 #include "blk.h"
81
82 #define DEFAULT_SCALE_COOKIE 1000000U
83
84 static struct blkcg_policy blkcg_policy_iolatency;
85 struct iolatency_grp;
86
87 struct blk_iolatency {
88 struct rq_qos rqos;
89 struct timer_list timer;
90
91 /*
92 * ->enabled is the master enable switch gating the throttling logic and
93 * inflight tracking. The number of cgroups which have iolat enabled is
94 * tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
95 * from ->enable_work with the request_queue frozen. For details, See
96 * blkiolatency_enable_work_fn().
97 */
98 bool enabled;
99 atomic_t enable_cnt;
100 struct work_struct enable_work;
101 };
102
BLKIOLATENCY(struct rq_qos * rqos)103 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
104 {
105 return container_of(rqos, struct blk_iolatency, rqos);
106 }
107
108 struct child_latency_info {
109 spinlock_t lock;
110
111 /* Last time we adjusted the scale of everybody. */
112 u64 last_scale_event;
113
114 /* The latency that we missed. */
115 u64 scale_lat;
116
117 /* Total io's from all of our children for the last summation. */
118 u64 nr_samples;
119
120 /* The guy who actually changed the latency numbers. */
121 struct iolatency_grp *scale_grp;
122
123 /* Cookie to tell if we need to scale up or down. */
124 atomic_t scale_cookie;
125 };
126
127 struct percentile_stats {
128 u64 total;
129 u64 missed;
130 };
131
132 struct latency_stat {
133 union {
134 struct percentile_stats ps;
135 struct blk_rq_stat rqs;
136 };
137 };
138
139 struct iolatency_grp {
140 struct blkg_policy_data pd;
141 struct latency_stat __percpu *stats;
142 struct latency_stat cur_stat;
143 struct blk_iolatency *blkiolat;
144 struct rq_depth rq_depth;
145 struct rq_wait rq_wait;
146 atomic64_t window_start;
147 atomic_t scale_cookie;
148 u64 min_lat_nsec;
149 u64 cur_win_nsec;
150
151 /* total running average of our io latency. */
152 u64 lat_avg;
153
154 /* Our current number of IO's for the last summation. */
155 u64 nr_samples;
156
157 bool ssd;
158 struct child_latency_info child_lat;
159 };
160
161 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
162 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
163 /*
164 * These are the constants used to fake the fixed-point moving average
165 * calculation just like load average. The call to calc_load() folds
166 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg. The sampling
167 * window size is bucketed to try to approximately calculate average
168 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
169 * elapse immediately. Note, windows only elapse with IO activity. Idle
170 * periods extend the most recent window.
171 */
172 #define BLKIOLATENCY_NR_EXP_FACTORS 5
173 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
174 (BLKIOLATENCY_NR_EXP_FACTORS - 1))
175 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
176 2045, // exp(1/600) - 600 samples
177 2039, // exp(1/240) - 240 samples
178 2031, // exp(1/120) - 120 samples
179 2023, // exp(1/80) - 80 samples
180 2014, // exp(1/60) - 60 samples
181 };
182
pd_to_lat(struct blkg_policy_data * pd)183 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
184 {
185 return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
186 }
187
blkg_to_lat(struct blkcg_gq * blkg)188 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
189 {
190 return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
191 }
192
lat_to_blkg(struct iolatency_grp * iolat)193 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
194 {
195 return pd_to_blkg(&iolat->pd);
196 }
197
latency_stat_init(struct iolatency_grp * iolat,struct latency_stat * stat)198 static inline void latency_stat_init(struct iolatency_grp *iolat,
199 struct latency_stat *stat)
200 {
201 if (iolat->ssd) {
202 stat->ps.total = 0;
203 stat->ps.missed = 0;
204 } else
205 blk_rq_stat_init(&stat->rqs);
206 }
207
latency_stat_sum(struct iolatency_grp * iolat,struct latency_stat * sum,struct latency_stat * stat)208 static inline void latency_stat_sum(struct iolatency_grp *iolat,
209 struct latency_stat *sum,
210 struct latency_stat *stat)
211 {
212 if (iolat->ssd) {
213 sum->ps.total += stat->ps.total;
214 sum->ps.missed += stat->ps.missed;
215 } else
216 blk_rq_stat_sum(&sum->rqs, &stat->rqs);
217 }
218
latency_stat_record_time(struct iolatency_grp * iolat,u64 req_time)219 static inline void latency_stat_record_time(struct iolatency_grp *iolat,
220 u64 req_time)
221 {
222 struct latency_stat *stat = get_cpu_ptr(iolat->stats);
223 if (iolat->ssd) {
224 if (req_time >= iolat->min_lat_nsec)
225 stat->ps.missed++;
226 stat->ps.total++;
227 } else
228 blk_rq_stat_add(&stat->rqs, req_time);
229 put_cpu_ptr(stat);
230 }
231
latency_sum_ok(struct iolatency_grp * iolat,struct latency_stat * stat)232 static inline bool latency_sum_ok(struct iolatency_grp *iolat,
233 struct latency_stat *stat)
234 {
235 if (iolat->ssd) {
236 u64 thresh = div64_u64(stat->ps.total, 10);
237 thresh = max(thresh, 1ULL);
238 return stat->ps.missed < thresh;
239 }
240 return stat->rqs.mean <= iolat->min_lat_nsec;
241 }
242
latency_stat_samples(struct iolatency_grp * iolat,struct latency_stat * stat)243 static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
244 struct latency_stat *stat)
245 {
246 if (iolat->ssd)
247 return stat->ps.total;
248 return stat->rqs.nr_samples;
249 }
250
iolat_update_total_lat_avg(struct iolatency_grp * iolat,struct latency_stat * stat)251 static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
252 struct latency_stat *stat)
253 {
254 int exp_idx;
255
256 if (iolat->ssd)
257 return;
258
259 /*
260 * calc_load() takes in a number stored in fixed point representation.
261 * Because we are using this for IO time in ns, the values stored
262 * are significantly larger than the FIXED_1 denominator (2048).
263 * Therefore, rounding errors in the calculation are negligible and
264 * can be ignored.
265 */
266 exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
267 div64_u64(iolat->cur_win_nsec,
268 BLKIOLATENCY_EXP_BUCKET_SIZE));
269 iolat->lat_avg = calc_load(iolat->lat_avg,
270 iolatency_exp_factors[exp_idx],
271 stat->rqs.mean);
272 }
273
iolat_cleanup_cb(struct rq_wait * rqw,void * private_data)274 static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
275 {
276 atomic_dec(&rqw->inflight);
277 wake_up(&rqw->wait);
278 }
279
iolat_acquire_inflight(struct rq_wait * rqw,void * private_data)280 static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
281 {
282 struct iolatency_grp *iolat = private_data;
283 return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
284 }
285
__blkcg_iolatency_throttle(struct rq_qos * rqos,struct iolatency_grp * iolat,bool issue_as_root,bool use_memdelay)286 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
287 struct iolatency_grp *iolat,
288 bool issue_as_root,
289 bool use_memdelay)
290 {
291 struct rq_wait *rqw = &iolat->rq_wait;
292 unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
293
294 if (use_delay)
295 blkcg_schedule_throttle(rqos->q->disk, use_memdelay);
296
297 /*
298 * To avoid priority inversions we want to just take a slot if we are
299 * issuing as root. If we're being killed off there's no point in
300 * delaying things, we may have been killed by OOM so throttling may
301 * make recovery take even longer, so just let the IO's through so the
302 * task can go away.
303 */
304 if (issue_as_root || fatal_signal_pending(current)) {
305 atomic_inc(&rqw->inflight);
306 return;
307 }
308
309 rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
310 }
311
312 #define SCALE_DOWN_FACTOR 2
313 #define SCALE_UP_FACTOR 4
314
scale_amount(unsigned long qd,bool up)315 static inline unsigned long scale_amount(unsigned long qd, bool up)
316 {
317 return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
318 }
319
320 /*
321 * We scale the qd down faster than we scale up, so we need to use this helper
322 * to adjust the scale_cookie accordingly so we don't prematurely get
323 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
324 *
325 * Each group has their own local copy of the last scale cookie they saw, so if
326 * the global scale cookie goes up or down they know which way they need to go
327 * based on their last knowledge of it.
328 */
scale_cookie_change(struct blk_iolatency * blkiolat,struct child_latency_info * lat_info,bool up)329 static void scale_cookie_change(struct blk_iolatency *blkiolat,
330 struct child_latency_info *lat_info,
331 bool up)
332 {
333 unsigned long qd = blkiolat->rqos.q->nr_requests;
334 unsigned long scale = scale_amount(qd, up);
335 unsigned long old = atomic_read(&lat_info->scale_cookie);
336 unsigned long max_scale = qd << 1;
337 unsigned long diff = 0;
338
339 if (old < DEFAULT_SCALE_COOKIE)
340 diff = DEFAULT_SCALE_COOKIE - old;
341
342 if (up) {
343 if (scale + old > DEFAULT_SCALE_COOKIE)
344 atomic_set(&lat_info->scale_cookie,
345 DEFAULT_SCALE_COOKIE);
346 else if (diff > qd)
347 atomic_inc(&lat_info->scale_cookie);
348 else
349 atomic_add(scale, &lat_info->scale_cookie);
350 } else {
351 /*
352 * We don't want to dig a hole so deep that it takes us hours to
353 * dig out of it. Just enough that we don't throttle/unthrottle
354 * with jagged workloads but can still unthrottle once pressure
355 * has sufficiently dissipated.
356 */
357 if (diff > qd) {
358 if (diff < max_scale)
359 atomic_dec(&lat_info->scale_cookie);
360 } else {
361 atomic_sub(scale, &lat_info->scale_cookie);
362 }
363 }
364 }
365
366 /*
367 * Change the queue depth of the iolatency_grp. We add/subtract 1/16th of the
368 * queue depth at a time so we don't get wild swings and hopefully dial in to
369 * fairer distribution of the overall queue depth.
370 */
scale_change(struct iolatency_grp * iolat,bool up)371 static void scale_change(struct iolatency_grp *iolat, bool up)
372 {
373 unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
374 unsigned long scale = scale_amount(qd, up);
375 unsigned long old = iolat->rq_depth.max_depth;
376
377 if (old > qd)
378 old = qd;
379
380 if (up) {
381 if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
382 return;
383
384 if (old < qd) {
385 old += scale;
386 old = min(old, qd);
387 iolat->rq_depth.max_depth = old;
388 wake_up_all(&iolat->rq_wait.wait);
389 }
390 } else {
391 old >>= 1;
392 iolat->rq_depth.max_depth = max(old, 1UL);
393 }
394 }
395
396 /* Check our parent and see if the scale cookie has changed. */
check_scale_change(struct iolatency_grp * iolat)397 static void check_scale_change(struct iolatency_grp *iolat)
398 {
399 struct iolatency_grp *parent;
400 struct child_latency_info *lat_info;
401 unsigned int cur_cookie;
402 unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
403 u64 scale_lat;
404 int direction = 0;
405
406 if (lat_to_blkg(iolat)->parent == NULL)
407 return;
408
409 parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
410 if (!parent)
411 return;
412
413 lat_info = &parent->child_lat;
414 cur_cookie = atomic_read(&lat_info->scale_cookie);
415 scale_lat = READ_ONCE(lat_info->scale_lat);
416
417 if (cur_cookie < our_cookie)
418 direction = -1;
419 else if (cur_cookie > our_cookie)
420 direction = 1;
421 else
422 return;
423
424 if (!atomic_try_cmpxchg(&iolat->scale_cookie, &our_cookie, cur_cookie)) {
425 /* Somebody beat us to the punch, just bail. */
426 return;
427 }
428
429 if (direction < 0 && iolat->min_lat_nsec) {
430 u64 samples_thresh;
431
432 if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
433 return;
434
435 /*
436 * Sometimes high priority groups are their own worst enemy, so
437 * instead of taking it out on some poor other group that did 5%
438 * or less of the IO's for the last summation just skip this
439 * scale down event.
440 */
441 samples_thresh = lat_info->nr_samples * 5;
442 samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
443 if (iolat->nr_samples <= samples_thresh)
444 return;
445 }
446
447 /* We're as low as we can go. */
448 if (iolat->rq_depth.max_depth == 1 && direction < 0) {
449 blkcg_use_delay(lat_to_blkg(iolat));
450 return;
451 }
452
453 /* We're back to the default cookie, unthrottle all the things. */
454 if (cur_cookie == DEFAULT_SCALE_COOKIE) {
455 blkcg_clear_delay(lat_to_blkg(iolat));
456 iolat->rq_depth.max_depth = UINT_MAX;
457 wake_up_all(&iolat->rq_wait.wait);
458 return;
459 }
460
461 scale_change(iolat, direction > 0);
462 }
463
blkcg_iolatency_throttle(struct rq_qos * rqos,struct bio * bio)464 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
465 {
466 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
467 struct blkcg_gq *blkg = bio->bi_blkg;
468 bool issue_as_root = bio_issue_as_root_blkg(bio);
469
470 if (!blkiolat->enabled)
471 return;
472
473 while (blkg && blkg->parent) {
474 struct iolatency_grp *iolat = blkg_to_lat(blkg);
475 if (!iolat) {
476 blkg = blkg->parent;
477 continue;
478 }
479
480 check_scale_change(iolat);
481 __blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
482 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
483 blkg = blkg->parent;
484 }
485 if (!timer_pending(&blkiolat->timer))
486 mod_timer(&blkiolat->timer, jiffies + HZ);
487 }
488
iolatency_record_time(struct iolatency_grp * iolat,struct bio_issue * issue,u64 now,bool issue_as_root)489 static void iolatency_record_time(struct iolatency_grp *iolat,
490 struct bio_issue *issue, u64 now,
491 bool issue_as_root)
492 {
493 u64 start = bio_issue_time(issue);
494 u64 req_time;
495
496 /*
497 * Have to do this so we are truncated to the correct time that our
498 * issue is truncated to.
499 */
500 now = __bio_issue_time(now);
501
502 if (now <= start)
503 return;
504
505 req_time = now - start;
506
507 /*
508 * We don't want to count issue_as_root bio's in the cgroups latency
509 * statistics as it could skew the numbers downwards.
510 */
511 if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
512 u64 sub = iolat->min_lat_nsec;
513 if (req_time < sub)
514 blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
515 return;
516 }
517
518 latency_stat_record_time(iolat, req_time);
519 }
520
521 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
522 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
523
iolatency_check_latencies(struct iolatency_grp * iolat,u64 now)524 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
525 {
526 struct blkcg_gq *blkg = lat_to_blkg(iolat);
527 struct iolatency_grp *parent;
528 struct child_latency_info *lat_info;
529 struct latency_stat stat;
530 unsigned long flags;
531 int cpu;
532
533 latency_stat_init(iolat, &stat);
534 preempt_disable();
535 for_each_online_cpu(cpu) {
536 struct latency_stat *s;
537 s = per_cpu_ptr(iolat->stats, cpu);
538 latency_stat_sum(iolat, &stat, s);
539 latency_stat_init(iolat, s);
540 }
541 preempt_enable();
542
543 parent = blkg_to_lat(blkg->parent);
544 if (!parent)
545 return;
546
547 lat_info = &parent->child_lat;
548
549 iolat_update_total_lat_avg(iolat, &stat);
550
551 /* Everything is ok and we don't need to adjust the scale. */
552 if (latency_sum_ok(iolat, &stat) &&
553 atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
554 return;
555
556 /* Somebody beat us to the punch, just bail. */
557 spin_lock_irqsave(&lat_info->lock, flags);
558
559 latency_stat_sum(iolat, &iolat->cur_stat, &stat);
560 lat_info->nr_samples -= iolat->nr_samples;
561 lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
562 iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
563
564 if ((lat_info->last_scale_event >= now ||
565 now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
566 goto out;
567
568 if (latency_sum_ok(iolat, &iolat->cur_stat) &&
569 latency_sum_ok(iolat, &stat)) {
570 if (latency_stat_samples(iolat, &iolat->cur_stat) <
571 BLKIOLATENCY_MIN_GOOD_SAMPLES)
572 goto out;
573 if (lat_info->scale_grp == iolat) {
574 lat_info->last_scale_event = now;
575 scale_cookie_change(iolat->blkiolat, lat_info, true);
576 }
577 } else if (lat_info->scale_lat == 0 ||
578 lat_info->scale_lat >= iolat->min_lat_nsec) {
579 lat_info->last_scale_event = now;
580 if (!lat_info->scale_grp ||
581 lat_info->scale_lat > iolat->min_lat_nsec) {
582 WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
583 lat_info->scale_grp = iolat;
584 }
585 scale_cookie_change(iolat->blkiolat, lat_info, false);
586 }
587 latency_stat_init(iolat, &iolat->cur_stat);
588 out:
589 spin_unlock_irqrestore(&lat_info->lock, flags);
590 }
591
blkcg_iolatency_done_bio(struct rq_qos * rqos,struct bio * bio)592 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
593 {
594 struct blkcg_gq *blkg;
595 struct rq_wait *rqw;
596 struct iolatency_grp *iolat;
597 u64 window_start;
598 u64 now;
599 bool issue_as_root = bio_issue_as_root_blkg(bio);
600 int inflight = 0;
601
602 blkg = bio->bi_blkg;
603 if (!blkg || !bio_flagged(bio, BIO_QOS_THROTTLED))
604 return;
605
606 iolat = blkg_to_lat(bio->bi_blkg);
607 if (!iolat)
608 return;
609
610 if (!iolat->blkiolat->enabled)
611 return;
612
613 now = ktime_to_ns(ktime_get());
614 while (blkg && blkg->parent) {
615 iolat = blkg_to_lat(blkg);
616 if (!iolat) {
617 blkg = blkg->parent;
618 continue;
619 }
620 rqw = &iolat->rq_wait;
621
622 inflight = atomic_dec_return(&rqw->inflight);
623 WARN_ON_ONCE(inflight < 0);
624 /*
625 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
626 * submitted, so do not account for it.
627 */
628 if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
629 iolatency_record_time(iolat, &bio->bi_issue, now,
630 issue_as_root);
631 window_start = atomic64_read(&iolat->window_start);
632 if (now > window_start &&
633 (now - window_start) >= iolat->cur_win_nsec) {
634 if (atomic64_try_cmpxchg(&iolat->window_start,
635 &window_start, now))
636 iolatency_check_latencies(iolat, now);
637 }
638 }
639 wake_up(&rqw->wait);
640 blkg = blkg->parent;
641 }
642 }
643
blkcg_iolatency_exit(struct rq_qos * rqos)644 static void blkcg_iolatency_exit(struct rq_qos *rqos)
645 {
646 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
647
648 del_timer_sync(&blkiolat->timer);
649 flush_work(&blkiolat->enable_work);
650 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
651 kfree(blkiolat);
652 }
653
654 static struct rq_qos_ops blkcg_iolatency_ops = {
655 .throttle = blkcg_iolatency_throttle,
656 .done_bio = blkcg_iolatency_done_bio,
657 .exit = blkcg_iolatency_exit,
658 };
659
blkiolatency_timer_fn(struct timer_list * t)660 static void blkiolatency_timer_fn(struct timer_list *t)
661 {
662 struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
663 struct blkcg_gq *blkg;
664 struct cgroup_subsys_state *pos_css;
665 u64 now = ktime_to_ns(ktime_get());
666
667 rcu_read_lock();
668 blkg_for_each_descendant_pre(blkg, pos_css,
669 blkiolat->rqos.q->root_blkg) {
670 struct iolatency_grp *iolat;
671 struct child_latency_info *lat_info;
672 unsigned long flags;
673 u64 cookie;
674
675 /*
676 * We could be exiting, don't access the pd unless we have a
677 * ref on the blkg.
678 */
679 if (!blkg_tryget(blkg))
680 continue;
681
682 iolat = blkg_to_lat(blkg);
683 if (!iolat)
684 goto next;
685
686 lat_info = &iolat->child_lat;
687 cookie = atomic_read(&lat_info->scale_cookie);
688
689 if (cookie >= DEFAULT_SCALE_COOKIE)
690 goto next;
691
692 spin_lock_irqsave(&lat_info->lock, flags);
693 if (lat_info->last_scale_event >= now)
694 goto next_lock;
695
696 /*
697 * We scaled down but don't have a scale_grp, scale up and carry
698 * on.
699 */
700 if (lat_info->scale_grp == NULL) {
701 scale_cookie_change(iolat->blkiolat, lat_info, true);
702 goto next_lock;
703 }
704
705 /*
706 * It's been 5 seconds since our last scale event, clear the
707 * scale grp in case the group that needed the scale down isn't
708 * doing any IO currently.
709 */
710 if (now - lat_info->last_scale_event >=
711 ((u64)NSEC_PER_SEC * 5))
712 lat_info->scale_grp = NULL;
713 next_lock:
714 spin_unlock_irqrestore(&lat_info->lock, flags);
715 next:
716 blkg_put(blkg);
717 }
718 rcu_read_unlock();
719 }
720
721 /**
722 * blkiolatency_enable_work_fn - Enable or disable iolatency on the device
723 * @work: enable_work of the blk_iolatency of interest
724 *
725 * iolatency needs to keep track of the number of in-flight IOs per cgroup. This
726 * is relatively expensive as it involves walking up the hierarchy twice for
727 * every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
728 * want to disable the in-flight tracking.
729 *
730 * We have to make sure that the counting is balanced - we don't want to leak
731 * the in-flight counts by disabling accounting in the completion path while IOs
732 * are in flight. This is achieved by ensuring that no IO is in flight by
733 * freezing the queue while flipping ->enabled. As this requires a sleepable
734 * context, ->enabled flipping is punted to this work function.
735 */
blkiolatency_enable_work_fn(struct work_struct * work)736 static void blkiolatency_enable_work_fn(struct work_struct *work)
737 {
738 struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
739 enable_work);
740 bool enabled;
741
742 /*
743 * There can only be one instance of this function running for @blkiolat
744 * and it's guaranteed to be executed at least once after the latest
745 * ->enabled_cnt modification. Acting on the latest ->enable_cnt is
746 * sufficient.
747 *
748 * Also, we know @blkiolat is safe to access as ->enable_work is flushed
749 * in blkcg_iolatency_exit().
750 */
751 enabled = atomic_read(&blkiolat->enable_cnt);
752 if (enabled != blkiolat->enabled) {
753 blk_mq_freeze_queue(blkiolat->rqos.q);
754 blkiolat->enabled = enabled;
755 blk_mq_unfreeze_queue(blkiolat->rqos.q);
756 }
757 }
758
blk_iolatency_init(struct gendisk * disk)759 int blk_iolatency_init(struct gendisk *disk)
760 {
761 struct request_queue *q = disk->queue;
762 struct blk_iolatency *blkiolat;
763 struct rq_qos *rqos;
764 int ret;
765
766 blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
767 if (!blkiolat)
768 return -ENOMEM;
769
770 rqos = &blkiolat->rqos;
771 rqos->id = RQ_QOS_LATENCY;
772 rqos->ops = &blkcg_iolatency_ops;
773 rqos->q = q;
774
775 ret = rq_qos_add(q, rqos);
776 if (ret)
777 goto err_free;
778 ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
779 if (ret)
780 goto err_qos_del;
781
782 timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
783 INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
784
785 return 0;
786
787 err_qos_del:
788 rq_qos_del(q, rqos);
789 err_free:
790 kfree(blkiolat);
791 return ret;
792 }
793
iolatency_set_min_lat_nsec(struct blkcg_gq * blkg,u64 val)794 static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
795 {
796 struct iolatency_grp *iolat = blkg_to_lat(blkg);
797 struct blk_iolatency *blkiolat = iolat->blkiolat;
798 u64 oldval = iolat->min_lat_nsec;
799
800 iolat->min_lat_nsec = val;
801 iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
802 iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
803 BLKIOLATENCY_MAX_WIN_SIZE);
804
805 if (!oldval && val) {
806 if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
807 schedule_work(&blkiolat->enable_work);
808 }
809 if (oldval && !val) {
810 blkcg_clear_delay(blkg);
811 if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
812 schedule_work(&blkiolat->enable_work);
813 }
814 }
815
iolatency_clear_scaling(struct blkcg_gq * blkg)816 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
817 {
818 if (blkg->parent) {
819 struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
820 struct child_latency_info *lat_info;
821 if (!iolat)
822 return;
823
824 lat_info = &iolat->child_lat;
825 spin_lock(&lat_info->lock);
826 atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
827 lat_info->last_scale_event = 0;
828 lat_info->scale_grp = NULL;
829 lat_info->scale_lat = 0;
830 spin_unlock(&lat_info->lock);
831 }
832 }
833
iolatency_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)834 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
835 size_t nbytes, loff_t off)
836 {
837 struct blkcg *blkcg = css_to_blkcg(of_css(of));
838 struct blkcg_gq *blkg;
839 struct blkg_conf_ctx ctx;
840 struct iolatency_grp *iolat;
841 char *p, *tok;
842 u64 lat_val = 0;
843 u64 oldval;
844 int ret;
845
846 ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
847 if (ret)
848 return ret;
849
850 iolat = blkg_to_lat(ctx.blkg);
851 p = ctx.body;
852
853 ret = -EINVAL;
854 while ((tok = strsep(&p, " "))) {
855 char key[16];
856 char val[21]; /* 18446744073709551616 */
857
858 if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
859 goto out;
860
861 if (!strcmp(key, "target")) {
862 u64 v;
863
864 if (!strcmp(val, "max"))
865 lat_val = 0;
866 else if (sscanf(val, "%llu", &v) == 1)
867 lat_val = v * NSEC_PER_USEC;
868 else
869 goto out;
870 } else {
871 goto out;
872 }
873 }
874
875 /* Walk up the tree to see if our new val is lower than it should be. */
876 blkg = ctx.blkg;
877 oldval = iolat->min_lat_nsec;
878
879 iolatency_set_min_lat_nsec(blkg, lat_val);
880 if (oldval != iolat->min_lat_nsec)
881 iolatency_clear_scaling(blkg);
882 ret = 0;
883 out:
884 blkg_conf_finish(&ctx);
885 return ret ?: nbytes;
886 }
887
iolatency_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)888 static u64 iolatency_prfill_limit(struct seq_file *sf,
889 struct blkg_policy_data *pd, int off)
890 {
891 struct iolatency_grp *iolat = pd_to_lat(pd);
892 const char *dname = blkg_dev_name(pd->blkg);
893
894 if (!dname || !iolat->min_lat_nsec)
895 return 0;
896 seq_printf(sf, "%s target=%llu\n",
897 dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
898 return 0;
899 }
900
iolatency_print_limit(struct seq_file * sf,void * v)901 static int iolatency_print_limit(struct seq_file *sf, void *v)
902 {
903 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
904 iolatency_prfill_limit,
905 &blkcg_policy_iolatency, seq_cft(sf)->private, false);
906 return 0;
907 }
908
iolatency_ssd_stat(struct iolatency_grp * iolat,struct seq_file * s)909 static void iolatency_ssd_stat(struct iolatency_grp *iolat, struct seq_file *s)
910 {
911 struct latency_stat stat;
912 int cpu;
913
914 latency_stat_init(iolat, &stat);
915 preempt_disable();
916 for_each_online_cpu(cpu) {
917 struct latency_stat *s;
918 s = per_cpu_ptr(iolat->stats, cpu);
919 latency_stat_sum(iolat, &stat, s);
920 }
921 preempt_enable();
922
923 if (iolat->rq_depth.max_depth == UINT_MAX)
924 seq_printf(s, " missed=%llu total=%llu depth=max",
925 (unsigned long long)stat.ps.missed,
926 (unsigned long long)stat.ps.total);
927 else
928 seq_printf(s, " missed=%llu total=%llu depth=%u",
929 (unsigned long long)stat.ps.missed,
930 (unsigned long long)stat.ps.total,
931 iolat->rq_depth.max_depth);
932 }
933
iolatency_pd_stat(struct blkg_policy_data * pd,struct seq_file * s)934 static void iolatency_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
935 {
936 struct iolatency_grp *iolat = pd_to_lat(pd);
937 unsigned long long avg_lat;
938 unsigned long long cur_win;
939
940 if (!blkcg_debug_stats)
941 return;
942
943 if (iolat->ssd)
944 return iolatency_ssd_stat(iolat, s);
945
946 avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
947 cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
948 if (iolat->rq_depth.max_depth == UINT_MAX)
949 seq_printf(s, " depth=max avg_lat=%llu win=%llu",
950 avg_lat, cur_win);
951 else
952 seq_printf(s, " depth=%u avg_lat=%llu win=%llu",
953 iolat->rq_depth.max_depth, avg_lat, cur_win);
954 }
955
iolatency_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)956 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
957 struct request_queue *q,
958 struct blkcg *blkcg)
959 {
960 struct iolatency_grp *iolat;
961
962 iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
963 if (!iolat)
964 return NULL;
965 iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
966 __alignof__(struct latency_stat), gfp);
967 if (!iolat->stats) {
968 kfree(iolat);
969 return NULL;
970 }
971 return &iolat->pd;
972 }
973
iolatency_pd_init(struct blkg_policy_data * pd)974 static void iolatency_pd_init(struct blkg_policy_data *pd)
975 {
976 struct iolatency_grp *iolat = pd_to_lat(pd);
977 struct blkcg_gq *blkg = lat_to_blkg(iolat);
978 struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
979 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
980 u64 now = ktime_to_ns(ktime_get());
981 int cpu;
982
983 if (blk_queue_nonrot(blkg->q))
984 iolat->ssd = true;
985 else
986 iolat->ssd = false;
987
988 for_each_possible_cpu(cpu) {
989 struct latency_stat *stat;
990 stat = per_cpu_ptr(iolat->stats, cpu);
991 latency_stat_init(iolat, stat);
992 }
993
994 latency_stat_init(iolat, &iolat->cur_stat);
995 rq_wait_init(&iolat->rq_wait);
996 spin_lock_init(&iolat->child_lat.lock);
997 iolat->rq_depth.queue_depth = blkg->q->nr_requests;
998 iolat->rq_depth.max_depth = UINT_MAX;
999 iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
1000 iolat->blkiolat = blkiolat;
1001 iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
1002 atomic64_set(&iolat->window_start, now);
1003
1004 /*
1005 * We init things in list order, so the pd for the parent may not be
1006 * init'ed yet for whatever reason.
1007 */
1008 if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
1009 struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
1010 atomic_set(&iolat->scale_cookie,
1011 atomic_read(&parent->child_lat.scale_cookie));
1012 } else {
1013 atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
1014 }
1015
1016 atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
1017 }
1018
iolatency_pd_offline(struct blkg_policy_data * pd)1019 static void iolatency_pd_offline(struct blkg_policy_data *pd)
1020 {
1021 struct iolatency_grp *iolat = pd_to_lat(pd);
1022 struct blkcg_gq *blkg = lat_to_blkg(iolat);
1023
1024 iolatency_set_min_lat_nsec(blkg, 0);
1025 iolatency_clear_scaling(blkg);
1026 }
1027
iolatency_pd_free(struct blkg_policy_data * pd)1028 static void iolatency_pd_free(struct blkg_policy_data *pd)
1029 {
1030 struct iolatency_grp *iolat = pd_to_lat(pd);
1031 free_percpu(iolat->stats);
1032 kfree(iolat);
1033 }
1034
1035 static struct cftype iolatency_files[] = {
1036 {
1037 .name = "latency",
1038 .flags = CFTYPE_NOT_ON_ROOT,
1039 .seq_show = iolatency_print_limit,
1040 .write = iolatency_set_limit,
1041 },
1042 {}
1043 };
1044
1045 static struct blkcg_policy blkcg_policy_iolatency = {
1046 .dfl_cftypes = iolatency_files,
1047 .pd_alloc_fn = iolatency_pd_alloc,
1048 .pd_init_fn = iolatency_pd_init,
1049 .pd_offline_fn = iolatency_pd_offline,
1050 .pd_free_fn = iolatency_pd_free,
1051 .pd_stat_fn = iolatency_pd_stat,
1052 };
1053
iolatency_init(void)1054 static int __init iolatency_init(void)
1055 {
1056 return blkcg_policy_register(&blkcg_policy_iolatency);
1057 }
1058
iolatency_exit(void)1059 static void __exit iolatency_exit(void)
1060 {
1061 blkcg_policy_unregister(&blkcg_policy_iolatency);
1062 }
1063
1064 module_init(iolatency_init);
1065 module_exit(iolatency_exit);
1066