1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
60 #define BLKG_DESTROY_BATCH_SIZE 64
61
62 /**
63 * blkcg_css - find the current css
64 *
65 * Find the css associated with either the kthread or the current task.
66 * This may return a dying css, so it is up to the caller to use tryget logic
67 * to confirm it is alive and well.
68 */
blkcg_css(void)69 static struct cgroup_subsys_state *blkcg_css(void)
70 {
71 struct cgroup_subsys_state *css;
72
73 css = kthread_blkcg();
74 if (css)
75 return css;
76 return task_css(current, io_cgrp_id);
77 }
78
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)79 static bool blkcg_policy_enabled(struct request_queue *q,
80 const struct blkcg_policy *pol)
81 {
82 return pol && test_bit(pol->plid, q->blkcg_pols);
83 }
84
blkg_free_workfn(struct work_struct * work)85 static void blkg_free_workfn(struct work_struct *work)
86 {
87 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
88 free_work);
89 int i;
90
91 for (i = 0; i < BLKCG_MAX_POLS; i++)
92 if (blkg->pd[i])
93 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
94
95 if (blkg->q)
96 blk_put_queue(blkg->q);
97 free_percpu(blkg->iostat_cpu);
98 percpu_ref_exit(&blkg->refcnt);
99 kfree(blkg);
100 }
101
102 /**
103 * blkg_free - free a blkg
104 * @blkg: blkg to free
105 *
106 * Free @blkg which may be partially allocated.
107 */
blkg_free(struct blkcg_gq * blkg)108 static void blkg_free(struct blkcg_gq *blkg)
109 {
110 if (!blkg)
111 return;
112
113 /*
114 * Both ->pd_free_fn() and request queue's release handler may
115 * sleep, so free us by scheduling one work func
116 */
117 INIT_WORK(&blkg->free_work, blkg_free_workfn);
118 schedule_work(&blkg->free_work);
119 }
120
__blkg_release(struct rcu_head * rcu)121 static void __blkg_release(struct rcu_head *rcu)
122 {
123 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
124
125 WARN_ON(!bio_list_empty(&blkg->async_bios));
126
127 /* release the blkcg and parent blkg refs this blkg has been holding */
128 css_put(&blkg->blkcg->css);
129 if (blkg->parent)
130 blkg_put(blkg->parent);
131 blkg_free(blkg);
132 }
133
134 /*
135 * A group is RCU protected, but having an rcu lock does not mean that one
136 * can access all the fields of blkg and assume these are valid. For
137 * example, don't try to follow throtl_data and request queue links.
138 *
139 * Having a reference to blkg under an rcu allows accesses to only values
140 * local to groups like group stats and group rate limits.
141 */
blkg_release(struct percpu_ref * ref)142 static void blkg_release(struct percpu_ref *ref)
143 {
144 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
145
146 call_rcu(&blkg->rcu_head, __blkg_release);
147 }
148
blkg_async_bio_workfn(struct work_struct * work)149 static void blkg_async_bio_workfn(struct work_struct *work)
150 {
151 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
152 async_bio_work);
153 struct bio_list bios = BIO_EMPTY_LIST;
154 struct bio *bio;
155 struct blk_plug plug;
156 bool need_plug = false;
157
158 /* as long as there are pending bios, @blkg can't go away */
159 spin_lock_bh(&blkg->async_bio_lock);
160 bio_list_merge(&bios, &blkg->async_bios);
161 bio_list_init(&blkg->async_bios);
162 spin_unlock_bh(&blkg->async_bio_lock);
163
164 /* start plug only when bio_list contains at least 2 bios */
165 if (bios.head && bios.head->bi_next) {
166 need_plug = true;
167 blk_start_plug(&plug);
168 }
169 while ((bio = bio_list_pop(&bios)))
170 submit_bio(bio);
171 if (need_plug)
172 blk_finish_plug(&plug);
173 }
174
175 /**
176 * bio_blkcg_css - return the blkcg CSS associated with a bio
177 * @bio: target bio
178 *
179 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
180 * associated. Callers are expected to either handle %NULL or know association
181 * has been done prior to calling this.
182 */
bio_blkcg_css(struct bio * bio)183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
184 {
185 if (!bio || !bio->bi_blkg)
186 return NULL;
187 return &bio->bi_blkg->blkcg->css;
188 }
189 EXPORT_SYMBOL_GPL(bio_blkcg_css);
190
191 /**
192 * blkcg_parent - get the parent of a blkcg
193 * @blkcg: blkcg of interest
194 *
195 * Return the parent blkcg of @blkcg. Can be called anytime.
196 */
blkcg_parent(struct blkcg * blkcg)197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
198 {
199 return css_to_blkcg(blkcg->css.parent);
200 }
201
202 /**
203 * blkg_alloc - allocate a blkg
204 * @blkcg: block cgroup the new blkg is associated with
205 * @disk: gendisk the new blkg is associated with
206 * @gfp_mask: allocation mask to use
207 *
208 * Allocate a new blkg assocating @blkcg and @q.
209 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
211 gfp_t gfp_mask)
212 {
213 struct blkcg_gq *blkg;
214 int i, cpu;
215
216 /* alloc and init base part */
217 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
218 if (!blkg)
219 return NULL;
220
221 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
222 goto err_free;
223
224 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
225 if (!blkg->iostat_cpu)
226 goto err_free;
227
228 if (!blk_get_queue(disk->queue))
229 goto err_free;
230
231 blkg->q = disk->queue;
232 INIT_LIST_HEAD(&blkg->q_node);
233 spin_lock_init(&blkg->async_bio_lock);
234 bio_list_init(&blkg->async_bios);
235 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
236 blkg->blkcg = blkcg;
237
238 u64_stats_init(&blkg->iostat.sync);
239 for_each_possible_cpu(cpu)
240 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
241
242 for (i = 0; i < BLKCG_MAX_POLS; i++) {
243 struct blkcg_policy *pol = blkcg_policy[i];
244 struct blkg_policy_data *pd;
245
246 if (!blkcg_policy_enabled(disk->queue, pol))
247 continue;
248
249 /* alloc per-policy data and attach it to blkg */
250 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg);
251 if (!pd)
252 goto err_free;
253
254 blkg->pd[i] = pd;
255 pd->blkg = blkg;
256 pd->plid = i;
257 }
258
259 return blkg;
260
261 err_free:
262 blkg_free(blkg);
263 return NULL;
264 }
265
266 /*
267 * If @new_blkg is %NULL, this function tries to allocate a new one as
268 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
269 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)270 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
271 struct blkcg_gq *new_blkg)
272 {
273 struct blkcg_gq *blkg;
274 int i, ret;
275
276 lockdep_assert_held(&disk->queue->queue_lock);
277
278 /* request_queue is dying, do not create/recreate a blkg */
279 if (blk_queue_dying(disk->queue)) {
280 ret = -ENODEV;
281 goto err_free_blkg;
282 }
283
284 /* blkg holds a reference to blkcg */
285 if (!css_tryget_online(&blkcg->css)) {
286 ret = -ENODEV;
287 goto err_free_blkg;
288 }
289
290 /* allocate */
291 if (!new_blkg) {
292 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
293 if (unlikely(!new_blkg)) {
294 ret = -ENOMEM;
295 goto err_put_css;
296 }
297 }
298 blkg = new_blkg;
299
300 /* link parent */
301 if (blkcg_parent(blkcg)) {
302 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
303 if (WARN_ON_ONCE(!blkg->parent)) {
304 ret = -ENODEV;
305 goto err_put_css;
306 }
307 blkg_get(blkg->parent);
308 }
309
310 /* invoke per-policy init */
311 for (i = 0; i < BLKCG_MAX_POLS; i++) {
312 struct blkcg_policy *pol = blkcg_policy[i];
313
314 if (blkg->pd[i] && pol->pd_init_fn)
315 pol->pd_init_fn(blkg->pd[i]);
316 }
317
318 /* insert */
319 spin_lock(&blkcg->lock);
320 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
321 if (likely(!ret)) {
322 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
323 list_add(&blkg->q_node, &disk->queue->blkg_list);
324
325 for (i = 0; i < BLKCG_MAX_POLS; i++) {
326 struct blkcg_policy *pol = blkcg_policy[i];
327
328 if (blkg->pd[i] && pol->pd_online_fn)
329 pol->pd_online_fn(blkg->pd[i]);
330 }
331 }
332 blkg->online = true;
333 spin_unlock(&blkcg->lock);
334
335 if (!ret)
336 return blkg;
337
338 /* @blkg failed fully initialized, use the usual release path */
339 blkg_put(blkg);
340 return ERR_PTR(ret);
341
342 err_put_css:
343 css_put(&blkcg->css);
344 err_free_blkg:
345 blkg_free(new_blkg);
346 return ERR_PTR(ret);
347 }
348
349 /**
350 * blkg_lookup_create - lookup blkg, try to create one if not there
351 * @blkcg: blkcg of interest
352 * @disk: gendisk of interest
353 *
354 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
355 * create one. blkg creation is performed recursively from blkcg_root such
356 * that all non-root blkg's have access to the parent blkg. This function
357 * should be called under RCU read lock and takes @disk->queue->queue_lock.
358 *
359 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
360 * down from root.
361 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)362 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
363 struct gendisk *disk)
364 {
365 struct request_queue *q = disk->queue;
366 struct blkcg_gq *blkg;
367 unsigned long flags;
368
369 WARN_ON_ONCE(!rcu_read_lock_held());
370
371 blkg = blkg_lookup(blkcg, q);
372 if (blkg)
373 return blkg;
374
375 spin_lock_irqsave(&q->queue_lock, flags);
376 blkg = blkg_lookup(blkcg, q);
377 if (blkg) {
378 if (blkcg != &blkcg_root &&
379 blkg != rcu_dereference(blkcg->blkg_hint))
380 rcu_assign_pointer(blkcg->blkg_hint, blkg);
381 goto found;
382 }
383
384 /*
385 * Create blkgs walking down from blkcg_root to @blkcg, so that all
386 * non-root blkgs have access to their parents. Returns the closest
387 * blkg to the intended blkg should blkg_create() fail.
388 */
389 while (true) {
390 struct blkcg *pos = blkcg;
391 struct blkcg *parent = blkcg_parent(blkcg);
392 struct blkcg_gq *ret_blkg = q->root_blkg;
393
394 while (parent) {
395 blkg = blkg_lookup(parent, q);
396 if (blkg) {
397 /* remember closest blkg */
398 ret_blkg = blkg;
399 break;
400 }
401 pos = parent;
402 parent = blkcg_parent(parent);
403 }
404
405 blkg = blkg_create(pos, disk, NULL);
406 if (IS_ERR(blkg)) {
407 blkg = ret_blkg;
408 break;
409 }
410 if (pos == blkcg)
411 break;
412 }
413
414 found:
415 spin_unlock_irqrestore(&q->queue_lock, flags);
416 return blkg;
417 }
418
blkg_destroy(struct blkcg_gq * blkg)419 static void blkg_destroy(struct blkcg_gq *blkg)
420 {
421 struct blkcg *blkcg = blkg->blkcg;
422 int i;
423
424 lockdep_assert_held(&blkg->q->queue_lock);
425 lockdep_assert_held(&blkcg->lock);
426
427 /* Something wrong if we are trying to remove same group twice */
428 WARN_ON_ONCE(list_empty(&blkg->q_node));
429 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
430
431 for (i = 0; i < BLKCG_MAX_POLS; i++) {
432 struct blkcg_policy *pol = blkcg_policy[i];
433
434 if (blkg->pd[i] && pol->pd_offline_fn)
435 pol->pd_offline_fn(blkg->pd[i]);
436 }
437
438 blkg->online = false;
439
440 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
441 list_del_init(&blkg->q_node);
442 hlist_del_init_rcu(&blkg->blkcg_node);
443
444 /*
445 * Both setting lookup hint to and clearing it from @blkg are done
446 * under queue_lock. If it's not pointing to @blkg now, it never
447 * will. Hint assignment itself can race safely.
448 */
449 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
450 rcu_assign_pointer(blkcg->blkg_hint, NULL);
451
452 /*
453 * Put the reference taken at the time of creation so that when all
454 * queues are gone, group can be destroyed.
455 */
456 percpu_ref_kill(&blkg->refcnt);
457 }
458
blkg_destroy_all(struct gendisk * disk)459 static void blkg_destroy_all(struct gendisk *disk)
460 {
461 struct request_queue *q = disk->queue;
462 struct blkcg_gq *blkg, *n;
463 int count = BLKG_DESTROY_BATCH_SIZE;
464
465 restart:
466 spin_lock_irq(&q->queue_lock);
467 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
468 struct blkcg *blkcg = blkg->blkcg;
469
470 spin_lock(&blkcg->lock);
471 blkg_destroy(blkg);
472 spin_unlock(&blkcg->lock);
473
474 /*
475 * in order to avoid holding the spin lock for too long, release
476 * it when a batch of blkgs are destroyed.
477 */
478 if (!(--count)) {
479 count = BLKG_DESTROY_BATCH_SIZE;
480 spin_unlock_irq(&q->queue_lock);
481 cond_resched();
482 goto restart;
483 }
484 }
485
486 q->root_blkg = NULL;
487 spin_unlock_irq(&q->queue_lock);
488 }
489
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)490 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
491 struct cftype *cftype, u64 val)
492 {
493 struct blkcg *blkcg = css_to_blkcg(css);
494 struct blkcg_gq *blkg;
495 int i, cpu;
496
497 mutex_lock(&blkcg_pol_mutex);
498 spin_lock_irq(&blkcg->lock);
499
500 /*
501 * Note that stat reset is racy - it doesn't synchronize against
502 * stat updates. This is a debug feature which shouldn't exist
503 * anyway. If you get hit by a race, retry.
504 */
505 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
506 for_each_possible_cpu(cpu) {
507 struct blkg_iostat_set *bis =
508 per_cpu_ptr(blkg->iostat_cpu, cpu);
509 memset(bis, 0, sizeof(*bis));
510 }
511 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
512
513 for (i = 0; i < BLKCG_MAX_POLS; i++) {
514 struct blkcg_policy *pol = blkcg_policy[i];
515
516 if (blkg->pd[i] && pol->pd_reset_stats_fn)
517 pol->pd_reset_stats_fn(blkg->pd[i]);
518 }
519 }
520
521 spin_unlock_irq(&blkcg->lock);
522 mutex_unlock(&blkcg_pol_mutex);
523 return 0;
524 }
525
blkg_dev_name(struct blkcg_gq * blkg)526 const char *blkg_dev_name(struct blkcg_gq *blkg)
527 {
528 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
529 return NULL;
530 return bdi_dev_name(blkg->q->disk->bdi);
531 }
532
533 /**
534 * blkcg_print_blkgs - helper for printing per-blkg data
535 * @sf: seq_file to print to
536 * @blkcg: blkcg of interest
537 * @prfill: fill function to print out a blkg
538 * @pol: policy in question
539 * @data: data to be passed to @prfill
540 * @show_total: to print out sum of prfill return values or not
541 *
542 * This function invokes @prfill on each blkg of @blkcg if pd for the
543 * policy specified by @pol exists. @prfill is invoked with @sf, the
544 * policy data and @data and the matching queue lock held. If @show_total
545 * is %true, the sum of the return values from @prfill is printed with
546 * "Total" label at the end.
547 *
548 * This is to be used to construct print functions for
549 * cftype->read_seq_string method.
550 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)551 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
552 u64 (*prfill)(struct seq_file *,
553 struct blkg_policy_data *, int),
554 const struct blkcg_policy *pol, int data,
555 bool show_total)
556 {
557 struct blkcg_gq *blkg;
558 u64 total = 0;
559
560 rcu_read_lock();
561 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
562 spin_lock_irq(&blkg->q->queue_lock);
563 if (blkcg_policy_enabled(blkg->q, pol))
564 total += prfill(sf, blkg->pd[pol->plid], data);
565 spin_unlock_irq(&blkg->q->queue_lock);
566 }
567 rcu_read_unlock();
568
569 if (show_total)
570 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
571 }
572 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
573
574 /**
575 * __blkg_prfill_u64 - prfill helper for a single u64 value
576 * @sf: seq_file to print to
577 * @pd: policy private data of interest
578 * @v: value to print
579 *
580 * Print @v to @sf for the device assocaited with @pd.
581 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)582 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
583 {
584 const char *dname = blkg_dev_name(pd->blkg);
585
586 if (!dname)
587 return 0;
588
589 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
590 return v;
591 }
592 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
593
594 /**
595 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
596 * @inputp: input string pointer
597 *
598 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
599 * from @input and get and return the matching bdev. *@inputp is
600 * updated to point past the device node prefix. Returns an ERR_PTR()
601 * value on error.
602 *
603 * Use this function iff blkg_conf_prep() can't be used for some reason.
604 */
blkcg_conf_open_bdev(char ** inputp)605 struct block_device *blkcg_conf_open_bdev(char **inputp)
606 {
607 char *input = *inputp;
608 unsigned int major, minor;
609 struct block_device *bdev;
610 int key_len;
611
612 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
613 return ERR_PTR(-EINVAL);
614
615 input += key_len;
616 if (!isspace(*input))
617 return ERR_PTR(-EINVAL);
618 input = skip_spaces(input);
619
620 bdev = blkdev_get_no_open(MKDEV(major, minor));
621 if (!bdev)
622 return ERR_PTR(-ENODEV);
623 if (bdev_is_partition(bdev)) {
624 blkdev_put_no_open(bdev);
625 return ERR_PTR(-ENODEV);
626 }
627
628 *inputp = input;
629 return bdev;
630 }
631
632 /**
633 * blkg_conf_prep - parse and prepare for per-blkg config update
634 * @blkcg: target block cgroup
635 * @pol: target policy
636 * @input: input string
637 * @ctx: blkg_conf_ctx to be filled
638 *
639 * Parse per-blkg config update from @input and initialize @ctx with the
640 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
641 * part of @input following MAJ:MIN. This function returns with RCU read
642 * lock and queue lock held and must be paired with blkg_conf_finish().
643 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,char * input,struct blkg_conf_ctx * ctx)644 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
645 char *input, struct blkg_conf_ctx *ctx)
646 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
647 {
648 struct block_device *bdev;
649 struct gendisk *disk;
650 struct request_queue *q;
651 struct blkcg_gq *blkg;
652 int ret;
653
654 bdev = blkcg_conf_open_bdev(&input);
655 if (IS_ERR(bdev))
656 return PTR_ERR(bdev);
657 disk = bdev->bd_disk;
658 q = disk->queue;
659
660 /*
661 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
662 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
663 */
664 ret = blk_queue_enter(q, 0);
665 if (ret)
666 goto fail;
667
668 rcu_read_lock();
669 spin_lock_irq(&q->queue_lock);
670
671 if (!blkcg_policy_enabled(q, pol)) {
672 ret = -EOPNOTSUPP;
673 goto fail_unlock;
674 }
675
676 blkg = blkg_lookup(blkcg, q);
677 if (blkg)
678 goto success;
679
680 /*
681 * Create blkgs walking down from blkcg_root to @blkcg, so that all
682 * non-root blkgs have access to their parents.
683 */
684 while (true) {
685 struct blkcg *pos = blkcg;
686 struct blkcg *parent;
687 struct blkcg_gq *new_blkg;
688
689 parent = blkcg_parent(blkcg);
690 while (parent && !blkg_lookup(parent, q)) {
691 pos = parent;
692 parent = blkcg_parent(parent);
693 }
694
695 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
696 spin_unlock_irq(&q->queue_lock);
697 rcu_read_unlock();
698
699 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
700 if (unlikely(!new_blkg)) {
701 ret = -ENOMEM;
702 goto fail_exit_queue;
703 }
704
705 if (radix_tree_preload(GFP_KERNEL)) {
706 blkg_free(new_blkg);
707 ret = -ENOMEM;
708 goto fail_exit_queue;
709 }
710
711 rcu_read_lock();
712 spin_lock_irq(&q->queue_lock);
713
714 if (!blkcg_policy_enabled(q, pol)) {
715 blkg_free(new_blkg);
716 ret = -EOPNOTSUPP;
717 goto fail_preloaded;
718 }
719
720 blkg = blkg_lookup(pos, q);
721 if (blkg) {
722 blkg_free(new_blkg);
723 } else {
724 blkg = blkg_create(pos, disk, new_blkg);
725 if (IS_ERR(blkg)) {
726 ret = PTR_ERR(blkg);
727 goto fail_preloaded;
728 }
729 }
730
731 radix_tree_preload_end();
732
733 if (pos == blkcg)
734 goto success;
735 }
736 success:
737 blk_queue_exit(q);
738 ctx->bdev = bdev;
739 ctx->blkg = blkg;
740 ctx->body = input;
741 return 0;
742
743 fail_preloaded:
744 radix_tree_preload_end();
745 fail_unlock:
746 spin_unlock_irq(&q->queue_lock);
747 rcu_read_unlock();
748 fail_exit_queue:
749 blk_queue_exit(q);
750 fail:
751 blkdev_put_no_open(bdev);
752 /*
753 * If queue was bypassing, we should retry. Do so after a
754 * short msleep(). It isn't strictly necessary but queue
755 * can be bypassing for some time and it's always nice to
756 * avoid busy looping.
757 */
758 if (ret == -EBUSY) {
759 msleep(10);
760 ret = restart_syscall();
761 }
762 return ret;
763 }
764 EXPORT_SYMBOL_GPL(blkg_conf_prep);
765
766 /**
767 * blkg_conf_finish - finish up per-blkg config update
768 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
769 *
770 * Finish up after per-blkg config update. This function must be paired
771 * with blkg_conf_prep().
772 */
blkg_conf_finish(struct blkg_conf_ctx * ctx)773 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
774 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
775 {
776 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
777 rcu_read_unlock();
778 blkdev_put_no_open(ctx->bdev);
779 }
780 EXPORT_SYMBOL_GPL(blkg_conf_finish);
781
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)782 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
783 {
784 int i;
785
786 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
787 dst->bytes[i] = src->bytes[i];
788 dst->ios[i] = src->ios[i];
789 }
790 }
791
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)792 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
793 {
794 int i;
795
796 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
797 dst->bytes[i] += src->bytes[i];
798 dst->ios[i] += src->ios[i];
799 }
800 }
801
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)802 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
803 {
804 int i;
805
806 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
807 dst->bytes[i] -= src->bytes[i];
808 dst->ios[i] -= src->ios[i];
809 }
810 }
811
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)812 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
813 struct blkg_iostat *last)
814 {
815 struct blkg_iostat delta;
816 unsigned long flags;
817
818 /* propagate percpu delta to global */
819 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
820 blkg_iostat_set(&delta, cur);
821 blkg_iostat_sub(&delta, last);
822 blkg_iostat_add(&blkg->iostat.cur, &delta);
823 blkg_iostat_add(last, &delta);
824 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
825 }
826
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)827 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
828 {
829 struct blkcg *blkcg = css_to_blkcg(css);
830 struct blkcg_gq *blkg;
831
832 /* Root-level stats are sourced from system-wide IO stats */
833 if (!cgroup_parent(css->cgroup))
834 return;
835
836 rcu_read_lock();
837
838 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
839 struct blkcg_gq *parent = blkg->parent;
840 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
841 struct blkg_iostat cur;
842 unsigned int seq;
843
844 /* fetch the current per-cpu values */
845 do {
846 seq = u64_stats_fetch_begin(&bisc->sync);
847 blkg_iostat_set(&cur, &bisc->cur);
848 } while (u64_stats_fetch_retry(&bisc->sync, seq));
849
850 blkcg_iostat_update(blkg, &cur, &bisc->last);
851
852 /* propagate global delta to parent (unless that's root) */
853 if (parent && parent->parent)
854 blkcg_iostat_update(parent, &blkg->iostat.cur,
855 &blkg->iostat.last);
856 }
857
858 rcu_read_unlock();
859 }
860
861 /*
862 * We source root cgroup stats from the system-wide stats to avoid
863 * tracking the same information twice and incurring overhead when no
864 * cgroups are defined. For that reason, cgroup_rstat_flush in
865 * blkcg_print_stat does not actually fill out the iostat in the root
866 * cgroup's blkcg_gq.
867 *
868 * However, we would like to re-use the printing code between the root and
869 * non-root cgroups to the extent possible. For that reason, we simulate
870 * flushing the root cgroup's stats by explicitly filling in the iostat
871 * with disk level statistics.
872 */
blkcg_fill_root_iostats(void)873 static void blkcg_fill_root_iostats(void)
874 {
875 struct class_dev_iter iter;
876 struct device *dev;
877
878 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
879 while ((dev = class_dev_iter_next(&iter))) {
880 struct block_device *bdev = dev_to_bdev(dev);
881 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
882 struct blkg_iostat tmp;
883 int cpu;
884 unsigned long flags;
885
886 memset(&tmp, 0, sizeof(tmp));
887 for_each_possible_cpu(cpu) {
888 struct disk_stats *cpu_dkstats;
889
890 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
891 tmp.ios[BLKG_IOSTAT_READ] +=
892 cpu_dkstats->ios[STAT_READ];
893 tmp.ios[BLKG_IOSTAT_WRITE] +=
894 cpu_dkstats->ios[STAT_WRITE];
895 tmp.ios[BLKG_IOSTAT_DISCARD] +=
896 cpu_dkstats->ios[STAT_DISCARD];
897 // convert sectors to bytes
898 tmp.bytes[BLKG_IOSTAT_READ] +=
899 cpu_dkstats->sectors[STAT_READ] << 9;
900 tmp.bytes[BLKG_IOSTAT_WRITE] +=
901 cpu_dkstats->sectors[STAT_WRITE] << 9;
902 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
903 cpu_dkstats->sectors[STAT_DISCARD] << 9;
904 }
905
906 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
907 blkg_iostat_set(&blkg->iostat.cur, &tmp);
908 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
909 }
910 }
911
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)912 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
913 {
914 struct blkg_iostat_set *bis = &blkg->iostat;
915 u64 rbytes, wbytes, rios, wios, dbytes, dios;
916 const char *dname;
917 unsigned seq;
918 int i;
919
920 if (!blkg->online)
921 return;
922
923 dname = blkg_dev_name(blkg);
924 if (!dname)
925 return;
926
927 seq_printf(s, "%s ", dname);
928
929 do {
930 seq = u64_stats_fetch_begin(&bis->sync);
931
932 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
933 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
934 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
935 rios = bis->cur.ios[BLKG_IOSTAT_READ];
936 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
937 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
938 } while (u64_stats_fetch_retry(&bis->sync, seq));
939
940 if (rbytes || wbytes || rios || wios) {
941 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
942 rbytes, wbytes, rios, wios,
943 dbytes, dios);
944 }
945
946 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
947 seq_printf(s, " use_delay=%d delay_nsec=%llu",
948 atomic_read(&blkg->use_delay),
949 atomic64_read(&blkg->delay_nsec));
950 }
951
952 for (i = 0; i < BLKCG_MAX_POLS; i++) {
953 struct blkcg_policy *pol = blkcg_policy[i];
954
955 if (!blkg->pd[i] || !pol->pd_stat_fn)
956 continue;
957
958 pol->pd_stat_fn(blkg->pd[i], s);
959 }
960
961 seq_puts(s, "\n");
962 }
963
blkcg_print_stat(struct seq_file * sf,void * v)964 static int blkcg_print_stat(struct seq_file *sf, void *v)
965 {
966 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
967 struct blkcg_gq *blkg;
968
969 if (!seq_css(sf)->parent)
970 blkcg_fill_root_iostats();
971 else
972 cgroup_rstat_flush(blkcg->css.cgroup);
973
974 rcu_read_lock();
975 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
976 spin_lock_irq(&blkg->q->queue_lock);
977 blkcg_print_one_stat(blkg, sf);
978 spin_unlock_irq(&blkg->q->queue_lock);
979 }
980 rcu_read_unlock();
981 return 0;
982 }
983
984 static struct cftype blkcg_files[] = {
985 {
986 .name = "stat",
987 .seq_show = blkcg_print_stat,
988 },
989 { } /* terminate */
990 };
991
992 static struct cftype blkcg_legacy_files[] = {
993 {
994 .name = "reset_stats",
995 .write_u64 = blkcg_reset_stats,
996 },
997 { } /* terminate */
998 };
999
1000 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1001 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1002 {
1003 return &css_to_blkcg(css)->cgwb_list;
1004 }
1005 #endif
1006
1007 /*
1008 * blkcg destruction is a three-stage process.
1009 *
1010 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1011 * which offlines writeback. Here we tie the next stage of blkg destruction
1012 * to the completion of writeback associated with the blkcg. This lets us
1013 * avoid punting potentially large amounts of outstanding writeback to root
1014 * while maintaining any ongoing policies. The next stage is triggered when
1015 * the nr_cgwbs count goes to zero.
1016 *
1017 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1018 * and handles the destruction of blkgs. Here the css reference held by
1019 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1020 * This work may occur in cgwb_release_workfn() on the cgwb_release
1021 * workqueue. Any submitted ios that fail to get the blkg ref will be
1022 * punted to the root_blkg.
1023 *
1024 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1025 * This finally frees the blkcg.
1026 */
1027
1028 /**
1029 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1030 * @blkcg: blkcg of interest
1031 *
1032 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1033 * is nested inside q lock, this function performs reverse double lock dancing.
1034 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1035 * blkcg_css_free to eventually be called.
1036 *
1037 * This is the blkcg counterpart of ioc_release_fn().
1038 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1039 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1040 {
1041 might_sleep();
1042
1043 spin_lock_irq(&blkcg->lock);
1044
1045 while (!hlist_empty(&blkcg->blkg_list)) {
1046 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1047 struct blkcg_gq, blkcg_node);
1048 struct request_queue *q = blkg->q;
1049
1050 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1051 /*
1052 * Given that the system can accumulate a huge number
1053 * of blkgs in pathological cases, check to see if we
1054 * need to rescheduling to avoid softlockup.
1055 */
1056 spin_unlock_irq(&blkcg->lock);
1057 cond_resched();
1058 spin_lock_irq(&blkcg->lock);
1059 continue;
1060 }
1061
1062 blkg_destroy(blkg);
1063 spin_unlock(&q->queue_lock);
1064 }
1065
1066 spin_unlock_irq(&blkcg->lock);
1067 }
1068
1069 /**
1070 * blkcg_pin_online - pin online state
1071 * @blkcg_css: blkcg of interest
1072 *
1073 * While pinned, a blkcg is kept online. This is primarily used to
1074 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1075 * while an associated cgwb is still active.
1076 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1077 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1078 {
1079 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1080 }
1081
1082 /**
1083 * blkcg_unpin_online - unpin online state
1084 * @blkcg_css: blkcg of interest
1085 *
1086 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1087 * that blkg doesn't go offline while an associated cgwb is still active.
1088 * When this count goes to zero, all active cgwbs have finished so the
1089 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1090 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1091 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1092 {
1093 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1094
1095 do {
1096 if (!refcount_dec_and_test(&blkcg->online_pin))
1097 break;
1098 blkcg_destroy_blkgs(blkcg);
1099 blkcg = blkcg_parent(blkcg);
1100 } while (blkcg);
1101 }
1102
1103 /**
1104 * blkcg_css_offline - cgroup css_offline callback
1105 * @css: css of interest
1106 *
1107 * This function is called when @css is about to go away. Here the cgwbs are
1108 * offlined first and only once writeback associated with the blkcg has
1109 * finished do we start step 2 (see above).
1110 */
blkcg_css_offline(struct cgroup_subsys_state * css)1111 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1112 {
1113 /* this prevents anyone from attaching or migrating to this blkcg */
1114 wb_blkcg_offline(css);
1115
1116 /* put the base online pin allowing step 2 to be triggered */
1117 blkcg_unpin_online(css);
1118 }
1119
blkcg_css_free(struct cgroup_subsys_state * css)1120 static void blkcg_css_free(struct cgroup_subsys_state *css)
1121 {
1122 struct blkcg *blkcg = css_to_blkcg(css);
1123 int i;
1124
1125 mutex_lock(&blkcg_pol_mutex);
1126
1127 list_del(&blkcg->all_blkcgs_node);
1128
1129 for (i = 0; i < BLKCG_MAX_POLS; i++)
1130 if (blkcg->cpd[i])
1131 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1132
1133 mutex_unlock(&blkcg_pol_mutex);
1134
1135 kfree(blkcg);
1136 }
1137
1138 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1139 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1140 {
1141 struct blkcg *blkcg;
1142 struct cgroup_subsys_state *ret;
1143 int i;
1144
1145 mutex_lock(&blkcg_pol_mutex);
1146
1147 if (!parent_css) {
1148 blkcg = &blkcg_root;
1149 } else {
1150 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1151 if (!blkcg) {
1152 ret = ERR_PTR(-ENOMEM);
1153 goto unlock;
1154 }
1155 }
1156
1157 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1158 struct blkcg_policy *pol = blkcg_policy[i];
1159 struct blkcg_policy_data *cpd;
1160
1161 /*
1162 * If the policy hasn't been attached yet, wait for it
1163 * to be attached before doing anything else. Otherwise,
1164 * check if the policy requires any specific per-cgroup
1165 * data: if it does, allocate and initialize it.
1166 */
1167 if (!pol || !pol->cpd_alloc_fn)
1168 continue;
1169
1170 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1171 if (!cpd) {
1172 ret = ERR_PTR(-ENOMEM);
1173 goto free_pd_blkcg;
1174 }
1175 blkcg->cpd[i] = cpd;
1176 cpd->blkcg = blkcg;
1177 cpd->plid = i;
1178 if (pol->cpd_init_fn)
1179 pol->cpd_init_fn(cpd);
1180 }
1181
1182 spin_lock_init(&blkcg->lock);
1183 refcount_set(&blkcg->online_pin, 1);
1184 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1185 INIT_HLIST_HEAD(&blkcg->blkg_list);
1186 #ifdef CONFIG_CGROUP_WRITEBACK
1187 INIT_LIST_HEAD(&blkcg->cgwb_list);
1188 #endif
1189 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1190
1191 mutex_unlock(&blkcg_pol_mutex);
1192 return &blkcg->css;
1193
1194 free_pd_blkcg:
1195 for (i--; i >= 0; i--)
1196 if (blkcg->cpd[i])
1197 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1198
1199 if (blkcg != &blkcg_root)
1200 kfree(blkcg);
1201 unlock:
1202 mutex_unlock(&blkcg_pol_mutex);
1203 return ret;
1204 }
1205
blkcg_css_online(struct cgroup_subsys_state * css)1206 static int blkcg_css_online(struct cgroup_subsys_state *css)
1207 {
1208 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1209
1210 /*
1211 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1212 * don't go offline while cgwbs are still active on them. Pin the
1213 * parent so that offline always happens towards the root.
1214 */
1215 if (parent)
1216 blkcg_pin_online(&parent->css);
1217 return 0;
1218 }
1219
blkcg_init_disk(struct gendisk * disk)1220 int blkcg_init_disk(struct gendisk *disk)
1221 {
1222 struct request_queue *q = disk->queue;
1223 struct blkcg_gq *new_blkg, *blkg;
1224 bool preloaded;
1225 int ret;
1226
1227 INIT_LIST_HEAD(&q->blkg_list);
1228
1229 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1230 if (!new_blkg)
1231 return -ENOMEM;
1232
1233 preloaded = !radix_tree_preload(GFP_KERNEL);
1234
1235 /* Make sure the root blkg exists. */
1236 /* spin_lock_irq can serve as RCU read-side critical section. */
1237 spin_lock_irq(&q->queue_lock);
1238 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1239 if (IS_ERR(blkg))
1240 goto err_unlock;
1241 q->root_blkg = blkg;
1242 spin_unlock_irq(&q->queue_lock);
1243
1244 if (preloaded)
1245 radix_tree_preload_end();
1246
1247 ret = blk_ioprio_init(disk);
1248 if (ret)
1249 goto err_destroy_all;
1250
1251 ret = blk_throtl_init(disk);
1252 if (ret)
1253 goto err_ioprio_exit;
1254
1255 ret = blk_iolatency_init(disk);
1256 if (ret)
1257 goto err_throtl_exit;
1258
1259 return 0;
1260
1261 err_throtl_exit:
1262 blk_throtl_exit(disk);
1263 err_ioprio_exit:
1264 blk_ioprio_exit(disk);
1265 err_destroy_all:
1266 blkg_destroy_all(disk);
1267 return ret;
1268 err_unlock:
1269 spin_unlock_irq(&q->queue_lock);
1270 if (preloaded)
1271 radix_tree_preload_end();
1272 return PTR_ERR(blkg);
1273 }
1274
blkcg_exit_disk(struct gendisk * disk)1275 void blkcg_exit_disk(struct gendisk *disk)
1276 {
1277 blkg_destroy_all(disk);
1278 blk_throtl_exit(disk);
1279 }
1280
blkcg_bind(struct cgroup_subsys_state * root_css)1281 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1282 {
1283 int i;
1284
1285 mutex_lock(&blkcg_pol_mutex);
1286
1287 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1288 struct blkcg_policy *pol = blkcg_policy[i];
1289 struct blkcg *blkcg;
1290
1291 if (!pol || !pol->cpd_bind_fn)
1292 continue;
1293
1294 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1295 if (blkcg->cpd[pol->plid])
1296 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1297 }
1298 mutex_unlock(&blkcg_pol_mutex);
1299 }
1300
blkcg_exit(struct task_struct * tsk)1301 static void blkcg_exit(struct task_struct *tsk)
1302 {
1303 if (tsk->throttle_queue)
1304 blk_put_queue(tsk->throttle_queue);
1305 tsk->throttle_queue = NULL;
1306 }
1307
1308 struct cgroup_subsys io_cgrp_subsys = {
1309 .css_alloc = blkcg_css_alloc,
1310 .css_online = blkcg_css_online,
1311 .css_offline = blkcg_css_offline,
1312 .css_free = blkcg_css_free,
1313 .css_rstat_flush = blkcg_rstat_flush,
1314 .bind = blkcg_bind,
1315 .dfl_cftypes = blkcg_files,
1316 .legacy_cftypes = blkcg_legacy_files,
1317 .legacy_name = "blkio",
1318 .exit = blkcg_exit,
1319 #ifdef CONFIG_MEMCG
1320 /*
1321 * This ensures that, if available, memcg is automatically enabled
1322 * together on the default hierarchy so that the owner cgroup can
1323 * be retrieved from writeback pages.
1324 */
1325 .depends_on = 1 << memory_cgrp_id,
1326 #endif
1327 };
1328 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1329
1330 /**
1331 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1332 * @q: request_queue of interest
1333 * @pol: blkcg policy to activate
1334 *
1335 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1336 * bypass mode to populate its blkgs with policy_data for @pol.
1337 *
1338 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1339 * from IO path. Update of each blkg is protected by both queue and blkcg
1340 * locks so that holding either lock and testing blkcg_policy_enabled() is
1341 * always enough for dereferencing policy data.
1342 *
1343 * The caller is responsible for synchronizing [de]activations and policy
1344 * [un]registerations. Returns 0 on success, -errno on failure.
1345 */
blkcg_activate_policy(struct request_queue * q,const struct blkcg_policy * pol)1346 int blkcg_activate_policy(struct request_queue *q,
1347 const struct blkcg_policy *pol)
1348 {
1349 struct blkg_policy_data *pd_prealloc = NULL;
1350 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1351 int ret;
1352
1353 if (blkcg_policy_enabled(q, pol))
1354 return 0;
1355
1356 if (queue_is_mq(q))
1357 blk_mq_freeze_queue(q);
1358 retry:
1359 spin_lock_irq(&q->queue_lock);
1360
1361 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1362 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1363 struct blkg_policy_data *pd;
1364
1365 if (blkg->pd[pol->plid])
1366 continue;
1367
1368 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1369 if (blkg == pinned_blkg) {
1370 pd = pd_prealloc;
1371 pd_prealloc = NULL;
1372 } else {
1373 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1374 blkg->blkcg);
1375 }
1376
1377 if (!pd) {
1378 /*
1379 * GFP_NOWAIT failed. Free the existing one and
1380 * prealloc for @blkg w/ GFP_KERNEL.
1381 */
1382 if (pinned_blkg)
1383 blkg_put(pinned_blkg);
1384 blkg_get(blkg);
1385 pinned_blkg = blkg;
1386
1387 spin_unlock_irq(&q->queue_lock);
1388
1389 if (pd_prealloc)
1390 pol->pd_free_fn(pd_prealloc);
1391 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1392 blkg->blkcg);
1393 if (pd_prealloc)
1394 goto retry;
1395 else
1396 goto enomem;
1397 }
1398
1399 blkg->pd[pol->plid] = pd;
1400 pd->blkg = blkg;
1401 pd->plid = pol->plid;
1402 }
1403
1404 /* all allocated, init in the same order */
1405 if (pol->pd_init_fn)
1406 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1407 pol->pd_init_fn(blkg->pd[pol->plid]);
1408
1409 __set_bit(pol->plid, q->blkcg_pols);
1410 ret = 0;
1411
1412 spin_unlock_irq(&q->queue_lock);
1413 out:
1414 if (queue_is_mq(q))
1415 blk_mq_unfreeze_queue(q);
1416 if (pinned_blkg)
1417 blkg_put(pinned_blkg);
1418 if (pd_prealloc)
1419 pol->pd_free_fn(pd_prealloc);
1420 return ret;
1421
1422 enomem:
1423 /* alloc failed, nothing's initialized yet, free everything */
1424 spin_lock_irq(&q->queue_lock);
1425 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1426 struct blkcg *blkcg = blkg->blkcg;
1427
1428 spin_lock(&blkcg->lock);
1429 if (blkg->pd[pol->plid]) {
1430 pol->pd_free_fn(blkg->pd[pol->plid]);
1431 blkg->pd[pol->plid] = NULL;
1432 }
1433 spin_unlock(&blkcg->lock);
1434 }
1435 spin_unlock_irq(&q->queue_lock);
1436 ret = -ENOMEM;
1437 goto out;
1438 }
1439 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1440
1441 /**
1442 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1443 * @q: request_queue of interest
1444 * @pol: blkcg policy to deactivate
1445 *
1446 * Deactivate @pol on @q. Follows the same synchronization rules as
1447 * blkcg_activate_policy().
1448 */
blkcg_deactivate_policy(struct request_queue * q,const struct blkcg_policy * pol)1449 void blkcg_deactivate_policy(struct request_queue *q,
1450 const struct blkcg_policy *pol)
1451 {
1452 struct blkcg_gq *blkg;
1453
1454 if (!blkcg_policy_enabled(q, pol))
1455 return;
1456
1457 if (queue_is_mq(q))
1458 blk_mq_freeze_queue(q);
1459
1460 spin_lock_irq(&q->queue_lock);
1461
1462 __clear_bit(pol->plid, q->blkcg_pols);
1463
1464 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1465 struct blkcg *blkcg = blkg->blkcg;
1466
1467 spin_lock(&blkcg->lock);
1468 if (blkg->pd[pol->plid]) {
1469 if (pol->pd_offline_fn)
1470 pol->pd_offline_fn(blkg->pd[pol->plid]);
1471 pol->pd_free_fn(blkg->pd[pol->plid]);
1472 blkg->pd[pol->plid] = NULL;
1473 }
1474 spin_unlock(&blkcg->lock);
1475 }
1476
1477 spin_unlock_irq(&q->queue_lock);
1478
1479 if (queue_is_mq(q))
1480 blk_mq_unfreeze_queue(q);
1481 }
1482 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1483
blkcg_free_all_cpd(struct blkcg_policy * pol)1484 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1485 {
1486 struct blkcg *blkcg;
1487
1488 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1489 if (blkcg->cpd[pol->plid]) {
1490 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1491 blkcg->cpd[pol->plid] = NULL;
1492 }
1493 }
1494 }
1495
1496 /**
1497 * blkcg_policy_register - register a blkcg policy
1498 * @pol: blkcg policy to register
1499 *
1500 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1501 * successful registration. Returns 0 on success and -errno on failure.
1502 */
blkcg_policy_register(struct blkcg_policy * pol)1503 int blkcg_policy_register(struct blkcg_policy *pol)
1504 {
1505 struct blkcg *blkcg;
1506 int i, ret;
1507
1508 mutex_lock(&blkcg_pol_register_mutex);
1509 mutex_lock(&blkcg_pol_mutex);
1510
1511 /* find an empty slot */
1512 ret = -ENOSPC;
1513 for (i = 0; i < BLKCG_MAX_POLS; i++)
1514 if (!blkcg_policy[i])
1515 break;
1516 if (i >= BLKCG_MAX_POLS) {
1517 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1518 goto err_unlock;
1519 }
1520
1521 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1522 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1523 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1524 goto err_unlock;
1525
1526 /* register @pol */
1527 pol->plid = i;
1528 blkcg_policy[pol->plid] = pol;
1529
1530 /* allocate and install cpd's */
1531 if (pol->cpd_alloc_fn) {
1532 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1533 struct blkcg_policy_data *cpd;
1534
1535 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1536 if (!cpd)
1537 goto err_free_cpds;
1538
1539 blkcg->cpd[pol->plid] = cpd;
1540 cpd->blkcg = blkcg;
1541 cpd->plid = pol->plid;
1542 if (pol->cpd_init_fn)
1543 pol->cpd_init_fn(cpd);
1544 }
1545 }
1546
1547 mutex_unlock(&blkcg_pol_mutex);
1548
1549 /* everything is in place, add intf files for the new policy */
1550 if (pol->dfl_cftypes)
1551 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1552 pol->dfl_cftypes));
1553 if (pol->legacy_cftypes)
1554 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1555 pol->legacy_cftypes));
1556 mutex_unlock(&blkcg_pol_register_mutex);
1557 return 0;
1558
1559 err_free_cpds:
1560 if (pol->cpd_free_fn)
1561 blkcg_free_all_cpd(pol);
1562
1563 blkcg_policy[pol->plid] = NULL;
1564 err_unlock:
1565 mutex_unlock(&blkcg_pol_mutex);
1566 mutex_unlock(&blkcg_pol_register_mutex);
1567 return ret;
1568 }
1569 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1570
1571 /**
1572 * blkcg_policy_unregister - unregister a blkcg policy
1573 * @pol: blkcg policy to unregister
1574 *
1575 * Undo blkcg_policy_register(@pol). Might sleep.
1576 */
blkcg_policy_unregister(struct blkcg_policy * pol)1577 void blkcg_policy_unregister(struct blkcg_policy *pol)
1578 {
1579 mutex_lock(&blkcg_pol_register_mutex);
1580
1581 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1582 goto out_unlock;
1583
1584 /* kill the intf files first */
1585 if (pol->dfl_cftypes)
1586 cgroup_rm_cftypes(pol->dfl_cftypes);
1587 if (pol->legacy_cftypes)
1588 cgroup_rm_cftypes(pol->legacy_cftypes);
1589
1590 /* remove cpds and unregister */
1591 mutex_lock(&blkcg_pol_mutex);
1592
1593 if (pol->cpd_free_fn)
1594 blkcg_free_all_cpd(pol);
1595
1596 blkcg_policy[pol->plid] = NULL;
1597
1598 mutex_unlock(&blkcg_pol_mutex);
1599 out_unlock:
1600 mutex_unlock(&blkcg_pol_register_mutex);
1601 }
1602 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1603
__blkcg_punt_bio_submit(struct bio * bio)1604 bool __blkcg_punt_bio_submit(struct bio *bio)
1605 {
1606 struct blkcg_gq *blkg = bio->bi_blkg;
1607
1608 /* consume the flag first */
1609 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1610
1611 /* never bounce for the root cgroup */
1612 if (!blkg->parent)
1613 return false;
1614
1615 spin_lock_bh(&blkg->async_bio_lock);
1616 bio_list_add(&blkg->async_bios, bio);
1617 spin_unlock_bh(&blkg->async_bio_lock);
1618
1619 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1620 return true;
1621 }
1622
1623 /*
1624 * Scale the accumulated delay based on how long it has been since we updated
1625 * the delay. We only call this when we are adding delay, in case it's been a
1626 * while since we added delay, and when we are checking to see if we need to
1627 * delay a task, to account for any delays that may have occurred.
1628 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1629 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1630 {
1631 u64 old = atomic64_read(&blkg->delay_start);
1632
1633 /* negative use_delay means no scaling, see blkcg_set_delay() */
1634 if (atomic_read(&blkg->use_delay) < 0)
1635 return;
1636
1637 /*
1638 * We only want to scale down every second. The idea here is that we
1639 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1640 * time window. We only want to throttle tasks for recent delay that
1641 * has occurred, in 1 second time windows since that's the maximum
1642 * things can be throttled. We save the current delay window in
1643 * blkg->last_delay so we know what amount is still left to be charged
1644 * to the blkg from this point onward. blkg->last_use keeps track of
1645 * the use_delay counter. The idea is if we're unthrottling the blkg we
1646 * are ok with whatever is happening now, and we can take away more of
1647 * the accumulated delay as we've already throttled enough that
1648 * everybody is happy with their IO latencies.
1649 */
1650 if (time_before64(old + NSEC_PER_SEC, now) &&
1651 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1652 u64 cur = atomic64_read(&blkg->delay_nsec);
1653 u64 sub = min_t(u64, blkg->last_delay, now - old);
1654 int cur_use = atomic_read(&blkg->use_delay);
1655
1656 /*
1657 * We've been unthrottled, subtract a larger chunk of our
1658 * accumulated delay.
1659 */
1660 if (cur_use < blkg->last_use)
1661 sub = max_t(u64, sub, blkg->last_delay >> 1);
1662
1663 /*
1664 * This shouldn't happen, but handle it anyway. Our delay_nsec
1665 * should only ever be growing except here where we subtract out
1666 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1667 * rather not end up with negative numbers.
1668 */
1669 if (unlikely(cur < sub)) {
1670 atomic64_set(&blkg->delay_nsec, 0);
1671 blkg->last_delay = 0;
1672 } else {
1673 atomic64_sub(sub, &blkg->delay_nsec);
1674 blkg->last_delay = cur - sub;
1675 }
1676 blkg->last_use = cur_use;
1677 }
1678 }
1679
1680 /*
1681 * This is called when we want to actually walk up the hierarchy and check to
1682 * see if we need to throttle, and then actually throttle if there is some
1683 * accumulated delay. This should only be called upon return to user space so
1684 * we're not holding some lock that would induce a priority inversion.
1685 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1686 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1687 {
1688 unsigned long pflags;
1689 bool clamp;
1690 u64 now = ktime_to_ns(ktime_get());
1691 u64 exp;
1692 u64 delay_nsec = 0;
1693 int tok;
1694
1695 while (blkg->parent) {
1696 int use_delay = atomic_read(&blkg->use_delay);
1697
1698 if (use_delay) {
1699 u64 this_delay;
1700
1701 blkcg_scale_delay(blkg, now);
1702 this_delay = atomic64_read(&blkg->delay_nsec);
1703 if (this_delay > delay_nsec) {
1704 delay_nsec = this_delay;
1705 clamp = use_delay > 0;
1706 }
1707 }
1708 blkg = blkg->parent;
1709 }
1710
1711 if (!delay_nsec)
1712 return;
1713
1714 /*
1715 * Let's not sleep for all eternity if we've amassed a huge delay.
1716 * Swapping or metadata IO can accumulate 10's of seconds worth of
1717 * delay, and we want userspace to be able to do _something_ so cap the
1718 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1719 * tasks will be delayed for 0.25 second for every syscall. If
1720 * blkcg_set_delay() was used as indicated by negative use_delay, the
1721 * caller is responsible for regulating the range.
1722 */
1723 if (clamp)
1724 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1725
1726 if (use_memdelay)
1727 psi_memstall_enter(&pflags);
1728
1729 exp = ktime_add_ns(now, delay_nsec);
1730 tok = io_schedule_prepare();
1731 do {
1732 __set_current_state(TASK_KILLABLE);
1733 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1734 break;
1735 } while (!fatal_signal_pending(current));
1736 io_schedule_finish(tok);
1737
1738 if (use_memdelay)
1739 psi_memstall_leave(&pflags);
1740 }
1741
1742 /**
1743 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1744 *
1745 * This is only called if we've been marked with set_notify_resume(). Obviously
1746 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1747 * check to see if current->throttle_queue is set and if not this doesn't do
1748 * anything. This should only ever be called by the resume code, it's not meant
1749 * to be called by people willy-nilly as it will actually do the work to
1750 * throttle the task if it is setup for throttling.
1751 */
blkcg_maybe_throttle_current(void)1752 void blkcg_maybe_throttle_current(void)
1753 {
1754 struct request_queue *q = current->throttle_queue;
1755 struct blkcg *blkcg;
1756 struct blkcg_gq *blkg;
1757 bool use_memdelay = current->use_memdelay;
1758
1759 if (!q)
1760 return;
1761
1762 current->throttle_queue = NULL;
1763 current->use_memdelay = false;
1764
1765 rcu_read_lock();
1766 blkcg = css_to_blkcg(blkcg_css());
1767 if (!blkcg)
1768 goto out;
1769 blkg = blkg_lookup(blkcg, q);
1770 if (!blkg)
1771 goto out;
1772 if (!blkg_tryget(blkg))
1773 goto out;
1774 rcu_read_unlock();
1775
1776 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1777 blkg_put(blkg);
1778 blk_put_queue(q);
1779 return;
1780 out:
1781 rcu_read_unlock();
1782 blk_put_queue(q);
1783 }
1784
1785 /**
1786 * blkcg_schedule_throttle - this task needs to check for throttling
1787 * @gendisk: disk to throttle
1788 * @use_memdelay: do we charge this to memory delay for PSI
1789 *
1790 * This is called by the IO controller when we know there's delay accumulated
1791 * for the blkg for this task. We do not pass the blkg because there are places
1792 * we call this that may not have that information, the swapping code for
1793 * instance will only have a block_device at that point. This set's the
1794 * notify_resume for the task to check and see if it requires throttling before
1795 * returning to user space.
1796 *
1797 * We will only schedule once per syscall. You can call this over and over
1798 * again and it will only do the check once upon return to user space, and only
1799 * throttle once. If the task needs to be throttled again it'll need to be
1800 * re-set at the next time we see the task.
1801 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)1802 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1803 {
1804 struct request_queue *q = disk->queue;
1805
1806 if (unlikely(current->flags & PF_KTHREAD))
1807 return;
1808
1809 if (current->throttle_queue != q) {
1810 if (!blk_get_queue(q))
1811 return;
1812
1813 if (current->throttle_queue)
1814 blk_put_queue(current->throttle_queue);
1815 current->throttle_queue = q;
1816 }
1817
1818 if (use_memdelay)
1819 current->use_memdelay = use_memdelay;
1820 set_notify_resume(current);
1821 }
1822
1823 /**
1824 * blkcg_add_delay - add delay to this blkg
1825 * @blkg: blkg of interest
1826 * @now: the current time in nanoseconds
1827 * @delta: how many nanoseconds of delay to add
1828 *
1829 * Charge @delta to the blkg's current delay accumulation. This is used to
1830 * throttle tasks if an IO controller thinks we need more throttling.
1831 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1832 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1833 {
1834 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1835 return;
1836 blkcg_scale_delay(blkg, now);
1837 atomic64_add(delta, &blkg->delay_nsec);
1838 }
1839
1840 /**
1841 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1842 * @bio: target bio
1843 * @css: target css
1844 *
1845 * As the failure mode here is to walk up the blkg tree, this ensure that the
1846 * blkg->parent pointers are always valid. This returns the blkg that it ended
1847 * up taking a reference on or %NULL if no reference was taken.
1848 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1849 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1850 struct cgroup_subsys_state *css)
1851 {
1852 struct blkcg_gq *blkg, *ret_blkg = NULL;
1853
1854 rcu_read_lock();
1855 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1856 while (blkg) {
1857 if (blkg_tryget(blkg)) {
1858 ret_blkg = blkg;
1859 break;
1860 }
1861 blkg = blkg->parent;
1862 }
1863 rcu_read_unlock();
1864
1865 return ret_blkg;
1866 }
1867
1868 /**
1869 * bio_associate_blkg_from_css - associate a bio with a specified css
1870 * @bio: target bio
1871 * @css: target css
1872 *
1873 * Associate @bio with the blkg found by combining the css's blkg and the
1874 * request_queue of the @bio. An association failure is handled by walking up
1875 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1876 * and q->root_blkg. This situation only happens when a cgroup is dying and
1877 * then the remaining bios will spill to the closest alive blkg.
1878 *
1879 * A reference will be taken on the blkg and will be released when @bio is
1880 * freed.
1881 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)1882 void bio_associate_blkg_from_css(struct bio *bio,
1883 struct cgroup_subsys_state *css)
1884 {
1885 if (bio->bi_blkg)
1886 blkg_put(bio->bi_blkg);
1887
1888 if (css && css->parent) {
1889 bio->bi_blkg = blkg_tryget_closest(bio, css);
1890 } else {
1891 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1892 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1893 }
1894 }
1895 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1896
1897 /**
1898 * bio_associate_blkg - associate a bio with a blkg
1899 * @bio: target bio
1900 *
1901 * Associate @bio with the blkg found from the bio's css and request_queue.
1902 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1903 * already associated, the css is reused and association redone as the
1904 * request_queue may have changed.
1905 */
bio_associate_blkg(struct bio * bio)1906 void bio_associate_blkg(struct bio *bio)
1907 {
1908 struct cgroup_subsys_state *css;
1909
1910 rcu_read_lock();
1911
1912 if (bio->bi_blkg)
1913 css = bio_blkcg_css(bio);
1914 else
1915 css = blkcg_css();
1916
1917 bio_associate_blkg_from_css(bio, css);
1918
1919 rcu_read_unlock();
1920 }
1921 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1922
1923 /**
1924 * bio_clone_blkg_association - clone blkg association from src to dst bio
1925 * @dst: destination bio
1926 * @src: source bio
1927 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)1928 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1929 {
1930 if (src->bi_blkg)
1931 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1932 }
1933 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1934
blk_cgroup_io_type(struct bio * bio)1935 static int blk_cgroup_io_type(struct bio *bio)
1936 {
1937 if (op_is_discard(bio->bi_opf))
1938 return BLKG_IOSTAT_DISCARD;
1939 if (op_is_write(bio->bi_opf))
1940 return BLKG_IOSTAT_WRITE;
1941 return BLKG_IOSTAT_READ;
1942 }
1943
blk_cgroup_bio_start(struct bio * bio)1944 void blk_cgroup_bio_start(struct bio *bio)
1945 {
1946 int rwd = blk_cgroup_io_type(bio), cpu;
1947 struct blkg_iostat_set *bis;
1948 unsigned long flags;
1949
1950 cpu = get_cpu();
1951 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1952 flags = u64_stats_update_begin_irqsave(&bis->sync);
1953
1954 /*
1955 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1956 * bio and we would have already accounted for the size of the bio.
1957 */
1958 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1959 bio_set_flag(bio, BIO_CGROUP_ACCT);
1960 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1961 }
1962 bis->cur.ios[rwd]++;
1963
1964 u64_stats_update_end_irqrestore(&bis->sync, flags);
1965 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1966 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1967 put_cpu();
1968 }
1969
blk_cgroup_congested(void)1970 bool blk_cgroup_congested(void)
1971 {
1972 struct cgroup_subsys_state *css;
1973 bool ret = false;
1974
1975 rcu_read_lock();
1976 for (css = blkcg_css(); css; css = css->parent) {
1977 if (atomic_read(&css->cgroup->congestion_count)) {
1978 ret = true;
1979 break;
1980 }
1981 }
1982 rcu_read_unlock();
1983 return ret;
1984 }
1985
blkcg_init(void)1986 static int __init blkcg_init(void)
1987 {
1988 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1989 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1990 WQ_UNBOUND | WQ_SYSFS, 0);
1991 if (!blkcg_punt_bio_wq)
1992 return -ENOMEM;
1993 return 0;
1994 }
1995 subsys_initcall(blkcg_init);
1996
1997 module_param(blkcg_debug_stats, bool, 0644);
1998 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1999