1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5 * Copyright (C) 2002 Andi Kleen
6 *
7 * This handles calls from both 32bit and 64bit mode.
8 *
9 * Lock order:
10 * contex.ldt_usr_sem
11 * mmap_lock
12 * context.lock
13 */
14
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable_areas.h>
31
32 #include <xen/xen.h>
33
34 /* This is a multiple of PAGE_SIZE. */
35 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
36
ldt_slot_va(int slot)37 static inline void *ldt_slot_va(int slot)
38 {
39 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
40 }
41
load_mm_ldt(struct mm_struct * mm)42 void load_mm_ldt(struct mm_struct *mm)
43 {
44 struct ldt_struct *ldt;
45
46 /* READ_ONCE synchronizes with smp_store_release */
47 ldt = READ_ONCE(mm->context.ldt);
48
49 /*
50 * Any change to mm->context.ldt is followed by an IPI to all
51 * CPUs with the mm active. The LDT will not be freed until
52 * after the IPI is handled by all such CPUs. This means that,
53 * if the ldt_struct changes before we return, the values we see
54 * will be safe, and the new values will be loaded before we run
55 * any user code.
56 *
57 * NB: don't try to convert this to use RCU without extreme care.
58 * We would still need IRQs off, because we don't want to change
59 * the local LDT after an IPI loaded a newer value than the one
60 * that we can see.
61 */
62
63 if (unlikely(ldt)) {
64 if (static_cpu_has(X86_FEATURE_PTI)) {
65 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
66 /*
67 * Whoops -- either the new LDT isn't mapped
68 * (if slot == -1) or is mapped into a bogus
69 * slot (if slot > 1).
70 */
71 clear_LDT();
72 return;
73 }
74
75 /*
76 * If page table isolation is enabled, ldt->entries
77 * will not be mapped in the userspace pagetables.
78 * Tell the CPU to access the LDT through the alias
79 * at ldt_slot_va(ldt->slot).
80 */
81 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
82 } else {
83 set_ldt(ldt->entries, ldt->nr_entries);
84 }
85 } else {
86 clear_LDT();
87 }
88 }
89
switch_ldt(struct mm_struct * prev,struct mm_struct * next)90 void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
91 {
92 /*
93 * Load the LDT if either the old or new mm had an LDT.
94 *
95 * An mm will never go from having an LDT to not having an LDT. Two
96 * mms never share an LDT, so we don't gain anything by checking to
97 * see whether the LDT changed. There's also no guarantee that
98 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
99 * then prev->context.ldt will also be non-NULL.
100 *
101 * If we really cared, we could optimize the case where prev == next
102 * and we're exiting lazy mode. Most of the time, if this happens,
103 * we don't actually need to reload LDTR, but modify_ldt() is mostly
104 * used by legacy code and emulators where we don't need this level of
105 * performance.
106 *
107 * This uses | instead of || because it generates better code.
108 */
109 if (unlikely((unsigned long)prev->context.ldt |
110 (unsigned long)next->context.ldt))
111 load_mm_ldt(next);
112
113 DEBUG_LOCKS_WARN_ON(preemptible());
114 }
115
refresh_ldt_segments(void)116 static void refresh_ldt_segments(void)
117 {
118 #ifdef CONFIG_X86_64
119 unsigned short sel;
120
121 /*
122 * Make sure that the cached DS and ES descriptors match the updated
123 * LDT.
124 */
125 savesegment(ds, sel);
126 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
127 loadsegment(ds, sel);
128
129 savesegment(es, sel);
130 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
131 loadsegment(es, sel);
132 #endif
133 }
134
135 /* context.lock is held by the task which issued the smp function call */
flush_ldt(void * __mm)136 static void flush_ldt(void *__mm)
137 {
138 struct mm_struct *mm = __mm;
139
140 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
141 return;
142
143 load_mm_ldt(mm);
144
145 refresh_ldt_segments();
146 }
147
148 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
alloc_ldt_struct(unsigned int num_entries)149 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
150 {
151 struct ldt_struct *new_ldt;
152 unsigned int alloc_size;
153
154 if (num_entries > LDT_ENTRIES)
155 return NULL;
156
157 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL_ACCOUNT);
158 if (!new_ldt)
159 return NULL;
160
161 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
162 alloc_size = num_entries * LDT_ENTRY_SIZE;
163
164 /*
165 * Xen is very picky: it requires a page-aligned LDT that has no
166 * trailing nonzero bytes in any page that contains LDT descriptors.
167 * Keep it simple: zero the whole allocation and never allocate less
168 * than PAGE_SIZE.
169 */
170 if (alloc_size > PAGE_SIZE)
171 new_ldt->entries = __vmalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
172 else
173 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
174
175 if (!new_ldt->entries) {
176 kfree(new_ldt);
177 return NULL;
178 }
179
180 /* The new LDT isn't aliased for PTI yet. */
181 new_ldt->slot = -1;
182
183 new_ldt->nr_entries = num_entries;
184 return new_ldt;
185 }
186
187 #ifdef CONFIG_PAGE_TABLE_ISOLATION
188
do_sanity_check(struct mm_struct * mm,bool had_kernel_mapping,bool had_user_mapping)189 static void do_sanity_check(struct mm_struct *mm,
190 bool had_kernel_mapping,
191 bool had_user_mapping)
192 {
193 if (mm->context.ldt) {
194 /*
195 * We already had an LDT. The top-level entry should already
196 * have been allocated and synchronized with the usermode
197 * tables.
198 */
199 WARN_ON(!had_kernel_mapping);
200 if (boot_cpu_has(X86_FEATURE_PTI))
201 WARN_ON(!had_user_mapping);
202 } else {
203 /*
204 * This is the first time we're mapping an LDT for this process.
205 * Sync the pgd to the usermode tables.
206 */
207 WARN_ON(had_kernel_mapping);
208 if (boot_cpu_has(X86_FEATURE_PTI))
209 WARN_ON(had_user_mapping);
210 }
211 }
212
213 #ifdef CONFIG_X86_PAE
214
pgd_to_pmd_walk(pgd_t * pgd,unsigned long va)215 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
216 {
217 p4d_t *p4d;
218 pud_t *pud;
219
220 if (pgd->pgd == 0)
221 return NULL;
222
223 p4d = p4d_offset(pgd, va);
224 if (p4d_none(*p4d))
225 return NULL;
226
227 pud = pud_offset(p4d, va);
228 if (pud_none(*pud))
229 return NULL;
230
231 return pmd_offset(pud, va);
232 }
233
map_ldt_struct_to_user(struct mm_struct * mm)234 static void map_ldt_struct_to_user(struct mm_struct *mm)
235 {
236 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
237 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
238 pmd_t *k_pmd, *u_pmd;
239
240 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
241 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
242
243 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
244 set_pmd(u_pmd, *k_pmd);
245 }
246
sanity_check_ldt_mapping(struct mm_struct * mm)247 static void sanity_check_ldt_mapping(struct mm_struct *mm)
248 {
249 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
250 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
251 bool had_kernel, had_user;
252 pmd_t *k_pmd, *u_pmd;
253
254 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
255 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
256 had_kernel = (k_pmd->pmd != 0);
257 had_user = (u_pmd->pmd != 0);
258
259 do_sanity_check(mm, had_kernel, had_user);
260 }
261
262 #else /* !CONFIG_X86_PAE */
263
map_ldt_struct_to_user(struct mm_struct * mm)264 static void map_ldt_struct_to_user(struct mm_struct *mm)
265 {
266 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
267
268 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
269 set_pgd(kernel_to_user_pgdp(pgd), *pgd);
270 }
271
sanity_check_ldt_mapping(struct mm_struct * mm)272 static void sanity_check_ldt_mapping(struct mm_struct *mm)
273 {
274 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
275 bool had_kernel = (pgd->pgd != 0);
276 bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0);
277
278 do_sanity_check(mm, had_kernel, had_user);
279 }
280
281 #endif /* CONFIG_X86_PAE */
282
283 /*
284 * If PTI is enabled, this maps the LDT into the kernelmode and
285 * usermode tables for the given mm.
286 */
287 static int
map_ldt_struct(struct mm_struct * mm,struct ldt_struct * ldt,int slot)288 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
289 {
290 unsigned long va;
291 bool is_vmalloc;
292 spinlock_t *ptl;
293 int i, nr_pages;
294
295 if (!boot_cpu_has(X86_FEATURE_PTI))
296 return 0;
297
298 /*
299 * Any given ldt_struct should have map_ldt_struct() called at most
300 * once.
301 */
302 WARN_ON(ldt->slot != -1);
303
304 /* Check if the current mappings are sane */
305 sanity_check_ldt_mapping(mm);
306
307 is_vmalloc = is_vmalloc_addr(ldt->entries);
308
309 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
310
311 for (i = 0; i < nr_pages; i++) {
312 unsigned long offset = i << PAGE_SHIFT;
313 const void *src = (char *)ldt->entries + offset;
314 unsigned long pfn;
315 pgprot_t pte_prot;
316 pte_t pte, *ptep;
317
318 va = (unsigned long)ldt_slot_va(slot) + offset;
319 pfn = is_vmalloc ? vmalloc_to_pfn(src) :
320 page_to_pfn(virt_to_page(src));
321 /*
322 * Treat the PTI LDT range as a *userspace* range.
323 * get_locked_pte() will allocate all needed pagetables
324 * and account for them in this mm.
325 */
326 ptep = get_locked_pte(mm, va, &ptl);
327 if (!ptep)
328 return -ENOMEM;
329 /*
330 * Map it RO so the easy to find address is not a primary
331 * target via some kernel interface which misses a
332 * permission check.
333 */
334 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
335 /* Filter out unsuppored __PAGE_KERNEL* bits: */
336 pgprot_val(pte_prot) &= __supported_pte_mask;
337 pte = pfn_pte(pfn, pte_prot);
338 set_pte_at(mm, va, ptep, pte);
339 pte_unmap_unlock(ptep, ptl);
340 }
341
342 /* Propagate LDT mapping to the user page-table */
343 map_ldt_struct_to_user(mm);
344
345 ldt->slot = slot;
346 return 0;
347 }
348
unmap_ldt_struct(struct mm_struct * mm,struct ldt_struct * ldt)349 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
350 {
351 unsigned long va;
352 int i, nr_pages;
353
354 if (!ldt)
355 return;
356
357 /* LDT map/unmap is only required for PTI */
358 if (!boot_cpu_has(X86_FEATURE_PTI))
359 return;
360
361 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
362
363 for (i = 0; i < nr_pages; i++) {
364 unsigned long offset = i << PAGE_SHIFT;
365 spinlock_t *ptl;
366 pte_t *ptep;
367
368 va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
369 ptep = get_locked_pte(mm, va, &ptl);
370 pte_clear(mm, va, ptep);
371 pte_unmap_unlock(ptep, ptl);
372 }
373
374 va = (unsigned long)ldt_slot_va(ldt->slot);
375 flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
376 }
377
378 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
379
380 static int
map_ldt_struct(struct mm_struct * mm,struct ldt_struct * ldt,int slot)381 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
382 {
383 return 0;
384 }
385
unmap_ldt_struct(struct mm_struct * mm,struct ldt_struct * ldt)386 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
387 {
388 }
389 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
390
free_ldt_pgtables(struct mm_struct * mm)391 static void free_ldt_pgtables(struct mm_struct *mm)
392 {
393 #ifdef CONFIG_PAGE_TABLE_ISOLATION
394 struct mmu_gather tlb;
395 unsigned long start = LDT_BASE_ADDR;
396 unsigned long end = LDT_END_ADDR;
397
398 if (!boot_cpu_has(X86_FEATURE_PTI))
399 return;
400
401 /*
402 * Although free_pgd_range() is intended for freeing user
403 * page-tables, it also works out for kernel mappings on x86.
404 * We use tlb_gather_mmu_fullmm() to avoid confusing the
405 * range-tracking logic in __tlb_adjust_range().
406 */
407 tlb_gather_mmu_fullmm(&tlb, mm);
408 free_pgd_range(&tlb, start, end, start, end);
409 tlb_finish_mmu(&tlb);
410 #endif
411 }
412
413 /* After calling this, the LDT is immutable. */
finalize_ldt_struct(struct ldt_struct * ldt)414 static void finalize_ldt_struct(struct ldt_struct *ldt)
415 {
416 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
417 }
418
install_ldt(struct mm_struct * mm,struct ldt_struct * ldt)419 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
420 {
421 mutex_lock(&mm->context.lock);
422
423 /* Synchronizes with READ_ONCE in load_mm_ldt. */
424 smp_store_release(&mm->context.ldt, ldt);
425
426 /* Activate the LDT for all CPUs using currents mm. */
427 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
428
429 mutex_unlock(&mm->context.lock);
430 }
431
free_ldt_struct(struct ldt_struct * ldt)432 static void free_ldt_struct(struct ldt_struct *ldt)
433 {
434 if (likely(!ldt))
435 return;
436
437 paravirt_free_ldt(ldt->entries, ldt->nr_entries);
438 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
439 vfree_atomic(ldt->entries);
440 else
441 free_page((unsigned long)ldt->entries);
442 kfree(ldt);
443 }
444
445 /*
446 * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
447 * the new task is not running, so nothing can be installed.
448 */
ldt_dup_context(struct mm_struct * old_mm,struct mm_struct * mm)449 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
450 {
451 struct ldt_struct *new_ldt;
452 int retval = 0;
453
454 if (!old_mm)
455 return 0;
456
457 mutex_lock(&old_mm->context.lock);
458 if (!old_mm->context.ldt)
459 goto out_unlock;
460
461 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
462 if (!new_ldt) {
463 retval = -ENOMEM;
464 goto out_unlock;
465 }
466
467 memcpy(new_ldt->entries, old_mm->context.ldt->entries,
468 new_ldt->nr_entries * LDT_ENTRY_SIZE);
469 finalize_ldt_struct(new_ldt);
470
471 retval = map_ldt_struct(mm, new_ldt, 0);
472 if (retval) {
473 free_ldt_pgtables(mm);
474 free_ldt_struct(new_ldt);
475 goto out_unlock;
476 }
477 mm->context.ldt = new_ldt;
478
479 out_unlock:
480 mutex_unlock(&old_mm->context.lock);
481 return retval;
482 }
483
484 /*
485 * No need to lock the MM as we are the last user
486 *
487 * 64bit: Don't touch the LDT register - we're already in the next thread.
488 */
destroy_context_ldt(struct mm_struct * mm)489 void destroy_context_ldt(struct mm_struct *mm)
490 {
491 free_ldt_struct(mm->context.ldt);
492 mm->context.ldt = NULL;
493 }
494
ldt_arch_exit_mmap(struct mm_struct * mm)495 void ldt_arch_exit_mmap(struct mm_struct *mm)
496 {
497 free_ldt_pgtables(mm);
498 }
499
read_ldt(void __user * ptr,unsigned long bytecount)500 static int read_ldt(void __user *ptr, unsigned long bytecount)
501 {
502 struct mm_struct *mm = current->mm;
503 unsigned long entries_size;
504 int retval;
505
506 down_read(&mm->context.ldt_usr_sem);
507
508 if (!mm->context.ldt) {
509 retval = 0;
510 goto out_unlock;
511 }
512
513 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
514 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
515
516 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
517 if (entries_size > bytecount)
518 entries_size = bytecount;
519
520 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
521 retval = -EFAULT;
522 goto out_unlock;
523 }
524
525 if (entries_size != bytecount) {
526 /* Zero-fill the rest and pretend we read bytecount bytes. */
527 if (clear_user(ptr + entries_size, bytecount - entries_size)) {
528 retval = -EFAULT;
529 goto out_unlock;
530 }
531 }
532 retval = bytecount;
533
534 out_unlock:
535 up_read(&mm->context.ldt_usr_sem);
536 return retval;
537 }
538
read_default_ldt(void __user * ptr,unsigned long bytecount)539 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
540 {
541 /* CHECKME: Can we use _one_ random number ? */
542 #ifdef CONFIG_X86_32
543 unsigned long size = 5 * sizeof(struct desc_struct);
544 #else
545 unsigned long size = 128;
546 #endif
547 if (bytecount > size)
548 bytecount = size;
549 if (clear_user(ptr, bytecount))
550 return -EFAULT;
551 return bytecount;
552 }
553
allow_16bit_segments(void)554 static bool allow_16bit_segments(void)
555 {
556 if (!IS_ENABLED(CONFIG_X86_16BIT))
557 return false;
558
559 #ifdef CONFIG_XEN_PV
560 /*
561 * Xen PV does not implement ESPFIX64, which means that 16-bit
562 * segments will not work correctly. Until either Xen PV implements
563 * ESPFIX64 and can signal this fact to the guest or unless someone
564 * provides compelling evidence that allowing broken 16-bit segments
565 * is worthwhile, disallow 16-bit segments under Xen PV.
566 */
567 if (xen_pv_domain()) {
568 pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
569 return false;
570 }
571 #endif
572
573 return true;
574 }
575
write_ldt(void __user * ptr,unsigned long bytecount,int oldmode)576 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
577 {
578 struct mm_struct *mm = current->mm;
579 struct ldt_struct *new_ldt, *old_ldt;
580 unsigned int old_nr_entries, new_nr_entries;
581 struct user_desc ldt_info;
582 struct desc_struct ldt;
583 int error;
584
585 error = -EINVAL;
586 if (bytecount != sizeof(ldt_info))
587 goto out;
588 error = -EFAULT;
589 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
590 goto out;
591
592 error = -EINVAL;
593 if (ldt_info.entry_number >= LDT_ENTRIES)
594 goto out;
595 if (ldt_info.contents == 3) {
596 if (oldmode)
597 goto out;
598 if (ldt_info.seg_not_present == 0)
599 goto out;
600 }
601
602 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
603 LDT_empty(&ldt_info)) {
604 /* The user wants to clear the entry. */
605 memset(&ldt, 0, sizeof(ldt));
606 } else {
607 if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
608 error = -EINVAL;
609 goto out;
610 }
611
612 fill_ldt(&ldt, &ldt_info);
613 if (oldmode)
614 ldt.avl = 0;
615 }
616
617 if (down_write_killable(&mm->context.ldt_usr_sem))
618 return -EINTR;
619
620 old_ldt = mm->context.ldt;
621 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
622 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
623
624 error = -ENOMEM;
625 new_ldt = alloc_ldt_struct(new_nr_entries);
626 if (!new_ldt)
627 goto out_unlock;
628
629 if (old_ldt)
630 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
631
632 new_ldt->entries[ldt_info.entry_number] = ldt;
633 finalize_ldt_struct(new_ldt);
634
635 /*
636 * If we are using PTI, map the new LDT into the userspace pagetables.
637 * If there is already an LDT, use the other slot so that other CPUs
638 * will continue to use the old LDT until install_ldt() switches
639 * them over to the new LDT.
640 */
641 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
642 if (error) {
643 /*
644 * This only can fail for the first LDT setup. If an LDT is
645 * already installed then the PTE page is already
646 * populated. Mop up a half populated page table.
647 */
648 if (!WARN_ON_ONCE(old_ldt))
649 free_ldt_pgtables(mm);
650 free_ldt_struct(new_ldt);
651 goto out_unlock;
652 }
653
654 install_ldt(mm, new_ldt);
655 unmap_ldt_struct(mm, old_ldt);
656 free_ldt_struct(old_ldt);
657 error = 0;
658
659 out_unlock:
660 up_write(&mm->context.ldt_usr_sem);
661 out:
662 return error;
663 }
664
SYSCALL_DEFINE3(modify_ldt,int,func,void __user *,ptr,unsigned long,bytecount)665 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
666 unsigned long , bytecount)
667 {
668 int ret = -ENOSYS;
669
670 switch (func) {
671 case 0:
672 ret = read_ldt(ptr, bytecount);
673 break;
674 case 1:
675 ret = write_ldt(ptr, bytecount, 1);
676 break;
677 case 2:
678 ret = read_default_ldt(ptr, bytecount);
679 break;
680 case 0x11:
681 ret = write_ldt(ptr, bytecount, 0);
682 break;
683 }
684 /*
685 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
686 * return type, but tht ABI for sys_modify_ldt() expects
687 * 'int'. This cast gives us an int-sized value in %rax
688 * for the return code. The 'unsigned' is necessary so
689 * the compiler does not try to sign-extend the negative
690 * return codes into the high half of the register when
691 * taking the value from int->long.
692 */
693 return (unsigned int)ret;
694 }
695