1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56
57 struct dentry *debugfs_resctrl;
58
rdt_last_cmd_clear(void)59 void rdt_last_cmd_clear(void)
60 {
61 lockdep_assert_held(&rdtgroup_mutex);
62 seq_buf_clear(&last_cmd_status);
63 }
64
rdt_last_cmd_puts(const char * s)65 void rdt_last_cmd_puts(const char *s)
66 {
67 lockdep_assert_held(&rdtgroup_mutex);
68 seq_buf_puts(&last_cmd_status, s);
69 }
70
rdt_last_cmd_printf(const char * fmt,...)71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 va_list ap;
74
75 va_start(ap, fmt);
76 lockdep_assert_held(&rdtgroup_mutex);
77 seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 va_end(ap);
79 }
80
81 /*
82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
83 * we can keep a bitmap of free CLOSIDs in a single integer.
84 *
85 * Using a global CLOSID across all resources has some advantages and
86 * some drawbacks:
87 * + We can simply set "current->closid" to assign a task to a resource
88 * group.
89 * + Context switch code can avoid extra memory references deciding which
90 * CLOSID to load into the PQR_ASSOC MSR
91 * - We give up some options in configuring resource groups across multi-socket
92 * systems.
93 * - Our choices on how to configure each resource become progressively more
94 * limited as the number of resources grows.
95 */
96 static int closid_free_map;
97 static int closid_free_map_len;
98
closids_supported(void)99 int closids_supported(void)
100 {
101 return closid_free_map_len;
102 }
103
closid_init(void)104 static void closid_init(void)
105 {
106 struct resctrl_schema *s;
107 u32 rdt_min_closid = 32;
108
109 /* Compute rdt_min_closid across all resources */
110 list_for_each_entry(s, &resctrl_schema_all, list)
111 rdt_min_closid = min(rdt_min_closid, s->num_closid);
112
113 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
114
115 /* CLOSID 0 is always reserved for the default group */
116 closid_free_map &= ~1;
117 closid_free_map_len = rdt_min_closid;
118 }
119
closid_alloc(void)120 static int closid_alloc(void)
121 {
122 u32 closid = ffs(closid_free_map);
123
124 if (closid == 0)
125 return -ENOSPC;
126 closid--;
127 closid_free_map &= ~(1 << closid);
128
129 return closid;
130 }
131
closid_free(int closid)132 void closid_free(int closid)
133 {
134 closid_free_map |= 1 << closid;
135 }
136
137 /**
138 * closid_allocated - test if provided closid is in use
139 * @closid: closid to be tested
140 *
141 * Return: true if @closid is currently associated with a resource group,
142 * false if @closid is free
143 */
closid_allocated(unsigned int closid)144 static bool closid_allocated(unsigned int closid)
145 {
146 return (closid_free_map & (1 << closid)) == 0;
147 }
148
149 /**
150 * rdtgroup_mode_by_closid - Return mode of resource group with closid
151 * @closid: closid if the resource group
152 *
153 * Each resource group is associated with a @closid. Here the mode
154 * of a resource group can be queried by searching for it using its closid.
155 *
156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
157 */
rdtgroup_mode_by_closid(int closid)158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
159 {
160 struct rdtgroup *rdtgrp;
161
162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 if (rdtgrp->closid == closid)
164 return rdtgrp->mode;
165 }
166
167 return RDT_NUM_MODES;
168 }
169
170 static const char * const rdt_mode_str[] = {
171 [RDT_MODE_SHAREABLE] = "shareable",
172 [RDT_MODE_EXCLUSIVE] = "exclusive",
173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
175 };
176
177 /**
178 * rdtgroup_mode_str - Return the string representation of mode
179 * @mode: the resource group mode as &enum rdtgroup_mode
180 *
181 * Return: string representation of valid mode, "unknown" otherwise
182 */
rdtgroup_mode_str(enum rdtgrp_mode mode)183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
184 {
185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
186 return "unknown";
187
188 return rdt_mode_str[mode];
189 }
190
191 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
193 {
194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
195 .ia_uid = current_fsuid(),
196 .ia_gid = current_fsgid(), };
197
198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
200 return 0;
201
202 return kernfs_setattr(kn, &iattr);
203 }
204
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
206 {
207 struct kernfs_node *kn;
208 int ret;
209
210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
212 0, rft->kf_ops, rft, NULL, NULL);
213 if (IS_ERR(kn))
214 return PTR_ERR(kn);
215
216 ret = rdtgroup_kn_set_ugid(kn);
217 if (ret) {
218 kernfs_remove(kn);
219 return ret;
220 }
221
222 return 0;
223 }
224
rdtgroup_seqfile_show(struct seq_file * m,void * arg)225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
226 {
227 struct kernfs_open_file *of = m->private;
228 struct rftype *rft = of->kn->priv;
229
230 if (rft->seq_show)
231 return rft->seq_show(of, m, arg);
232 return 0;
233 }
234
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
236 size_t nbytes, loff_t off)
237 {
238 struct rftype *rft = of->kn->priv;
239
240 if (rft->write)
241 return rft->write(of, buf, nbytes, off);
242
243 return -EINVAL;
244 }
245
246 static const struct kernfs_ops rdtgroup_kf_single_ops = {
247 .atomic_write_len = PAGE_SIZE,
248 .write = rdtgroup_file_write,
249 .seq_show = rdtgroup_seqfile_show,
250 };
251
252 static const struct kernfs_ops kf_mondata_ops = {
253 .atomic_write_len = PAGE_SIZE,
254 .seq_show = rdtgroup_mondata_show,
255 };
256
is_cpu_list(struct kernfs_open_file * of)257 static bool is_cpu_list(struct kernfs_open_file *of)
258 {
259 struct rftype *rft = of->kn->priv;
260
261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
262 }
263
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)264 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
265 struct seq_file *s, void *v)
266 {
267 struct rdtgroup *rdtgrp;
268 struct cpumask *mask;
269 int ret = 0;
270
271 rdtgrp = rdtgroup_kn_lock_live(of->kn);
272
273 if (rdtgrp) {
274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
275 if (!rdtgrp->plr->d) {
276 rdt_last_cmd_clear();
277 rdt_last_cmd_puts("Cache domain offline\n");
278 ret = -ENODEV;
279 } else {
280 mask = &rdtgrp->plr->d->cpu_mask;
281 seq_printf(s, is_cpu_list(of) ?
282 "%*pbl\n" : "%*pb\n",
283 cpumask_pr_args(mask));
284 }
285 } else {
286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
287 cpumask_pr_args(&rdtgrp->cpu_mask));
288 }
289 } else {
290 ret = -ENOENT;
291 }
292 rdtgroup_kn_unlock(of->kn);
293
294 return ret;
295 }
296
297 /*
298 * This is safe against resctrl_sched_in() called from __switch_to()
299 * because __switch_to() is executed with interrupts disabled. A local call
300 * from update_closid_rmid() is protected against __switch_to() because
301 * preemption is disabled.
302 */
update_cpu_closid_rmid(void * info)303 static void update_cpu_closid_rmid(void *info)
304 {
305 struct rdtgroup *r = info;
306
307 if (r) {
308 this_cpu_write(pqr_state.default_closid, r->closid);
309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
310 }
311
312 /*
313 * We cannot unconditionally write the MSR because the current
314 * executing task might have its own closid selected. Just reuse
315 * the context switch code.
316 */
317 resctrl_sched_in();
318 }
319
320 /*
321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
322 *
323 * Per task closids/rmids must have been set up before calling this function.
324 */
325 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
327 {
328 int cpu = get_cpu();
329
330 if (cpumask_test_cpu(cpu, cpu_mask))
331 update_cpu_closid_rmid(r);
332 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
333 put_cpu();
334 }
335
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
337 cpumask_var_t tmpmask)
338 {
339 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
340 struct list_head *head;
341
342 /* Check whether cpus belong to parent ctrl group */
343 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
344 if (!cpumask_empty(tmpmask)) {
345 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
346 return -EINVAL;
347 }
348
349 /* Check whether cpus are dropped from this group */
350 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
351 if (!cpumask_empty(tmpmask)) {
352 /* Give any dropped cpus to parent rdtgroup */
353 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
354 update_closid_rmid(tmpmask, prgrp);
355 }
356
357 /*
358 * If we added cpus, remove them from previous group that owned them
359 * and update per-cpu rmid
360 */
361 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
362 if (!cpumask_empty(tmpmask)) {
363 head = &prgrp->mon.crdtgrp_list;
364 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
365 if (crgrp == rdtgrp)
366 continue;
367 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
368 tmpmask);
369 }
370 update_closid_rmid(tmpmask, rdtgrp);
371 }
372
373 /* Done pushing/pulling - update this group with new mask */
374 cpumask_copy(&rdtgrp->cpu_mask, newmask);
375
376 return 0;
377 }
378
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
380 {
381 struct rdtgroup *crgrp;
382
383 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
384 /* update the child mon group masks as well*/
385 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
386 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
387 }
388
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
390 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
391 {
392 struct rdtgroup *r, *crgrp;
393 struct list_head *head;
394
395 /* Check whether cpus are dropped from this group */
396 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
397 if (!cpumask_empty(tmpmask)) {
398 /* Can't drop from default group */
399 if (rdtgrp == &rdtgroup_default) {
400 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
401 return -EINVAL;
402 }
403
404 /* Give any dropped cpus to rdtgroup_default */
405 cpumask_or(&rdtgroup_default.cpu_mask,
406 &rdtgroup_default.cpu_mask, tmpmask);
407 update_closid_rmid(tmpmask, &rdtgroup_default);
408 }
409
410 /*
411 * If we added cpus, remove them from previous group and
412 * the prev group's child groups that owned them
413 * and update per-cpu closid/rmid.
414 */
415 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
416 if (!cpumask_empty(tmpmask)) {
417 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
418 if (r == rdtgrp)
419 continue;
420 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
421 if (!cpumask_empty(tmpmask1))
422 cpumask_rdtgrp_clear(r, tmpmask1);
423 }
424 update_closid_rmid(tmpmask, rdtgrp);
425 }
426
427 /* Done pushing/pulling - update this group with new mask */
428 cpumask_copy(&rdtgrp->cpu_mask, newmask);
429
430 /*
431 * Clear child mon group masks since there is a new parent mask
432 * now and update the rmid for the cpus the child lost.
433 */
434 head = &rdtgrp->mon.crdtgrp_list;
435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
436 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
437 update_closid_rmid(tmpmask, rdtgrp);
438 cpumask_clear(&crgrp->cpu_mask);
439 }
440
441 return 0;
442 }
443
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
445 char *buf, size_t nbytes, loff_t off)
446 {
447 cpumask_var_t tmpmask, newmask, tmpmask1;
448 struct rdtgroup *rdtgrp;
449 int ret;
450
451 if (!buf)
452 return -EINVAL;
453
454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
455 return -ENOMEM;
456 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
457 free_cpumask_var(tmpmask);
458 return -ENOMEM;
459 }
460 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
461 free_cpumask_var(tmpmask);
462 free_cpumask_var(newmask);
463 return -ENOMEM;
464 }
465
466 rdtgrp = rdtgroup_kn_lock_live(of->kn);
467 if (!rdtgrp) {
468 ret = -ENOENT;
469 goto unlock;
470 }
471
472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
474 ret = -EINVAL;
475 rdt_last_cmd_puts("Pseudo-locking in progress\n");
476 goto unlock;
477 }
478
479 if (is_cpu_list(of))
480 ret = cpulist_parse(buf, newmask);
481 else
482 ret = cpumask_parse(buf, newmask);
483
484 if (ret) {
485 rdt_last_cmd_puts("Bad CPU list/mask\n");
486 goto unlock;
487 }
488
489 /* check that user didn't specify any offline cpus */
490 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
491 if (!cpumask_empty(tmpmask)) {
492 ret = -EINVAL;
493 rdt_last_cmd_puts("Can only assign online CPUs\n");
494 goto unlock;
495 }
496
497 if (rdtgrp->type == RDTCTRL_GROUP)
498 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
499 else if (rdtgrp->type == RDTMON_GROUP)
500 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
501 else
502 ret = -EINVAL;
503
504 unlock:
505 rdtgroup_kn_unlock(of->kn);
506 free_cpumask_var(tmpmask);
507 free_cpumask_var(newmask);
508 free_cpumask_var(tmpmask1);
509
510 return ret ?: nbytes;
511 }
512
513 /**
514 * rdtgroup_remove - the helper to remove resource group safely
515 * @rdtgrp: resource group to remove
516 *
517 * On resource group creation via a mkdir, an extra kernfs_node reference is
518 * taken to ensure that the rdtgroup structure remains accessible for the
519 * rdtgroup_kn_unlock() calls where it is removed.
520 *
521 * Drop the extra reference here, then free the rdtgroup structure.
522 *
523 * Return: void
524 */
rdtgroup_remove(struct rdtgroup * rdtgrp)525 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
526 {
527 kernfs_put(rdtgrp->kn);
528 kfree(rdtgrp);
529 }
530
_update_task_closid_rmid(void * task)531 static void _update_task_closid_rmid(void *task)
532 {
533 /*
534 * If the task is still current on this CPU, update PQR_ASSOC MSR.
535 * Otherwise, the MSR is updated when the task is scheduled in.
536 */
537 if (task == current)
538 resctrl_sched_in();
539 }
540
update_task_closid_rmid(struct task_struct * t)541 static void update_task_closid_rmid(struct task_struct *t)
542 {
543 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
544 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
545 else
546 _update_task_closid_rmid(t);
547 }
548
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)549 static int __rdtgroup_move_task(struct task_struct *tsk,
550 struct rdtgroup *rdtgrp)
551 {
552 /* If the task is already in rdtgrp, no need to move the task. */
553 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
554 tsk->rmid == rdtgrp->mon.rmid) ||
555 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
556 tsk->closid == rdtgrp->mon.parent->closid))
557 return 0;
558
559 /*
560 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
561 * updated by them.
562 *
563 * For ctrl_mon groups, move both closid and rmid.
564 * For monitor groups, can move the tasks only from
565 * their parent CTRL group.
566 */
567
568 if (rdtgrp->type == RDTCTRL_GROUP) {
569 WRITE_ONCE(tsk->closid, rdtgrp->closid);
570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 } else if (rdtgrp->type == RDTMON_GROUP) {
572 if (rdtgrp->mon.parent->closid == tsk->closid) {
573 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
574 } else {
575 rdt_last_cmd_puts("Can't move task to different control group\n");
576 return -EINVAL;
577 }
578 }
579
580 /*
581 * Ensure the task's closid and rmid are written before determining if
582 * the task is current that will decide if it will be interrupted.
583 */
584 barrier();
585
586 /*
587 * By now, the task's closid and rmid are set. If the task is current
588 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
589 * group go into effect. If the task is not current, the MSR will be
590 * updated when the task is scheduled in.
591 */
592 update_task_closid_rmid(tsk);
593
594 return 0;
595 }
596
is_closid_match(struct task_struct * t,struct rdtgroup * r)597 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
598 {
599 return (rdt_alloc_capable &&
600 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
601 }
602
is_rmid_match(struct task_struct * t,struct rdtgroup * r)603 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
604 {
605 return (rdt_mon_capable &&
606 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
607 }
608
609 /**
610 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
611 * @r: Resource group
612 *
613 * Return: 1 if tasks have been assigned to @r, 0 otherwise
614 */
rdtgroup_tasks_assigned(struct rdtgroup * r)615 int rdtgroup_tasks_assigned(struct rdtgroup *r)
616 {
617 struct task_struct *p, *t;
618 int ret = 0;
619
620 lockdep_assert_held(&rdtgroup_mutex);
621
622 rcu_read_lock();
623 for_each_process_thread(p, t) {
624 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
625 ret = 1;
626 break;
627 }
628 }
629 rcu_read_unlock();
630
631 return ret;
632 }
633
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)634 static int rdtgroup_task_write_permission(struct task_struct *task,
635 struct kernfs_open_file *of)
636 {
637 const struct cred *tcred = get_task_cred(task);
638 const struct cred *cred = current_cred();
639 int ret = 0;
640
641 /*
642 * Even if we're attaching all tasks in the thread group, we only
643 * need to check permissions on one of them.
644 */
645 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
646 !uid_eq(cred->euid, tcred->uid) &&
647 !uid_eq(cred->euid, tcred->suid)) {
648 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
649 ret = -EPERM;
650 }
651
652 put_cred(tcred);
653 return ret;
654 }
655
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)656 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
657 struct kernfs_open_file *of)
658 {
659 struct task_struct *tsk;
660 int ret;
661
662 rcu_read_lock();
663 if (pid) {
664 tsk = find_task_by_vpid(pid);
665 if (!tsk) {
666 rcu_read_unlock();
667 rdt_last_cmd_printf("No task %d\n", pid);
668 return -ESRCH;
669 }
670 } else {
671 tsk = current;
672 }
673
674 get_task_struct(tsk);
675 rcu_read_unlock();
676
677 ret = rdtgroup_task_write_permission(tsk, of);
678 if (!ret)
679 ret = __rdtgroup_move_task(tsk, rdtgrp);
680
681 put_task_struct(tsk);
682 return ret;
683 }
684
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)685 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
686 char *buf, size_t nbytes, loff_t off)
687 {
688 struct rdtgroup *rdtgrp;
689 int ret = 0;
690 pid_t pid;
691
692 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
693 return -EINVAL;
694 rdtgrp = rdtgroup_kn_lock_live(of->kn);
695 if (!rdtgrp) {
696 rdtgroup_kn_unlock(of->kn);
697 return -ENOENT;
698 }
699 rdt_last_cmd_clear();
700
701 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
702 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
703 ret = -EINVAL;
704 rdt_last_cmd_puts("Pseudo-locking in progress\n");
705 goto unlock;
706 }
707
708 ret = rdtgroup_move_task(pid, rdtgrp, of);
709
710 unlock:
711 rdtgroup_kn_unlock(of->kn);
712
713 return ret ?: nbytes;
714 }
715
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)716 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
717 {
718 struct task_struct *p, *t;
719
720 rcu_read_lock();
721 for_each_process_thread(p, t) {
722 if (is_closid_match(t, r) || is_rmid_match(t, r))
723 seq_printf(s, "%d\n", t->pid);
724 }
725 rcu_read_unlock();
726 }
727
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)728 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
729 struct seq_file *s, void *v)
730 {
731 struct rdtgroup *rdtgrp;
732 int ret = 0;
733
734 rdtgrp = rdtgroup_kn_lock_live(of->kn);
735 if (rdtgrp)
736 show_rdt_tasks(rdtgrp, s);
737 else
738 ret = -ENOENT;
739 rdtgroup_kn_unlock(of->kn);
740
741 return ret;
742 }
743
744 #ifdef CONFIG_PROC_CPU_RESCTRL
745
746 /*
747 * A task can only be part of one resctrl control group and of one monitor
748 * group which is associated to that control group.
749 *
750 * 1) res:
751 * mon:
752 *
753 * resctrl is not available.
754 *
755 * 2) res:/
756 * mon:
757 *
758 * Task is part of the root resctrl control group, and it is not associated
759 * to any monitor group.
760 *
761 * 3) res:/
762 * mon:mon0
763 *
764 * Task is part of the root resctrl control group and monitor group mon0.
765 *
766 * 4) res:group0
767 * mon:
768 *
769 * Task is part of resctrl control group group0, and it is not associated
770 * to any monitor group.
771 *
772 * 5) res:group0
773 * mon:mon1
774 *
775 * Task is part of resctrl control group group0 and monitor group mon1.
776 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)777 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
778 struct pid *pid, struct task_struct *tsk)
779 {
780 struct rdtgroup *rdtg;
781 int ret = 0;
782
783 mutex_lock(&rdtgroup_mutex);
784
785 /* Return empty if resctrl has not been mounted. */
786 if (!static_branch_unlikely(&rdt_enable_key)) {
787 seq_puts(s, "res:\nmon:\n");
788 goto unlock;
789 }
790
791 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
792 struct rdtgroup *crg;
793
794 /*
795 * Task information is only relevant for shareable
796 * and exclusive groups.
797 */
798 if (rdtg->mode != RDT_MODE_SHAREABLE &&
799 rdtg->mode != RDT_MODE_EXCLUSIVE)
800 continue;
801
802 if (rdtg->closid != tsk->closid)
803 continue;
804
805 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
806 rdtg->kn->name);
807 seq_puts(s, "mon:");
808 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
809 mon.crdtgrp_list) {
810 if (tsk->rmid != crg->mon.rmid)
811 continue;
812 seq_printf(s, "%s", crg->kn->name);
813 break;
814 }
815 seq_putc(s, '\n');
816 goto unlock;
817 }
818 /*
819 * The above search should succeed. Otherwise return
820 * with an error.
821 */
822 ret = -ENOENT;
823 unlock:
824 mutex_unlock(&rdtgroup_mutex);
825
826 return ret;
827 }
828 #endif
829
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)830 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
831 struct seq_file *seq, void *v)
832 {
833 int len;
834
835 mutex_lock(&rdtgroup_mutex);
836 len = seq_buf_used(&last_cmd_status);
837 if (len)
838 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
839 else
840 seq_puts(seq, "ok\n");
841 mutex_unlock(&rdtgroup_mutex);
842 return 0;
843 }
844
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)845 static int rdt_num_closids_show(struct kernfs_open_file *of,
846 struct seq_file *seq, void *v)
847 {
848 struct resctrl_schema *s = of->kn->parent->priv;
849
850 seq_printf(seq, "%u\n", s->num_closid);
851 return 0;
852 }
853
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)854 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
855 struct seq_file *seq, void *v)
856 {
857 struct resctrl_schema *s = of->kn->parent->priv;
858 struct rdt_resource *r = s->res;
859
860 seq_printf(seq, "%x\n", r->default_ctrl);
861 return 0;
862 }
863
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)864 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
865 struct seq_file *seq, void *v)
866 {
867 struct resctrl_schema *s = of->kn->parent->priv;
868 struct rdt_resource *r = s->res;
869
870 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
871 return 0;
872 }
873
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)874 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
875 struct seq_file *seq, void *v)
876 {
877 struct resctrl_schema *s = of->kn->parent->priv;
878 struct rdt_resource *r = s->res;
879
880 seq_printf(seq, "%x\n", r->cache.shareable_bits);
881 return 0;
882 }
883
884 /**
885 * rdt_bit_usage_show - Display current usage of resources
886 *
887 * A domain is a shared resource that can now be allocated differently. Here
888 * we display the current regions of the domain as an annotated bitmask.
889 * For each domain of this resource its allocation bitmask
890 * is annotated as below to indicate the current usage of the corresponding bit:
891 * 0 - currently unused
892 * X - currently available for sharing and used by software and hardware
893 * H - currently used by hardware only but available for software use
894 * S - currently used and shareable by software only
895 * E - currently used exclusively by one resource group
896 * P - currently pseudo-locked by one resource group
897 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)898 static int rdt_bit_usage_show(struct kernfs_open_file *of,
899 struct seq_file *seq, void *v)
900 {
901 struct resctrl_schema *s = of->kn->parent->priv;
902 /*
903 * Use unsigned long even though only 32 bits are used to ensure
904 * test_bit() is used safely.
905 */
906 unsigned long sw_shareable = 0, hw_shareable = 0;
907 unsigned long exclusive = 0, pseudo_locked = 0;
908 struct rdt_resource *r = s->res;
909 struct rdt_domain *dom;
910 int i, hwb, swb, excl, psl;
911 enum rdtgrp_mode mode;
912 bool sep = false;
913 u32 ctrl_val;
914
915 mutex_lock(&rdtgroup_mutex);
916 hw_shareable = r->cache.shareable_bits;
917 list_for_each_entry(dom, &r->domains, list) {
918 if (sep)
919 seq_putc(seq, ';');
920 sw_shareable = 0;
921 exclusive = 0;
922 seq_printf(seq, "%d=", dom->id);
923 for (i = 0; i < closids_supported(); i++) {
924 if (!closid_allocated(i))
925 continue;
926 ctrl_val = resctrl_arch_get_config(r, dom, i,
927 s->conf_type);
928 mode = rdtgroup_mode_by_closid(i);
929 switch (mode) {
930 case RDT_MODE_SHAREABLE:
931 sw_shareable |= ctrl_val;
932 break;
933 case RDT_MODE_EXCLUSIVE:
934 exclusive |= ctrl_val;
935 break;
936 case RDT_MODE_PSEUDO_LOCKSETUP:
937 /*
938 * RDT_MODE_PSEUDO_LOCKSETUP is possible
939 * here but not included since the CBM
940 * associated with this CLOSID in this mode
941 * is not initialized and no task or cpu can be
942 * assigned this CLOSID.
943 */
944 break;
945 case RDT_MODE_PSEUDO_LOCKED:
946 case RDT_NUM_MODES:
947 WARN(1,
948 "invalid mode for closid %d\n", i);
949 break;
950 }
951 }
952 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
953 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
954 hwb = test_bit(i, &hw_shareable);
955 swb = test_bit(i, &sw_shareable);
956 excl = test_bit(i, &exclusive);
957 psl = test_bit(i, &pseudo_locked);
958 if (hwb && swb)
959 seq_putc(seq, 'X');
960 else if (hwb && !swb)
961 seq_putc(seq, 'H');
962 else if (!hwb && swb)
963 seq_putc(seq, 'S');
964 else if (excl)
965 seq_putc(seq, 'E');
966 else if (psl)
967 seq_putc(seq, 'P');
968 else /* Unused bits remain */
969 seq_putc(seq, '0');
970 }
971 sep = true;
972 }
973 seq_putc(seq, '\n');
974 mutex_unlock(&rdtgroup_mutex);
975 return 0;
976 }
977
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)978 static int rdt_min_bw_show(struct kernfs_open_file *of,
979 struct seq_file *seq, void *v)
980 {
981 struct resctrl_schema *s = of->kn->parent->priv;
982 struct rdt_resource *r = s->res;
983
984 seq_printf(seq, "%u\n", r->membw.min_bw);
985 return 0;
986 }
987
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)988 static int rdt_num_rmids_show(struct kernfs_open_file *of,
989 struct seq_file *seq, void *v)
990 {
991 struct rdt_resource *r = of->kn->parent->priv;
992
993 seq_printf(seq, "%d\n", r->num_rmid);
994
995 return 0;
996 }
997
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)998 static int rdt_mon_features_show(struct kernfs_open_file *of,
999 struct seq_file *seq, void *v)
1000 {
1001 struct rdt_resource *r = of->kn->parent->priv;
1002 struct mon_evt *mevt;
1003
1004 list_for_each_entry(mevt, &r->evt_list, list)
1005 seq_printf(seq, "%s\n", mevt->name);
1006
1007 return 0;
1008 }
1009
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1010 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1011 struct seq_file *seq, void *v)
1012 {
1013 struct resctrl_schema *s = of->kn->parent->priv;
1014 struct rdt_resource *r = s->res;
1015
1016 seq_printf(seq, "%u\n", r->membw.bw_gran);
1017 return 0;
1018 }
1019
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1020 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1021 struct seq_file *seq, void *v)
1022 {
1023 struct resctrl_schema *s = of->kn->parent->priv;
1024 struct rdt_resource *r = s->res;
1025
1026 seq_printf(seq, "%u\n", r->membw.delay_linear);
1027 return 0;
1028 }
1029
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1030 static int max_threshold_occ_show(struct kernfs_open_file *of,
1031 struct seq_file *seq, void *v)
1032 {
1033 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1034
1035 return 0;
1036 }
1037
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1038 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1039 struct seq_file *seq, void *v)
1040 {
1041 struct resctrl_schema *s = of->kn->parent->priv;
1042 struct rdt_resource *r = s->res;
1043
1044 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1045 seq_puts(seq, "per-thread\n");
1046 else
1047 seq_puts(seq, "max\n");
1048
1049 return 0;
1050 }
1051
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1052 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1053 char *buf, size_t nbytes, loff_t off)
1054 {
1055 unsigned int bytes;
1056 int ret;
1057
1058 ret = kstrtouint(buf, 0, &bytes);
1059 if (ret)
1060 return ret;
1061
1062 if (bytes > resctrl_rmid_realloc_limit)
1063 return -EINVAL;
1064
1065 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1066
1067 return nbytes;
1068 }
1069
1070 /*
1071 * rdtgroup_mode_show - Display mode of this resource group
1072 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1073 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1074 struct seq_file *s, void *v)
1075 {
1076 struct rdtgroup *rdtgrp;
1077
1078 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1079 if (!rdtgrp) {
1080 rdtgroup_kn_unlock(of->kn);
1081 return -ENOENT;
1082 }
1083
1084 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1085
1086 rdtgroup_kn_unlock(of->kn);
1087 return 0;
1088 }
1089
resctrl_peer_type(enum resctrl_conf_type my_type)1090 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1091 {
1092 switch (my_type) {
1093 case CDP_CODE:
1094 return CDP_DATA;
1095 case CDP_DATA:
1096 return CDP_CODE;
1097 default:
1098 case CDP_NONE:
1099 return CDP_NONE;
1100 }
1101 }
1102
1103 /**
1104 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1105 * @r: Resource to which domain instance @d belongs.
1106 * @d: The domain instance for which @closid is being tested.
1107 * @cbm: Capacity bitmask being tested.
1108 * @closid: Intended closid for @cbm.
1109 * @exclusive: Only check if overlaps with exclusive resource groups
1110 *
1111 * Checks if provided @cbm intended to be used for @closid on domain
1112 * @d overlaps with any other closids or other hardware usage associated
1113 * with this domain. If @exclusive is true then only overlaps with
1114 * resource groups in exclusive mode will be considered. If @exclusive
1115 * is false then overlaps with any resource group or hardware entities
1116 * will be considered.
1117 *
1118 * @cbm is unsigned long, even if only 32 bits are used, to make the
1119 * bitmap functions work correctly.
1120 *
1121 * Return: false if CBM does not overlap, true if it does.
1122 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1123 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1124 unsigned long cbm, int closid,
1125 enum resctrl_conf_type type, bool exclusive)
1126 {
1127 enum rdtgrp_mode mode;
1128 unsigned long ctrl_b;
1129 int i;
1130
1131 /* Check for any overlap with regions used by hardware directly */
1132 if (!exclusive) {
1133 ctrl_b = r->cache.shareable_bits;
1134 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1135 return true;
1136 }
1137
1138 /* Check for overlap with other resource groups */
1139 for (i = 0; i < closids_supported(); i++) {
1140 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1141 mode = rdtgroup_mode_by_closid(i);
1142 if (closid_allocated(i) && i != closid &&
1143 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1144 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1145 if (exclusive) {
1146 if (mode == RDT_MODE_EXCLUSIVE)
1147 return true;
1148 continue;
1149 }
1150 return true;
1151 }
1152 }
1153 }
1154
1155 return false;
1156 }
1157
1158 /**
1159 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1160 * @s: Schema for the resource to which domain instance @d belongs.
1161 * @d: The domain instance for which @closid is being tested.
1162 * @cbm: Capacity bitmask being tested.
1163 * @closid: Intended closid for @cbm.
1164 * @exclusive: Only check if overlaps with exclusive resource groups
1165 *
1166 * Resources that can be allocated using a CBM can use the CBM to control
1167 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1168 * for overlap. Overlap test is not limited to the specific resource for
1169 * which the CBM is intended though - when dealing with CDP resources that
1170 * share the underlying hardware the overlap check should be performed on
1171 * the CDP resource sharing the hardware also.
1172 *
1173 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1174 * overlap test.
1175 *
1176 * Return: true if CBM overlap detected, false if there is no overlap
1177 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1178 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1179 unsigned long cbm, int closid, bool exclusive)
1180 {
1181 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1182 struct rdt_resource *r = s->res;
1183
1184 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1185 exclusive))
1186 return true;
1187
1188 if (!resctrl_arch_get_cdp_enabled(r->rid))
1189 return false;
1190 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1191 }
1192
1193 /**
1194 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1195 *
1196 * An exclusive resource group implies that there should be no sharing of
1197 * its allocated resources. At the time this group is considered to be
1198 * exclusive this test can determine if its current schemata supports this
1199 * setting by testing for overlap with all other resource groups.
1200 *
1201 * Return: true if resource group can be exclusive, false if there is overlap
1202 * with allocations of other resource groups and thus this resource group
1203 * cannot be exclusive.
1204 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1205 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1206 {
1207 int closid = rdtgrp->closid;
1208 struct resctrl_schema *s;
1209 struct rdt_resource *r;
1210 bool has_cache = false;
1211 struct rdt_domain *d;
1212 u32 ctrl;
1213
1214 list_for_each_entry(s, &resctrl_schema_all, list) {
1215 r = s->res;
1216 if (r->rid == RDT_RESOURCE_MBA)
1217 continue;
1218 has_cache = true;
1219 list_for_each_entry(d, &r->domains, list) {
1220 ctrl = resctrl_arch_get_config(r, d, closid,
1221 s->conf_type);
1222 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1223 rdt_last_cmd_puts("Schemata overlaps\n");
1224 return false;
1225 }
1226 }
1227 }
1228
1229 if (!has_cache) {
1230 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1231 return false;
1232 }
1233
1234 return true;
1235 }
1236
1237 /**
1238 * rdtgroup_mode_write - Modify the resource group's mode
1239 *
1240 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1241 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1242 char *buf, size_t nbytes, loff_t off)
1243 {
1244 struct rdtgroup *rdtgrp;
1245 enum rdtgrp_mode mode;
1246 int ret = 0;
1247
1248 /* Valid input requires a trailing newline */
1249 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1250 return -EINVAL;
1251 buf[nbytes - 1] = '\0';
1252
1253 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1254 if (!rdtgrp) {
1255 rdtgroup_kn_unlock(of->kn);
1256 return -ENOENT;
1257 }
1258
1259 rdt_last_cmd_clear();
1260
1261 mode = rdtgrp->mode;
1262
1263 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1264 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1265 (!strcmp(buf, "pseudo-locksetup") &&
1266 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1267 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1268 goto out;
1269
1270 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1271 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1272 ret = -EINVAL;
1273 goto out;
1274 }
1275
1276 if (!strcmp(buf, "shareable")) {
1277 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1278 ret = rdtgroup_locksetup_exit(rdtgrp);
1279 if (ret)
1280 goto out;
1281 }
1282 rdtgrp->mode = RDT_MODE_SHAREABLE;
1283 } else if (!strcmp(buf, "exclusive")) {
1284 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1285 ret = -EINVAL;
1286 goto out;
1287 }
1288 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1289 ret = rdtgroup_locksetup_exit(rdtgrp);
1290 if (ret)
1291 goto out;
1292 }
1293 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1294 } else if (!strcmp(buf, "pseudo-locksetup")) {
1295 ret = rdtgroup_locksetup_enter(rdtgrp);
1296 if (ret)
1297 goto out;
1298 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1299 } else {
1300 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1301 ret = -EINVAL;
1302 }
1303
1304 out:
1305 rdtgroup_kn_unlock(of->kn);
1306 return ret ?: nbytes;
1307 }
1308
1309 /**
1310 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1311 * @r: RDT resource to which @d belongs.
1312 * @d: RDT domain instance.
1313 * @cbm: bitmask for which the size should be computed.
1314 *
1315 * The bitmask provided associated with the RDT domain instance @d will be
1316 * translated into how many bytes it represents. The size in bytes is
1317 * computed by first dividing the total cache size by the CBM length to
1318 * determine how many bytes each bit in the bitmask represents. The result
1319 * is multiplied with the number of bits set in the bitmask.
1320 *
1321 * @cbm is unsigned long, even if only 32 bits are used to make the
1322 * bitmap functions work correctly.
1323 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1324 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1325 struct rdt_domain *d, unsigned long cbm)
1326 {
1327 struct cpu_cacheinfo *ci;
1328 unsigned int size = 0;
1329 int num_b, i;
1330
1331 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1332 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1333 for (i = 0; i < ci->num_leaves; i++) {
1334 if (ci->info_list[i].level == r->cache_level) {
1335 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1336 break;
1337 }
1338 }
1339
1340 return size;
1341 }
1342
1343 /**
1344 * rdtgroup_size_show - Display size in bytes of allocated regions
1345 *
1346 * The "size" file mirrors the layout of the "schemata" file, printing the
1347 * size in bytes of each region instead of the capacity bitmask.
1348 *
1349 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1350 static int rdtgroup_size_show(struct kernfs_open_file *of,
1351 struct seq_file *s, void *v)
1352 {
1353 struct resctrl_schema *schema;
1354 enum resctrl_conf_type type;
1355 struct rdtgroup *rdtgrp;
1356 struct rdt_resource *r;
1357 struct rdt_domain *d;
1358 unsigned int size;
1359 int ret = 0;
1360 u32 closid;
1361 bool sep;
1362 u32 ctrl;
1363
1364 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1365 if (!rdtgrp) {
1366 rdtgroup_kn_unlock(of->kn);
1367 return -ENOENT;
1368 }
1369
1370 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1371 if (!rdtgrp->plr->d) {
1372 rdt_last_cmd_clear();
1373 rdt_last_cmd_puts("Cache domain offline\n");
1374 ret = -ENODEV;
1375 } else {
1376 seq_printf(s, "%*s:", max_name_width,
1377 rdtgrp->plr->s->name);
1378 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1379 rdtgrp->plr->d,
1380 rdtgrp->plr->cbm);
1381 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1382 }
1383 goto out;
1384 }
1385
1386 closid = rdtgrp->closid;
1387
1388 list_for_each_entry(schema, &resctrl_schema_all, list) {
1389 r = schema->res;
1390 type = schema->conf_type;
1391 sep = false;
1392 seq_printf(s, "%*s:", max_name_width, schema->name);
1393 list_for_each_entry(d, &r->domains, list) {
1394 if (sep)
1395 seq_putc(s, ';');
1396 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1397 size = 0;
1398 } else {
1399 if (is_mba_sc(r))
1400 ctrl = d->mbps_val[closid];
1401 else
1402 ctrl = resctrl_arch_get_config(r, d,
1403 closid,
1404 type);
1405 if (r->rid == RDT_RESOURCE_MBA)
1406 size = ctrl;
1407 else
1408 size = rdtgroup_cbm_to_size(r, d, ctrl);
1409 }
1410 seq_printf(s, "%d=%u", d->id, size);
1411 sep = true;
1412 }
1413 seq_putc(s, '\n');
1414 }
1415
1416 out:
1417 rdtgroup_kn_unlock(of->kn);
1418
1419 return ret;
1420 }
1421
1422 /* rdtgroup information files for one cache resource. */
1423 static struct rftype res_common_files[] = {
1424 {
1425 .name = "last_cmd_status",
1426 .mode = 0444,
1427 .kf_ops = &rdtgroup_kf_single_ops,
1428 .seq_show = rdt_last_cmd_status_show,
1429 .fflags = RF_TOP_INFO,
1430 },
1431 {
1432 .name = "num_closids",
1433 .mode = 0444,
1434 .kf_ops = &rdtgroup_kf_single_ops,
1435 .seq_show = rdt_num_closids_show,
1436 .fflags = RF_CTRL_INFO,
1437 },
1438 {
1439 .name = "mon_features",
1440 .mode = 0444,
1441 .kf_ops = &rdtgroup_kf_single_ops,
1442 .seq_show = rdt_mon_features_show,
1443 .fflags = RF_MON_INFO,
1444 },
1445 {
1446 .name = "num_rmids",
1447 .mode = 0444,
1448 .kf_ops = &rdtgroup_kf_single_ops,
1449 .seq_show = rdt_num_rmids_show,
1450 .fflags = RF_MON_INFO,
1451 },
1452 {
1453 .name = "cbm_mask",
1454 .mode = 0444,
1455 .kf_ops = &rdtgroup_kf_single_ops,
1456 .seq_show = rdt_default_ctrl_show,
1457 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1458 },
1459 {
1460 .name = "min_cbm_bits",
1461 .mode = 0444,
1462 .kf_ops = &rdtgroup_kf_single_ops,
1463 .seq_show = rdt_min_cbm_bits_show,
1464 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1465 },
1466 {
1467 .name = "shareable_bits",
1468 .mode = 0444,
1469 .kf_ops = &rdtgroup_kf_single_ops,
1470 .seq_show = rdt_shareable_bits_show,
1471 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1472 },
1473 {
1474 .name = "bit_usage",
1475 .mode = 0444,
1476 .kf_ops = &rdtgroup_kf_single_ops,
1477 .seq_show = rdt_bit_usage_show,
1478 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1479 },
1480 {
1481 .name = "min_bandwidth",
1482 .mode = 0444,
1483 .kf_ops = &rdtgroup_kf_single_ops,
1484 .seq_show = rdt_min_bw_show,
1485 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1486 },
1487 {
1488 .name = "bandwidth_gran",
1489 .mode = 0444,
1490 .kf_ops = &rdtgroup_kf_single_ops,
1491 .seq_show = rdt_bw_gran_show,
1492 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1493 },
1494 {
1495 .name = "delay_linear",
1496 .mode = 0444,
1497 .kf_ops = &rdtgroup_kf_single_ops,
1498 .seq_show = rdt_delay_linear_show,
1499 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1500 },
1501 /*
1502 * Platform specific which (if any) capabilities are provided by
1503 * thread_throttle_mode. Defer "fflags" initialization to platform
1504 * discovery.
1505 */
1506 {
1507 .name = "thread_throttle_mode",
1508 .mode = 0444,
1509 .kf_ops = &rdtgroup_kf_single_ops,
1510 .seq_show = rdt_thread_throttle_mode_show,
1511 },
1512 {
1513 .name = "max_threshold_occupancy",
1514 .mode = 0644,
1515 .kf_ops = &rdtgroup_kf_single_ops,
1516 .write = max_threshold_occ_write,
1517 .seq_show = max_threshold_occ_show,
1518 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1519 },
1520 {
1521 .name = "cpus",
1522 .mode = 0644,
1523 .kf_ops = &rdtgroup_kf_single_ops,
1524 .write = rdtgroup_cpus_write,
1525 .seq_show = rdtgroup_cpus_show,
1526 .fflags = RFTYPE_BASE,
1527 },
1528 {
1529 .name = "cpus_list",
1530 .mode = 0644,
1531 .kf_ops = &rdtgroup_kf_single_ops,
1532 .write = rdtgroup_cpus_write,
1533 .seq_show = rdtgroup_cpus_show,
1534 .flags = RFTYPE_FLAGS_CPUS_LIST,
1535 .fflags = RFTYPE_BASE,
1536 },
1537 {
1538 .name = "tasks",
1539 .mode = 0644,
1540 .kf_ops = &rdtgroup_kf_single_ops,
1541 .write = rdtgroup_tasks_write,
1542 .seq_show = rdtgroup_tasks_show,
1543 .fflags = RFTYPE_BASE,
1544 },
1545 {
1546 .name = "schemata",
1547 .mode = 0644,
1548 .kf_ops = &rdtgroup_kf_single_ops,
1549 .write = rdtgroup_schemata_write,
1550 .seq_show = rdtgroup_schemata_show,
1551 .fflags = RF_CTRL_BASE,
1552 },
1553 {
1554 .name = "mode",
1555 .mode = 0644,
1556 .kf_ops = &rdtgroup_kf_single_ops,
1557 .write = rdtgroup_mode_write,
1558 .seq_show = rdtgroup_mode_show,
1559 .fflags = RF_CTRL_BASE,
1560 },
1561 {
1562 .name = "size",
1563 .mode = 0444,
1564 .kf_ops = &rdtgroup_kf_single_ops,
1565 .seq_show = rdtgroup_size_show,
1566 .fflags = RF_CTRL_BASE,
1567 },
1568
1569 };
1570
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1571 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1572 {
1573 struct rftype *rfts, *rft;
1574 int ret, len;
1575
1576 rfts = res_common_files;
1577 len = ARRAY_SIZE(res_common_files);
1578
1579 lockdep_assert_held(&rdtgroup_mutex);
1580
1581 for (rft = rfts; rft < rfts + len; rft++) {
1582 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1583 ret = rdtgroup_add_file(kn, rft);
1584 if (ret)
1585 goto error;
1586 }
1587 }
1588
1589 return 0;
1590 error:
1591 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1592 while (--rft >= rfts) {
1593 if ((fflags & rft->fflags) == rft->fflags)
1594 kernfs_remove_by_name(kn, rft->name);
1595 }
1596 return ret;
1597 }
1598
rdtgroup_get_rftype_by_name(const char * name)1599 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1600 {
1601 struct rftype *rfts, *rft;
1602 int len;
1603
1604 rfts = res_common_files;
1605 len = ARRAY_SIZE(res_common_files);
1606
1607 for (rft = rfts; rft < rfts + len; rft++) {
1608 if (!strcmp(rft->name, name))
1609 return rft;
1610 }
1611
1612 return NULL;
1613 }
1614
thread_throttle_mode_init(void)1615 void __init thread_throttle_mode_init(void)
1616 {
1617 struct rftype *rft;
1618
1619 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1620 if (!rft)
1621 return;
1622
1623 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1624 }
1625
1626 /**
1627 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1628 * @r: The resource group with which the file is associated.
1629 * @name: Name of the file
1630 *
1631 * The permissions of named resctrl file, directory, or link are modified
1632 * to not allow read, write, or execute by any user.
1633 *
1634 * WARNING: This function is intended to communicate to the user that the
1635 * resctrl file has been locked down - that it is not relevant to the
1636 * particular state the system finds itself in. It should not be relied
1637 * on to protect from user access because after the file's permissions
1638 * are restricted the user can still change the permissions using chmod
1639 * from the command line.
1640 *
1641 * Return: 0 on success, <0 on failure.
1642 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1643 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1644 {
1645 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1646 struct kernfs_node *kn;
1647 int ret = 0;
1648
1649 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1650 if (!kn)
1651 return -ENOENT;
1652
1653 switch (kernfs_type(kn)) {
1654 case KERNFS_DIR:
1655 iattr.ia_mode = S_IFDIR;
1656 break;
1657 case KERNFS_FILE:
1658 iattr.ia_mode = S_IFREG;
1659 break;
1660 case KERNFS_LINK:
1661 iattr.ia_mode = S_IFLNK;
1662 break;
1663 }
1664
1665 ret = kernfs_setattr(kn, &iattr);
1666 kernfs_put(kn);
1667 return ret;
1668 }
1669
1670 /**
1671 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1672 * @r: The resource group with which the file is associated.
1673 * @name: Name of the file
1674 * @mask: Mask of permissions that should be restored
1675 *
1676 * Restore the permissions of the named file. If @name is a directory the
1677 * permissions of its parent will be used.
1678 *
1679 * Return: 0 on success, <0 on failure.
1680 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1681 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1682 umode_t mask)
1683 {
1684 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1685 struct kernfs_node *kn, *parent;
1686 struct rftype *rfts, *rft;
1687 int ret, len;
1688
1689 rfts = res_common_files;
1690 len = ARRAY_SIZE(res_common_files);
1691
1692 for (rft = rfts; rft < rfts + len; rft++) {
1693 if (!strcmp(rft->name, name))
1694 iattr.ia_mode = rft->mode & mask;
1695 }
1696
1697 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1698 if (!kn)
1699 return -ENOENT;
1700
1701 switch (kernfs_type(kn)) {
1702 case KERNFS_DIR:
1703 parent = kernfs_get_parent(kn);
1704 if (parent) {
1705 iattr.ia_mode |= parent->mode;
1706 kernfs_put(parent);
1707 }
1708 iattr.ia_mode |= S_IFDIR;
1709 break;
1710 case KERNFS_FILE:
1711 iattr.ia_mode |= S_IFREG;
1712 break;
1713 case KERNFS_LINK:
1714 iattr.ia_mode |= S_IFLNK;
1715 break;
1716 }
1717
1718 ret = kernfs_setattr(kn, &iattr);
1719 kernfs_put(kn);
1720 return ret;
1721 }
1722
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)1723 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
1724 unsigned long fflags)
1725 {
1726 struct kernfs_node *kn_subdir;
1727 int ret;
1728
1729 kn_subdir = kernfs_create_dir(kn_info, name,
1730 kn_info->mode, priv);
1731 if (IS_ERR(kn_subdir))
1732 return PTR_ERR(kn_subdir);
1733
1734 ret = rdtgroup_kn_set_ugid(kn_subdir);
1735 if (ret)
1736 return ret;
1737
1738 ret = rdtgroup_add_files(kn_subdir, fflags);
1739 if (!ret)
1740 kernfs_activate(kn_subdir);
1741
1742 return ret;
1743 }
1744
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1745 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1746 {
1747 struct resctrl_schema *s;
1748 struct rdt_resource *r;
1749 unsigned long fflags;
1750 char name[32];
1751 int ret;
1752
1753 /* create the directory */
1754 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1755 if (IS_ERR(kn_info))
1756 return PTR_ERR(kn_info);
1757
1758 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1759 if (ret)
1760 goto out_destroy;
1761
1762 /* loop over enabled controls, these are all alloc_capable */
1763 list_for_each_entry(s, &resctrl_schema_all, list) {
1764 r = s->res;
1765 fflags = r->fflags | RF_CTRL_INFO;
1766 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
1767 if (ret)
1768 goto out_destroy;
1769 }
1770
1771 for_each_mon_capable_rdt_resource(r) {
1772 fflags = r->fflags | RF_MON_INFO;
1773 sprintf(name, "%s_MON", r->name);
1774 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1775 if (ret)
1776 goto out_destroy;
1777 }
1778
1779 ret = rdtgroup_kn_set_ugid(kn_info);
1780 if (ret)
1781 goto out_destroy;
1782
1783 kernfs_activate(kn_info);
1784
1785 return 0;
1786
1787 out_destroy:
1788 kernfs_remove(kn_info);
1789 return ret;
1790 }
1791
1792 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1793 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1794 char *name, struct kernfs_node **dest_kn)
1795 {
1796 struct kernfs_node *kn;
1797 int ret;
1798
1799 /* create the directory */
1800 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1801 if (IS_ERR(kn))
1802 return PTR_ERR(kn);
1803
1804 if (dest_kn)
1805 *dest_kn = kn;
1806
1807 ret = rdtgroup_kn_set_ugid(kn);
1808 if (ret)
1809 goto out_destroy;
1810
1811 kernfs_activate(kn);
1812
1813 return 0;
1814
1815 out_destroy:
1816 kernfs_remove(kn);
1817 return ret;
1818 }
1819
l3_qos_cfg_update(void * arg)1820 static void l3_qos_cfg_update(void *arg)
1821 {
1822 bool *enable = arg;
1823
1824 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1825 }
1826
l2_qos_cfg_update(void * arg)1827 static void l2_qos_cfg_update(void *arg)
1828 {
1829 bool *enable = arg;
1830
1831 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1832 }
1833
is_mba_linear(void)1834 static inline bool is_mba_linear(void)
1835 {
1836 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
1837 }
1838
set_cache_qos_cfg(int level,bool enable)1839 static int set_cache_qos_cfg(int level, bool enable)
1840 {
1841 void (*update)(void *arg);
1842 struct rdt_resource *r_l;
1843 cpumask_var_t cpu_mask;
1844 struct rdt_domain *d;
1845 int cpu;
1846
1847 if (level == RDT_RESOURCE_L3)
1848 update = l3_qos_cfg_update;
1849 else if (level == RDT_RESOURCE_L2)
1850 update = l2_qos_cfg_update;
1851 else
1852 return -EINVAL;
1853
1854 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1855 return -ENOMEM;
1856
1857 r_l = &rdt_resources_all[level].r_resctrl;
1858 list_for_each_entry(d, &r_l->domains, list) {
1859 if (r_l->cache.arch_has_per_cpu_cfg)
1860 /* Pick all the CPUs in the domain instance */
1861 for_each_cpu(cpu, &d->cpu_mask)
1862 cpumask_set_cpu(cpu, cpu_mask);
1863 else
1864 /* Pick one CPU from each domain instance to update MSR */
1865 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1866 }
1867 cpu = get_cpu();
1868 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1869 if (cpumask_test_cpu(cpu, cpu_mask))
1870 update(&enable);
1871 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1872 smp_call_function_many(cpu_mask, update, &enable, 1);
1873 put_cpu();
1874
1875 free_cpumask_var(cpu_mask);
1876
1877 return 0;
1878 }
1879
1880 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1881 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1882 {
1883 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1884
1885 if (!r->cdp_capable)
1886 return;
1887
1888 if (r->rid == RDT_RESOURCE_L2)
1889 l2_qos_cfg_update(&hw_res->cdp_enabled);
1890
1891 if (r->rid == RDT_RESOURCE_L3)
1892 l3_qos_cfg_update(&hw_res->cdp_enabled);
1893 }
1894
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_domain * d)1895 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
1896 {
1897 u32 num_closid = resctrl_arch_get_num_closid(r);
1898 int cpu = cpumask_any(&d->cpu_mask);
1899 int i;
1900
1901 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
1902 GFP_KERNEL, cpu_to_node(cpu));
1903 if (!d->mbps_val)
1904 return -ENOMEM;
1905
1906 for (i = 0; i < num_closid; i++)
1907 d->mbps_val[i] = MBA_MAX_MBPS;
1908
1909 return 0;
1910 }
1911
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_domain * d)1912 static void mba_sc_domain_destroy(struct rdt_resource *r,
1913 struct rdt_domain *d)
1914 {
1915 kfree(d->mbps_val);
1916 d->mbps_val = NULL;
1917 }
1918
1919 /*
1920 * MBA software controller is supported only if
1921 * MBM is supported and MBA is in linear scale.
1922 */
supports_mba_mbps(void)1923 static bool supports_mba_mbps(void)
1924 {
1925 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1926
1927 return (is_mbm_local_enabled() &&
1928 r->alloc_capable && is_mba_linear());
1929 }
1930
1931 /*
1932 * Enable or disable the MBA software controller
1933 * which helps user specify bandwidth in MBps.
1934 */
set_mba_sc(bool mba_sc)1935 static int set_mba_sc(bool mba_sc)
1936 {
1937 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1938 u32 num_closid = resctrl_arch_get_num_closid(r);
1939 struct rdt_domain *d;
1940 int i;
1941
1942 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
1943 return -EINVAL;
1944
1945 r->membw.mba_sc = mba_sc;
1946
1947 list_for_each_entry(d, &r->domains, list) {
1948 for (i = 0; i < num_closid; i++)
1949 d->mbps_val[i] = MBA_MAX_MBPS;
1950 }
1951
1952 return 0;
1953 }
1954
cdp_enable(int level)1955 static int cdp_enable(int level)
1956 {
1957 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
1958 int ret;
1959
1960 if (!r_l->alloc_capable)
1961 return -EINVAL;
1962
1963 ret = set_cache_qos_cfg(level, true);
1964 if (!ret)
1965 rdt_resources_all[level].cdp_enabled = true;
1966
1967 return ret;
1968 }
1969
cdp_disable(int level)1970 static void cdp_disable(int level)
1971 {
1972 struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
1973
1974 if (r_hw->cdp_enabled) {
1975 set_cache_qos_cfg(level, false);
1976 r_hw->cdp_enabled = false;
1977 }
1978 }
1979
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)1980 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
1981 {
1982 struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
1983
1984 if (!hw_res->r_resctrl.cdp_capable)
1985 return -EINVAL;
1986
1987 if (enable)
1988 return cdp_enable(l);
1989
1990 cdp_disable(l);
1991
1992 return 0;
1993 }
1994
cdp_disable_all(void)1995 static void cdp_disable_all(void)
1996 {
1997 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
1998 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
1999 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2000 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2001 }
2002
2003 /*
2004 * We don't allow rdtgroup directories to be created anywhere
2005 * except the root directory. Thus when looking for the rdtgroup
2006 * structure for a kernfs node we are either looking at a directory,
2007 * in which case the rdtgroup structure is pointed at by the "priv"
2008 * field, otherwise we have a file, and need only look to the parent
2009 * to find the rdtgroup.
2010 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2011 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2012 {
2013 if (kernfs_type(kn) == KERNFS_DIR) {
2014 /*
2015 * All the resource directories use "kn->priv"
2016 * to point to the "struct rdtgroup" for the
2017 * resource. "info" and its subdirectories don't
2018 * have rdtgroup structures, so return NULL here.
2019 */
2020 if (kn == kn_info || kn->parent == kn_info)
2021 return NULL;
2022 else
2023 return kn->priv;
2024 } else {
2025 return kn->parent->priv;
2026 }
2027 }
2028
rdtgroup_kn_lock_live(struct kernfs_node * kn)2029 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2030 {
2031 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2032
2033 if (!rdtgrp)
2034 return NULL;
2035
2036 atomic_inc(&rdtgrp->waitcount);
2037 kernfs_break_active_protection(kn);
2038
2039 mutex_lock(&rdtgroup_mutex);
2040
2041 /* Was this group deleted while we waited? */
2042 if (rdtgrp->flags & RDT_DELETED)
2043 return NULL;
2044
2045 return rdtgrp;
2046 }
2047
rdtgroup_kn_unlock(struct kernfs_node * kn)2048 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2049 {
2050 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2051
2052 if (!rdtgrp)
2053 return;
2054
2055 mutex_unlock(&rdtgroup_mutex);
2056
2057 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2058 (rdtgrp->flags & RDT_DELETED)) {
2059 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2060 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2061 rdtgroup_pseudo_lock_remove(rdtgrp);
2062 kernfs_unbreak_active_protection(kn);
2063 rdtgroup_remove(rdtgrp);
2064 } else {
2065 kernfs_unbreak_active_protection(kn);
2066 }
2067 }
2068
2069 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2070 struct rdtgroup *prgrp,
2071 struct kernfs_node **mon_data_kn);
2072
rdt_enable_ctx(struct rdt_fs_context * ctx)2073 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2074 {
2075 int ret = 0;
2076
2077 if (ctx->enable_cdpl2)
2078 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2079
2080 if (!ret && ctx->enable_cdpl3)
2081 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2082
2083 if (!ret && ctx->enable_mba_mbps)
2084 ret = set_mba_sc(true);
2085
2086 return ret;
2087 }
2088
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2089 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2090 {
2091 struct resctrl_schema *s;
2092 const char *suffix = "";
2093 int ret, cl;
2094
2095 s = kzalloc(sizeof(*s), GFP_KERNEL);
2096 if (!s)
2097 return -ENOMEM;
2098
2099 s->res = r;
2100 s->num_closid = resctrl_arch_get_num_closid(r);
2101 if (resctrl_arch_get_cdp_enabled(r->rid))
2102 s->num_closid /= 2;
2103
2104 s->conf_type = type;
2105 switch (type) {
2106 case CDP_CODE:
2107 suffix = "CODE";
2108 break;
2109 case CDP_DATA:
2110 suffix = "DATA";
2111 break;
2112 case CDP_NONE:
2113 suffix = "";
2114 break;
2115 }
2116
2117 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2118 if (ret >= sizeof(s->name)) {
2119 kfree(s);
2120 return -EINVAL;
2121 }
2122
2123 cl = strlen(s->name);
2124
2125 /*
2126 * If CDP is supported by this resource, but not enabled,
2127 * include the suffix. This ensures the tabular format of the
2128 * schemata file does not change between mounts of the filesystem.
2129 */
2130 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2131 cl += 4;
2132
2133 if (cl > max_name_width)
2134 max_name_width = cl;
2135
2136 INIT_LIST_HEAD(&s->list);
2137 list_add(&s->list, &resctrl_schema_all);
2138
2139 return 0;
2140 }
2141
schemata_list_create(void)2142 static int schemata_list_create(void)
2143 {
2144 struct rdt_resource *r;
2145 int ret = 0;
2146
2147 for_each_alloc_capable_rdt_resource(r) {
2148 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2149 ret = schemata_list_add(r, CDP_CODE);
2150 if (ret)
2151 break;
2152
2153 ret = schemata_list_add(r, CDP_DATA);
2154 } else {
2155 ret = schemata_list_add(r, CDP_NONE);
2156 }
2157
2158 if (ret)
2159 break;
2160 }
2161
2162 return ret;
2163 }
2164
schemata_list_destroy(void)2165 static void schemata_list_destroy(void)
2166 {
2167 struct resctrl_schema *s, *tmp;
2168
2169 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2170 list_del(&s->list);
2171 kfree(s);
2172 }
2173 }
2174
rdt_get_tree(struct fs_context * fc)2175 static int rdt_get_tree(struct fs_context *fc)
2176 {
2177 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2178 struct rdt_domain *dom;
2179 struct rdt_resource *r;
2180 int ret;
2181
2182 cpus_read_lock();
2183 mutex_lock(&rdtgroup_mutex);
2184 /*
2185 * resctrl file system can only be mounted once.
2186 */
2187 if (static_branch_unlikely(&rdt_enable_key)) {
2188 ret = -EBUSY;
2189 goto out;
2190 }
2191
2192 ret = rdt_enable_ctx(ctx);
2193 if (ret < 0)
2194 goto out_cdp;
2195
2196 ret = schemata_list_create();
2197 if (ret) {
2198 schemata_list_destroy();
2199 goto out_mba;
2200 }
2201
2202 closid_init();
2203
2204 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2205 if (ret < 0)
2206 goto out_schemata_free;
2207
2208 if (rdt_mon_capable) {
2209 ret = mongroup_create_dir(rdtgroup_default.kn,
2210 &rdtgroup_default, "mon_groups",
2211 &kn_mongrp);
2212 if (ret < 0)
2213 goto out_info;
2214
2215 ret = mkdir_mondata_all(rdtgroup_default.kn,
2216 &rdtgroup_default, &kn_mondata);
2217 if (ret < 0)
2218 goto out_mongrp;
2219 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2220 }
2221
2222 ret = rdt_pseudo_lock_init();
2223 if (ret)
2224 goto out_mondata;
2225
2226 ret = kernfs_get_tree(fc);
2227 if (ret < 0)
2228 goto out_psl;
2229
2230 if (rdt_alloc_capable)
2231 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2232 if (rdt_mon_capable)
2233 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2234
2235 if (rdt_alloc_capable || rdt_mon_capable)
2236 static_branch_enable_cpuslocked(&rdt_enable_key);
2237
2238 if (is_mbm_enabled()) {
2239 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2240 list_for_each_entry(dom, &r->domains, list)
2241 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2242 }
2243
2244 goto out;
2245
2246 out_psl:
2247 rdt_pseudo_lock_release();
2248 out_mondata:
2249 if (rdt_mon_capable)
2250 kernfs_remove(kn_mondata);
2251 out_mongrp:
2252 if (rdt_mon_capable)
2253 kernfs_remove(kn_mongrp);
2254 out_info:
2255 kernfs_remove(kn_info);
2256 out_schemata_free:
2257 schemata_list_destroy();
2258 out_mba:
2259 if (ctx->enable_mba_mbps)
2260 set_mba_sc(false);
2261 out_cdp:
2262 cdp_disable_all();
2263 out:
2264 rdt_last_cmd_clear();
2265 mutex_unlock(&rdtgroup_mutex);
2266 cpus_read_unlock();
2267 return ret;
2268 }
2269
2270 enum rdt_param {
2271 Opt_cdp,
2272 Opt_cdpl2,
2273 Opt_mba_mbps,
2274 nr__rdt_params
2275 };
2276
2277 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2278 fsparam_flag("cdp", Opt_cdp),
2279 fsparam_flag("cdpl2", Opt_cdpl2),
2280 fsparam_flag("mba_MBps", Opt_mba_mbps),
2281 {}
2282 };
2283
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2284 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2285 {
2286 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2287 struct fs_parse_result result;
2288 int opt;
2289
2290 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2291 if (opt < 0)
2292 return opt;
2293
2294 switch (opt) {
2295 case Opt_cdp:
2296 ctx->enable_cdpl3 = true;
2297 return 0;
2298 case Opt_cdpl2:
2299 ctx->enable_cdpl2 = true;
2300 return 0;
2301 case Opt_mba_mbps:
2302 if (!supports_mba_mbps())
2303 return -EINVAL;
2304 ctx->enable_mba_mbps = true;
2305 return 0;
2306 }
2307
2308 return -EINVAL;
2309 }
2310
rdt_fs_context_free(struct fs_context * fc)2311 static void rdt_fs_context_free(struct fs_context *fc)
2312 {
2313 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2314
2315 kernfs_free_fs_context(fc);
2316 kfree(ctx);
2317 }
2318
2319 static const struct fs_context_operations rdt_fs_context_ops = {
2320 .free = rdt_fs_context_free,
2321 .parse_param = rdt_parse_param,
2322 .get_tree = rdt_get_tree,
2323 };
2324
rdt_init_fs_context(struct fs_context * fc)2325 static int rdt_init_fs_context(struct fs_context *fc)
2326 {
2327 struct rdt_fs_context *ctx;
2328
2329 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2330 if (!ctx)
2331 return -ENOMEM;
2332
2333 ctx->kfc.root = rdt_root;
2334 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2335 fc->fs_private = &ctx->kfc;
2336 fc->ops = &rdt_fs_context_ops;
2337 put_user_ns(fc->user_ns);
2338 fc->user_ns = get_user_ns(&init_user_ns);
2339 fc->global = true;
2340 return 0;
2341 }
2342
reset_all_ctrls(struct rdt_resource * r)2343 static int reset_all_ctrls(struct rdt_resource *r)
2344 {
2345 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2346 struct rdt_hw_domain *hw_dom;
2347 struct msr_param msr_param;
2348 cpumask_var_t cpu_mask;
2349 struct rdt_domain *d;
2350 int i, cpu;
2351
2352 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2353 return -ENOMEM;
2354
2355 msr_param.res = r;
2356 msr_param.low = 0;
2357 msr_param.high = hw_res->num_closid;
2358
2359 /*
2360 * Disable resource control for this resource by setting all
2361 * CBMs in all domains to the maximum mask value. Pick one CPU
2362 * from each domain to update the MSRs below.
2363 */
2364 list_for_each_entry(d, &r->domains, list) {
2365 hw_dom = resctrl_to_arch_dom(d);
2366 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2367
2368 for (i = 0; i < hw_res->num_closid; i++)
2369 hw_dom->ctrl_val[i] = r->default_ctrl;
2370 }
2371 cpu = get_cpu();
2372 /* Update CBM on this cpu if it's in cpu_mask. */
2373 if (cpumask_test_cpu(cpu, cpu_mask))
2374 rdt_ctrl_update(&msr_param);
2375 /* Update CBM on all other cpus in cpu_mask. */
2376 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2377 put_cpu();
2378
2379 free_cpumask_var(cpu_mask);
2380
2381 return 0;
2382 }
2383
2384 /*
2385 * Move tasks from one to the other group. If @from is NULL, then all tasks
2386 * in the systems are moved unconditionally (used for teardown).
2387 *
2388 * If @mask is not NULL the cpus on which moved tasks are running are set
2389 * in that mask so the update smp function call is restricted to affected
2390 * cpus.
2391 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2392 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2393 struct cpumask *mask)
2394 {
2395 struct task_struct *p, *t;
2396
2397 read_lock(&tasklist_lock);
2398 for_each_process_thread(p, t) {
2399 if (!from || is_closid_match(t, from) ||
2400 is_rmid_match(t, from)) {
2401 WRITE_ONCE(t->closid, to->closid);
2402 WRITE_ONCE(t->rmid, to->mon.rmid);
2403
2404 /*
2405 * If the task is on a CPU, set the CPU in the mask.
2406 * The detection is inaccurate as tasks might move or
2407 * schedule before the smp function call takes place.
2408 * In such a case the function call is pointless, but
2409 * there is no other side effect.
2410 */
2411 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2412 cpumask_set_cpu(task_cpu(t), mask);
2413 }
2414 }
2415 read_unlock(&tasklist_lock);
2416 }
2417
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2418 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2419 {
2420 struct rdtgroup *sentry, *stmp;
2421 struct list_head *head;
2422
2423 head = &rdtgrp->mon.crdtgrp_list;
2424 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2425 free_rmid(sentry->mon.rmid);
2426 list_del(&sentry->mon.crdtgrp_list);
2427
2428 if (atomic_read(&sentry->waitcount) != 0)
2429 sentry->flags = RDT_DELETED;
2430 else
2431 rdtgroup_remove(sentry);
2432 }
2433 }
2434
2435 /*
2436 * Forcibly remove all of subdirectories under root.
2437 */
rmdir_all_sub(void)2438 static void rmdir_all_sub(void)
2439 {
2440 struct rdtgroup *rdtgrp, *tmp;
2441
2442 /* Move all tasks to the default resource group */
2443 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2444
2445 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2446 /* Free any child rmids */
2447 free_all_child_rdtgrp(rdtgrp);
2448
2449 /* Remove each rdtgroup other than root */
2450 if (rdtgrp == &rdtgroup_default)
2451 continue;
2452
2453 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2454 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2455 rdtgroup_pseudo_lock_remove(rdtgrp);
2456
2457 /*
2458 * Give any CPUs back to the default group. We cannot copy
2459 * cpu_online_mask because a CPU might have executed the
2460 * offline callback already, but is still marked online.
2461 */
2462 cpumask_or(&rdtgroup_default.cpu_mask,
2463 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2464
2465 free_rmid(rdtgrp->mon.rmid);
2466
2467 kernfs_remove(rdtgrp->kn);
2468 list_del(&rdtgrp->rdtgroup_list);
2469
2470 if (atomic_read(&rdtgrp->waitcount) != 0)
2471 rdtgrp->flags = RDT_DELETED;
2472 else
2473 rdtgroup_remove(rdtgrp);
2474 }
2475 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2476 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2477
2478 kernfs_remove(kn_info);
2479 kernfs_remove(kn_mongrp);
2480 kernfs_remove(kn_mondata);
2481 }
2482
rdt_kill_sb(struct super_block * sb)2483 static void rdt_kill_sb(struct super_block *sb)
2484 {
2485 struct rdt_resource *r;
2486
2487 cpus_read_lock();
2488 mutex_lock(&rdtgroup_mutex);
2489
2490 set_mba_sc(false);
2491
2492 /*Put everything back to default values. */
2493 for_each_alloc_capable_rdt_resource(r)
2494 reset_all_ctrls(r);
2495 cdp_disable_all();
2496 rmdir_all_sub();
2497 rdt_pseudo_lock_release();
2498 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2499 schemata_list_destroy();
2500 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2501 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2502 static_branch_disable_cpuslocked(&rdt_enable_key);
2503 kernfs_kill_sb(sb);
2504 mutex_unlock(&rdtgroup_mutex);
2505 cpus_read_unlock();
2506 }
2507
2508 static struct file_system_type rdt_fs_type = {
2509 .name = "resctrl",
2510 .init_fs_context = rdt_init_fs_context,
2511 .parameters = rdt_fs_parameters,
2512 .kill_sb = rdt_kill_sb,
2513 };
2514
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2515 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2516 void *priv)
2517 {
2518 struct kernfs_node *kn;
2519 int ret = 0;
2520
2521 kn = __kernfs_create_file(parent_kn, name, 0444,
2522 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2523 &kf_mondata_ops, priv, NULL, NULL);
2524 if (IS_ERR(kn))
2525 return PTR_ERR(kn);
2526
2527 ret = rdtgroup_kn_set_ugid(kn);
2528 if (ret) {
2529 kernfs_remove(kn);
2530 return ret;
2531 }
2532
2533 return ret;
2534 }
2535
2536 /*
2537 * Remove all subdirectories of mon_data of ctrl_mon groups
2538 * and monitor groups with given domain id.
2539 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2540 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2541 unsigned int dom_id)
2542 {
2543 struct rdtgroup *prgrp, *crgrp;
2544 char name[32];
2545
2546 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2547 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2548 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2549
2550 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2551 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2552 }
2553 }
2554
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2555 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2556 struct rdt_domain *d,
2557 struct rdt_resource *r, struct rdtgroup *prgrp)
2558 {
2559 union mon_data_bits priv;
2560 struct kernfs_node *kn;
2561 struct mon_evt *mevt;
2562 struct rmid_read rr;
2563 char name[32];
2564 int ret;
2565
2566 sprintf(name, "mon_%s_%02d", r->name, d->id);
2567 /* create the directory */
2568 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2569 if (IS_ERR(kn))
2570 return PTR_ERR(kn);
2571
2572 ret = rdtgroup_kn_set_ugid(kn);
2573 if (ret)
2574 goto out_destroy;
2575
2576 if (WARN_ON(list_empty(&r->evt_list))) {
2577 ret = -EPERM;
2578 goto out_destroy;
2579 }
2580
2581 priv.u.rid = r->rid;
2582 priv.u.domid = d->id;
2583 list_for_each_entry(mevt, &r->evt_list, list) {
2584 priv.u.evtid = mevt->evtid;
2585 ret = mon_addfile(kn, mevt->name, priv.priv);
2586 if (ret)
2587 goto out_destroy;
2588
2589 if (is_mbm_event(mevt->evtid))
2590 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2591 }
2592 kernfs_activate(kn);
2593 return 0;
2594
2595 out_destroy:
2596 kernfs_remove(kn);
2597 return ret;
2598 }
2599
2600 /*
2601 * Add all subdirectories of mon_data for "ctrl_mon" groups
2602 * and "monitor" groups with given domain id.
2603 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2604 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2605 struct rdt_domain *d)
2606 {
2607 struct kernfs_node *parent_kn;
2608 struct rdtgroup *prgrp, *crgrp;
2609 struct list_head *head;
2610
2611 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2612 parent_kn = prgrp->mon.mon_data_kn;
2613 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2614
2615 head = &prgrp->mon.crdtgrp_list;
2616 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2617 parent_kn = crgrp->mon.mon_data_kn;
2618 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2619 }
2620 }
2621 }
2622
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2623 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2624 struct rdt_resource *r,
2625 struct rdtgroup *prgrp)
2626 {
2627 struct rdt_domain *dom;
2628 int ret;
2629
2630 list_for_each_entry(dom, &r->domains, list) {
2631 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2632 if (ret)
2633 return ret;
2634 }
2635
2636 return 0;
2637 }
2638
2639 /*
2640 * This creates a directory mon_data which contains the monitored data.
2641 *
2642 * mon_data has one directory for each domain which are named
2643 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2644 * with L3 domain looks as below:
2645 * ./mon_data:
2646 * mon_L3_00
2647 * mon_L3_01
2648 * mon_L3_02
2649 * ...
2650 *
2651 * Each domain directory has one file per event:
2652 * ./mon_L3_00/:
2653 * llc_occupancy
2654 *
2655 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2656 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2657 struct rdtgroup *prgrp,
2658 struct kernfs_node **dest_kn)
2659 {
2660 struct rdt_resource *r;
2661 struct kernfs_node *kn;
2662 int ret;
2663
2664 /*
2665 * Create the mon_data directory first.
2666 */
2667 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2668 if (ret)
2669 return ret;
2670
2671 if (dest_kn)
2672 *dest_kn = kn;
2673
2674 /*
2675 * Create the subdirectories for each domain. Note that all events
2676 * in a domain like L3 are grouped into a resource whose domain is L3
2677 */
2678 for_each_mon_capable_rdt_resource(r) {
2679 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2680 if (ret)
2681 goto out_destroy;
2682 }
2683
2684 return 0;
2685
2686 out_destroy:
2687 kernfs_remove(kn);
2688 return ret;
2689 }
2690
2691 /**
2692 * cbm_ensure_valid - Enforce validity on provided CBM
2693 * @_val: Candidate CBM
2694 * @r: RDT resource to which the CBM belongs
2695 *
2696 * The provided CBM represents all cache portions available for use. This
2697 * may be represented by a bitmap that does not consist of contiguous ones
2698 * and thus be an invalid CBM.
2699 * Here the provided CBM is forced to be a valid CBM by only considering
2700 * the first set of contiguous bits as valid and clearing all bits.
2701 * The intention here is to provide a valid default CBM with which a new
2702 * resource group is initialized. The user can follow this with a
2703 * modification to the CBM if the default does not satisfy the
2704 * requirements.
2705 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2706 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2707 {
2708 unsigned int cbm_len = r->cache.cbm_len;
2709 unsigned long first_bit, zero_bit;
2710 unsigned long val = _val;
2711
2712 if (!val)
2713 return 0;
2714
2715 first_bit = find_first_bit(&val, cbm_len);
2716 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2717
2718 /* Clear any remaining bits to ensure contiguous region */
2719 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2720 return (u32)val;
2721 }
2722
2723 /*
2724 * Initialize cache resources per RDT domain
2725 *
2726 * Set the RDT domain up to start off with all usable allocations. That is,
2727 * all shareable and unused bits. All-zero CBM is invalid.
2728 */
__init_one_rdt_domain(struct rdt_domain * d,struct resctrl_schema * s,u32 closid)2729 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
2730 u32 closid)
2731 {
2732 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
2733 enum resctrl_conf_type t = s->conf_type;
2734 struct resctrl_staged_config *cfg;
2735 struct rdt_resource *r = s->res;
2736 u32 used_b = 0, unused_b = 0;
2737 unsigned long tmp_cbm;
2738 enum rdtgrp_mode mode;
2739 u32 peer_ctl, ctrl_val;
2740 int i;
2741
2742 cfg = &d->staged_config[t];
2743 cfg->have_new_ctrl = false;
2744 cfg->new_ctrl = r->cache.shareable_bits;
2745 used_b = r->cache.shareable_bits;
2746 for (i = 0; i < closids_supported(); i++) {
2747 if (closid_allocated(i) && i != closid) {
2748 mode = rdtgroup_mode_by_closid(i);
2749 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2750 /*
2751 * ctrl values for locksetup aren't relevant
2752 * until the schemata is written, and the mode
2753 * becomes RDT_MODE_PSEUDO_LOCKED.
2754 */
2755 continue;
2756 /*
2757 * If CDP is active include peer domain's
2758 * usage to ensure there is no overlap
2759 * with an exclusive group.
2760 */
2761 if (resctrl_arch_get_cdp_enabled(r->rid))
2762 peer_ctl = resctrl_arch_get_config(r, d, i,
2763 peer_type);
2764 else
2765 peer_ctl = 0;
2766 ctrl_val = resctrl_arch_get_config(r, d, i,
2767 s->conf_type);
2768 used_b |= ctrl_val | peer_ctl;
2769 if (mode == RDT_MODE_SHAREABLE)
2770 cfg->new_ctrl |= ctrl_val | peer_ctl;
2771 }
2772 }
2773 if (d->plr && d->plr->cbm > 0)
2774 used_b |= d->plr->cbm;
2775 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2776 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2777 cfg->new_ctrl |= unused_b;
2778 /*
2779 * Force the initial CBM to be valid, user can
2780 * modify the CBM based on system availability.
2781 */
2782 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
2783 /*
2784 * Assign the u32 CBM to an unsigned long to ensure that
2785 * bitmap_weight() does not access out-of-bound memory.
2786 */
2787 tmp_cbm = cfg->new_ctrl;
2788 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2789 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
2790 return -ENOSPC;
2791 }
2792 cfg->have_new_ctrl = true;
2793
2794 return 0;
2795 }
2796
2797 /*
2798 * Initialize cache resources with default values.
2799 *
2800 * A new RDT group is being created on an allocation capable (CAT)
2801 * supporting system. Set this group up to start off with all usable
2802 * allocations.
2803 *
2804 * If there are no more shareable bits available on any domain then
2805 * the entire allocation will fail.
2806 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)2807 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
2808 {
2809 struct rdt_domain *d;
2810 int ret;
2811
2812 list_for_each_entry(d, &s->res->domains, list) {
2813 ret = __init_one_rdt_domain(d, s, closid);
2814 if (ret < 0)
2815 return ret;
2816 }
2817
2818 return 0;
2819 }
2820
2821 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)2822 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
2823 {
2824 struct resctrl_staged_config *cfg;
2825 struct rdt_domain *d;
2826
2827 list_for_each_entry(d, &r->domains, list) {
2828 if (is_mba_sc(r)) {
2829 d->mbps_val[closid] = MBA_MAX_MBPS;
2830 continue;
2831 }
2832
2833 cfg = &d->staged_config[CDP_NONE];
2834 cfg->new_ctrl = r->default_ctrl;
2835 cfg->have_new_ctrl = true;
2836 }
2837 }
2838
2839 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2840 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2841 {
2842 struct resctrl_schema *s;
2843 struct rdt_resource *r;
2844 int ret;
2845
2846 list_for_each_entry(s, &resctrl_schema_all, list) {
2847 r = s->res;
2848 if (r->rid == RDT_RESOURCE_MBA) {
2849 rdtgroup_init_mba(r, rdtgrp->closid);
2850 if (is_mba_sc(r))
2851 continue;
2852 } else {
2853 ret = rdtgroup_init_cat(s, rdtgrp->closid);
2854 if (ret < 0)
2855 return ret;
2856 }
2857
2858 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
2859 if (ret < 0) {
2860 rdt_last_cmd_puts("Failed to initialize allocations\n");
2861 return ret;
2862 }
2863
2864 }
2865
2866 rdtgrp->mode = RDT_MODE_SHAREABLE;
2867
2868 return 0;
2869 }
2870
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2871 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2872 const char *name, umode_t mode,
2873 enum rdt_group_type rtype, struct rdtgroup **r)
2874 {
2875 struct rdtgroup *prdtgrp, *rdtgrp;
2876 struct kernfs_node *kn;
2877 uint files = 0;
2878 int ret;
2879
2880 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2881 if (!prdtgrp) {
2882 ret = -ENODEV;
2883 goto out_unlock;
2884 }
2885
2886 if (rtype == RDTMON_GROUP &&
2887 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2888 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2889 ret = -EINVAL;
2890 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2891 goto out_unlock;
2892 }
2893
2894 /* allocate the rdtgroup. */
2895 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2896 if (!rdtgrp) {
2897 ret = -ENOSPC;
2898 rdt_last_cmd_puts("Kernel out of memory\n");
2899 goto out_unlock;
2900 }
2901 *r = rdtgrp;
2902 rdtgrp->mon.parent = prdtgrp;
2903 rdtgrp->type = rtype;
2904 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2905
2906 /* kernfs creates the directory for rdtgrp */
2907 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2908 if (IS_ERR(kn)) {
2909 ret = PTR_ERR(kn);
2910 rdt_last_cmd_puts("kernfs create error\n");
2911 goto out_free_rgrp;
2912 }
2913 rdtgrp->kn = kn;
2914
2915 /*
2916 * kernfs_remove() will drop the reference count on "kn" which
2917 * will free it. But we still need it to stick around for the
2918 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2919 * which will be dropped by kernfs_put() in rdtgroup_remove().
2920 */
2921 kernfs_get(kn);
2922
2923 ret = rdtgroup_kn_set_ugid(kn);
2924 if (ret) {
2925 rdt_last_cmd_puts("kernfs perm error\n");
2926 goto out_destroy;
2927 }
2928
2929 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2930 ret = rdtgroup_add_files(kn, files);
2931 if (ret) {
2932 rdt_last_cmd_puts("kernfs fill error\n");
2933 goto out_destroy;
2934 }
2935
2936 if (rdt_mon_capable) {
2937 ret = alloc_rmid();
2938 if (ret < 0) {
2939 rdt_last_cmd_puts("Out of RMIDs\n");
2940 goto out_destroy;
2941 }
2942 rdtgrp->mon.rmid = ret;
2943
2944 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2945 if (ret) {
2946 rdt_last_cmd_puts("kernfs subdir error\n");
2947 goto out_idfree;
2948 }
2949 }
2950 kernfs_activate(kn);
2951
2952 /*
2953 * The caller unlocks the parent_kn upon success.
2954 */
2955 return 0;
2956
2957 out_idfree:
2958 free_rmid(rdtgrp->mon.rmid);
2959 out_destroy:
2960 kernfs_put(rdtgrp->kn);
2961 kernfs_remove(rdtgrp->kn);
2962 out_free_rgrp:
2963 kfree(rdtgrp);
2964 out_unlock:
2965 rdtgroup_kn_unlock(parent_kn);
2966 return ret;
2967 }
2968
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2969 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2970 {
2971 kernfs_remove(rgrp->kn);
2972 free_rmid(rgrp->mon.rmid);
2973 rdtgroup_remove(rgrp);
2974 }
2975
2976 /*
2977 * Create a monitor group under "mon_groups" directory of a control
2978 * and monitor group(ctrl_mon). This is a resource group
2979 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2980 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2981 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2982 const char *name, umode_t mode)
2983 {
2984 struct rdtgroup *rdtgrp, *prgrp;
2985 int ret;
2986
2987 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2988 if (ret)
2989 return ret;
2990
2991 prgrp = rdtgrp->mon.parent;
2992 rdtgrp->closid = prgrp->closid;
2993
2994 /*
2995 * Add the rdtgrp to the list of rdtgrps the parent
2996 * ctrl_mon group has to track.
2997 */
2998 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2999
3000 rdtgroup_kn_unlock(parent_kn);
3001 return ret;
3002 }
3003
3004 /*
3005 * These are rdtgroups created under the root directory. Can be used
3006 * to allocate and monitor resources.
3007 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3008 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3009 const char *name, umode_t mode)
3010 {
3011 struct rdtgroup *rdtgrp;
3012 struct kernfs_node *kn;
3013 u32 closid;
3014 int ret;
3015
3016 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3017 if (ret)
3018 return ret;
3019
3020 kn = rdtgrp->kn;
3021 ret = closid_alloc();
3022 if (ret < 0) {
3023 rdt_last_cmd_puts("Out of CLOSIDs\n");
3024 goto out_common_fail;
3025 }
3026 closid = ret;
3027 ret = 0;
3028
3029 rdtgrp->closid = closid;
3030 ret = rdtgroup_init_alloc(rdtgrp);
3031 if (ret < 0)
3032 goto out_id_free;
3033
3034 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3035
3036 if (rdt_mon_capable) {
3037 /*
3038 * Create an empty mon_groups directory to hold the subset
3039 * of tasks and cpus to monitor.
3040 */
3041 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3042 if (ret) {
3043 rdt_last_cmd_puts("kernfs subdir error\n");
3044 goto out_del_list;
3045 }
3046 }
3047
3048 goto out_unlock;
3049
3050 out_del_list:
3051 list_del(&rdtgrp->rdtgroup_list);
3052 out_id_free:
3053 closid_free(closid);
3054 out_common_fail:
3055 mkdir_rdt_prepare_clean(rdtgrp);
3056 out_unlock:
3057 rdtgroup_kn_unlock(parent_kn);
3058 return ret;
3059 }
3060
3061 /*
3062 * We allow creating mon groups only with in a directory called "mon_groups"
3063 * which is present in every ctrl_mon group. Check if this is a valid
3064 * "mon_groups" directory.
3065 *
3066 * 1. The directory should be named "mon_groups".
3067 * 2. The mon group itself should "not" be named "mon_groups".
3068 * This makes sure "mon_groups" directory always has a ctrl_mon group
3069 * as parent.
3070 */
is_mon_groups(struct kernfs_node * kn,const char * name)3071 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3072 {
3073 return (!strcmp(kn->name, "mon_groups") &&
3074 strcmp(name, "mon_groups"));
3075 }
3076
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3077 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3078 umode_t mode)
3079 {
3080 /* Do not accept '\n' to avoid unparsable situation. */
3081 if (strchr(name, '\n'))
3082 return -EINVAL;
3083
3084 /*
3085 * If the parent directory is the root directory and RDT
3086 * allocation is supported, add a control and monitoring
3087 * subdirectory
3088 */
3089 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3090 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3091
3092 /*
3093 * If RDT monitoring is supported and the parent directory is a valid
3094 * "mon_groups" directory, add a monitoring subdirectory.
3095 */
3096 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3097 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3098
3099 return -EPERM;
3100 }
3101
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3102 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3103 {
3104 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3105 int cpu;
3106
3107 /* Give any tasks back to the parent group */
3108 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3109
3110 /* Update per cpu rmid of the moved CPUs first */
3111 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3112 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3113 /*
3114 * Update the MSR on moved CPUs and CPUs which have moved
3115 * task running on them.
3116 */
3117 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3118 update_closid_rmid(tmpmask, NULL);
3119
3120 rdtgrp->flags = RDT_DELETED;
3121 free_rmid(rdtgrp->mon.rmid);
3122
3123 /*
3124 * Remove the rdtgrp from the parent ctrl_mon group's list
3125 */
3126 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3127 list_del(&rdtgrp->mon.crdtgrp_list);
3128
3129 kernfs_remove(rdtgrp->kn);
3130
3131 return 0;
3132 }
3133
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3134 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3135 {
3136 rdtgrp->flags = RDT_DELETED;
3137 list_del(&rdtgrp->rdtgroup_list);
3138
3139 kernfs_remove(rdtgrp->kn);
3140 return 0;
3141 }
3142
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3143 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3144 {
3145 int cpu;
3146
3147 /* Give any tasks back to the default group */
3148 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3149
3150 /* Give any CPUs back to the default group */
3151 cpumask_or(&rdtgroup_default.cpu_mask,
3152 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3153
3154 /* Update per cpu closid and rmid of the moved CPUs first */
3155 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3156 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3157 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3158 }
3159
3160 /*
3161 * Update the MSR on moved CPUs and CPUs which have moved
3162 * task running on them.
3163 */
3164 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3165 update_closid_rmid(tmpmask, NULL);
3166
3167 closid_free(rdtgrp->closid);
3168 free_rmid(rdtgrp->mon.rmid);
3169
3170 rdtgroup_ctrl_remove(rdtgrp);
3171
3172 /*
3173 * Free all the child monitor group rmids.
3174 */
3175 free_all_child_rdtgrp(rdtgrp);
3176
3177 return 0;
3178 }
3179
rdtgroup_rmdir(struct kernfs_node * kn)3180 static int rdtgroup_rmdir(struct kernfs_node *kn)
3181 {
3182 struct kernfs_node *parent_kn = kn->parent;
3183 struct rdtgroup *rdtgrp;
3184 cpumask_var_t tmpmask;
3185 int ret = 0;
3186
3187 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3188 return -ENOMEM;
3189
3190 rdtgrp = rdtgroup_kn_lock_live(kn);
3191 if (!rdtgrp) {
3192 ret = -EPERM;
3193 goto out;
3194 }
3195
3196 /*
3197 * If the rdtgroup is a ctrl_mon group and parent directory
3198 * is the root directory, remove the ctrl_mon group.
3199 *
3200 * If the rdtgroup is a mon group and parent directory
3201 * is a valid "mon_groups" directory, remove the mon group.
3202 */
3203 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3204 rdtgrp != &rdtgroup_default) {
3205 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3206 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3207 ret = rdtgroup_ctrl_remove(rdtgrp);
3208 } else {
3209 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3210 }
3211 } else if (rdtgrp->type == RDTMON_GROUP &&
3212 is_mon_groups(parent_kn, kn->name)) {
3213 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3214 } else {
3215 ret = -EPERM;
3216 }
3217
3218 out:
3219 rdtgroup_kn_unlock(kn);
3220 free_cpumask_var(tmpmask);
3221 return ret;
3222 }
3223
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3224 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3225 {
3226 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3227 seq_puts(seq, ",cdp");
3228
3229 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3230 seq_puts(seq, ",cdpl2");
3231
3232 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3233 seq_puts(seq, ",mba_MBps");
3234
3235 return 0;
3236 }
3237
3238 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3239 .mkdir = rdtgroup_mkdir,
3240 .rmdir = rdtgroup_rmdir,
3241 .show_options = rdtgroup_show_options,
3242 };
3243
rdtgroup_setup_root(void)3244 static int __init rdtgroup_setup_root(void)
3245 {
3246 int ret;
3247
3248 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3249 KERNFS_ROOT_CREATE_DEACTIVATED |
3250 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3251 &rdtgroup_default);
3252 if (IS_ERR(rdt_root))
3253 return PTR_ERR(rdt_root);
3254
3255 mutex_lock(&rdtgroup_mutex);
3256
3257 rdtgroup_default.closid = 0;
3258 rdtgroup_default.mon.rmid = 0;
3259 rdtgroup_default.type = RDTCTRL_GROUP;
3260 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3261
3262 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3263
3264 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3265 if (ret) {
3266 kernfs_destroy_root(rdt_root);
3267 goto out;
3268 }
3269
3270 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3271 kernfs_activate(rdtgroup_default.kn);
3272
3273 out:
3274 mutex_unlock(&rdtgroup_mutex);
3275
3276 return ret;
3277 }
3278
domain_destroy_mon_state(struct rdt_domain * d)3279 static void domain_destroy_mon_state(struct rdt_domain *d)
3280 {
3281 bitmap_free(d->rmid_busy_llc);
3282 kfree(d->mbm_total);
3283 kfree(d->mbm_local);
3284 }
3285
resctrl_offline_domain(struct rdt_resource * r,struct rdt_domain * d)3286 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3287 {
3288 lockdep_assert_held(&rdtgroup_mutex);
3289
3290 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3291 mba_sc_domain_destroy(r, d);
3292
3293 if (!r->mon_capable)
3294 return;
3295
3296 /*
3297 * If resctrl is mounted, remove all the
3298 * per domain monitor data directories.
3299 */
3300 if (static_branch_unlikely(&rdt_mon_enable_key))
3301 rmdir_mondata_subdir_allrdtgrp(r, d->id);
3302
3303 if (is_mbm_enabled())
3304 cancel_delayed_work(&d->mbm_over);
3305 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3306 /*
3307 * When a package is going down, forcefully
3308 * decrement rmid->ebusy. There is no way to know
3309 * that the L3 was flushed and hence may lead to
3310 * incorrect counts in rare scenarios, but leaving
3311 * the RMID as busy creates RMID leaks if the
3312 * package never comes back.
3313 */
3314 __check_limbo(d, true);
3315 cancel_delayed_work(&d->cqm_limbo);
3316 }
3317
3318 domain_destroy_mon_state(d);
3319 }
3320
domain_setup_mon_state(struct rdt_resource * r,struct rdt_domain * d)3321 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3322 {
3323 size_t tsize;
3324
3325 if (is_llc_occupancy_enabled()) {
3326 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3327 if (!d->rmid_busy_llc)
3328 return -ENOMEM;
3329 }
3330 if (is_mbm_total_enabled()) {
3331 tsize = sizeof(*d->mbm_total);
3332 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3333 if (!d->mbm_total) {
3334 bitmap_free(d->rmid_busy_llc);
3335 return -ENOMEM;
3336 }
3337 }
3338 if (is_mbm_local_enabled()) {
3339 tsize = sizeof(*d->mbm_local);
3340 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3341 if (!d->mbm_local) {
3342 bitmap_free(d->rmid_busy_llc);
3343 kfree(d->mbm_total);
3344 return -ENOMEM;
3345 }
3346 }
3347
3348 return 0;
3349 }
3350
resctrl_online_domain(struct rdt_resource * r,struct rdt_domain * d)3351 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3352 {
3353 int err;
3354
3355 lockdep_assert_held(&rdtgroup_mutex);
3356
3357 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3358 /* RDT_RESOURCE_MBA is never mon_capable */
3359 return mba_sc_domain_allocate(r, d);
3360
3361 if (!r->mon_capable)
3362 return 0;
3363
3364 err = domain_setup_mon_state(r, d);
3365 if (err)
3366 return err;
3367
3368 if (is_mbm_enabled()) {
3369 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3370 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3371 }
3372
3373 if (is_llc_occupancy_enabled())
3374 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3375
3376 /* If resctrl is mounted, add per domain monitor data directories. */
3377 if (static_branch_unlikely(&rdt_mon_enable_key))
3378 mkdir_mondata_subdir_allrdtgrp(r, d);
3379
3380 return 0;
3381 }
3382
3383 /*
3384 * rdtgroup_init - rdtgroup initialization
3385 *
3386 * Setup resctrl file system including set up root, create mount point,
3387 * register rdtgroup filesystem, and initialize files under root directory.
3388 *
3389 * Return: 0 on success or -errno
3390 */
rdtgroup_init(void)3391 int __init rdtgroup_init(void)
3392 {
3393 int ret = 0;
3394
3395 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3396 sizeof(last_cmd_status_buf));
3397
3398 ret = rdtgroup_setup_root();
3399 if (ret)
3400 return ret;
3401
3402 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3403 if (ret)
3404 goto cleanup_root;
3405
3406 ret = register_filesystem(&rdt_fs_type);
3407 if (ret)
3408 goto cleanup_mountpoint;
3409
3410 /*
3411 * Adding the resctrl debugfs directory here may not be ideal since
3412 * it would let the resctrl debugfs directory appear on the debugfs
3413 * filesystem before the resctrl filesystem is mounted.
3414 * It may also be ok since that would enable debugging of RDT before
3415 * resctrl is mounted.
3416 * The reason why the debugfs directory is created here and not in
3417 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3418 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3419 * (the lockdep class of inode->i_rwsem). Other filesystem
3420 * interactions (eg. SyS_getdents) have the lock ordering:
3421 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3422 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3423 * is taken, thus creating dependency:
3424 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3425 * issues considering the other two lock dependencies.
3426 * By creating the debugfs directory here we avoid a dependency
3427 * that may cause deadlock (even though file operations cannot
3428 * occur until the filesystem is mounted, but I do not know how to
3429 * tell lockdep that).
3430 */
3431 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3432
3433 return 0;
3434
3435 cleanup_mountpoint:
3436 sysfs_remove_mount_point(fs_kobj, "resctrl");
3437 cleanup_root:
3438 kernfs_destroy_root(rdt_root);
3439
3440 return ret;
3441 }
3442
rdtgroup_exit(void)3443 void __exit rdtgroup_exit(void)
3444 {
3445 debugfs_remove_recursive(debugfs_resctrl);
3446 unregister_filesystem(&rdt_fs_type);
3447 sysfs_remove_mount_point(fs_kobj, "resctrl");
3448 kernfs_destroy_root(rdt_root);
3449 }
3450