1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7 * and Castagnoli.
8 *
9 * This CRC-32 implementation algorithm is bitreflected and processes
10 * the least-significant bit first (Little-Endian).
11 *
12 * Copyright IBM Corp. 2015
13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14 */
15
16#include <linux/linkage.h>
17#include <asm/nospec-insn.h>
18#include <asm/vx-insn.h>
19
20/* Vector register range containing CRC-32 constants */
21#define CONST_PERM_LE2BE	%v9
22#define CONST_R2R1		%v10
23#define CONST_R4R3		%v11
24#define CONST_R5		%v12
25#define CONST_RU_POLY		%v13
26#define CONST_CRC_POLY		%v14
27
28.data
29.align 8
30
31/*
32 * The CRC-32 constant block contains reduction constants to fold and
33 * process particular chunks of the input data stream in parallel.
34 *
35 * For the CRC-32 variants, the constants are precomputed according to
36 * these definitions:
37 *
38 *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
39 *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
40 *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
41 *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
42 *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
43 *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
44 *
45 *	The bitreflected Barret reduction constant, u', is defined as
46 *	the bit reversal of floor(x**64 / P(x)).
47 *
48 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
49 *	polynomial in the reversed (bitreflected) domain.
50 *
51 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
52 *
53 *	P(x)  = 0x04C11DB7
54 *	P'(x) = 0xEDB88320
55 *
56 * CRC-32C (Castagnoli) polynomials:
57 *
58 *	P(x)  = 0x1EDC6F41
59 *	P'(x) = 0x82F63B78
60 */
61
62.Lconstants_CRC_32_LE:
63	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
64	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
65	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
66	.octa		0x163cd6124				# R5
67	.octa		0x1F7011641				# u'
68	.octa		0x1DB710641				# P'(x) << 1
69
70.Lconstants_CRC_32C_LE:
71	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
72	.quad		0x09e4addf8, 0x740eef02			# R2, R1
73	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
74	.octa		0x0dd45aab8				# R5
75	.octa		0x0dea713f1				# u'
76	.octa		0x105ec76f0				# P'(x) << 1
77
78.previous
79
80	GEN_BR_THUNK %r14
81
82.text
83
84/*
85 * The CRC-32 functions use these calling conventions:
86 *
87 * Parameters:
88 *
89 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
90 *	%r3:	Input buffer pointer, performance might be improved if the
91 *		buffer is on a doubleword boundary.
92 *	%r4:	Length of the buffer, must be 64 bytes or greater.
93 *
94 * Register usage:
95 *
96 *	%r5:	CRC-32 constant pool base pointer.
97 *	V0:	Initial CRC value and intermediate constants and results.
98 *	V1..V4:	Data for CRC computation.
99 *	V5..V8:	Next data chunks that are fetched from the input buffer.
100 *	V9:	Constant for BE->LE conversion and shift operations
101 *
102 *	V10..V14: CRC-32 constants.
103 */
104
105ENTRY(crc32_le_vgfm_16)
106	larl	%r5,.Lconstants_CRC_32_LE
107	j	crc32_le_vgfm_generic
108ENDPROC(crc32_le_vgfm_16)
109
110ENTRY(crc32c_le_vgfm_16)
111	larl	%r5,.Lconstants_CRC_32C_LE
112	j	crc32_le_vgfm_generic
113ENDPROC(crc32c_le_vgfm_16)
114
115ENTRY(crc32_le_vgfm_generic)
116	/* Load CRC-32 constants */
117	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
118
119	/*
120	 * Load the initial CRC value.
121	 *
122	 * The CRC value is loaded into the rightmost word of the
123	 * vector register and is later XORed with the LSB portion
124	 * of the loaded input data.
125	 */
126	VZERO	%v0			/* Clear V0 */
127	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
128
129	/* Load a 64-byte data chunk and XOR with CRC */
130	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
131	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
132	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
133	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
134	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
135
136	VX	%v1,%v0,%v1		/* V1 ^= CRC */
137	aghi	%r3,64			/* BUF = BUF + 64 */
138	aghi	%r4,-64			/* LEN = LEN - 64 */
139
140	cghi	%r4,64
141	jl	.Lless_than_64bytes
142
143.Lfold_64bytes_loop:
144	/* Load the next 64-byte data chunk into V5 to V8 */
145	VLM	%v5,%v8,0,%r3
146	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
147	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
148	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
149	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
150
151	/*
152	 * Perform a GF(2) multiplication of the doublewords in V1 with
153	 * the R1 and R2 reduction constants in V0.  The intermediate result
154	 * is then folded (accumulated) with the next data chunk in V5 and
155	 * stored in V1. Repeat this step for the register contents
156	 * in V2, V3, and V4 respectively.
157	 */
158	VGFMAG	%v1,CONST_R2R1,%v1,%v5
159	VGFMAG	%v2,CONST_R2R1,%v2,%v6
160	VGFMAG	%v3,CONST_R2R1,%v3,%v7
161	VGFMAG	%v4,CONST_R2R1,%v4,%v8
162
163	aghi	%r3,64			/* BUF = BUF + 64 */
164	aghi	%r4,-64			/* LEN = LEN - 64 */
165
166	cghi	%r4,64
167	jnl	.Lfold_64bytes_loop
168
169.Lless_than_64bytes:
170	/*
171	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
172	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
173	 * value remains.
174	 */
175	VGFMAG	%v1,CONST_R4R3,%v1,%v2
176	VGFMAG	%v1,CONST_R4R3,%v1,%v3
177	VGFMAG	%v1,CONST_R4R3,%v1,%v4
178
179	cghi	%r4,16
180	jl	.Lfinal_fold
181
182.Lfold_16bytes_loop:
183
184	VL	%v2,0,,%r3		/* Load next data chunk */
185	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
186	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
187
188	aghi	%r3,16
189	aghi	%r4,-16
190
191	cghi	%r4,16
192	jnl	.Lfold_16bytes_loop
193
194.Lfinal_fold:
195	/*
196	 * Set up a vector register for byte shifts.  The shift value must
197	 * be loaded in bits 1-4 in byte element 7 of a vector register.
198	 * Shift by 8 bytes: 0x40
199	 * Shift by 4 bytes: 0x20
200	 */
201	VLEIB	%v9,0x40,7
202
203	/*
204	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
205	 * to move R4 into the rightmost doubleword and set the leftmost
206	 * doubleword to 0x1.
207	 */
208	VSRLB	%v0,CONST_R4R3,%v9
209	VLEIG	%v0,1,0
210
211	/*
212	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
213	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
214	 * multiplied by 0x1 and is then XORed with rightmost product.
215	 * Implicitly, the intermediate leftmost product becomes padded
216	 */
217	VGFMG	%v1,%v0,%v1
218
219	/*
220	 * Now do the final 32-bit fold by multiplying the rightmost word
221	 * in V1 with R5 and XOR the result with the remaining bits in V1.
222	 *
223	 * To achieve this by a single VGFMAG, right shift V1 by a word
224	 * and store the result in V2 which is then accumulated.  Use the
225	 * vector unpack instruction to load the rightmost half of the
226	 * doubleword into the rightmost doubleword element of V1; the other
227	 * half is loaded in the leftmost doubleword.
228	 * The vector register with CONST_R5 contains the R5 constant in the
229	 * rightmost doubleword and the leftmost doubleword is zero to ignore
230	 * the leftmost product of V1.
231	 */
232	VLEIB	%v9,0x20,7		  /* Shift by words */
233	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
234	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
235	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
236
237	/*
238	 * Apply a Barret reduction to compute the final 32-bit CRC value.
239	 *
240	 * The input values to the Barret reduction are the degree-63 polynomial
241	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
242	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
243	 * P(x).
244	 *
245	 * The Barret reduction algorithm is defined as:
246	 *
247	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
248	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
249	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
250	 *
251	 *  Note: The leftmost doubleword of vector register containing
252	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
253	 *  is zero and does not contribute to the final result.
254	 */
255
256	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
257	VUPLLF	%v2,%v1
258	VGFMG	%v2,CONST_RU_POLY,%v2
259
260	/*
261	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
262	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
263	 * The final result is stored in word element 2 of V2.
264	 */
265	VUPLLF	%v2,%v2
266	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
267
268.Ldone:
269	VLGVF	%r2,%v2,2
270	BR_EX	%r14
271ENDPROC(crc32_le_vgfm_generic)
272
273.previous
274