1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * TLB flush routines for radix kernels.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/memblock.h>
11 #include <linux/mmu_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/debugfs.h>
14 
15 #include <asm/ppc-opcode.h>
16 #include <asm/tlb.h>
17 #include <asm/tlbflush.h>
18 #include <asm/trace.h>
19 #include <asm/cputhreads.h>
20 #include <asm/plpar_wrappers.h>
21 
22 #include "internal.h"
23 
24 /*
25  * tlbiel instruction for radix, set invalidation
26  * i.e., r=1 and is=01 or is=10 or is=11
27  */
tlbiel_radix_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)28 static __always_inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
29 					unsigned int pid,
30 					unsigned int ric, unsigned int prs)
31 {
32 	unsigned long rb;
33 	unsigned long rs;
34 
35 	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
36 	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
37 
38 	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
39 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
40 		     : "memory");
41 }
42 
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)43 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
44 {
45 	unsigned int set;
46 
47 	asm volatile("ptesync": : :"memory");
48 
49 	/*
50 	 * Flush the first set of the TLB, and the entire Page Walk Cache
51 	 * and partition table entries. Then flush the remaining sets of the
52 	 * TLB.
53 	 */
54 
55 	if (early_cpu_has_feature(CPU_FTR_HVMODE)) {
56 		/* MSR[HV] should flush partition scope translations first. */
57 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
58 
59 		if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) {
60 			for (set = 1; set < num_sets; set++)
61 				tlbiel_radix_set_isa300(set, is, 0,
62 							RIC_FLUSH_TLB, 0);
63 		}
64 	}
65 
66 	/* Flush process scoped entries. */
67 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
68 
69 	if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) {
70 		for (set = 1; set < num_sets; set++)
71 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
72 	}
73 
74 	ppc_after_tlbiel_barrier();
75 }
76 
radix__tlbiel_all(unsigned int action)77 void radix__tlbiel_all(unsigned int action)
78 {
79 	unsigned int is;
80 
81 	switch (action) {
82 	case TLB_INVAL_SCOPE_GLOBAL:
83 		is = 3;
84 		break;
85 	case TLB_INVAL_SCOPE_LPID:
86 		is = 2;
87 		break;
88 	default:
89 		BUG();
90 	}
91 
92 	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
93 		tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
94 	else
95 		WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
96 
97 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
98 }
99 
__tlbiel_pid(unsigned long pid,int set,unsigned long ric)100 static __always_inline void __tlbiel_pid(unsigned long pid, int set,
101 				unsigned long ric)
102 {
103 	unsigned long rb,rs,prs,r;
104 
105 	rb = PPC_BIT(53); /* IS = 1 */
106 	rb |= set << PPC_BITLSHIFT(51);
107 	rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
108 	prs = 1; /* process scoped */
109 	r = 1;   /* radix format */
110 
111 	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
112 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
113 	trace_tlbie(0, 1, rb, rs, ric, prs, r);
114 }
115 
__tlbie_pid(unsigned long pid,unsigned long ric)116 static __always_inline void __tlbie_pid(unsigned long pid, unsigned long ric)
117 {
118 	unsigned long rb,rs,prs,r;
119 
120 	rb = PPC_BIT(53); /* IS = 1 */
121 	rs = pid << PPC_BITLSHIFT(31);
122 	prs = 1; /* process scoped */
123 	r = 1;   /* radix format */
124 
125 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
126 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
127 	trace_tlbie(0, 0, rb, rs, ric, prs, r);
128 }
129 
__tlbie_pid_lpid(unsigned long pid,unsigned long lpid,unsigned long ric)130 static __always_inline void __tlbie_pid_lpid(unsigned long pid,
131 					     unsigned long lpid,
132 					     unsigned long ric)
133 {
134 	unsigned long rb, rs, prs, r;
135 
136 	rb = PPC_BIT(53); /* IS = 1 */
137 	rs = (pid << PPC_BITLSHIFT(31)) | (lpid & ~(PPC_BITMASK(0, 31)));
138 	prs = 1; /* process scoped */
139 	r = 1;   /* radix format */
140 
141 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
142 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
143 	trace_tlbie(0, 0, rb, rs, ric, prs, r);
144 }
__tlbie_lpid(unsigned long lpid,unsigned long ric)145 static __always_inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
146 {
147 	unsigned long rb,rs,prs,r;
148 
149 	rb = PPC_BIT(52); /* IS = 2 */
150 	rs = lpid;
151 	prs = 0; /* partition scoped */
152 	r = 1;   /* radix format */
153 
154 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
155 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
156 	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
157 }
158 
__tlbie_lpid_guest(unsigned long lpid,unsigned long ric)159 static __always_inline void __tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
160 {
161 	unsigned long rb,rs,prs,r;
162 
163 	rb = PPC_BIT(52); /* IS = 2 */
164 	rs = lpid;
165 	prs = 1; /* process scoped */
166 	r = 1;   /* radix format */
167 
168 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
169 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
170 	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
171 }
172 
__tlbiel_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)173 static __always_inline void __tlbiel_va(unsigned long va, unsigned long pid,
174 					unsigned long ap, unsigned long ric)
175 {
176 	unsigned long rb,rs,prs,r;
177 
178 	rb = va & ~(PPC_BITMASK(52, 63));
179 	rb |= ap << PPC_BITLSHIFT(58);
180 	rs = pid << PPC_BITLSHIFT(31);
181 	prs = 1; /* process scoped */
182 	r = 1;   /* radix format */
183 
184 	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
185 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
186 	trace_tlbie(0, 1, rb, rs, ric, prs, r);
187 }
188 
__tlbie_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)189 static __always_inline void __tlbie_va(unsigned long va, unsigned long pid,
190 				       unsigned long ap, unsigned long ric)
191 {
192 	unsigned long rb,rs,prs,r;
193 
194 	rb = va & ~(PPC_BITMASK(52, 63));
195 	rb |= ap << PPC_BITLSHIFT(58);
196 	rs = pid << PPC_BITLSHIFT(31);
197 	prs = 1; /* process scoped */
198 	r = 1;   /* radix format */
199 
200 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
201 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
202 	trace_tlbie(0, 0, rb, rs, ric, prs, r);
203 }
204 
__tlbie_va_lpid(unsigned long va,unsigned long pid,unsigned long lpid,unsigned long ap,unsigned long ric)205 static __always_inline void __tlbie_va_lpid(unsigned long va, unsigned long pid,
206 					    unsigned long lpid,
207 					    unsigned long ap, unsigned long ric)
208 {
209 	unsigned long rb, rs, prs, r;
210 
211 	rb = va & ~(PPC_BITMASK(52, 63));
212 	rb |= ap << PPC_BITLSHIFT(58);
213 	rs = (pid << PPC_BITLSHIFT(31)) | (lpid & ~(PPC_BITMASK(0, 31)));
214 	prs = 1; /* process scoped */
215 	r = 1;   /* radix format */
216 
217 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
218 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
219 	trace_tlbie(0, 0, rb, rs, ric, prs, r);
220 }
221 
__tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long ap,unsigned long ric)222 static __always_inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
223 					    unsigned long ap, unsigned long ric)
224 {
225 	unsigned long rb,rs,prs,r;
226 
227 	rb = va & ~(PPC_BITMASK(52, 63));
228 	rb |= ap << PPC_BITLSHIFT(58);
229 	rs = lpid;
230 	prs = 0; /* partition scoped */
231 	r = 1;   /* radix format */
232 
233 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
234 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
235 	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
236 }
237 
238 
fixup_tlbie_va(unsigned long va,unsigned long pid,unsigned long ap)239 static inline void fixup_tlbie_va(unsigned long va, unsigned long pid,
240 				  unsigned long ap)
241 {
242 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
243 		asm volatile("ptesync": : :"memory");
244 		__tlbie_va(va, 0, ap, RIC_FLUSH_TLB);
245 	}
246 
247 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
248 		asm volatile("ptesync": : :"memory");
249 		__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
250 	}
251 }
252 
fixup_tlbie_va_range(unsigned long va,unsigned long pid,unsigned long ap)253 static inline void fixup_tlbie_va_range(unsigned long va, unsigned long pid,
254 					unsigned long ap)
255 {
256 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
257 		asm volatile("ptesync": : :"memory");
258 		__tlbie_pid(0, RIC_FLUSH_TLB);
259 	}
260 
261 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
262 		asm volatile("ptesync": : :"memory");
263 		__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
264 	}
265 }
266 
fixup_tlbie_va_range_lpid(unsigned long va,unsigned long pid,unsigned long lpid,unsigned long ap)267 static inline void fixup_tlbie_va_range_lpid(unsigned long va,
268 					     unsigned long pid,
269 					     unsigned long lpid,
270 					     unsigned long ap)
271 {
272 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
273 		asm volatile("ptesync" : : : "memory");
274 		__tlbie_pid_lpid(0, lpid, RIC_FLUSH_TLB);
275 	}
276 
277 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
278 		asm volatile("ptesync" : : : "memory");
279 		__tlbie_va_lpid(va, pid, lpid, ap, RIC_FLUSH_TLB);
280 	}
281 }
282 
fixup_tlbie_pid(unsigned long pid)283 static inline void fixup_tlbie_pid(unsigned long pid)
284 {
285 	/*
286 	 * We can use any address for the invalidation, pick one which is
287 	 * probably unused as an optimisation.
288 	 */
289 	unsigned long va = ((1UL << 52) - 1);
290 
291 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
292 		asm volatile("ptesync": : :"memory");
293 		__tlbie_pid(0, RIC_FLUSH_TLB);
294 	}
295 
296 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
297 		asm volatile("ptesync": : :"memory");
298 		__tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
299 	}
300 }
301 
fixup_tlbie_pid_lpid(unsigned long pid,unsigned long lpid)302 static inline void fixup_tlbie_pid_lpid(unsigned long pid, unsigned long lpid)
303 {
304 	/*
305 	 * We can use any address for the invalidation, pick one which is
306 	 * probably unused as an optimisation.
307 	 */
308 	unsigned long va = ((1UL << 52) - 1);
309 
310 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
311 		asm volatile("ptesync" : : : "memory");
312 		__tlbie_pid_lpid(0, lpid, RIC_FLUSH_TLB);
313 	}
314 
315 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
316 		asm volatile("ptesync" : : : "memory");
317 		__tlbie_va_lpid(va, pid, lpid, mmu_get_ap(MMU_PAGE_64K),
318 				RIC_FLUSH_TLB);
319 	}
320 }
321 
fixup_tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long ap)322 static inline void fixup_tlbie_lpid_va(unsigned long va, unsigned long lpid,
323 				       unsigned long ap)
324 {
325 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
326 		asm volatile("ptesync": : :"memory");
327 		__tlbie_lpid_va(va, 0, ap, RIC_FLUSH_TLB);
328 	}
329 
330 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
331 		asm volatile("ptesync": : :"memory");
332 		__tlbie_lpid_va(va, lpid, ap, RIC_FLUSH_TLB);
333 	}
334 }
335 
fixup_tlbie_lpid(unsigned long lpid)336 static inline void fixup_tlbie_lpid(unsigned long lpid)
337 {
338 	/*
339 	 * We can use any address for the invalidation, pick one which is
340 	 * probably unused as an optimisation.
341 	 */
342 	unsigned long va = ((1UL << 52) - 1);
343 
344 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
345 		asm volatile("ptesync": : :"memory");
346 		__tlbie_lpid(0, RIC_FLUSH_TLB);
347 	}
348 
349 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
350 		asm volatile("ptesync": : :"memory");
351 		__tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
352 	}
353 }
354 
355 /*
356  * We use 128 set in radix mode and 256 set in hpt mode.
357  */
_tlbiel_pid(unsigned long pid,unsigned long ric)358 static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
359 {
360 	int set;
361 
362 	asm volatile("ptesync": : :"memory");
363 
364 	switch (ric) {
365 	case RIC_FLUSH_PWC:
366 
367 		/* For PWC, only one flush is needed */
368 		__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
369 		ppc_after_tlbiel_barrier();
370 		return;
371 	case RIC_FLUSH_TLB:
372 		__tlbiel_pid(pid, 0, RIC_FLUSH_TLB);
373 		break;
374 	case RIC_FLUSH_ALL:
375 	default:
376 		/*
377 		 * Flush the first set of the TLB, and if
378 		 * we're doing a RIC_FLUSH_ALL, also flush
379 		 * the entire Page Walk Cache.
380 		 */
381 		__tlbiel_pid(pid, 0, RIC_FLUSH_ALL);
382 	}
383 
384 	if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
385 		/* For the remaining sets, just flush the TLB */
386 		for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
387 			__tlbiel_pid(pid, set, RIC_FLUSH_TLB);
388 	}
389 
390 	ppc_after_tlbiel_barrier();
391 	asm volatile(PPC_RADIX_INVALIDATE_ERAT_USER "; isync" : : :"memory");
392 }
393 
_tlbie_pid(unsigned long pid,unsigned long ric)394 static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
395 {
396 	asm volatile("ptesync": : :"memory");
397 
398 	/*
399 	 * Workaround the fact that the "ric" argument to __tlbie_pid
400 	 * must be a compile-time constraint to match the "i" constraint
401 	 * in the asm statement.
402 	 */
403 	switch (ric) {
404 	case RIC_FLUSH_TLB:
405 		__tlbie_pid(pid, RIC_FLUSH_TLB);
406 		fixup_tlbie_pid(pid);
407 		break;
408 	case RIC_FLUSH_PWC:
409 		__tlbie_pid(pid, RIC_FLUSH_PWC);
410 		break;
411 	case RIC_FLUSH_ALL:
412 	default:
413 		__tlbie_pid(pid, RIC_FLUSH_ALL);
414 		fixup_tlbie_pid(pid);
415 	}
416 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
417 }
418 
_tlbie_pid_lpid(unsigned long pid,unsigned long lpid,unsigned long ric)419 static inline void _tlbie_pid_lpid(unsigned long pid, unsigned long lpid,
420 				   unsigned long ric)
421 {
422 	asm volatile("ptesync" : : : "memory");
423 
424 	/*
425 	 * Workaround the fact that the "ric" argument to __tlbie_pid
426 	 * must be a compile-time contraint to match the "i" constraint
427 	 * in the asm statement.
428 	 */
429 	switch (ric) {
430 	case RIC_FLUSH_TLB:
431 		__tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB);
432 		fixup_tlbie_pid_lpid(pid, lpid);
433 		break;
434 	case RIC_FLUSH_PWC:
435 		__tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC);
436 		break;
437 	case RIC_FLUSH_ALL:
438 	default:
439 		__tlbie_pid_lpid(pid, lpid, RIC_FLUSH_ALL);
440 		fixup_tlbie_pid_lpid(pid, lpid);
441 	}
442 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
443 }
444 struct tlbiel_pid {
445 	unsigned long pid;
446 	unsigned long ric;
447 };
448 
do_tlbiel_pid(void * info)449 static void do_tlbiel_pid(void *info)
450 {
451 	struct tlbiel_pid *t = info;
452 
453 	if (t->ric == RIC_FLUSH_TLB)
454 		_tlbiel_pid(t->pid, RIC_FLUSH_TLB);
455 	else if (t->ric == RIC_FLUSH_PWC)
456 		_tlbiel_pid(t->pid, RIC_FLUSH_PWC);
457 	else
458 		_tlbiel_pid(t->pid, RIC_FLUSH_ALL);
459 }
460 
_tlbiel_pid_multicast(struct mm_struct * mm,unsigned long pid,unsigned long ric)461 static inline void _tlbiel_pid_multicast(struct mm_struct *mm,
462 				unsigned long pid, unsigned long ric)
463 {
464 	struct cpumask *cpus = mm_cpumask(mm);
465 	struct tlbiel_pid t = { .pid = pid, .ric = ric };
466 
467 	on_each_cpu_mask(cpus, do_tlbiel_pid, &t, 1);
468 	/*
469 	 * Always want the CPU translations to be invalidated with tlbiel in
470 	 * these paths, so while coprocessors must use tlbie, we can not
471 	 * optimise away the tlbiel component.
472 	 */
473 	if (atomic_read(&mm->context.copros) > 0)
474 		_tlbie_pid(pid, RIC_FLUSH_ALL);
475 }
476 
_tlbie_lpid(unsigned long lpid,unsigned long ric)477 static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
478 {
479 	asm volatile("ptesync": : :"memory");
480 
481 	/*
482 	 * Workaround the fact that the "ric" argument to __tlbie_pid
483 	 * must be a compile-time contraint to match the "i" constraint
484 	 * in the asm statement.
485 	 */
486 	switch (ric) {
487 	case RIC_FLUSH_TLB:
488 		__tlbie_lpid(lpid, RIC_FLUSH_TLB);
489 		fixup_tlbie_lpid(lpid);
490 		break;
491 	case RIC_FLUSH_PWC:
492 		__tlbie_lpid(lpid, RIC_FLUSH_PWC);
493 		break;
494 	case RIC_FLUSH_ALL:
495 	default:
496 		__tlbie_lpid(lpid, RIC_FLUSH_ALL);
497 		fixup_tlbie_lpid(lpid);
498 	}
499 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
500 }
501 
_tlbie_lpid_guest(unsigned long lpid,unsigned long ric)502 static __always_inline void _tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
503 {
504 	/*
505 	 * Workaround the fact that the "ric" argument to __tlbie_pid
506 	 * must be a compile-time contraint to match the "i" constraint
507 	 * in the asm statement.
508 	 */
509 	switch (ric) {
510 	case RIC_FLUSH_TLB:
511 		__tlbie_lpid_guest(lpid, RIC_FLUSH_TLB);
512 		break;
513 	case RIC_FLUSH_PWC:
514 		__tlbie_lpid_guest(lpid, RIC_FLUSH_PWC);
515 		break;
516 	case RIC_FLUSH_ALL:
517 	default:
518 		__tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
519 	}
520 	fixup_tlbie_lpid(lpid);
521 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
522 }
523 
__tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)524 static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
525 				    unsigned long pid, unsigned long page_size,
526 				    unsigned long psize)
527 {
528 	unsigned long addr;
529 	unsigned long ap = mmu_get_ap(psize);
530 
531 	for (addr = start; addr < end; addr += page_size)
532 		__tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
533 }
534 
_tlbiel_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)535 static __always_inline void _tlbiel_va(unsigned long va, unsigned long pid,
536 				       unsigned long psize, unsigned long ric)
537 {
538 	unsigned long ap = mmu_get_ap(psize);
539 
540 	asm volatile("ptesync": : :"memory");
541 	__tlbiel_va(va, pid, ap, ric);
542 	ppc_after_tlbiel_barrier();
543 }
544 
_tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)545 static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
546 				    unsigned long pid, unsigned long page_size,
547 				    unsigned long psize, bool also_pwc)
548 {
549 	asm volatile("ptesync": : :"memory");
550 	if (also_pwc)
551 		__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
552 	__tlbiel_va_range(start, end, pid, page_size, psize);
553 	ppc_after_tlbiel_barrier();
554 }
555 
__tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)556 static inline void __tlbie_va_range(unsigned long start, unsigned long end,
557 				    unsigned long pid, unsigned long page_size,
558 				    unsigned long psize)
559 {
560 	unsigned long addr;
561 	unsigned long ap = mmu_get_ap(psize);
562 
563 	for (addr = start; addr < end; addr += page_size)
564 		__tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
565 
566 	fixup_tlbie_va_range(addr - page_size, pid, ap);
567 }
568 
__tlbie_va_range_lpid(unsigned long start,unsigned long end,unsigned long pid,unsigned long lpid,unsigned long page_size,unsigned long psize)569 static inline void __tlbie_va_range_lpid(unsigned long start, unsigned long end,
570 					 unsigned long pid, unsigned long lpid,
571 					 unsigned long page_size,
572 					 unsigned long psize)
573 {
574 	unsigned long addr;
575 	unsigned long ap = mmu_get_ap(psize);
576 
577 	for (addr = start; addr < end; addr += page_size)
578 		__tlbie_va_lpid(addr, pid, lpid, ap, RIC_FLUSH_TLB);
579 
580 	fixup_tlbie_va_range_lpid(addr - page_size, pid, lpid, ap);
581 }
582 
_tlbie_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)583 static __always_inline void _tlbie_va(unsigned long va, unsigned long pid,
584 				      unsigned long psize, unsigned long ric)
585 {
586 	unsigned long ap = mmu_get_ap(psize);
587 
588 	asm volatile("ptesync": : :"memory");
589 	__tlbie_va(va, pid, ap, ric);
590 	fixup_tlbie_va(va, pid, ap);
591 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
592 }
593 
594 struct tlbiel_va {
595 	unsigned long pid;
596 	unsigned long va;
597 	unsigned long psize;
598 	unsigned long ric;
599 };
600 
do_tlbiel_va(void * info)601 static void do_tlbiel_va(void *info)
602 {
603 	struct tlbiel_va *t = info;
604 
605 	if (t->ric == RIC_FLUSH_TLB)
606 		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_TLB);
607 	else if (t->ric == RIC_FLUSH_PWC)
608 		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_PWC);
609 	else
610 		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_ALL);
611 }
612 
_tlbiel_va_multicast(struct mm_struct * mm,unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)613 static inline void _tlbiel_va_multicast(struct mm_struct *mm,
614 				unsigned long va, unsigned long pid,
615 				unsigned long psize, unsigned long ric)
616 {
617 	struct cpumask *cpus = mm_cpumask(mm);
618 	struct tlbiel_va t = { .va = va, .pid = pid, .psize = psize, .ric = ric };
619 	on_each_cpu_mask(cpus, do_tlbiel_va, &t, 1);
620 	if (atomic_read(&mm->context.copros) > 0)
621 		_tlbie_va(va, pid, psize, RIC_FLUSH_TLB);
622 }
623 
624 struct tlbiel_va_range {
625 	unsigned long pid;
626 	unsigned long start;
627 	unsigned long end;
628 	unsigned long page_size;
629 	unsigned long psize;
630 	bool also_pwc;
631 };
632 
do_tlbiel_va_range(void * info)633 static void do_tlbiel_va_range(void *info)
634 {
635 	struct tlbiel_va_range *t = info;
636 
637 	_tlbiel_va_range(t->start, t->end, t->pid, t->page_size,
638 				    t->psize, t->also_pwc);
639 }
640 
_tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long psize,unsigned long ric)641 static __always_inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
642 			      unsigned long psize, unsigned long ric)
643 {
644 	unsigned long ap = mmu_get_ap(psize);
645 
646 	asm volatile("ptesync": : :"memory");
647 	__tlbie_lpid_va(va, lpid, ap, ric);
648 	fixup_tlbie_lpid_va(va, lpid, ap);
649 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
650 }
651 
_tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)652 static inline void _tlbie_va_range(unsigned long start, unsigned long end,
653 				    unsigned long pid, unsigned long page_size,
654 				    unsigned long psize, bool also_pwc)
655 {
656 	asm volatile("ptesync": : :"memory");
657 	if (also_pwc)
658 		__tlbie_pid(pid, RIC_FLUSH_PWC);
659 	__tlbie_va_range(start, end, pid, page_size, psize);
660 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
661 }
662 
_tlbie_va_range_lpid(unsigned long start,unsigned long end,unsigned long pid,unsigned long lpid,unsigned long page_size,unsigned long psize,bool also_pwc)663 static inline void _tlbie_va_range_lpid(unsigned long start, unsigned long end,
664 					unsigned long pid, unsigned long lpid,
665 					unsigned long page_size,
666 					unsigned long psize, bool also_pwc)
667 {
668 	asm volatile("ptesync" : : : "memory");
669 	if (also_pwc)
670 		__tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC);
671 	__tlbie_va_range_lpid(start, end, pid, lpid, page_size, psize);
672 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
673 }
674 
_tlbiel_va_range_multicast(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)675 static inline void _tlbiel_va_range_multicast(struct mm_struct *mm,
676 				unsigned long start, unsigned long end,
677 				unsigned long pid, unsigned long page_size,
678 				unsigned long psize, bool also_pwc)
679 {
680 	struct cpumask *cpus = mm_cpumask(mm);
681 	struct tlbiel_va_range t = { .start = start, .end = end,
682 				.pid = pid, .page_size = page_size,
683 				.psize = psize, .also_pwc = also_pwc };
684 
685 	on_each_cpu_mask(cpus, do_tlbiel_va_range, &t, 1);
686 	if (atomic_read(&mm->context.copros) > 0)
687 		_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
688 }
689 
690 /*
691  * Base TLB flushing operations:
692  *
693  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
694  *  - flush_tlb_page(vma, vmaddr) flushes one page
695  *  - flush_tlb_range(vma, start, end) flushes a range of pages
696  *  - flush_tlb_kernel_range(start, end) flushes kernel pages
697  *
698  *  - local_* variants of page and mm only apply to the current
699  *    processor
700  */
radix__local_flush_tlb_mm(struct mm_struct * mm)701 void radix__local_flush_tlb_mm(struct mm_struct *mm)
702 {
703 	unsigned long pid;
704 
705 	preempt_disable();
706 	pid = mm->context.id;
707 	if (pid != MMU_NO_CONTEXT)
708 		_tlbiel_pid(pid, RIC_FLUSH_TLB);
709 	preempt_enable();
710 }
711 EXPORT_SYMBOL(radix__local_flush_tlb_mm);
712 
713 #ifndef CONFIG_SMP
radix__local_flush_all_mm(struct mm_struct * mm)714 void radix__local_flush_all_mm(struct mm_struct *mm)
715 {
716 	unsigned long pid;
717 
718 	preempt_disable();
719 	pid = mm->context.id;
720 	if (pid != MMU_NO_CONTEXT)
721 		_tlbiel_pid(pid, RIC_FLUSH_ALL);
722 	preempt_enable();
723 }
724 EXPORT_SYMBOL(radix__local_flush_all_mm);
725 
__flush_all_mm(struct mm_struct * mm,bool fullmm)726 static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
727 {
728 	radix__local_flush_all_mm(mm);
729 }
730 #endif /* CONFIG_SMP */
731 
radix__local_flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)732 void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
733 				       int psize)
734 {
735 	unsigned long pid;
736 
737 	preempt_disable();
738 	pid = mm->context.id;
739 	if (pid != MMU_NO_CONTEXT)
740 		_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
741 	preempt_enable();
742 }
743 
radix__local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)744 void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
745 {
746 #ifdef CONFIG_HUGETLB_PAGE
747 	/* need the return fix for nohash.c */
748 	if (is_vm_hugetlb_page(vma))
749 		return radix__local_flush_hugetlb_page(vma, vmaddr);
750 #endif
751 	radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
752 }
753 EXPORT_SYMBOL(radix__local_flush_tlb_page);
754 
mm_needs_flush_escalation(struct mm_struct * mm)755 static bool mm_needs_flush_escalation(struct mm_struct *mm)
756 {
757 	/*
758 	 * The P9 nest MMU has issues with the page walk cache caching PTEs
759 	 * and not flushing them when RIC = 0 for a PID/LPID invalidate.
760 	 *
761 	 * This may have been fixed in shipping firmware (by disabling PWC
762 	 * or preventing it from caching PTEs), but until that is confirmed,
763 	 * this workaround is required - escalate all RIC=0 IS=1/2/3 flushes
764 	 * to RIC=2.
765 	 *
766 	 * POWER10 (and P9P) does not have this problem.
767 	 */
768 	if (cpu_has_feature(CPU_FTR_ARCH_31))
769 		return false;
770 	if (atomic_read(&mm->context.copros) > 0)
771 		return true;
772 	return false;
773 }
774 
775 /*
776  * If always_flush is true, then flush even if this CPU can't be removed
777  * from mm_cpumask.
778  */
exit_lazy_flush_tlb(struct mm_struct * mm,bool always_flush)779 void exit_lazy_flush_tlb(struct mm_struct *mm, bool always_flush)
780 {
781 	unsigned long pid = mm->context.id;
782 	int cpu = smp_processor_id();
783 
784 	/*
785 	 * A kthread could have done a mmget_not_zero() after the flushing CPU
786 	 * checked mm_cpumask, and be in the process of kthread_use_mm when
787 	 * interrupted here. In that case, current->mm will be set to mm,
788 	 * because kthread_use_mm() setting ->mm and switching to the mm is
789 	 * done with interrupts off.
790 	 */
791 	if (current->mm == mm)
792 		goto out;
793 
794 	if (current->active_mm == mm) {
795 		WARN_ON_ONCE(current->mm != NULL);
796 		/* Is a kernel thread and is using mm as the lazy tlb */
797 		mmgrab(&init_mm);
798 		current->active_mm = &init_mm;
799 		switch_mm_irqs_off(mm, &init_mm, current);
800 		mmdrop(mm);
801 	}
802 
803 	/*
804 	 * This IPI may be initiated from any source including those not
805 	 * running the mm, so there may be a racing IPI that comes after
806 	 * this one which finds the cpumask already clear. Check and avoid
807 	 * underflowing the active_cpus count in that case. The race should
808 	 * not otherwise be a problem, but the TLB must be flushed because
809 	 * that's what the caller expects.
810 	 */
811 	if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
812 		atomic_dec(&mm->context.active_cpus);
813 		cpumask_clear_cpu(cpu, mm_cpumask(mm));
814 		always_flush = true;
815 	}
816 
817 out:
818 	if (always_flush)
819 		_tlbiel_pid(pid, RIC_FLUSH_ALL);
820 }
821 
822 #ifdef CONFIG_SMP
do_exit_flush_lazy_tlb(void * arg)823 static void do_exit_flush_lazy_tlb(void *arg)
824 {
825 	struct mm_struct *mm = arg;
826 	exit_lazy_flush_tlb(mm, true);
827 }
828 
exit_flush_lazy_tlbs(struct mm_struct * mm)829 static void exit_flush_lazy_tlbs(struct mm_struct *mm)
830 {
831 	/*
832 	 * Would be nice if this was async so it could be run in
833 	 * parallel with our local flush, but generic code does not
834 	 * give a good API for it. Could extend the generic code or
835 	 * make a special powerpc IPI for flushing TLBs.
836 	 * For now it's not too performance critical.
837 	 */
838 	smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
839 				(void *)mm, 1);
840 }
841 
842 #else /* CONFIG_SMP */
exit_flush_lazy_tlbs(struct mm_struct * mm)843 static inline void exit_flush_lazy_tlbs(struct mm_struct *mm) { }
844 #endif /* CONFIG_SMP */
845 
846 static DEFINE_PER_CPU(unsigned int, mm_cpumask_trim_clock);
847 
848 /*
849  * Interval between flushes at which we send out IPIs to check whether the
850  * mm_cpumask can be trimmed for the case where it's not a single-threaded
851  * process flushing its own mm. The intent is to reduce the cost of later
852  * flushes. Don't want this to be so low that it adds noticable cost to TLB
853  * flushing, or so high that it doesn't help reduce global TLBIEs.
854  */
855 static unsigned long tlb_mm_cpumask_trim_timer = 1073;
856 
tick_and_test_trim_clock(void)857 static bool tick_and_test_trim_clock(void)
858 {
859 	if (__this_cpu_inc_return(mm_cpumask_trim_clock) ==
860 			tlb_mm_cpumask_trim_timer) {
861 		__this_cpu_write(mm_cpumask_trim_clock, 0);
862 		return true;
863 	}
864 	return false;
865 }
866 
867 enum tlb_flush_type {
868 	FLUSH_TYPE_NONE,
869 	FLUSH_TYPE_LOCAL,
870 	FLUSH_TYPE_GLOBAL,
871 };
872 
flush_type_needed(struct mm_struct * mm,bool fullmm)873 static enum tlb_flush_type flush_type_needed(struct mm_struct *mm, bool fullmm)
874 {
875 	int active_cpus = atomic_read(&mm->context.active_cpus);
876 	int cpu = smp_processor_id();
877 
878 	if (active_cpus == 0)
879 		return FLUSH_TYPE_NONE;
880 	if (active_cpus == 1 && cpumask_test_cpu(cpu, mm_cpumask(mm))) {
881 		if (current->mm != mm) {
882 			/*
883 			 * Asynchronous flush sources may trim down to nothing
884 			 * if the process is not running, so occasionally try
885 			 * to trim.
886 			 */
887 			if (tick_and_test_trim_clock()) {
888 				exit_lazy_flush_tlb(mm, true);
889 				return FLUSH_TYPE_NONE;
890 			}
891 		}
892 		return FLUSH_TYPE_LOCAL;
893 	}
894 
895 	/* Coprocessors require TLBIE to invalidate nMMU. */
896 	if (atomic_read(&mm->context.copros) > 0)
897 		return FLUSH_TYPE_GLOBAL;
898 
899 	/*
900 	 * In the fullmm case there's no point doing the exit_flush_lazy_tlbs
901 	 * because the mm is being taken down anyway, and a TLBIE tends to
902 	 * be faster than an IPI+TLBIEL.
903 	 */
904 	if (fullmm)
905 		return FLUSH_TYPE_GLOBAL;
906 
907 	/*
908 	 * If we are running the only thread of a single-threaded process,
909 	 * then we should almost always be able to trim off the rest of the
910 	 * CPU mask (except in the case of use_mm() races), so always try
911 	 * trimming the mask.
912 	 */
913 	if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm) {
914 		exit_flush_lazy_tlbs(mm);
915 		/*
916 		 * use_mm() race could prevent IPIs from being able to clear
917 		 * the cpumask here, however those users are established
918 		 * after our first check (and so after the PTEs are removed),
919 		 * and the TLB still gets flushed by the IPI, so this CPU
920 		 * will only require a local flush.
921 		 */
922 		return FLUSH_TYPE_LOCAL;
923 	}
924 
925 	/*
926 	 * Occasionally try to trim down the cpumask. It's possible this can
927 	 * bring the mask to zero, which results in no flush.
928 	 */
929 	if (tick_and_test_trim_clock()) {
930 		exit_flush_lazy_tlbs(mm);
931 		if (current->mm == mm)
932 			return FLUSH_TYPE_LOCAL;
933 		if (cpumask_test_cpu(cpu, mm_cpumask(mm)))
934 			exit_lazy_flush_tlb(mm, true);
935 		return FLUSH_TYPE_NONE;
936 	}
937 
938 	return FLUSH_TYPE_GLOBAL;
939 }
940 
941 #ifdef CONFIG_SMP
radix__flush_tlb_mm(struct mm_struct * mm)942 void radix__flush_tlb_mm(struct mm_struct *mm)
943 {
944 	unsigned long pid;
945 	enum tlb_flush_type type;
946 
947 	pid = mm->context.id;
948 	if (unlikely(pid == MMU_NO_CONTEXT))
949 		return;
950 
951 	preempt_disable();
952 	/*
953 	 * Order loads of mm_cpumask (in flush_type_needed) vs previous
954 	 * stores to clear ptes before the invalidate. See barrier in
955 	 * switch_mm_irqs_off
956 	 */
957 	smp_mb();
958 	type = flush_type_needed(mm, false);
959 	if (type == FLUSH_TYPE_LOCAL) {
960 		_tlbiel_pid(pid, RIC_FLUSH_TLB);
961 	} else if (type == FLUSH_TYPE_GLOBAL) {
962 		if (!mmu_has_feature(MMU_FTR_GTSE)) {
963 			unsigned long tgt = H_RPTI_TARGET_CMMU;
964 
965 			if (atomic_read(&mm->context.copros) > 0)
966 				tgt |= H_RPTI_TARGET_NMMU;
967 			pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB,
968 					       H_RPTI_PAGE_ALL, 0, -1UL);
969 		} else if (cputlb_use_tlbie()) {
970 			if (mm_needs_flush_escalation(mm))
971 				_tlbie_pid(pid, RIC_FLUSH_ALL);
972 			else
973 				_tlbie_pid(pid, RIC_FLUSH_TLB);
974 		} else {
975 			_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB);
976 		}
977 	}
978 	preempt_enable();
979 }
980 EXPORT_SYMBOL(radix__flush_tlb_mm);
981 
__flush_all_mm(struct mm_struct * mm,bool fullmm)982 static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
983 {
984 	unsigned long pid;
985 	enum tlb_flush_type type;
986 
987 	pid = mm->context.id;
988 	if (unlikely(pid == MMU_NO_CONTEXT))
989 		return;
990 
991 	preempt_disable();
992 	smp_mb(); /* see radix__flush_tlb_mm */
993 	type = flush_type_needed(mm, fullmm);
994 	if (type == FLUSH_TYPE_LOCAL) {
995 		_tlbiel_pid(pid, RIC_FLUSH_ALL);
996 	} else if (type == FLUSH_TYPE_GLOBAL) {
997 		if (!mmu_has_feature(MMU_FTR_GTSE)) {
998 			unsigned long tgt = H_RPTI_TARGET_CMMU;
999 			unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
1000 					     H_RPTI_TYPE_PRT;
1001 
1002 			if (atomic_read(&mm->context.copros) > 0)
1003 				tgt |= H_RPTI_TARGET_NMMU;
1004 			pseries_rpt_invalidate(pid, tgt, type,
1005 					       H_RPTI_PAGE_ALL, 0, -1UL);
1006 		} else if (cputlb_use_tlbie())
1007 			_tlbie_pid(pid, RIC_FLUSH_ALL);
1008 		else
1009 			_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL);
1010 	}
1011 	preempt_enable();
1012 }
1013 
radix__flush_all_mm(struct mm_struct * mm)1014 void radix__flush_all_mm(struct mm_struct *mm)
1015 {
1016 	__flush_all_mm(mm, false);
1017 }
1018 EXPORT_SYMBOL(radix__flush_all_mm);
1019 
radix__flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)1020 void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
1021 				 int psize)
1022 {
1023 	unsigned long pid;
1024 	enum tlb_flush_type type;
1025 
1026 	pid = mm->context.id;
1027 	if (unlikely(pid == MMU_NO_CONTEXT))
1028 		return;
1029 
1030 	preempt_disable();
1031 	smp_mb(); /* see radix__flush_tlb_mm */
1032 	type = flush_type_needed(mm, false);
1033 	if (type == FLUSH_TYPE_LOCAL) {
1034 		_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
1035 	} else if (type == FLUSH_TYPE_GLOBAL) {
1036 		if (!mmu_has_feature(MMU_FTR_GTSE)) {
1037 			unsigned long tgt, pg_sizes, size;
1038 
1039 			tgt = H_RPTI_TARGET_CMMU;
1040 			pg_sizes = psize_to_rpti_pgsize(psize);
1041 			size = 1UL << mmu_psize_to_shift(psize);
1042 
1043 			if (atomic_read(&mm->context.copros) > 0)
1044 				tgt |= H_RPTI_TARGET_NMMU;
1045 			pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB,
1046 					       pg_sizes, vmaddr,
1047 					       vmaddr + size);
1048 		} else if (cputlb_use_tlbie())
1049 			_tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
1050 		else
1051 			_tlbiel_va_multicast(mm, vmaddr, pid, psize, RIC_FLUSH_TLB);
1052 	}
1053 	preempt_enable();
1054 }
1055 
radix__flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)1056 void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
1057 {
1058 #ifdef CONFIG_HUGETLB_PAGE
1059 	if (is_vm_hugetlb_page(vma))
1060 		return radix__flush_hugetlb_page(vma, vmaddr);
1061 #endif
1062 	radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
1063 }
1064 EXPORT_SYMBOL(radix__flush_tlb_page);
1065 
1066 #endif /* CONFIG_SMP */
1067 
do_tlbiel_kernel(void * info)1068 static void do_tlbiel_kernel(void *info)
1069 {
1070 	_tlbiel_pid(0, RIC_FLUSH_ALL);
1071 }
1072 
_tlbiel_kernel_broadcast(void)1073 static inline void _tlbiel_kernel_broadcast(void)
1074 {
1075 	on_each_cpu(do_tlbiel_kernel, NULL, 1);
1076 	if (tlbie_capable) {
1077 		/*
1078 		 * Coherent accelerators don't refcount kernel memory mappings,
1079 		 * so have to always issue a tlbie for them. This is quite a
1080 		 * slow path anyway.
1081 		 */
1082 		_tlbie_pid(0, RIC_FLUSH_ALL);
1083 	}
1084 }
1085 
1086 /*
1087  * If kernel TLBIs ever become local rather than global, then
1088  * drivers/misc/ocxl/link.c:ocxl_link_add_pe will need some work, as it
1089  * assumes kernel TLBIs are global.
1090  */
radix__flush_tlb_kernel_range(unsigned long start,unsigned long end)1091 void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
1092 {
1093 	if (!mmu_has_feature(MMU_FTR_GTSE)) {
1094 		unsigned long tgt = H_RPTI_TARGET_CMMU | H_RPTI_TARGET_NMMU;
1095 		unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
1096 				     H_RPTI_TYPE_PRT;
1097 
1098 		pseries_rpt_invalidate(0, tgt, type, H_RPTI_PAGE_ALL,
1099 				       start, end);
1100 	} else if (cputlb_use_tlbie())
1101 		_tlbie_pid(0, RIC_FLUSH_ALL);
1102 	else
1103 		_tlbiel_kernel_broadcast();
1104 }
1105 EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
1106 
1107 #define TLB_FLUSH_ALL -1UL
1108 
1109 /*
1110  * Number of pages above which we invalidate the entire PID rather than
1111  * flush individual pages, for local and global flushes respectively.
1112  *
1113  * tlbie goes out to the interconnect and individual ops are more costly.
1114  * It also does not iterate over sets like the local tlbiel variant when
1115  * invalidating a full PID, so it has a far lower threshold to change from
1116  * individual page flushes to full-pid flushes.
1117  */
1118 static u32 tlb_single_page_flush_ceiling __read_mostly = 33;
1119 static u32 tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
1120 
__radix__flush_tlb_range(struct mm_struct * mm,unsigned long start,unsigned long end)1121 static inline void __radix__flush_tlb_range(struct mm_struct *mm,
1122 					    unsigned long start, unsigned long end)
1123 {
1124 	unsigned long pid;
1125 	unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
1126 	unsigned long page_size = 1UL << page_shift;
1127 	unsigned long nr_pages = (end - start) >> page_shift;
1128 	bool fullmm = (end == TLB_FLUSH_ALL);
1129 	bool flush_pid, flush_pwc = false;
1130 	enum tlb_flush_type type;
1131 
1132 	pid = mm->context.id;
1133 	if (unlikely(pid == MMU_NO_CONTEXT))
1134 		return;
1135 
1136 	preempt_disable();
1137 	smp_mb(); /* see radix__flush_tlb_mm */
1138 	type = flush_type_needed(mm, fullmm);
1139 	if (type == FLUSH_TYPE_NONE)
1140 		goto out;
1141 
1142 	if (fullmm)
1143 		flush_pid = true;
1144 	else if (type == FLUSH_TYPE_GLOBAL)
1145 		flush_pid = nr_pages > tlb_single_page_flush_ceiling;
1146 	else
1147 		flush_pid = nr_pages > tlb_local_single_page_flush_ceiling;
1148 	/*
1149 	 * full pid flush already does the PWC flush. if it is not full pid
1150 	 * flush check the range is more than PMD and force a pwc flush
1151 	 * mremap() depends on this behaviour.
1152 	 */
1153 	if (!flush_pid && (end - start) >= PMD_SIZE)
1154 		flush_pwc = true;
1155 
1156 	if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) {
1157 		unsigned long type = H_RPTI_TYPE_TLB;
1158 		unsigned long tgt = H_RPTI_TARGET_CMMU;
1159 		unsigned long pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize);
1160 
1161 		if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1162 			pg_sizes |= psize_to_rpti_pgsize(MMU_PAGE_2M);
1163 		if (atomic_read(&mm->context.copros) > 0)
1164 			tgt |= H_RPTI_TARGET_NMMU;
1165 		if (flush_pwc)
1166 			type |= H_RPTI_TYPE_PWC;
1167 		pseries_rpt_invalidate(pid, tgt, type, pg_sizes, start, end);
1168 	} else if (flush_pid) {
1169 		/*
1170 		 * We are now flushing a range larger than PMD size force a RIC_FLUSH_ALL
1171 		 */
1172 		if (type == FLUSH_TYPE_LOCAL) {
1173 			_tlbiel_pid(pid, RIC_FLUSH_ALL);
1174 		} else {
1175 			if (cputlb_use_tlbie()) {
1176 				_tlbie_pid(pid, RIC_FLUSH_ALL);
1177 			} else {
1178 				_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL);
1179 			}
1180 		}
1181 	} else {
1182 		bool hflush = false;
1183 		unsigned long hstart, hend;
1184 
1185 		if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1186 			hstart = (start + PMD_SIZE - 1) & PMD_MASK;
1187 			hend = end & PMD_MASK;
1188 			if (hstart < hend)
1189 				hflush = true;
1190 		}
1191 
1192 		if (type == FLUSH_TYPE_LOCAL) {
1193 			asm volatile("ptesync": : :"memory");
1194 			if (flush_pwc)
1195 				/* For PWC, only one flush is needed */
1196 				__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
1197 			__tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
1198 			if (hflush)
1199 				__tlbiel_va_range(hstart, hend, pid,
1200 						PMD_SIZE, MMU_PAGE_2M);
1201 			ppc_after_tlbiel_barrier();
1202 		} else if (cputlb_use_tlbie()) {
1203 			asm volatile("ptesync": : :"memory");
1204 			if (flush_pwc)
1205 				__tlbie_pid(pid, RIC_FLUSH_PWC);
1206 			__tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
1207 			if (hflush)
1208 				__tlbie_va_range(hstart, hend, pid,
1209 						PMD_SIZE, MMU_PAGE_2M);
1210 			asm volatile("eieio; tlbsync; ptesync": : :"memory");
1211 		} else {
1212 			_tlbiel_va_range_multicast(mm,
1213 					start, end, pid, page_size, mmu_virtual_psize, flush_pwc);
1214 			if (hflush)
1215 				_tlbiel_va_range_multicast(mm,
1216 					hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M, flush_pwc);
1217 		}
1218 	}
1219 out:
1220 	preempt_enable();
1221 }
1222 
radix__flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1223 void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1224 		     unsigned long end)
1225 
1226 {
1227 #ifdef CONFIG_HUGETLB_PAGE
1228 	if (is_vm_hugetlb_page(vma))
1229 		return radix__flush_hugetlb_tlb_range(vma, start, end);
1230 #endif
1231 
1232 	__radix__flush_tlb_range(vma->vm_mm, start, end);
1233 }
1234 EXPORT_SYMBOL(radix__flush_tlb_range);
1235 
radix_get_mmu_psize(int page_size)1236 static int radix_get_mmu_psize(int page_size)
1237 {
1238 	int psize;
1239 
1240 	if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
1241 		psize = mmu_virtual_psize;
1242 	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
1243 		psize = MMU_PAGE_2M;
1244 	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
1245 		psize = MMU_PAGE_1G;
1246 	else
1247 		return -1;
1248 	return psize;
1249 }
1250 
1251 /*
1252  * Flush partition scoped LPID address translation for all CPUs.
1253  */
radix__flush_tlb_lpid_page(unsigned int lpid,unsigned long addr,unsigned long page_size)1254 void radix__flush_tlb_lpid_page(unsigned int lpid,
1255 					unsigned long addr,
1256 					unsigned long page_size)
1257 {
1258 	int psize = radix_get_mmu_psize(page_size);
1259 
1260 	_tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
1261 }
1262 EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
1263 
1264 /*
1265  * Flush partition scoped PWC from LPID for all CPUs.
1266  */
radix__flush_pwc_lpid(unsigned int lpid)1267 void radix__flush_pwc_lpid(unsigned int lpid)
1268 {
1269 	_tlbie_lpid(lpid, RIC_FLUSH_PWC);
1270 }
1271 EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
1272 
1273 /*
1274  * Flush partition scoped translations from LPID (=LPIDR)
1275  */
radix__flush_all_lpid(unsigned int lpid)1276 void radix__flush_all_lpid(unsigned int lpid)
1277 {
1278 	_tlbie_lpid(lpid, RIC_FLUSH_ALL);
1279 }
1280 EXPORT_SYMBOL_GPL(radix__flush_all_lpid);
1281 
1282 /*
1283  * Flush process scoped translations from LPID (=LPIDR)
1284  */
radix__flush_all_lpid_guest(unsigned int lpid)1285 void radix__flush_all_lpid_guest(unsigned int lpid)
1286 {
1287 	_tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
1288 }
1289 
radix__tlb_flush(struct mmu_gather * tlb)1290 void radix__tlb_flush(struct mmu_gather *tlb)
1291 {
1292 	int psize = 0;
1293 	struct mm_struct *mm = tlb->mm;
1294 	int page_size = tlb->page_size;
1295 	unsigned long start = tlb->start;
1296 	unsigned long end = tlb->end;
1297 
1298 	/*
1299 	 * if page size is not something we understand, do a full mm flush
1300 	 *
1301 	 * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
1302 	 * that flushes the process table entry cache upon process teardown.
1303 	 * See the comment for radix in arch_exit_mmap().
1304 	 */
1305 	if (tlb->fullmm || tlb->need_flush_all) {
1306 		__flush_all_mm(mm, true);
1307 	} else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
1308 		if (!tlb->freed_tables)
1309 			radix__flush_tlb_mm(mm);
1310 		else
1311 			radix__flush_all_mm(mm);
1312 	} else {
1313 		if (!tlb->freed_tables)
1314 			radix__flush_tlb_range_psize(mm, start, end, psize);
1315 		else
1316 			radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
1317 	}
1318 }
1319 
__radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize,bool also_pwc)1320 static void __radix__flush_tlb_range_psize(struct mm_struct *mm,
1321 				unsigned long start, unsigned long end,
1322 				int psize, bool also_pwc)
1323 {
1324 	unsigned long pid;
1325 	unsigned int page_shift = mmu_psize_defs[psize].shift;
1326 	unsigned long page_size = 1UL << page_shift;
1327 	unsigned long nr_pages = (end - start) >> page_shift;
1328 	bool fullmm = (end == TLB_FLUSH_ALL);
1329 	bool flush_pid;
1330 	enum tlb_flush_type type;
1331 
1332 	pid = mm->context.id;
1333 	if (unlikely(pid == MMU_NO_CONTEXT))
1334 		return;
1335 
1336 	fullmm = (end == TLB_FLUSH_ALL);
1337 
1338 	preempt_disable();
1339 	smp_mb(); /* see radix__flush_tlb_mm */
1340 	type = flush_type_needed(mm, fullmm);
1341 	if (type == FLUSH_TYPE_NONE)
1342 		goto out;
1343 
1344 	if (fullmm)
1345 		flush_pid = true;
1346 	else if (type == FLUSH_TYPE_GLOBAL)
1347 		flush_pid = nr_pages > tlb_single_page_flush_ceiling;
1348 	else
1349 		flush_pid = nr_pages > tlb_local_single_page_flush_ceiling;
1350 
1351 	if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) {
1352 		unsigned long tgt = H_RPTI_TARGET_CMMU;
1353 		unsigned long type = H_RPTI_TYPE_TLB;
1354 		unsigned long pg_sizes = psize_to_rpti_pgsize(psize);
1355 
1356 		if (also_pwc)
1357 			type |= H_RPTI_TYPE_PWC;
1358 		if (atomic_read(&mm->context.copros) > 0)
1359 			tgt |= H_RPTI_TARGET_NMMU;
1360 		pseries_rpt_invalidate(pid, tgt, type, pg_sizes, start, end);
1361 	} else if (flush_pid) {
1362 		if (type == FLUSH_TYPE_LOCAL) {
1363 			_tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
1364 		} else {
1365 			if (cputlb_use_tlbie()) {
1366 				if (mm_needs_flush_escalation(mm))
1367 					also_pwc = true;
1368 
1369 				_tlbie_pid(pid,
1370 					also_pwc ?  RIC_FLUSH_ALL : RIC_FLUSH_TLB);
1371 			} else {
1372 				_tlbiel_pid_multicast(mm, pid,
1373 					also_pwc ?  RIC_FLUSH_ALL : RIC_FLUSH_TLB);
1374 			}
1375 
1376 		}
1377 	} else {
1378 		if (type == FLUSH_TYPE_LOCAL)
1379 			_tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
1380 		else if (cputlb_use_tlbie())
1381 			_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
1382 		else
1383 			_tlbiel_va_range_multicast(mm,
1384 					start, end, pid, page_size, psize, also_pwc);
1385 	}
1386 out:
1387 	preempt_enable();
1388 }
1389 
radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)1390 void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
1391 				  unsigned long end, int psize)
1392 {
1393 	return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
1394 }
1395 
radix__flush_tlb_pwc_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)1396 void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
1397 				      unsigned long end, int psize)
1398 {
1399 	__radix__flush_tlb_range_psize(mm, start, end, psize, true);
1400 }
1401 
1402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
radix__flush_tlb_collapsed_pmd(struct mm_struct * mm,unsigned long addr)1403 void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
1404 {
1405 	unsigned long pid, end;
1406 	enum tlb_flush_type type;
1407 
1408 	pid = mm->context.id;
1409 	if (unlikely(pid == MMU_NO_CONTEXT))
1410 		return;
1411 
1412 	/* 4k page size, just blow the world */
1413 	if (PAGE_SIZE == 0x1000) {
1414 		radix__flush_all_mm(mm);
1415 		return;
1416 	}
1417 
1418 	end = addr + HPAGE_PMD_SIZE;
1419 
1420 	/* Otherwise first do the PWC, then iterate the pages. */
1421 	preempt_disable();
1422 	smp_mb(); /* see radix__flush_tlb_mm */
1423 	type = flush_type_needed(mm, false);
1424 	if (type == FLUSH_TYPE_LOCAL) {
1425 		_tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1426 	} else if (type == FLUSH_TYPE_GLOBAL) {
1427 		if (!mmu_has_feature(MMU_FTR_GTSE)) {
1428 			unsigned long tgt, type, pg_sizes;
1429 
1430 			tgt = H_RPTI_TARGET_CMMU;
1431 			type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
1432 			       H_RPTI_TYPE_PRT;
1433 			pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize);
1434 
1435 			if (atomic_read(&mm->context.copros) > 0)
1436 				tgt |= H_RPTI_TARGET_NMMU;
1437 			pseries_rpt_invalidate(pid, tgt, type, pg_sizes,
1438 					       addr, end);
1439 		} else if (cputlb_use_tlbie())
1440 			_tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1441 		else
1442 			_tlbiel_va_range_multicast(mm,
1443 					addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1444 	}
1445 
1446 	preempt_enable();
1447 }
1448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1449 
radix__flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1450 void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
1451 				unsigned long start, unsigned long end)
1452 {
1453 	radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
1454 }
1455 EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
1456 
radix__flush_tlb_all(void)1457 void radix__flush_tlb_all(void)
1458 {
1459 	unsigned long rb,prs,r,rs;
1460 	unsigned long ric = RIC_FLUSH_ALL;
1461 
1462 	rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
1463 	prs = 0; /* partition scoped */
1464 	r = 1;   /* radix format */
1465 	rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
1466 
1467 	asm volatile("ptesync": : :"memory");
1468 	/*
1469 	 * now flush guest entries by passing PRS = 1 and LPID != 0
1470 	 */
1471 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1472 		     : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
1473 	/*
1474 	 * now flush host entires by passing PRS = 0 and LPID == 0
1475 	 */
1476 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1477 		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
1478 	asm volatile("eieio; tlbsync; ptesync": : :"memory");
1479 }
1480 
1481 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1482 /*
1483  * Performs process-scoped invalidations for a given LPID
1484  * as part of H_RPT_INVALIDATE hcall.
1485  */
do_h_rpt_invalidate_prt(unsigned long pid,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1486 void do_h_rpt_invalidate_prt(unsigned long pid, unsigned long lpid,
1487 			     unsigned long type, unsigned long pg_sizes,
1488 			     unsigned long start, unsigned long end)
1489 {
1490 	unsigned long psize, nr_pages;
1491 	struct mmu_psize_def *def;
1492 	bool flush_pid;
1493 
1494 	/*
1495 	 * A H_RPTI_TYPE_ALL request implies RIC=3, hence
1496 	 * do a single IS=1 based flush.
1497 	 */
1498 	if ((type & H_RPTI_TYPE_ALL) == H_RPTI_TYPE_ALL) {
1499 		_tlbie_pid_lpid(pid, lpid, RIC_FLUSH_ALL);
1500 		return;
1501 	}
1502 
1503 	if (type & H_RPTI_TYPE_PWC)
1504 		_tlbie_pid_lpid(pid, lpid, RIC_FLUSH_PWC);
1505 
1506 	/* Full PID flush */
1507 	if (start == 0 && end == -1)
1508 		return _tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB);
1509 
1510 	/* Do range invalidation for all the valid page sizes */
1511 	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1512 		def = &mmu_psize_defs[psize];
1513 		if (!(pg_sizes & def->h_rpt_pgsize))
1514 			continue;
1515 
1516 		nr_pages = (end - start) >> def->shift;
1517 		flush_pid = nr_pages > tlb_single_page_flush_ceiling;
1518 
1519 		/*
1520 		 * If the number of pages spanning the range is above
1521 		 * the ceiling, convert the request into a full PID flush.
1522 		 * And since PID flush takes out all the page sizes, there
1523 		 * is no need to consider remaining page sizes.
1524 		 */
1525 		if (flush_pid) {
1526 			_tlbie_pid_lpid(pid, lpid, RIC_FLUSH_TLB);
1527 			return;
1528 		}
1529 		_tlbie_va_range_lpid(start, end, pid, lpid,
1530 				     (1UL << def->shift), psize, false);
1531 	}
1532 }
1533 EXPORT_SYMBOL_GPL(do_h_rpt_invalidate_prt);
1534 
1535 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1536 
create_tlb_single_page_flush_ceiling(void)1537 static int __init create_tlb_single_page_flush_ceiling(void)
1538 {
1539 	debugfs_create_u32("tlb_single_page_flush_ceiling", 0600,
1540 			   arch_debugfs_dir, &tlb_single_page_flush_ceiling);
1541 	debugfs_create_u32("tlb_local_single_page_flush_ceiling", 0600,
1542 			   arch_debugfs_dir, &tlb_local_single_page_flush_ceiling);
1543 	return 0;
1544 }
1545 late_initcall(create_tlb_single_page_flush_ceiling);
1546 
1547