1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/kernel/time.c
4  *
5  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
6  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
7  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8  *
9  * 1994-07-02  Alan Modra
10  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
11  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
12  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
13  */
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/rtc.h>
17 #include <linux/sched.h>
18 #include <linux/sched/clock.h>
19 #include <linux/sched_clock.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/profile.h>
29 #include <linux/clocksource.h>
30 #include <linux/platform_device.h>
31 #include <linux/ftrace.h>
32 
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/page.h>
37 #include <asm/param.h>
38 #include <asm/pdc.h>
39 #include <asm/led.h>
40 
41 #include <linux/timex.h>
42 
43 int time_keeper_id __read_mostly;	/* CPU used for timekeeping. */
44 
45 static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
46 
47 /*
48  * We keep time on PA-RISC Linux by using the Interval Timer which is
49  * a pair of registers; one is read-only and one is write-only; both
50  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
51  * and increments by 1 every CPU clock tick.  The architecture only
52  * guarantees us a rate between 0.5 and 2, but all implementations use a
53  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
54  * 32 bits of the read-only register compare equal to the write-only
55  * register, it raises a maskable external interrupt.  Each processor has
56  * an Interval Timer of its own and they are not synchronised.
57  *
58  * We want to generate an interrupt every 1/HZ seconds.  So we program
59  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
60  * is programmed with the intended time of the next tick.  We can be
61  * held off for an arbitrarily long period of time by interrupts being
62  * disabled, so we may miss one or more ticks.
63  */
timer_interrupt(int irq,void * dev_id)64 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
65 {
66 	unsigned long now;
67 	unsigned long next_tick;
68 	unsigned long ticks_elapsed = 0;
69 	unsigned int cpu = smp_processor_id();
70 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
71 
72 	/* gcc can optimize for "read-only" case with a local clocktick */
73 	unsigned long cpt = clocktick;
74 
75 	/* Initialize next_tick to the old expected tick time. */
76 	next_tick = cpuinfo->it_value;
77 
78 	/* Calculate how many ticks have elapsed. */
79 	now = mfctl(16);
80 	do {
81 		++ticks_elapsed;
82 		next_tick += cpt;
83 	} while (next_tick - now > cpt);
84 
85 	/* Store (in CR16 cycles) up to when we are accounting right now. */
86 	cpuinfo->it_value = next_tick;
87 
88 	/* Go do system house keeping. */
89 	if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id))
90 		ticks_elapsed = 0;
91 	legacy_timer_tick(ticks_elapsed);
92 
93 	/* Skip clockticks on purpose if we know we would miss those.
94 	 * The new CR16 must be "later" than current CR16 otherwise
95 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
96 	 * later on a 1Ghz processor. We'll account for the missed
97 	 * ticks on the next timer interrupt.
98 	 * We want IT to fire modulo clocktick even if we miss/skip some.
99 	 * But those interrupts don't in fact get delivered that regularly.
100 	 *
101 	 * "next_tick - now" will always give the difference regardless
102 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
103 	 * with a very large unsigned number.
104 	 */
105 	now = mfctl(16);
106 	while (next_tick - now > cpt)
107 		next_tick += cpt;
108 
109 	/* Program the IT when to deliver the next interrupt.
110 	 * Only bottom 32-bits of next_tick are writable in CR16!
111 	 * Timer interrupt will be delivered at least a few hundred cycles
112 	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
113 	 * next cycle, simply skip it.
114 	 */
115 	if (next_tick - now <= 8000)
116 		next_tick += cpt;
117 	mtctl(next_tick, 16);
118 
119 	return IRQ_HANDLED;
120 }
121 
122 
profile_pc(struct pt_regs * regs)123 unsigned long profile_pc(struct pt_regs *regs)
124 {
125 	unsigned long pc = instruction_pointer(regs);
126 
127 	if (regs->gr[0] & PSW_N)
128 		pc -= 4;
129 
130 #ifdef CONFIG_SMP
131 	if (in_lock_functions(pc))
132 		pc = regs->gr[2];
133 #endif
134 
135 	return pc;
136 }
137 EXPORT_SYMBOL(profile_pc);
138 
139 
140 /* clock source code */
141 
read_cr16(struct clocksource * cs)142 static u64 notrace read_cr16(struct clocksource *cs)
143 {
144 	return get_cycles();
145 }
146 
147 static struct clocksource clocksource_cr16 = {
148 	.name			= "cr16",
149 	.rating			= 300,
150 	.read			= read_cr16,
151 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
152 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
153 };
154 
start_cpu_itimer(void)155 void start_cpu_itimer(void)
156 {
157 	unsigned int cpu = smp_processor_id();
158 	unsigned long next_tick = mfctl(16) + clocktick;
159 
160 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
161 
162 	per_cpu(cpu_data, cpu).it_value = next_tick;
163 }
164 
165 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
rtc_generic_get_time(struct device * dev,struct rtc_time * tm)166 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
167 {
168 	struct pdc_tod tod_data;
169 
170 	memset(tm, 0, sizeof(*tm));
171 	if (pdc_tod_read(&tod_data) < 0)
172 		return -EOPNOTSUPP;
173 
174 	/* we treat tod_sec as unsigned, so this can work until year 2106 */
175 	rtc_time64_to_tm(tod_data.tod_sec, tm);
176 	return 0;
177 }
178 
rtc_generic_set_time(struct device * dev,struct rtc_time * tm)179 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
180 {
181 	time64_t secs = rtc_tm_to_time64(tm);
182 	int ret;
183 
184 	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
185 	ret = pdc_tod_set(secs, 0);
186 	if (ret != 0) {
187 		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
188 		if (ret == PDC_INVALID_ARG)
189 			return -EINVAL;
190 		return -EOPNOTSUPP;
191 	}
192 
193 	return 0;
194 }
195 
196 static const struct rtc_class_ops rtc_generic_ops = {
197 	.read_time = rtc_generic_get_time,
198 	.set_time = rtc_generic_set_time,
199 };
200 
rtc_init(void)201 static int __init rtc_init(void)
202 {
203 	struct platform_device *pdev;
204 
205 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
206 					     &rtc_generic_ops,
207 					     sizeof(rtc_generic_ops));
208 
209 	return PTR_ERR_OR_ZERO(pdev);
210 }
211 device_initcall(rtc_init);
212 #endif
213 
read_persistent_clock64(struct timespec64 * ts)214 void read_persistent_clock64(struct timespec64 *ts)
215 {
216 	static struct pdc_tod tod_data;
217 	if (pdc_tod_read(&tod_data) == 0) {
218 		ts->tv_sec = tod_data.tod_sec;
219 		ts->tv_nsec = tod_data.tod_usec * 1000;
220 	} else {
221 		printk(KERN_ERR "Error reading tod clock\n");
222 	        ts->tv_sec = 0;
223 		ts->tv_nsec = 0;
224 	}
225 }
226 
227 
read_cr16_sched_clock(void)228 static u64 notrace read_cr16_sched_clock(void)
229 {
230 	return get_cycles();
231 }
232 
233 
234 /*
235  * timer interrupt and sched_clock() initialization
236  */
237 
time_init(void)238 void __init time_init(void)
239 {
240 	unsigned long cr16_hz;
241 
242 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
243 	start_cpu_itimer();	/* get CPU 0 started */
244 
245 	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
246 
247 	/* register as sched_clock source */
248 	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
249 }
250 
init_cr16_clocksource(void)251 static int __init init_cr16_clocksource(void)
252 {
253 	/*
254 	 * The cr16 interval timers are not synchronized across CPUs.
255 	 */
256 	if (num_online_cpus() > 1 && !running_on_qemu) {
257 		clocksource_cr16.name = "cr16_unstable";
258 		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
259 		clocksource_cr16.rating = 0;
260 	}
261 
262 	/* register at clocksource framework */
263 	clocksource_register_hz(&clocksource_cr16,
264 		100 * PAGE0->mem_10msec);
265 
266 	return 0;
267 }
268 
269 device_initcall(init_cr16_clocksource);
270