1 // SPDX-License-Identifier: GPL-2.0+
2
3 #define pr_fmt(fmt) "kprobes: " fmt
4
5 #include <linux/kprobes.h>
6 #include <linux/extable.h>
7 #include <linux/slab.h>
8 #include <linux/stop_machine.h>
9 #include <asm/ptrace.h>
10 #include <linux/uaccess.h>
11 #include <asm/sections.h>
12 #include <asm/cacheflush.h>
13
14 #include "decode-insn.h"
15
16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
18
19 static void __kprobes
20 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
21
22 struct csky_insn_patch {
23 kprobe_opcode_t *addr;
24 u32 opcode;
25 atomic_t cpu_count;
26 };
27
patch_text_cb(void * priv)28 static int __kprobes patch_text_cb(void *priv)
29 {
30 struct csky_insn_patch *param = priv;
31 unsigned int addr = (unsigned int)param->addr;
32
33 if (atomic_inc_return(¶m->cpu_count) == num_online_cpus()) {
34 *(u16 *) addr = cpu_to_le16(param->opcode);
35 dcache_wb_range(addr, addr + 2);
36 atomic_inc(¶m->cpu_count);
37 } else {
38 while (atomic_read(¶m->cpu_count) <= num_online_cpus())
39 cpu_relax();
40 }
41
42 icache_inv_range(addr, addr + 2);
43
44 return 0;
45 }
46
patch_text(kprobe_opcode_t * addr,u32 opcode)47 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
48 {
49 struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
50
51 return stop_machine_cpuslocked(patch_text_cb, ¶m, cpu_online_mask);
52 }
53
arch_prepare_ss_slot(struct kprobe * p)54 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
55 {
56 unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
57
58 p->ainsn.api.restore = (unsigned long)p->addr + offset;
59
60 patch_text(p->ainsn.api.insn, p->opcode);
61 }
62
arch_prepare_simulate(struct kprobe * p)63 static void __kprobes arch_prepare_simulate(struct kprobe *p)
64 {
65 p->ainsn.api.restore = 0;
66 }
67
arch_simulate_insn(struct kprobe * p,struct pt_regs * regs)68 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
69 {
70 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
71
72 if (p->ainsn.api.handler)
73 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
74
75 post_kprobe_handler(kcb, regs);
76 }
77
arch_prepare_kprobe(struct kprobe * p)78 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 {
80 unsigned long probe_addr = (unsigned long)p->addr;
81
82 if (probe_addr & 0x1)
83 return -EILSEQ;
84
85 /* copy instruction */
86 p->opcode = le32_to_cpu(*p->addr);
87
88 /* decode instruction */
89 switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
90 case INSN_REJECTED: /* insn not supported */
91 return -EINVAL;
92
93 case INSN_GOOD_NO_SLOT: /* insn need simulation */
94 p->ainsn.api.insn = NULL;
95 break;
96
97 case INSN_GOOD: /* instruction uses slot */
98 p->ainsn.api.insn = get_insn_slot();
99 if (!p->ainsn.api.insn)
100 return -ENOMEM;
101 break;
102 }
103
104 /* prepare the instruction */
105 if (p->ainsn.api.insn)
106 arch_prepare_ss_slot(p);
107 else
108 arch_prepare_simulate(p);
109
110 return 0;
111 }
112
113 /* install breakpoint in text */
arch_arm_kprobe(struct kprobe * p)114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116 patch_text(p->addr, USR_BKPT);
117 }
118
119 /* remove breakpoint from text */
arch_disarm_kprobe(struct kprobe * p)120 void __kprobes arch_disarm_kprobe(struct kprobe *p)
121 {
122 patch_text(p->addr, p->opcode);
123 }
124
arch_remove_kprobe(struct kprobe * p)125 void __kprobes arch_remove_kprobe(struct kprobe *p)
126 {
127 if (p->ainsn.api.insn) {
128 free_insn_slot(p->ainsn.api.insn, 0);
129 p->ainsn.api.insn = NULL;
130 }
131 }
132
save_previous_kprobe(struct kprobe_ctlblk * kcb)133 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
134 {
135 kcb->prev_kprobe.kp = kprobe_running();
136 kcb->prev_kprobe.status = kcb->kprobe_status;
137 }
138
restore_previous_kprobe(struct kprobe_ctlblk * kcb)139 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
140 {
141 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
142 kcb->kprobe_status = kcb->prev_kprobe.status;
143 }
144
set_current_kprobe(struct kprobe * p)145 static void __kprobes set_current_kprobe(struct kprobe *p)
146 {
147 __this_cpu_write(current_kprobe, p);
148 }
149
150 /*
151 * Interrupts need to be disabled before single-step mode is set, and not
152 * reenabled until after single-step mode ends.
153 * Without disabling interrupt on local CPU, there is a chance of
154 * interrupt occurrence in the period of exception return and start of
155 * out-of-line single-step, that result in wrongly single stepping
156 * into the interrupt handler.
157 */
kprobes_save_local_irqflag(struct kprobe_ctlblk * kcb,struct pt_regs * regs)158 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
159 struct pt_regs *regs)
160 {
161 kcb->saved_sr = regs->sr;
162 regs->sr &= ~BIT(6);
163 }
164
kprobes_restore_local_irqflag(struct kprobe_ctlblk * kcb,struct pt_regs * regs)165 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
166 struct pt_regs *regs)
167 {
168 regs->sr = kcb->saved_sr;
169 }
170
171 static void __kprobes
set_ss_context(struct kprobe_ctlblk * kcb,unsigned long addr,struct kprobe * p)172 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
173 {
174 unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
175
176 kcb->ss_ctx.ss_pending = true;
177 kcb->ss_ctx.match_addr = addr + offset;
178 }
179
clear_ss_context(struct kprobe_ctlblk * kcb)180 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
181 {
182 kcb->ss_ctx.ss_pending = false;
183 kcb->ss_ctx.match_addr = 0;
184 }
185
186 #define TRACE_MODE_SI BIT(14)
187 #define TRACE_MODE_MASK ~(0x3 << 14)
188 #define TRACE_MODE_RUN 0
189
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)190 static void __kprobes setup_singlestep(struct kprobe *p,
191 struct pt_regs *regs,
192 struct kprobe_ctlblk *kcb, int reenter)
193 {
194 unsigned long slot;
195
196 if (reenter) {
197 save_previous_kprobe(kcb);
198 set_current_kprobe(p);
199 kcb->kprobe_status = KPROBE_REENTER;
200 } else {
201 kcb->kprobe_status = KPROBE_HIT_SS;
202 }
203
204 if (p->ainsn.api.insn) {
205 /* prepare for single stepping */
206 slot = (unsigned long)p->ainsn.api.insn;
207
208 set_ss_context(kcb, slot, p); /* mark pending ss */
209
210 /* IRQs and single stepping do not mix well. */
211 kprobes_save_local_irqflag(kcb, regs);
212 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
213 instruction_pointer_set(regs, slot);
214 } else {
215 /* insn simulation */
216 arch_simulate_insn(p, regs);
217 }
218 }
219
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)220 static int __kprobes reenter_kprobe(struct kprobe *p,
221 struct pt_regs *regs,
222 struct kprobe_ctlblk *kcb)
223 {
224 switch (kcb->kprobe_status) {
225 case KPROBE_HIT_SSDONE:
226 case KPROBE_HIT_ACTIVE:
227 kprobes_inc_nmissed_count(p);
228 setup_singlestep(p, regs, kcb, 1);
229 break;
230 case KPROBE_HIT_SS:
231 case KPROBE_REENTER:
232 pr_warn("Failed to recover from reentered kprobes.\n");
233 dump_kprobe(p);
234 BUG();
235 break;
236 default:
237 WARN_ON(1);
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk * kcb,struct pt_regs * regs)245 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
246 {
247 struct kprobe *cur = kprobe_running();
248
249 if (!cur)
250 return;
251
252 /* return addr restore if non-branching insn */
253 if (cur->ainsn.api.restore != 0)
254 regs->pc = cur->ainsn.api.restore;
255
256 /* restore back original saved kprobe variables and continue */
257 if (kcb->kprobe_status == KPROBE_REENTER) {
258 restore_previous_kprobe(kcb);
259 return;
260 }
261
262 /* call post handler */
263 kcb->kprobe_status = KPROBE_HIT_SSDONE;
264 if (cur->post_handler) {
265 /* post_handler can hit breakpoint and single step
266 * again, so we enable D-flag for recursive exception.
267 */
268 cur->post_handler(cur, regs, 0);
269 }
270
271 reset_current_kprobe();
272 }
273
kprobe_fault_handler(struct pt_regs * regs,unsigned int trapnr)274 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
275 {
276 struct kprobe *cur = kprobe_running();
277 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
278
279 switch (kcb->kprobe_status) {
280 case KPROBE_HIT_SS:
281 case KPROBE_REENTER:
282 /*
283 * We are here because the instruction being single
284 * stepped caused a page fault. We reset the current
285 * kprobe and the ip points back to the probe address
286 * and allow the page fault handler to continue as a
287 * normal page fault.
288 */
289 regs->pc = (unsigned long) cur->addr;
290 BUG_ON(!instruction_pointer(regs));
291
292 if (kcb->kprobe_status == KPROBE_REENTER)
293 restore_previous_kprobe(kcb);
294 else
295 reset_current_kprobe();
296
297 break;
298 case KPROBE_HIT_ACTIVE:
299 case KPROBE_HIT_SSDONE:
300 /*
301 * In case the user-specified fault handler returned
302 * zero, try to fix up.
303 */
304 if (fixup_exception(regs))
305 return 1;
306 }
307 return 0;
308 }
309
310 int __kprobes
kprobe_breakpoint_handler(struct pt_regs * regs)311 kprobe_breakpoint_handler(struct pt_regs *regs)
312 {
313 struct kprobe *p, *cur_kprobe;
314 struct kprobe_ctlblk *kcb;
315 unsigned long addr = instruction_pointer(regs);
316
317 kcb = get_kprobe_ctlblk();
318 cur_kprobe = kprobe_running();
319
320 p = get_kprobe((kprobe_opcode_t *) addr);
321
322 if (p) {
323 if (cur_kprobe) {
324 if (reenter_kprobe(p, regs, kcb))
325 return 1;
326 } else {
327 /* Probe hit */
328 set_current_kprobe(p);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330
331 /*
332 * If we have no pre-handler or it returned 0, we
333 * continue with normal processing. If we have a
334 * pre-handler and it returned non-zero, it will
335 * modify the execution path and no need to single
336 * stepping. Let's just reset current kprobe and exit.
337 *
338 * pre_handler can hit a breakpoint and can step thru
339 * before return.
340 */
341 if (!p->pre_handler || !p->pre_handler(p, regs))
342 setup_singlestep(p, regs, kcb, 0);
343 else
344 reset_current_kprobe();
345 }
346 return 1;
347 }
348
349 /*
350 * The breakpoint instruction was removed right
351 * after we hit it. Another cpu has removed
352 * either a probepoint or a debugger breakpoint
353 * at this address. In either case, no further
354 * handling of this interrupt is appropriate.
355 * Return back to original instruction, and continue.
356 */
357 return 0;
358 }
359
360 int __kprobes
kprobe_single_step_handler(struct pt_regs * regs)361 kprobe_single_step_handler(struct pt_regs *regs)
362 {
363 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
364
365 if ((kcb->ss_ctx.ss_pending)
366 && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
367 clear_ss_context(kcb); /* clear pending ss */
368
369 kprobes_restore_local_irqflag(kcb, regs);
370 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
371
372 post_kprobe_handler(kcb, regs);
373 return 1;
374 }
375 return 0;
376 }
377
378 /*
379 * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
380 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
381 */
arch_populate_kprobe_blacklist(void)382 int __init arch_populate_kprobe_blacklist(void)
383 {
384 int ret;
385
386 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
387 (unsigned long)__irqentry_text_end);
388 return ret;
389 }
390
trampoline_probe_handler(struct pt_regs * regs)391 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
392 {
393 return (void *)kretprobe_trampoline_handler(regs, NULL);
394 }
395
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)396 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
397 struct pt_regs *regs)
398 {
399 ri->ret_addr = (kprobe_opcode_t *)regs->lr;
400 ri->fp = NULL;
401 regs->lr = (unsigned long) &__kretprobe_trampoline;
402 }
403
arch_trampoline_kprobe(struct kprobe * p)404 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
405 {
406 return 0;
407 }
408
arch_init_kprobes(void)409 int __init arch_init_kprobes(void)
410 {
411 return 0;
412 }
413