1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47 const char *name;
48 int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57 GPR_OFFSET_NAME(0),
58 GPR_OFFSET_NAME(1),
59 GPR_OFFSET_NAME(2),
60 GPR_OFFSET_NAME(3),
61 GPR_OFFSET_NAME(4),
62 GPR_OFFSET_NAME(5),
63 GPR_OFFSET_NAME(6),
64 GPR_OFFSET_NAME(7),
65 GPR_OFFSET_NAME(8),
66 GPR_OFFSET_NAME(9),
67 GPR_OFFSET_NAME(10),
68 GPR_OFFSET_NAME(11),
69 GPR_OFFSET_NAME(12),
70 GPR_OFFSET_NAME(13),
71 GPR_OFFSET_NAME(14),
72 GPR_OFFSET_NAME(15),
73 GPR_OFFSET_NAME(16),
74 GPR_OFFSET_NAME(17),
75 GPR_OFFSET_NAME(18),
76 GPR_OFFSET_NAME(19),
77 GPR_OFFSET_NAME(20),
78 GPR_OFFSET_NAME(21),
79 GPR_OFFSET_NAME(22),
80 GPR_OFFSET_NAME(23),
81 GPR_OFFSET_NAME(24),
82 GPR_OFFSET_NAME(25),
83 GPR_OFFSET_NAME(26),
84 GPR_OFFSET_NAME(27),
85 GPR_OFFSET_NAME(28),
86 GPR_OFFSET_NAME(29),
87 GPR_OFFSET_NAME(30),
88 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 REG_OFFSET_NAME(sp),
90 REG_OFFSET_NAME(pc),
91 REG_OFFSET_NAME(pstate),
92 REG_OFFSET_END,
93 };
94
95 /**
96 * regs_query_register_offset() - query register offset from its name
97 * @name: the name of a register
98 *
99 * regs_query_register_offset() returns the offset of a register in struct
100 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101 */
regs_query_register_offset(const char * name)102 int regs_query_register_offset(const char *name)
103 {
104 const struct pt_regs_offset *roff;
105
106 for (roff = regoffset_table; roff->name != NULL; roff++)
107 if (!strcmp(roff->name, name))
108 return roff->offset;
109 return -EINVAL;
110 }
111
112 /**
113 * regs_within_kernel_stack() - check the address in the stack
114 * @regs: pt_regs which contains kernel stack pointer.
115 * @addr: address which is checked.
116 *
117 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118 * If @addr is within the kernel stack, it returns true. If not, returns false.
119 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 return ((addr & ~(THREAD_SIZE - 1)) ==
123 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 on_irq_stack(addr, sizeof(unsigned long));
125 }
126
127 /**
128 * regs_get_kernel_stack_nth() - get Nth entry of the stack
129 * @regs: pt_regs which contains kernel stack pointer.
130 * @n: stack entry number.
131 *
132 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134 * this returns 0.
135 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140 addr += n;
141 if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 return *addr;
143 else
144 return 0;
145 }
146
147 /*
148 * TODO: does not yet catch signals sent when the child dies.
149 * in exit.c or in signal.c.
150 */
151
152 /*
153 * Called by kernel/ptrace.c when detaching..
154 */
ptrace_disable(struct task_struct * child)155 void ptrace_disable(struct task_struct *child)
156 {
157 /*
158 * This would be better off in core code, but PTRACE_DETACH has
159 * grown its fair share of arch-specific worts and changing it
160 * is likely to cause regressions on obscure architectures.
161 */
162 user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167 * Handle hitting a HW-breakpoint.
168 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)169 static void ptrace_hbptriggered(struct perf_event *bp,
170 struct perf_sample_data *data,
171 struct pt_regs *regs)
172 {
173 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177 if (is_compat_task()) {
178 int si_errno = 0;
179 int i;
180
181 for (i = 0; i < ARM_MAX_BRP; ++i) {
182 if (current->thread.debug.hbp_break[i] == bp) {
183 si_errno = (i << 1) + 1;
184 break;
185 }
186 }
187
188 for (i = 0; i < ARM_MAX_WRP; ++i) {
189 if (current->thread.debug.hbp_watch[i] == bp) {
190 si_errno = -((i << 1) + 1);
191 break;
192 }
193 }
194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 desc);
196 return;
197 }
198 #endif
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 if (ret)
519 return ret;
520
521 /* (address, ctrl) registers */
522 limit = regset->n * regset->size;
523 while (count && offset < limit) {
524 if (count < PTRACE_HBP_ADDR_SZ)
525 return -EINVAL;
526 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 offset, offset + PTRACE_HBP_ADDR_SZ);
528 if (ret)
529 return ret;
530 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 if (ret)
532 return ret;
533 offset += PTRACE_HBP_ADDR_SZ;
534
535 if (!count)
536 break;
537 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 offset, offset + PTRACE_HBP_CTRL_SZ);
539 if (ret)
540 return ret;
541 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 if (ret)
543 return ret;
544 offset += PTRACE_HBP_CTRL_SZ;
545
546 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 offset,
548 offset + PTRACE_HBP_PAD_SZ);
549 if (ret)
550 return ret;
551 offset += PTRACE_HBP_PAD_SZ;
552 idx++;
553 }
554
555 return 0;
556 }
557 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
558
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)559 static int gpr_get(struct task_struct *target,
560 const struct user_regset *regset,
561 struct membuf to)
562 {
563 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 unsigned int pos, unsigned int count,
569 const void *kbuf, const void __user *ubuf)
570 {
571 int ret;
572 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573
574 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 if (ret)
576 return ret;
577
578 if (!valid_user_regs(&newregs, target))
579 return -EINVAL;
580
581 task_pt_regs(target)->user_regs = newregs;
582 return 0;
583 }
584
fpr_active(struct task_struct * target,const struct user_regset * regset)585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 if (!system_supports_fpsimd())
588 return -ENODEV;
589 return regset->n;
590 }
591
592 /*
593 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)595 static int __fpr_get(struct task_struct *target,
596 const struct user_regset *regset,
597 struct membuf to)
598 {
599 struct user_fpsimd_state *uregs;
600
601 sve_sync_to_fpsimd(target);
602
603 uregs = &target->thread.uw.fpsimd_state;
604
605 return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 struct membuf to)
610 {
611 if (!system_supports_fpsimd())
612 return -EINVAL;
613
614 if (target == current)
615 fpsimd_preserve_current_state();
616
617 return __fpr_get(target, regset, to);
618 }
619
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)620 static int __fpr_set(struct task_struct *target,
621 const struct user_regset *regset,
622 unsigned int pos, unsigned int count,
623 const void *kbuf, const void __user *ubuf,
624 unsigned int start_pos)
625 {
626 int ret;
627 struct user_fpsimd_state newstate;
628
629 /*
630 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 * short copyin can't resurrect stale data.
632 */
633 sve_sync_to_fpsimd(target);
634
635 newstate = target->thread.uw.fpsimd_state;
636
637 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 start_pos, start_pos + sizeof(newstate));
639 if (ret)
640 return ret;
641
642 target->thread.uw.fpsimd_state = newstate;
643
644 return ret;
645 }
646
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 unsigned int pos, unsigned int count,
649 const void *kbuf, const void __user *ubuf)
650 {
651 int ret;
652
653 if (!system_supports_fpsimd())
654 return -EINVAL;
655
656 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 if (ret)
658 return ret;
659
660 sve_sync_from_fpsimd_zeropad(target);
661 fpsimd_flush_task_state(target);
662
663 return ret;
664 }
665
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 struct membuf to)
668 {
669 int ret;
670
671 if (target == current)
672 tls_preserve_current_state();
673
674 ret = membuf_store(&to, target->thread.uw.tp_value);
675 if (system_supports_tpidr2())
676 ret = membuf_store(&to, target->thread.tpidr2_el0);
677 else
678 ret = membuf_zero(&to, sizeof(u64));
679
680 return ret;
681 }
682
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)683 static int tls_set(struct task_struct *target, const struct user_regset *regset,
684 unsigned int pos, unsigned int count,
685 const void *kbuf, const void __user *ubuf)
686 {
687 int ret;
688 unsigned long tls[2];
689
690 tls[0] = target->thread.uw.tp_value;
691 if (system_supports_sme())
692 tls[1] = target->thread.tpidr2_el0;
693
694 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
695 if (ret)
696 return ret;
697
698 target->thread.uw.tp_value = tls[0];
699 if (system_supports_sme())
700 target->thread.tpidr2_el0 = tls[1];
701
702 return ret;
703 }
704
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)705 static int system_call_get(struct task_struct *target,
706 const struct user_regset *regset,
707 struct membuf to)
708 {
709 return membuf_store(&to, task_pt_regs(target)->syscallno);
710 }
711
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)712 static int system_call_set(struct task_struct *target,
713 const struct user_regset *regset,
714 unsigned int pos, unsigned int count,
715 const void *kbuf, const void __user *ubuf)
716 {
717 int syscallno = task_pt_regs(target)->syscallno;
718 int ret;
719
720 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
721 if (ret)
722 return ret;
723
724 task_pt_regs(target)->syscallno = syscallno;
725 return ret;
726 }
727
728 #ifdef CONFIG_ARM64_SVE
729
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)730 static void sve_init_header_from_task(struct user_sve_header *header,
731 struct task_struct *target,
732 enum vec_type type)
733 {
734 unsigned int vq;
735 bool active;
736 bool fpsimd_only;
737 enum vec_type task_type;
738
739 memset(header, 0, sizeof(*header));
740
741 /* Check if the requested registers are active for the task */
742 if (thread_sm_enabled(&target->thread))
743 task_type = ARM64_VEC_SME;
744 else
745 task_type = ARM64_VEC_SVE;
746 active = (task_type == type);
747
748 switch (type) {
749 case ARM64_VEC_SVE:
750 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
751 header->flags |= SVE_PT_VL_INHERIT;
752 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
753 break;
754 case ARM64_VEC_SME:
755 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
756 header->flags |= SVE_PT_VL_INHERIT;
757 fpsimd_only = false;
758 break;
759 default:
760 WARN_ON_ONCE(1);
761 return;
762 }
763
764 if (active) {
765 if (fpsimd_only) {
766 header->flags |= SVE_PT_REGS_FPSIMD;
767 } else {
768 header->flags |= SVE_PT_REGS_SVE;
769 }
770 }
771
772 header->vl = task_get_vl(target, type);
773 vq = sve_vq_from_vl(header->vl);
774
775 header->max_vl = vec_max_vl(type);
776 header->size = SVE_PT_SIZE(vq, header->flags);
777 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
778 SVE_PT_REGS_SVE);
779 }
780
sve_size_from_header(struct user_sve_header const * header)781 static unsigned int sve_size_from_header(struct user_sve_header const *header)
782 {
783 return ALIGN(header->size, SVE_VQ_BYTES);
784 }
785
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)786 static int sve_get_common(struct task_struct *target,
787 const struct user_regset *regset,
788 struct membuf to,
789 enum vec_type type)
790 {
791 struct user_sve_header header;
792 unsigned int vq;
793 unsigned long start, end;
794
795 /* Header */
796 sve_init_header_from_task(&header, target, type);
797 vq = sve_vq_from_vl(header.vl);
798
799 membuf_write(&to, &header, sizeof(header));
800
801 if (target == current)
802 fpsimd_preserve_current_state();
803
804 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
805 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
806
807 switch ((header.flags & SVE_PT_REGS_MASK)) {
808 case SVE_PT_REGS_FPSIMD:
809 return __fpr_get(target, regset, to);
810
811 case SVE_PT_REGS_SVE:
812 start = SVE_PT_SVE_OFFSET;
813 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
814 membuf_write(&to, target->thread.sve_state, end - start);
815
816 start = end;
817 end = SVE_PT_SVE_FPSR_OFFSET(vq);
818 membuf_zero(&to, end - start);
819
820 /*
821 * Copy fpsr, and fpcr which must follow contiguously in
822 * struct fpsimd_state:
823 */
824 start = end;
825 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
826 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
827 end - start);
828
829 start = end;
830 end = sve_size_from_header(&header);
831 return membuf_zero(&to, end - start);
832
833 default:
834 return 0;
835 }
836 }
837
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)838 static int sve_get(struct task_struct *target,
839 const struct user_regset *regset,
840 struct membuf to)
841 {
842 if (!system_supports_sve())
843 return -EINVAL;
844
845 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
846 }
847
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)848 static int sve_set_common(struct task_struct *target,
849 const struct user_regset *regset,
850 unsigned int pos, unsigned int count,
851 const void *kbuf, const void __user *ubuf,
852 enum vec_type type)
853 {
854 int ret;
855 struct user_sve_header header;
856 unsigned int vq;
857 unsigned long start, end;
858
859 /* Header */
860 if (count < sizeof(header))
861 return -EINVAL;
862 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
863 0, sizeof(header));
864 if (ret)
865 goto out;
866
867 /*
868 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
869 * vec_set_vector_length(), which will also validate them for us:
870 */
871 ret = vec_set_vector_length(target, type, header.vl,
872 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
873 if (ret)
874 goto out;
875
876 /* Actual VL set may be less than the user asked for: */
877 vq = sve_vq_from_vl(task_get_vl(target, type));
878
879 /* Enter/exit streaming mode */
880 if (system_supports_sme()) {
881 u64 old_svcr = target->thread.svcr;
882
883 switch (type) {
884 case ARM64_VEC_SVE:
885 target->thread.svcr &= ~SVCR_SM_MASK;
886 break;
887 case ARM64_VEC_SME:
888 target->thread.svcr |= SVCR_SM_MASK;
889 break;
890 default:
891 WARN_ON_ONCE(1);
892 return -EINVAL;
893 }
894
895 /*
896 * If we switched then invalidate any existing SVE
897 * state and ensure there's storage.
898 */
899 if (target->thread.svcr != old_svcr)
900 sve_alloc(target, true);
901 }
902
903 /* Registers: FPSIMD-only case */
904
905 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
906 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
907 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
908 SVE_PT_FPSIMD_OFFSET);
909 clear_tsk_thread_flag(target, TIF_SVE);
910 if (type == ARM64_VEC_SME)
911 fpsimd_force_sync_to_sve(target);
912 goto out;
913 }
914
915 /*
916 * Otherwise: no registers or full SVE case. For backwards
917 * compatibility reasons we treat empty flags as SVE registers.
918 */
919
920 /*
921 * If setting a different VL from the requested VL and there is
922 * register data, the data layout will be wrong: don't even
923 * try to set the registers in this case.
924 */
925 if (count && vq != sve_vq_from_vl(header.vl)) {
926 ret = -EIO;
927 goto out;
928 }
929
930 sve_alloc(target, true);
931 if (!target->thread.sve_state) {
932 ret = -ENOMEM;
933 clear_tsk_thread_flag(target, TIF_SVE);
934 goto out;
935 }
936
937 /*
938 * Ensure target->thread.sve_state is up to date with target's
939 * FPSIMD regs, so that a short copyin leaves trailing
940 * registers unmodified. Always enable SVE even if going into
941 * streaming mode.
942 */
943 fpsimd_sync_to_sve(target);
944 set_tsk_thread_flag(target, TIF_SVE);
945
946 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
947 start = SVE_PT_SVE_OFFSET;
948 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
949 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
950 target->thread.sve_state,
951 start, end);
952 if (ret)
953 goto out;
954
955 start = end;
956 end = SVE_PT_SVE_FPSR_OFFSET(vq);
957 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
958 start, end);
959 if (ret)
960 goto out;
961
962 /*
963 * Copy fpsr, and fpcr which must follow contiguously in
964 * struct fpsimd_state:
965 */
966 start = end;
967 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
968 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969 &target->thread.uw.fpsimd_state.fpsr,
970 start, end);
971
972 out:
973 fpsimd_flush_task_state(target);
974 return ret;
975 }
976
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)977 static int sve_set(struct task_struct *target,
978 const struct user_regset *regset,
979 unsigned int pos, unsigned int count,
980 const void *kbuf, const void __user *ubuf)
981 {
982 if (!system_supports_sve())
983 return -EINVAL;
984
985 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
986 ARM64_VEC_SVE);
987 }
988
989 #endif /* CONFIG_ARM64_SVE */
990
991 #ifdef CONFIG_ARM64_SME
992
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)993 static int ssve_get(struct task_struct *target,
994 const struct user_regset *regset,
995 struct membuf to)
996 {
997 if (!system_supports_sme())
998 return -EINVAL;
999
1000 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1001 }
1002
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1003 static int ssve_set(struct task_struct *target,
1004 const struct user_regset *regset,
1005 unsigned int pos, unsigned int count,
1006 const void *kbuf, const void __user *ubuf)
1007 {
1008 if (!system_supports_sme())
1009 return -EINVAL;
1010
1011 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1012 ARM64_VEC_SME);
1013 }
1014
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1015 static int za_get(struct task_struct *target,
1016 const struct user_regset *regset,
1017 struct membuf to)
1018 {
1019 struct user_za_header header;
1020 unsigned int vq;
1021 unsigned long start, end;
1022
1023 if (!system_supports_sme())
1024 return -EINVAL;
1025
1026 /* Header */
1027 memset(&header, 0, sizeof(header));
1028
1029 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1030 header.flags |= ZA_PT_VL_INHERIT;
1031
1032 header.vl = task_get_sme_vl(target);
1033 vq = sve_vq_from_vl(header.vl);
1034 header.max_vl = sme_max_vl();
1035 header.max_size = ZA_PT_SIZE(vq);
1036
1037 /* If ZA is not active there is only the header */
1038 if (thread_za_enabled(&target->thread))
1039 header.size = ZA_PT_SIZE(vq);
1040 else
1041 header.size = ZA_PT_ZA_OFFSET;
1042
1043 membuf_write(&to, &header, sizeof(header));
1044
1045 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1046 end = ZA_PT_ZA_OFFSET;
1047
1048 if (target == current)
1049 fpsimd_preserve_current_state();
1050
1051 /* Any register data to include? */
1052 if (thread_za_enabled(&target->thread)) {
1053 start = end;
1054 end = ZA_PT_SIZE(vq);
1055 membuf_write(&to, target->thread.za_state, end - start);
1056 }
1057
1058 /* Zero any trailing padding */
1059 start = end;
1060 end = ALIGN(header.size, SVE_VQ_BYTES);
1061 return membuf_zero(&to, end - start);
1062 }
1063
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1064 static int za_set(struct task_struct *target,
1065 const struct user_regset *regset,
1066 unsigned int pos, unsigned int count,
1067 const void *kbuf, const void __user *ubuf)
1068 {
1069 int ret;
1070 struct user_za_header header;
1071 unsigned int vq;
1072 unsigned long start, end;
1073
1074 if (!system_supports_sme())
1075 return -EINVAL;
1076
1077 /* Header */
1078 if (count < sizeof(header))
1079 return -EINVAL;
1080 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1081 0, sizeof(header));
1082 if (ret)
1083 goto out;
1084
1085 /*
1086 * All current ZA_PT_* flags are consumed by
1087 * vec_set_vector_length(), which will also validate them for
1088 * us:
1089 */
1090 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1091 ((unsigned long)header.flags) << 16);
1092 if (ret)
1093 goto out;
1094
1095 /* Actual VL set may be less than the user asked for: */
1096 vq = sve_vq_from_vl(task_get_sme_vl(target));
1097
1098 /* Ensure there is some SVE storage for streaming mode */
1099 if (!target->thread.sve_state) {
1100 sve_alloc(target, false);
1101 if (!target->thread.sve_state) {
1102 ret = -ENOMEM;
1103 goto out;
1104 }
1105 }
1106
1107 /* Allocate/reinit ZA storage */
1108 sme_alloc(target);
1109 if (!target->thread.za_state) {
1110 ret = -ENOMEM;
1111 goto out;
1112 }
1113
1114 /* If there is no data then disable ZA */
1115 if (!count) {
1116 target->thread.svcr &= ~SVCR_ZA_MASK;
1117 goto out;
1118 }
1119
1120 /*
1121 * If setting a different VL from the requested VL and there is
1122 * register data, the data layout will be wrong: don't even
1123 * try to set the registers in this case.
1124 */
1125 if (vq != sve_vq_from_vl(header.vl)) {
1126 ret = -EIO;
1127 goto out;
1128 }
1129
1130 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1131 start = ZA_PT_ZA_OFFSET;
1132 end = ZA_PT_SIZE(vq);
1133 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1134 target->thread.za_state,
1135 start, end);
1136 if (ret)
1137 goto out;
1138
1139 /* Mark ZA as active and let userspace use it */
1140 set_tsk_thread_flag(target, TIF_SME);
1141 target->thread.svcr |= SVCR_ZA_MASK;
1142
1143 out:
1144 fpsimd_flush_task_state(target);
1145 return ret;
1146 }
1147
1148 #endif /* CONFIG_ARM64_SME */
1149
1150 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1151 static int pac_mask_get(struct task_struct *target,
1152 const struct user_regset *regset,
1153 struct membuf to)
1154 {
1155 /*
1156 * The PAC bits can differ across data and instruction pointers
1157 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1158 * we expose separate masks.
1159 */
1160 unsigned long mask = ptrauth_user_pac_mask();
1161 struct user_pac_mask uregs = {
1162 .data_mask = mask,
1163 .insn_mask = mask,
1164 };
1165
1166 if (!system_supports_address_auth())
1167 return -EINVAL;
1168
1169 return membuf_write(&to, &uregs, sizeof(uregs));
1170 }
1171
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1172 static int pac_enabled_keys_get(struct task_struct *target,
1173 const struct user_regset *regset,
1174 struct membuf to)
1175 {
1176 long enabled_keys = ptrauth_get_enabled_keys(target);
1177
1178 if (IS_ERR_VALUE(enabled_keys))
1179 return enabled_keys;
1180
1181 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1182 }
1183
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1184 static int pac_enabled_keys_set(struct task_struct *target,
1185 const struct user_regset *regset,
1186 unsigned int pos, unsigned int count,
1187 const void *kbuf, const void __user *ubuf)
1188 {
1189 int ret;
1190 long enabled_keys = ptrauth_get_enabled_keys(target);
1191
1192 if (IS_ERR_VALUE(enabled_keys))
1193 return enabled_keys;
1194
1195 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1196 sizeof(long));
1197 if (ret)
1198 return ret;
1199
1200 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1201 enabled_keys);
1202 }
1203
1204 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1205 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1206 {
1207 return (__uint128_t)key->hi << 64 | key->lo;
1208 }
1209
pac_key_from_user(__uint128_t ukey)1210 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1211 {
1212 struct ptrauth_key key = {
1213 .lo = (unsigned long)ukey,
1214 .hi = (unsigned long)(ukey >> 64),
1215 };
1216
1217 return key;
1218 }
1219
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1220 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1221 const struct ptrauth_keys_user *keys)
1222 {
1223 ukeys->apiakey = pac_key_to_user(&keys->apia);
1224 ukeys->apibkey = pac_key_to_user(&keys->apib);
1225 ukeys->apdakey = pac_key_to_user(&keys->apda);
1226 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1227 }
1228
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1229 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1230 const struct user_pac_address_keys *ukeys)
1231 {
1232 keys->apia = pac_key_from_user(ukeys->apiakey);
1233 keys->apib = pac_key_from_user(ukeys->apibkey);
1234 keys->apda = pac_key_from_user(ukeys->apdakey);
1235 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1236 }
1237
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1238 static int pac_address_keys_get(struct task_struct *target,
1239 const struct user_regset *regset,
1240 struct membuf to)
1241 {
1242 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1243 struct user_pac_address_keys user_keys;
1244
1245 if (!system_supports_address_auth())
1246 return -EINVAL;
1247
1248 pac_address_keys_to_user(&user_keys, keys);
1249
1250 return membuf_write(&to, &user_keys, sizeof(user_keys));
1251 }
1252
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1253 static int pac_address_keys_set(struct task_struct *target,
1254 const struct user_regset *regset,
1255 unsigned int pos, unsigned int count,
1256 const void *kbuf, const void __user *ubuf)
1257 {
1258 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1259 struct user_pac_address_keys user_keys;
1260 int ret;
1261
1262 if (!system_supports_address_auth())
1263 return -EINVAL;
1264
1265 pac_address_keys_to_user(&user_keys, keys);
1266 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1267 &user_keys, 0, -1);
1268 if (ret)
1269 return ret;
1270 pac_address_keys_from_user(keys, &user_keys);
1271
1272 return 0;
1273 }
1274
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1275 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1276 const struct ptrauth_keys_user *keys)
1277 {
1278 ukeys->apgakey = pac_key_to_user(&keys->apga);
1279 }
1280
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1281 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1282 const struct user_pac_generic_keys *ukeys)
1283 {
1284 keys->apga = pac_key_from_user(ukeys->apgakey);
1285 }
1286
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1287 static int pac_generic_keys_get(struct task_struct *target,
1288 const struct user_regset *regset,
1289 struct membuf to)
1290 {
1291 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1292 struct user_pac_generic_keys user_keys;
1293
1294 if (!system_supports_generic_auth())
1295 return -EINVAL;
1296
1297 pac_generic_keys_to_user(&user_keys, keys);
1298
1299 return membuf_write(&to, &user_keys, sizeof(user_keys));
1300 }
1301
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1302 static int pac_generic_keys_set(struct task_struct *target,
1303 const struct user_regset *regset,
1304 unsigned int pos, unsigned int count,
1305 const void *kbuf, const void __user *ubuf)
1306 {
1307 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1308 struct user_pac_generic_keys user_keys;
1309 int ret;
1310
1311 if (!system_supports_generic_auth())
1312 return -EINVAL;
1313
1314 pac_generic_keys_to_user(&user_keys, keys);
1315 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1316 &user_keys, 0, -1);
1317 if (ret)
1318 return ret;
1319 pac_generic_keys_from_user(keys, &user_keys);
1320
1321 return 0;
1322 }
1323 #endif /* CONFIG_CHECKPOINT_RESTORE */
1324 #endif /* CONFIG_ARM64_PTR_AUTH */
1325
1326 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1327 static int tagged_addr_ctrl_get(struct task_struct *target,
1328 const struct user_regset *regset,
1329 struct membuf to)
1330 {
1331 long ctrl = get_tagged_addr_ctrl(target);
1332
1333 if (IS_ERR_VALUE(ctrl))
1334 return ctrl;
1335
1336 return membuf_write(&to, &ctrl, sizeof(ctrl));
1337 }
1338
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1339 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1340 user_regset *regset, unsigned int pos,
1341 unsigned int count, const void *kbuf, const
1342 void __user *ubuf)
1343 {
1344 int ret;
1345 long ctrl;
1346
1347 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1348 if (ret)
1349 return ret;
1350
1351 return set_tagged_addr_ctrl(target, ctrl);
1352 }
1353 #endif
1354
1355 enum aarch64_regset {
1356 REGSET_GPR,
1357 REGSET_FPR,
1358 REGSET_TLS,
1359 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1360 REGSET_HW_BREAK,
1361 REGSET_HW_WATCH,
1362 #endif
1363 REGSET_SYSTEM_CALL,
1364 #ifdef CONFIG_ARM64_SVE
1365 REGSET_SVE,
1366 #endif
1367 #ifdef CONFIG_ARM64_SVE
1368 REGSET_SSVE,
1369 REGSET_ZA,
1370 #endif
1371 #ifdef CONFIG_ARM64_PTR_AUTH
1372 REGSET_PAC_MASK,
1373 REGSET_PAC_ENABLED_KEYS,
1374 #ifdef CONFIG_CHECKPOINT_RESTORE
1375 REGSET_PACA_KEYS,
1376 REGSET_PACG_KEYS,
1377 #endif
1378 #endif
1379 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1380 REGSET_TAGGED_ADDR_CTRL,
1381 #endif
1382 };
1383
1384 static const struct user_regset aarch64_regsets[] = {
1385 [REGSET_GPR] = {
1386 .core_note_type = NT_PRSTATUS,
1387 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1388 .size = sizeof(u64),
1389 .align = sizeof(u64),
1390 .regset_get = gpr_get,
1391 .set = gpr_set
1392 },
1393 [REGSET_FPR] = {
1394 .core_note_type = NT_PRFPREG,
1395 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1396 /*
1397 * We pretend we have 32-bit registers because the fpsr and
1398 * fpcr are 32-bits wide.
1399 */
1400 .size = sizeof(u32),
1401 .align = sizeof(u32),
1402 .active = fpr_active,
1403 .regset_get = fpr_get,
1404 .set = fpr_set
1405 },
1406 [REGSET_TLS] = {
1407 .core_note_type = NT_ARM_TLS,
1408 .n = 2,
1409 .size = sizeof(void *),
1410 .align = sizeof(void *),
1411 .regset_get = tls_get,
1412 .set = tls_set,
1413 },
1414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1415 [REGSET_HW_BREAK] = {
1416 .core_note_type = NT_ARM_HW_BREAK,
1417 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1418 .size = sizeof(u32),
1419 .align = sizeof(u32),
1420 .regset_get = hw_break_get,
1421 .set = hw_break_set,
1422 },
1423 [REGSET_HW_WATCH] = {
1424 .core_note_type = NT_ARM_HW_WATCH,
1425 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1426 .size = sizeof(u32),
1427 .align = sizeof(u32),
1428 .regset_get = hw_break_get,
1429 .set = hw_break_set,
1430 },
1431 #endif
1432 [REGSET_SYSTEM_CALL] = {
1433 .core_note_type = NT_ARM_SYSTEM_CALL,
1434 .n = 1,
1435 .size = sizeof(int),
1436 .align = sizeof(int),
1437 .regset_get = system_call_get,
1438 .set = system_call_set,
1439 },
1440 #ifdef CONFIG_ARM64_SVE
1441 [REGSET_SVE] = { /* Scalable Vector Extension */
1442 .core_note_type = NT_ARM_SVE,
1443 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1444 SVE_VQ_BYTES),
1445 .size = SVE_VQ_BYTES,
1446 .align = SVE_VQ_BYTES,
1447 .regset_get = sve_get,
1448 .set = sve_set,
1449 },
1450 #endif
1451 #ifdef CONFIG_ARM64_SME
1452 [REGSET_SSVE] = { /* Streaming mode SVE */
1453 .core_note_type = NT_ARM_SSVE,
1454 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1455 SVE_VQ_BYTES),
1456 .size = SVE_VQ_BYTES,
1457 .align = SVE_VQ_BYTES,
1458 .regset_get = ssve_get,
1459 .set = ssve_set,
1460 },
1461 [REGSET_ZA] = { /* SME ZA */
1462 .core_note_type = NT_ARM_ZA,
1463 /*
1464 * ZA is a single register but it's variably sized and
1465 * the ptrace core requires that the size of any data
1466 * be an exact multiple of the configured register
1467 * size so report as though we had SVE_VQ_BYTES
1468 * registers. These values aren't exposed to
1469 * userspace.
1470 */
1471 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1472 .size = SVE_VQ_BYTES,
1473 .align = SVE_VQ_BYTES,
1474 .regset_get = za_get,
1475 .set = za_set,
1476 },
1477 #endif
1478 #ifdef CONFIG_ARM64_PTR_AUTH
1479 [REGSET_PAC_MASK] = {
1480 .core_note_type = NT_ARM_PAC_MASK,
1481 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1482 .size = sizeof(u64),
1483 .align = sizeof(u64),
1484 .regset_get = pac_mask_get,
1485 /* this cannot be set dynamically */
1486 },
1487 [REGSET_PAC_ENABLED_KEYS] = {
1488 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1489 .n = 1,
1490 .size = sizeof(long),
1491 .align = sizeof(long),
1492 .regset_get = pac_enabled_keys_get,
1493 .set = pac_enabled_keys_set,
1494 },
1495 #ifdef CONFIG_CHECKPOINT_RESTORE
1496 [REGSET_PACA_KEYS] = {
1497 .core_note_type = NT_ARM_PACA_KEYS,
1498 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1499 .size = sizeof(__uint128_t),
1500 .align = sizeof(__uint128_t),
1501 .regset_get = pac_address_keys_get,
1502 .set = pac_address_keys_set,
1503 },
1504 [REGSET_PACG_KEYS] = {
1505 .core_note_type = NT_ARM_PACG_KEYS,
1506 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1507 .size = sizeof(__uint128_t),
1508 .align = sizeof(__uint128_t),
1509 .regset_get = pac_generic_keys_get,
1510 .set = pac_generic_keys_set,
1511 },
1512 #endif
1513 #endif
1514 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1515 [REGSET_TAGGED_ADDR_CTRL] = {
1516 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1517 .n = 1,
1518 .size = sizeof(long),
1519 .align = sizeof(long),
1520 .regset_get = tagged_addr_ctrl_get,
1521 .set = tagged_addr_ctrl_set,
1522 },
1523 #endif
1524 };
1525
1526 static const struct user_regset_view user_aarch64_view = {
1527 .name = "aarch64", .e_machine = EM_AARCH64,
1528 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1529 };
1530
1531 #ifdef CONFIG_COMPAT
1532 enum compat_regset {
1533 REGSET_COMPAT_GPR,
1534 REGSET_COMPAT_VFP,
1535 };
1536
compat_get_user_reg(struct task_struct * task,int idx)1537 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1538 {
1539 struct pt_regs *regs = task_pt_regs(task);
1540
1541 switch (idx) {
1542 case 15:
1543 return regs->pc;
1544 case 16:
1545 return pstate_to_compat_psr(regs->pstate);
1546 case 17:
1547 return regs->orig_x0;
1548 default:
1549 return regs->regs[idx];
1550 }
1551 }
1552
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1553 static int compat_gpr_get(struct task_struct *target,
1554 const struct user_regset *regset,
1555 struct membuf to)
1556 {
1557 int i = 0;
1558
1559 while (to.left)
1560 membuf_store(&to, compat_get_user_reg(target, i++));
1561 return 0;
1562 }
1563
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1564 static int compat_gpr_set(struct task_struct *target,
1565 const struct user_regset *regset,
1566 unsigned int pos, unsigned int count,
1567 const void *kbuf, const void __user *ubuf)
1568 {
1569 struct pt_regs newregs;
1570 int ret = 0;
1571 unsigned int i, start, num_regs;
1572
1573 /* Calculate the number of AArch32 registers contained in count */
1574 num_regs = count / regset->size;
1575
1576 /* Convert pos into an register number */
1577 start = pos / regset->size;
1578
1579 if (start + num_regs > regset->n)
1580 return -EIO;
1581
1582 newregs = *task_pt_regs(target);
1583
1584 for (i = 0; i < num_regs; ++i) {
1585 unsigned int idx = start + i;
1586 compat_ulong_t reg;
1587
1588 if (kbuf) {
1589 memcpy(®, kbuf, sizeof(reg));
1590 kbuf += sizeof(reg);
1591 } else {
1592 ret = copy_from_user(®, ubuf, sizeof(reg));
1593 if (ret) {
1594 ret = -EFAULT;
1595 break;
1596 }
1597
1598 ubuf += sizeof(reg);
1599 }
1600
1601 switch (idx) {
1602 case 15:
1603 newregs.pc = reg;
1604 break;
1605 case 16:
1606 reg = compat_psr_to_pstate(reg);
1607 newregs.pstate = reg;
1608 break;
1609 case 17:
1610 newregs.orig_x0 = reg;
1611 break;
1612 default:
1613 newregs.regs[idx] = reg;
1614 }
1615
1616 }
1617
1618 if (valid_user_regs(&newregs.user_regs, target))
1619 *task_pt_regs(target) = newregs;
1620 else
1621 ret = -EINVAL;
1622
1623 return ret;
1624 }
1625
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1626 static int compat_vfp_get(struct task_struct *target,
1627 const struct user_regset *regset,
1628 struct membuf to)
1629 {
1630 struct user_fpsimd_state *uregs;
1631 compat_ulong_t fpscr;
1632
1633 if (!system_supports_fpsimd())
1634 return -EINVAL;
1635
1636 uregs = &target->thread.uw.fpsimd_state;
1637
1638 if (target == current)
1639 fpsimd_preserve_current_state();
1640
1641 /*
1642 * The VFP registers are packed into the fpsimd_state, so they all sit
1643 * nicely together for us. We just need to create the fpscr separately.
1644 */
1645 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1646 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1647 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1648 return membuf_store(&to, fpscr);
1649 }
1650
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1651 static int compat_vfp_set(struct task_struct *target,
1652 const struct user_regset *regset,
1653 unsigned int pos, unsigned int count,
1654 const void *kbuf, const void __user *ubuf)
1655 {
1656 struct user_fpsimd_state *uregs;
1657 compat_ulong_t fpscr;
1658 int ret, vregs_end_pos;
1659
1660 if (!system_supports_fpsimd())
1661 return -EINVAL;
1662
1663 uregs = &target->thread.uw.fpsimd_state;
1664
1665 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1666 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1667 vregs_end_pos);
1668
1669 if (count && !ret) {
1670 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1671 vregs_end_pos, VFP_STATE_SIZE);
1672 if (!ret) {
1673 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1674 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1675 }
1676 }
1677
1678 fpsimd_flush_task_state(target);
1679 return ret;
1680 }
1681
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1682 static int compat_tls_get(struct task_struct *target,
1683 const struct user_regset *regset,
1684 struct membuf to)
1685 {
1686 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1687 }
1688
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1689 static int compat_tls_set(struct task_struct *target,
1690 const struct user_regset *regset, unsigned int pos,
1691 unsigned int count, const void *kbuf,
1692 const void __user *ubuf)
1693 {
1694 int ret;
1695 compat_ulong_t tls = target->thread.uw.tp_value;
1696
1697 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1698 if (ret)
1699 return ret;
1700
1701 target->thread.uw.tp_value = tls;
1702 return ret;
1703 }
1704
1705 static const struct user_regset aarch32_regsets[] = {
1706 [REGSET_COMPAT_GPR] = {
1707 .core_note_type = NT_PRSTATUS,
1708 .n = COMPAT_ELF_NGREG,
1709 .size = sizeof(compat_elf_greg_t),
1710 .align = sizeof(compat_elf_greg_t),
1711 .regset_get = compat_gpr_get,
1712 .set = compat_gpr_set
1713 },
1714 [REGSET_COMPAT_VFP] = {
1715 .core_note_type = NT_ARM_VFP,
1716 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1717 .size = sizeof(compat_ulong_t),
1718 .align = sizeof(compat_ulong_t),
1719 .active = fpr_active,
1720 .regset_get = compat_vfp_get,
1721 .set = compat_vfp_set
1722 },
1723 };
1724
1725 static const struct user_regset_view user_aarch32_view = {
1726 .name = "aarch32", .e_machine = EM_ARM,
1727 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1728 };
1729
1730 static const struct user_regset aarch32_ptrace_regsets[] = {
1731 [REGSET_GPR] = {
1732 .core_note_type = NT_PRSTATUS,
1733 .n = COMPAT_ELF_NGREG,
1734 .size = sizeof(compat_elf_greg_t),
1735 .align = sizeof(compat_elf_greg_t),
1736 .regset_get = compat_gpr_get,
1737 .set = compat_gpr_set
1738 },
1739 [REGSET_FPR] = {
1740 .core_note_type = NT_ARM_VFP,
1741 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1742 .size = sizeof(compat_ulong_t),
1743 .align = sizeof(compat_ulong_t),
1744 .regset_get = compat_vfp_get,
1745 .set = compat_vfp_set
1746 },
1747 [REGSET_TLS] = {
1748 .core_note_type = NT_ARM_TLS,
1749 .n = 1,
1750 .size = sizeof(compat_ulong_t),
1751 .align = sizeof(compat_ulong_t),
1752 .regset_get = compat_tls_get,
1753 .set = compat_tls_set,
1754 },
1755 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1756 [REGSET_HW_BREAK] = {
1757 .core_note_type = NT_ARM_HW_BREAK,
1758 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1759 .size = sizeof(u32),
1760 .align = sizeof(u32),
1761 .regset_get = hw_break_get,
1762 .set = hw_break_set,
1763 },
1764 [REGSET_HW_WATCH] = {
1765 .core_note_type = NT_ARM_HW_WATCH,
1766 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1767 .size = sizeof(u32),
1768 .align = sizeof(u32),
1769 .regset_get = hw_break_get,
1770 .set = hw_break_set,
1771 },
1772 #endif
1773 [REGSET_SYSTEM_CALL] = {
1774 .core_note_type = NT_ARM_SYSTEM_CALL,
1775 .n = 1,
1776 .size = sizeof(int),
1777 .align = sizeof(int),
1778 .regset_get = system_call_get,
1779 .set = system_call_set,
1780 },
1781 };
1782
1783 static const struct user_regset_view user_aarch32_ptrace_view = {
1784 .name = "aarch32", .e_machine = EM_ARM,
1785 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1786 };
1787
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1788 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1789 compat_ulong_t __user *ret)
1790 {
1791 compat_ulong_t tmp;
1792
1793 if (off & 3)
1794 return -EIO;
1795
1796 if (off == COMPAT_PT_TEXT_ADDR)
1797 tmp = tsk->mm->start_code;
1798 else if (off == COMPAT_PT_DATA_ADDR)
1799 tmp = tsk->mm->start_data;
1800 else if (off == COMPAT_PT_TEXT_END_ADDR)
1801 tmp = tsk->mm->end_code;
1802 else if (off < sizeof(compat_elf_gregset_t))
1803 tmp = compat_get_user_reg(tsk, off >> 2);
1804 else if (off >= COMPAT_USER_SZ)
1805 return -EIO;
1806 else
1807 tmp = 0;
1808
1809 return put_user(tmp, ret);
1810 }
1811
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1812 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1813 compat_ulong_t val)
1814 {
1815 struct pt_regs newregs = *task_pt_regs(tsk);
1816 unsigned int idx = off / 4;
1817
1818 if (off & 3 || off >= COMPAT_USER_SZ)
1819 return -EIO;
1820
1821 if (off >= sizeof(compat_elf_gregset_t))
1822 return 0;
1823
1824 switch (idx) {
1825 case 15:
1826 newregs.pc = val;
1827 break;
1828 case 16:
1829 newregs.pstate = compat_psr_to_pstate(val);
1830 break;
1831 case 17:
1832 newregs.orig_x0 = val;
1833 break;
1834 default:
1835 newregs.regs[idx] = val;
1836 }
1837
1838 if (!valid_user_regs(&newregs.user_regs, tsk))
1839 return -EINVAL;
1840
1841 *task_pt_regs(tsk) = newregs;
1842 return 0;
1843 }
1844
1845 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1846
1847 /*
1848 * Convert a virtual register number into an index for a thread_info
1849 * breakpoint array. Breakpoints are identified using positive numbers
1850 * whilst watchpoints are negative. The registers are laid out as pairs
1851 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1852 * Register 0 is reserved for describing resource information.
1853 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1854 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1855 {
1856 return (abs(num) - 1) >> 1;
1857 }
1858
compat_ptrace_hbp_get_resource_info(u32 * kdata)1859 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1860 {
1861 u8 num_brps, num_wrps, debug_arch, wp_len;
1862 u32 reg = 0;
1863
1864 num_brps = hw_breakpoint_slots(TYPE_INST);
1865 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1866
1867 debug_arch = debug_monitors_arch();
1868 wp_len = 8;
1869 reg |= debug_arch;
1870 reg <<= 8;
1871 reg |= wp_len;
1872 reg <<= 8;
1873 reg |= num_wrps;
1874 reg <<= 8;
1875 reg |= num_brps;
1876
1877 *kdata = reg;
1878 return 0;
1879 }
1880
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1881 static int compat_ptrace_hbp_get(unsigned int note_type,
1882 struct task_struct *tsk,
1883 compat_long_t num,
1884 u32 *kdata)
1885 {
1886 u64 addr = 0;
1887 u32 ctrl = 0;
1888
1889 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1890
1891 if (num & 1) {
1892 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1893 *kdata = (u32)addr;
1894 } else {
1895 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1896 *kdata = ctrl;
1897 }
1898
1899 return err;
1900 }
1901
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1902 static int compat_ptrace_hbp_set(unsigned int note_type,
1903 struct task_struct *tsk,
1904 compat_long_t num,
1905 u32 *kdata)
1906 {
1907 u64 addr;
1908 u32 ctrl;
1909
1910 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1911
1912 if (num & 1) {
1913 addr = *kdata;
1914 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1915 } else {
1916 ctrl = *kdata;
1917 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1918 }
1919
1920 return err;
1921 }
1922
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1923 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1924 compat_ulong_t __user *data)
1925 {
1926 int ret;
1927 u32 kdata;
1928
1929 /* Watchpoint */
1930 if (num < 0) {
1931 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1932 /* Resource info */
1933 } else if (num == 0) {
1934 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1935 /* Breakpoint */
1936 } else {
1937 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1938 }
1939
1940 if (!ret)
1941 ret = put_user(kdata, data);
1942
1943 return ret;
1944 }
1945
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1946 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1947 compat_ulong_t __user *data)
1948 {
1949 int ret;
1950 u32 kdata = 0;
1951
1952 if (num == 0)
1953 return 0;
1954
1955 ret = get_user(kdata, data);
1956 if (ret)
1957 return ret;
1958
1959 if (num < 0)
1960 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1961 else
1962 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1963
1964 return ret;
1965 }
1966 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1967
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)1968 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1969 compat_ulong_t caddr, compat_ulong_t cdata)
1970 {
1971 unsigned long addr = caddr;
1972 unsigned long data = cdata;
1973 void __user *datap = compat_ptr(data);
1974 int ret;
1975
1976 switch (request) {
1977 case PTRACE_PEEKUSR:
1978 ret = compat_ptrace_read_user(child, addr, datap);
1979 break;
1980
1981 case PTRACE_POKEUSR:
1982 ret = compat_ptrace_write_user(child, addr, data);
1983 break;
1984
1985 case COMPAT_PTRACE_GETREGS:
1986 ret = copy_regset_to_user(child,
1987 &user_aarch32_view,
1988 REGSET_COMPAT_GPR,
1989 0, sizeof(compat_elf_gregset_t),
1990 datap);
1991 break;
1992
1993 case COMPAT_PTRACE_SETREGS:
1994 ret = copy_regset_from_user(child,
1995 &user_aarch32_view,
1996 REGSET_COMPAT_GPR,
1997 0, sizeof(compat_elf_gregset_t),
1998 datap);
1999 break;
2000
2001 case COMPAT_PTRACE_GET_THREAD_AREA:
2002 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2003 (compat_ulong_t __user *)datap);
2004 break;
2005
2006 case COMPAT_PTRACE_SET_SYSCALL:
2007 task_pt_regs(child)->syscallno = data;
2008 ret = 0;
2009 break;
2010
2011 case COMPAT_PTRACE_GETVFPREGS:
2012 ret = copy_regset_to_user(child,
2013 &user_aarch32_view,
2014 REGSET_COMPAT_VFP,
2015 0, VFP_STATE_SIZE,
2016 datap);
2017 break;
2018
2019 case COMPAT_PTRACE_SETVFPREGS:
2020 ret = copy_regset_from_user(child,
2021 &user_aarch32_view,
2022 REGSET_COMPAT_VFP,
2023 0, VFP_STATE_SIZE,
2024 datap);
2025 break;
2026
2027 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2028 case COMPAT_PTRACE_GETHBPREGS:
2029 ret = compat_ptrace_gethbpregs(child, addr, datap);
2030 break;
2031
2032 case COMPAT_PTRACE_SETHBPREGS:
2033 ret = compat_ptrace_sethbpregs(child, addr, datap);
2034 break;
2035 #endif
2036
2037 default:
2038 ret = compat_ptrace_request(child, request, addr,
2039 data);
2040 break;
2041 }
2042
2043 return ret;
2044 }
2045 #endif /* CONFIG_COMPAT */
2046
task_user_regset_view(struct task_struct * task)2047 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2048 {
2049 #ifdef CONFIG_COMPAT
2050 /*
2051 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2052 * user_aarch32_view compatible with arm32. Native ptrace requests on
2053 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2054 * access to the TLS register.
2055 */
2056 if (is_compat_task())
2057 return &user_aarch32_view;
2058 else if (is_compat_thread(task_thread_info(task)))
2059 return &user_aarch32_ptrace_view;
2060 #endif
2061 return &user_aarch64_view;
2062 }
2063
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2064 long arch_ptrace(struct task_struct *child, long request,
2065 unsigned long addr, unsigned long data)
2066 {
2067 switch (request) {
2068 case PTRACE_PEEKMTETAGS:
2069 case PTRACE_POKEMTETAGS:
2070 return mte_ptrace_copy_tags(child, request, addr, data);
2071 }
2072
2073 return ptrace_request(child, request, addr, data);
2074 }
2075
2076 enum ptrace_syscall_dir {
2077 PTRACE_SYSCALL_ENTER = 0,
2078 PTRACE_SYSCALL_EXIT,
2079 };
2080
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2081 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2082 {
2083 int regno;
2084 unsigned long saved_reg;
2085
2086 /*
2087 * We have some ABI weirdness here in the way that we handle syscall
2088 * exit stops because we indicate whether or not the stop has been
2089 * signalled from syscall entry or syscall exit by clobbering a general
2090 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2091 * and restoring its old value after the stop. This means that:
2092 *
2093 * - Any writes by the tracer to this register during the stop are
2094 * ignored/discarded.
2095 *
2096 * - The actual value of the register is not available during the stop,
2097 * so the tracer cannot save it and restore it later.
2098 *
2099 * - Syscall stops behave differently to seccomp and pseudo-step traps
2100 * (the latter do not nobble any registers).
2101 */
2102 regno = (is_compat_task() ? 12 : 7);
2103 saved_reg = regs->regs[regno];
2104 regs->regs[regno] = dir;
2105
2106 if (dir == PTRACE_SYSCALL_ENTER) {
2107 if (ptrace_report_syscall_entry(regs))
2108 forget_syscall(regs);
2109 regs->regs[regno] = saved_reg;
2110 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2111 ptrace_report_syscall_exit(regs, 0);
2112 regs->regs[regno] = saved_reg;
2113 } else {
2114 regs->regs[regno] = saved_reg;
2115
2116 /*
2117 * Signal a pseudo-step exception since we are stepping but
2118 * tracer modifications to the registers may have rewound the
2119 * state machine.
2120 */
2121 ptrace_report_syscall_exit(regs, 1);
2122 }
2123 }
2124
syscall_trace_enter(struct pt_regs * regs)2125 int syscall_trace_enter(struct pt_regs *regs)
2126 {
2127 unsigned long flags = read_thread_flags();
2128
2129 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2130 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2131 if (flags & _TIF_SYSCALL_EMU)
2132 return NO_SYSCALL;
2133 }
2134
2135 /* Do the secure computing after ptrace; failures should be fast. */
2136 if (secure_computing() == -1)
2137 return NO_SYSCALL;
2138
2139 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2140 trace_sys_enter(regs, regs->syscallno);
2141
2142 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2143 regs->regs[2], regs->regs[3]);
2144
2145 return regs->syscallno;
2146 }
2147
syscall_trace_exit(struct pt_regs * regs)2148 void syscall_trace_exit(struct pt_regs *regs)
2149 {
2150 unsigned long flags = read_thread_flags();
2151
2152 audit_syscall_exit(regs);
2153
2154 if (flags & _TIF_SYSCALL_TRACEPOINT)
2155 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2156
2157 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2158 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2159
2160 rseq_syscall(regs);
2161 }
2162
2163 /*
2164 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2165 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2166 * not described in ARM DDI 0487D.a.
2167 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2168 * be allocated an EL0 meaning in future.
2169 * Userspace cannot use these until they have an architectural meaning.
2170 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2171 * We also reserve IL for the kernel; SS is handled dynamically.
2172 */
2173 #define SPSR_EL1_AARCH64_RES0_BITS \
2174 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2175 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2176 #define SPSR_EL1_AARCH32_RES0_BITS \
2177 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2178
valid_compat_regs(struct user_pt_regs * regs)2179 static int valid_compat_regs(struct user_pt_regs *regs)
2180 {
2181 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2182
2183 if (!system_supports_mixed_endian_el0()) {
2184 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2185 regs->pstate |= PSR_AA32_E_BIT;
2186 else
2187 regs->pstate &= ~PSR_AA32_E_BIT;
2188 }
2189
2190 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2191 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2192 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2193 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2194 return 1;
2195 }
2196
2197 /*
2198 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2199 * arch/arm.
2200 */
2201 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2202 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2203 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2204 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2205 PSR_AA32_T_BIT;
2206 regs->pstate |= PSR_MODE32_BIT;
2207
2208 return 0;
2209 }
2210
valid_native_regs(struct user_pt_regs * regs)2211 static int valid_native_regs(struct user_pt_regs *regs)
2212 {
2213 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2214
2215 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2216 (regs->pstate & PSR_D_BIT) == 0 &&
2217 (regs->pstate & PSR_A_BIT) == 0 &&
2218 (regs->pstate & PSR_I_BIT) == 0 &&
2219 (regs->pstate & PSR_F_BIT) == 0) {
2220 return 1;
2221 }
2222
2223 /* Force PSR to a valid 64-bit EL0t */
2224 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2225
2226 return 0;
2227 }
2228
2229 /*
2230 * Are the current registers suitable for user mode? (used to maintain
2231 * security in signal handlers)
2232 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2233 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2234 {
2235 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2236 user_regs_reset_single_step(regs, task);
2237
2238 if (is_compat_thread(task_thread_info(task)))
2239 return valid_compat_regs(regs);
2240 else
2241 return valid_native_regs(regs);
2242 }
2243