1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37
38 #include "dma.h"
39 #include "mm.h"
40
41 struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49 };
50
51 struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57 };
58
59 #define NORMAL 0
60 #define COHERENT 1
61
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
arm_dma_buffer_find(void * virt)77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92 }
93
94 /*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
__dma_clear_buffer(struct page * page,size_t size,int coherent_flag)107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135 }
136
137 /*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,int coherent_flag)141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143 {
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161 }
162
163 /*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
__dma_free_buffer(struct page * page,size_t size)166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174 }
175
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
early_coherent_pool(char * p)190 static int __init early_coherent_pool(char *p)
191 {
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196
197 /*
198 * Initialise the coherent pool for atomic allocations.
199 */
atomic_pool_init(void)200 static int __init atomic_pool_init(void)
201 {
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238 destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241 out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245 }
246 /*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249 postcore_initcall(atomic_pool_init);
250
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255 };
256
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259 static int dma_mmu_remap_num __initdata;
260
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)261 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
262 {
263 dma_mmu_remap[dma_mmu_remap_num].base = base;
264 dma_mmu_remap[dma_mmu_remap_num].size = size;
265 dma_mmu_remap_num++;
266 }
267
dma_contiguous_remap(void)268 void __init dma_contiguous_remap(void)
269 {
270 int i;
271 for (i = 0; i < dma_mmu_remap_num; i++) {
272 phys_addr_t start = dma_mmu_remap[i].base;
273 phys_addr_t end = start + dma_mmu_remap[i].size;
274 struct map_desc map;
275 unsigned long addr;
276
277 if (end > arm_lowmem_limit)
278 end = arm_lowmem_limit;
279 if (start >= end)
280 continue;
281
282 map.pfn = __phys_to_pfn(start);
283 map.virtual = __phys_to_virt(start);
284 map.length = end - start;
285 map.type = MT_MEMORY_DMA_READY;
286
287 /*
288 * Clear previous low-memory mapping to ensure that the
289 * TLB does not see any conflicting entries, then flush
290 * the TLB of the old entries before creating new mappings.
291 *
292 * This ensures that any speculatively loaded TLB entries
293 * (even though they may be rare) can not cause any problems,
294 * and ensures that this code is architecturally compliant.
295 */
296 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
297 addr += PMD_SIZE)
298 pmd_clear(pmd_off_k(addr));
299
300 flush_tlb_kernel_range(__phys_to_virt(start),
301 __phys_to_virt(end));
302
303 iotable_init(&map, 1);
304 }
305 }
306 #endif
307
__dma_update_pte(pte_t * pte,unsigned long addr,void * data)308 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
309 {
310 struct page *page = virt_to_page((void *)addr);
311 pgprot_t prot = *(pgprot_t *)data;
312
313 set_pte_ext(pte, mk_pte(page, prot), 0);
314 return 0;
315 }
316
__dma_remap(struct page * page,size_t size,pgprot_t prot)317 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
318 {
319 unsigned long start = (unsigned long) page_address(page);
320 unsigned end = start + size;
321
322 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
323 flush_tlb_kernel_range(start, end);
324 }
325
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr)326 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
327 pgprot_t prot, struct page **ret_page,
328 const void *caller, bool want_vaddr)
329 {
330 struct page *page;
331 void *ptr = NULL;
332 /*
333 * __alloc_remap_buffer is only called when the device is
334 * non-coherent
335 */
336 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
337 if (!page)
338 return NULL;
339 if (!want_vaddr)
340 goto out;
341
342 ptr = dma_common_contiguous_remap(page, size, prot, caller);
343 if (!ptr) {
344 __dma_free_buffer(page, size);
345 return NULL;
346 }
347
348 out:
349 *ret_page = page;
350 return ptr;
351 }
352
__alloc_from_pool(size_t size,struct page ** ret_page)353 static void *__alloc_from_pool(size_t size, struct page **ret_page)
354 {
355 unsigned long val;
356 void *ptr = NULL;
357
358 if (!atomic_pool) {
359 WARN(1, "coherent pool not initialised!\n");
360 return NULL;
361 }
362
363 val = gen_pool_alloc(atomic_pool, size);
364 if (val) {
365 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
366
367 *ret_page = phys_to_page(phys);
368 ptr = (void *)val;
369 }
370
371 return ptr;
372 }
373
__in_atomic_pool(void * start,size_t size)374 static bool __in_atomic_pool(void *start, size_t size)
375 {
376 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
377 }
378
__free_from_pool(void * start,size_t size)379 static int __free_from_pool(void *start, size_t size)
380 {
381 if (!__in_atomic_pool(start, size))
382 return 0;
383
384 gen_pool_free(atomic_pool, (unsigned long)start, size);
385
386 return 1;
387 }
388
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr,int coherent_flag,gfp_t gfp)389 static void *__alloc_from_contiguous(struct device *dev, size_t size,
390 pgprot_t prot, struct page **ret_page,
391 const void *caller, bool want_vaddr,
392 int coherent_flag, gfp_t gfp)
393 {
394 unsigned long order = get_order(size);
395 size_t count = size >> PAGE_SHIFT;
396 struct page *page;
397 void *ptr = NULL;
398
399 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
400 if (!page)
401 return NULL;
402
403 __dma_clear_buffer(page, size, coherent_flag);
404
405 if (!want_vaddr)
406 goto out;
407
408 if (PageHighMem(page)) {
409 ptr = dma_common_contiguous_remap(page, size, prot, caller);
410 if (!ptr) {
411 dma_release_from_contiguous(dev, page, count);
412 return NULL;
413 }
414 } else {
415 __dma_remap(page, size, prot);
416 ptr = page_address(page);
417 }
418
419 out:
420 *ret_page = page;
421 return ptr;
422 }
423
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size,bool want_vaddr)424 static void __free_from_contiguous(struct device *dev, struct page *page,
425 void *cpu_addr, size_t size, bool want_vaddr)
426 {
427 if (want_vaddr) {
428 if (PageHighMem(page))
429 dma_common_free_remap(cpu_addr, size);
430 else
431 __dma_remap(page, size, PAGE_KERNEL);
432 }
433 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
434 }
435
__get_dma_pgprot(unsigned long attrs,pgprot_t prot)436 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
437 {
438 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
439 pgprot_writecombine(prot) :
440 pgprot_dmacoherent(prot);
441 return prot;
442 }
443
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)444 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
445 struct page **ret_page)
446 {
447 struct page *page;
448 /* __alloc_simple_buffer is only called when the device is coherent */
449 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
450 if (!page)
451 return NULL;
452
453 *ret_page = page;
454 return page_address(page);
455 }
456
simple_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)457 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
458 struct page **ret_page)
459 {
460 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
461 ret_page);
462 }
463
simple_allocator_free(struct arm_dma_free_args * args)464 static void simple_allocator_free(struct arm_dma_free_args *args)
465 {
466 __dma_free_buffer(args->page, args->size);
467 }
468
469 static struct arm_dma_allocator simple_allocator = {
470 .alloc = simple_allocator_alloc,
471 .free = simple_allocator_free,
472 };
473
cma_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)474 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
475 struct page **ret_page)
476 {
477 return __alloc_from_contiguous(args->dev, args->size, args->prot,
478 ret_page, args->caller,
479 args->want_vaddr, args->coherent_flag,
480 args->gfp);
481 }
482
cma_allocator_free(struct arm_dma_free_args * args)483 static void cma_allocator_free(struct arm_dma_free_args *args)
484 {
485 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
486 args->size, args->want_vaddr);
487 }
488
489 static struct arm_dma_allocator cma_allocator = {
490 .alloc = cma_allocator_alloc,
491 .free = cma_allocator_free,
492 };
493
pool_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)494 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
495 struct page **ret_page)
496 {
497 return __alloc_from_pool(args->size, ret_page);
498 }
499
pool_allocator_free(struct arm_dma_free_args * args)500 static void pool_allocator_free(struct arm_dma_free_args *args)
501 {
502 __free_from_pool(args->cpu_addr, args->size);
503 }
504
505 static struct arm_dma_allocator pool_allocator = {
506 .alloc = pool_allocator_alloc,
507 .free = pool_allocator_free,
508 };
509
remap_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)510 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
511 struct page **ret_page)
512 {
513 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
514 args->prot, ret_page, args->caller,
515 args->want_vaddr);
516 }
517
remap_allocator_free(struct arm_dma_free_args * args)518 static void remap_allocator_free(struct arm_dma_free_args *args)
519 {
520 if (args->want_vaddr)
521 dma_common_free_remap(args->cpu_addr, args->size);
522
523 __dma_free_buffer(args->page, args->size);
524 }
525
526 static struct arm_dma_allocator remap_allocator = {
527 .alloc = remap_allocator_alloc,
528 .free = remap_allocator_free,
529 };
530
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,unsigned long attrs,const void * caller)531 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
532 gfp_t gfp, pgprot_t prot, bool is_coherent,
533 unsigned long attrs, const void *caller)
534 {
535 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
536 struct page *page = NULL;
537 void *addr;
538 bool allowblock, cma;
539 struct arm_dma_buffer *buf;
540 struct arm_dma_alloc_args args = {
541 .dev = dev,
542 .size = PAGE_ALIGN(size),
543 .gfp = gfp,
544 .prot = prot,
545 .caller = caller,
546 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
547 .coherent_flag = is_coherent ? COHERENT : NORMAL,
548 };
549
550 #ifdef CONFIG_DMA_API_DEBUG
551 u64 limit = (mask + 1) & ~mask;
552 if (limit && size >= limit) {
553 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
554 size, mask);
555 return NULL;
556 }
557 #endif
558
559 buf = kzalloc(sizeof(*buf),
560 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
561 if (!buf)
562 return NULL;
563
564 if (mask < 0xffffffffULL)
565 gfp |= GFP_DMA;
566
567 /*
568 * Following is a work-around (a.k.a. hack) to prevent pages
569 * with __GFP_COMP being passed to split_page() which cannot
570 * handle them. The real problem is that this flag probably
571 * should be 0 on ARM as it is not supported on this
572 * platform; see CONFIG_HUGETLBFS.
573 */
574 gfp &= ~(__GFP_COMP);
575 args.gfp = gfp;
576
577 *handle = DMA_MAPPING_ERROR;
578 allowblock = gfpflags_allow_blocking(gfp);
579 cma = allowblock ? dev_get_cma_area(dev) : NULL;
580
581 if (cma)
582 buf->allocator = &cma_allocator;
583 else if (is_coherent)
584 buf->allocator = &simple_allocator;
585 else if (allowblock)
586 buf->allocator = &remap_allocator;
587 else
588 buf->allocator = &pool_allocator;
589
590 addr = buf->allocator->alloc(&args, &page);
591
592 if (page) {
593 unsigned long flags;
594
595 *handle = phys_to_dma(dev, page_to_phys(page));
596 buf->virt = args.want_vaddr ? addr : page;
597
598 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
599 list_add(&buf->list, &arm_dma_bufs);
600 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
601 } else {
602 kfree(buf);
603 }
604
605 return args.want_vaddr ? addr : page;
606 }
607
608 /*
609 * Free a buffer as defined by the above mapping.
610 */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,bool is_coherent)611 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
612 dma_addr_t handle, unsigned long attrs,
613 bool is_coherent)
614 {
615 struct page *page = phys_to_page(dma_to_phys(dev, handle));
616 struct arm_dma_buffer *buf;
617 struct arm_dma_free_args args = {
618 .dev = dev,
619 .size = PAGE_ALIGN(size),
620 .cpu_addr = cpu_addr,
621 .page = page,
622 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
623 };
624
625 buf = arm_dma_buffer_find(cpu_addr);
626 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
627 return;
628
629 buf->allocator->free(&args);
630 kfree(buf);
631 }
632
dma_cache_maint_page(struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))633 static void dma_cache_maint_page(struct page *page, unsigned long offset,
634 size_t size, enum dma_data_direction dir,
635 void (*op)(const void *, size_t, int))
636 {
637 unsigned long pfn;
638 size_t left = size;
639
640 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
641 offset %= PAGE_SIZE;
642
643 /*
644 * A single sg entry may refer to multiple physically contiguous
645 * pages. But we still need to process highmem pages individually.
646 * If highmem is not configured then the bulk of this loop gets
647 * optimized out.
648 */
649 do {
650 size_t len = left;
651 void *vaddr;
652
653 page = pfn_to_page(pfn);
654
655 if (PageHighMem(page)) {
656 if (len + offset > PAGE_SIZE)
657 len = PAGE_SIZE - offset;
658
659 if (cache_is_vipt_nonaliasing()) {
660 vaddr = kmap_atomic(page);
661 op(vaddr + offset, len, dir);
662 kunmap_atomic(vaddr);
663 } else {
664 vaddr = kmap_high_get(page);
665 if (vaddr) {
666 op(vaddr + offset, len, dir);
667 kunmap_high(page);
668 }
669 }
670 } else {
671 vaddr = page_address(page) + offset;
672 op(vaddr, len, dir);
673 }
674 offset = 0;
675 pfn++;
676 left -= len;
677 } while (left);
678 }
679
680 /*
681 * Make an area consistent for devices.
682 * Note: Drivers should NOT use this function directly.
683 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
684 */
__dma_page_cpu_to_dev(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)685 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
686 size_t size, enum dma_data_direction dir)
687 {
688 phys_addr_t paddr;
689
690 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
691
692 paddr = page_to_phys(page) + off;
693 if (dir == DMA_FROM_DEVICE) {
694 outer_inv_range(paddr, paddr + size);
695 } else {
696 outer_clean_range(paddr, paddr + size);
697 }
698 /* FIXME: non-speculating: flush on bidirectional mappings? */
699 }
700
__dma_page_dev_to_cpu(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)701 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
702 size_t size, enum dma_data_direction dir)
703 {
704 phys_addr_t paddr = page_to_phys(page) + off;
705
706 /* FIXME: non-speculating: not required */
707 /* in any case, don't bother invalidating if DMA to device */
708 if (dir != DMA_TO_DEVICE) {
709 outer_inv_range(paddr, paddr + size);
710
711 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
712 }
713
714 /*
715 * Mark the D-cache clean for these pages to avoid extra flushing.
716 */
717 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
718 unsigned long pfn;
719 size_t left = size;
720
721 pfn = page_to_pfn(page) + off / PAGE_SIZE;
722 off %= PAGE_SIZE;
723 if (off) {
724 pfn++;
725 left -= PAGE_SIZE - off;
726 }
727 while (left >= PAGE_SIZE) {
728 page = pfn_to_page(pfn++);
729 set_bit(PG_dcache_clean, &page->flags);
730 left -= PAGE_SIZE;
731 }
732 }
733 }
734
735 #ifdef CONFIG_ARM_DMA_USE_IOMMU
736
__dma_info_to_prot(enum dma_data_direction dir,unsigned long attrs)737 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
738 {
739 int prot = 0;
740
741 if (attrs & DMA_ATTR_PRIVILEGED)
742 prot |= IOMMU_PRIV;
743
744 switch (dir) {
745 case DMA_BIDIRECTIONAL:
746 return prot | IOMMU_READ | IOMMU_WRITE;
747 case DMA_TO_DEVICE:
748 return prot | IOMMU_READ;
749 case DMA_FROM_DEVICE:
750 return prot | IOMMU_WRITE;
751 default:
752 return prot;
753 }
754 }
755
756 /* IOMMU */
757
758 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
759
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)760 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
761 size_t size)
762 {
763 unsigned int order = get_order(size);
764 unsigned int align = 0;
765 unsigned int count, start;
766 size_t mapping_size = mapping->bits << PAGE_SHIFT;
767 unsigned long flags;
768 dma_addr_t iova;
769 int i;
770
771 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
772 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
773
774 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
775 align = (1 << order) - 1;
776
777 spin_lock_irqsave(&mapping->lock, flags);
778 for (i = 0; i < mapping->nr_bitmaps; i++) {
779 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
780 mapping->bits, 0, count, align);
781
782 if (start > mapping->bits)
783 continue;
784
785 bitmap_set(mapping->bitmaps[i], start, count);
786 break;
787 }
788
789 /*
790 * No unused range found. Try to extend the existing mapping
791 * and perform a second attempt to reserve an IO virtual
792 * address range of size bytes.
793 */
794 if (i == mapping->nr_bitmaps) {
795 if (extend_iommu_mapping(mapping)) {
796 spin_unlock_irqrestore(&mapping->lock, flags);
797 return DMA_MAPPING_ERROR;
798 }
799
800 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
801 mapping->bits, 0, count, align);
802
803 if (start > mapping->bits) {
804 spin_unlock_irqrestore(&mapping->lock, flags);
805 return DMA_MAPPING_ERROR;
806 }
807
808 bitmap_set(mapping->bitmaps[i], start, count);
809 }
810 spin_unlock_irqrestore(&mapping->lock, flags);
811
812 iova = mapping->base + (mapping_size * i);
813 iova += start << PAGE_SHIFT;
814
815 return iova;
816 }
817
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)818 static inline void __free_iova(struct dma_iommu_mapping *mapping,
819 dma_addr_t addr, size_t size)
820 {
821 unsigned int start, count;
822 size_t mapping_size = mapping->bits << PAGE_SHIFT;
823 unsigned long flags;
824 dma_addr_t bitmap_base;
825 u32 bitmap_index;
826
827 if (!size)
828 return;
829
830 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
831 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
832
833 bitmap_base = mapping->base + mapping_size * bitmap_index;
834
835 start = (addr - bitmap_base) >> PAGE_SHIFT;
836
837 if (addr + size > bitmap_base + mapping_size) {
838 /*
839 * The address range to be freed reaches into the iova
840 * range of the next bitmap. This should not happen as
841 * we don't allow this in __alloc_iova (at the
842 * moment).
843 */
844 BUG();
845 } else
846 count = size >> PAGE_SHIFT;
847
848 spin_lock_irqsave(&mapping->lock, flags);
849 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
850 spin_unlock_irqrestore(&mapping->lock, flags);
851 }
852
853 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
854 static const int iommu_order_array[] = { 9, 8, 4, 0 };
855
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,unsigned long attrs,int coherent_flag)856 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
857 gfp_t gfp, unsigned long attrs,
858 int coherent_flag)
859 {
860 struct page **pages;
861 int count = size >> PAGE_SHIFT;
862 int array_size = count * sizeof(struct page *);
863 int i = 0;
864 int order_idx = 0;
865
866 if (array_size <= PAGE_SIZE)
867 pages = kzalloc(array_size, GFP_KERNEL);
868 else
869 pages = vzalloc(array_size);
870 if (!pages)
871 return NULL;
872
873 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
874 {
875 unsigned long order = get_order(size);
876 struct page *page;
877
878 page = dma_alloc_from_contiguous(dev, count, order,
879 gfp & __GFP_NOWARN);
880 if (!page)
881 goto error;
882
883 __dma_clear_buffer(page, size, coherent_flag);
884
885 for (i = 0; i < count; i++)
886 pages[i] = page + i;
887
888 return pages;
889 }
890
891 /* Go straight to 4K chunks if caller says it's OK. */
892 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
893 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
894
895 /*
896 * IOMMU can map any pages, so himem can also be used here
897 */
898 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
899
900 while (count) {
901 int j, order;
902
903 order = iommu_order_array[order_idx];
904
905 /* Drop down when we get small */
906 if (__fls(count) < order) {
907 order_idx++;
908 continue;
909 }
910
911 if (order) {
912 /* See if it's easy to allocate a high-order chunk */
913 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
914
915 /* Go down a notch at first sign of pressure */
916 if (!pages[i]) {
917 order_idx++;
918 continue;
919 }
920 } else {
921 pages[i] = alloc_pages(gfp, 0);
922 if (!pages[i])
923 goto error;
924 }
925
926 if (order) {
927 split_page(pages[i], order);
928 j = 1 << order;
929 while (--j)
930 pages[i + j] = pages[i] + j;
931 }
932
933 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
934 i += 1 << order;
935 count -= 1 << order;
936 }
937
938 return pages;
939 error:
940 while (i--)
941 if (pages[i])
942 __free_pages(pages[i], 0);
943 kvfree(pages);
944 return NULL;
945 }
946
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)947 static int __iommu_free_buffer(struct device *dev, struct page **pages,
948 size_t size, unsigned long attrs)
949 {
950 int count = size >> PAGE_SHIFT;
951 int i;
952
953 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
954 dma_release_from_contiguous(dev, pages[0], count);
955 } else {
956 for (i = 0; i < count; i++)
957 if (pages[i])
958 __free_pages(pages[i], 0);
959 }
960
961 kvfree(pages);
962 return 0;
963 }
964
965 /*
966 * Create a mapping in device IO address space for specified pages
967 */
968 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)969 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
970 unsigned long attrs)
971 {
972 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
973 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
974 dma_addr_t dma_addr, iova;
975 int i;
976
977 dma_addr = __alloc_iova(mapping, size);
978 if (dma_addr == DMA_MAPPING_ERROR)
979 return dma_addr;
980
981 iova = dma_addr;
982 for (i = 0; i < count; ) {
983 int ret;
984
985 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
986 phys_addr_t phys = page_to_phys(pages[i]);
987 unsigned int len, j;
988
989 for (j = i + 1; j < count; j++, next_pfn++)
990 if (page_to_pfn(pages[j]) != next_pfn)
991 break;
992
993 len = (j - i) << PAGE_SHIFT;
994 ret = iommu_map(mapping->domain, iova, phys, len,
995 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
996 if (ret < 0)
997 goto fail;
998 iova += len;
999 i = j;
1000 }
1001 return dma_addr;
1002 fail:
1003 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1004 __free_iova(mapping, dma_addr, size);
1005 return DMA_MAPPING_ERROR;
1006 }
1007
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1008 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1009 {
1010 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1011
1012 /*
1013 * add optional in-page offset from iova to size and align
1014 * result to page size
1015 */
1016 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1017 iova &= PAGE_MASK;
1018
1019 iommu_unmap(mapping->domain, iova, size);
1020 __free_iova(mapping, iova, size);
1021 return 0;
1022 }
1023
__atomic_get_pages(void * addr)1024 static struct page **__atomic_get_pages(void *addr)
1025 {
1026 struct page *page;
1027 phys_addr_t phys;
1028
1029 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1030 page = phys_to_page(phys);
1031
1032 return (struct page **)page;
1033 }
1034
__iommu_get_pages(void * cpu_addr,unsigned long attrs)1035 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1036 {
1037 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1038 return __atomic_get_pages(cpu_addr);
1039
1040 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1041 return cpu_addr;
1042
1043 return dma_common_find_pages(cpu_addr);
1044 }
1045
__iommu_alloc_simple(struct device * dev,size_t size,gfp_t gfp,dma_addr_t * handle,int coherent_flag,unsigned long attrs)1046 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1047 dma_addr_t *handle, int coherent_flag,
1048 unsigned long attrs)
1049 {
1050 struct page *page;
1051 void *addr;
1052
1053 if (coherent_flag == COHERENT)
1054 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1055 else
1056 addr = __alloc_from_pool(size, &page);
1057 if (!addr)
1058 return NULL;
1059
1060 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1061 if (*handle == DMA_MAPPING_ERROR)
1062 goto err_mapping;
1063
1064 return addr;
1065
1066 err_mapping:
1067 __free_from_pool(addr, size);
1068 return NULL;
1069 }
1070
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size,int coherent_flag)1071 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1072 dma_addr_t handle, size_t size, int coherent_flag)
1073 {
1074 __iommu_remove_mapping(dev, handle, size);
1075 if (coherent_flag == COHERENT)
1076 __dma_free_buffer(virt_to_page(cpu_addr), size);
1077 else
1078 __free_from_pool(cpu_addr, size);
1079 }
1080
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1081 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1082 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1083 {
1084 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1085 struct page **pages;
1086 void *addr = NULL;
1087 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1088
1089 *handle = DMA_MAPPING_ERROR;
1090 size = PAGE_ALIGN(size);
1091
1092 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1093 return __iommu_alloc_simple(dev, size, gfp, handle,
1094 coherent_flag, attrs);
1095
1096 /*
1097 * Following is a work-around (a.k.a. hack) to prevent pages
1098 * with __GFP_COMP being passed to split_page() which cannot
1099 * handle them. The real problem is that this flag probably
1100 * should be 0 on ARM as it is not supported on this
1101 * platform; see CONFIG_HUGETLBFS.
1102 */
1103 gfp &= ~(__GFP_COMP);
1104
1105 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1106 if (!pages)
1107 return NULL;
1108
1109 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1110 if (*handle == DMA_MAPPING_ERROR)
1111 goto err_buffer;
1112
1113 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1114 return pages;
1115
1116 addr = dma_common_pages_remap(pages, size, prot,
1117 __builtin_return_address(0));
1118 if (!addr)
1119 goto err_mapping;
1120
1121 return addr;
1122
1123 err_mapping:
1124 __iommu_remove_mapping(dev, *handle, size);
1125 err_buffer:
1126 __iommu_free_buffer(dev, pages, size, attrs);
1127 return NULL;
1128 }
1129
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1130 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1131 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1132 unsigned long attrs)
1133 {
1134 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1135 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1136 int err;
1137
1138 if (!pages)
1139 return -ENXIO;
1140
1141 if (vma->vm_pgoff >= nr_pages)
1142 return -ENXIO;
1143
1144 if (!dev->dma_coherent)
1145 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1146
1147 err = vm_map_pages(vma, pages, nr_pages);
1148 if (err)
1149 pr_err("Remapping memory failed: %d\n", err);
1150
1151 return err;
1152 }
1153
1154 /*
1155 * free a page as defined by the above mapping.
1156 * Must not be called with IRQs disabled.
1157 */
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1158 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1159 dma_addr_t handle, unsigned long attrs)
1160 {
1161 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1162 struct page **pages;
1163 size = PAGE_ALIGN(size);
1164
1165 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1166 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1167 return;
1168 }
1169
1170 pages = __iommu_get_pages(cpu_addr, attrs);
1171 if (!pages) {
1172 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1173 return;
1174 }
1175
1176 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1177 dma_common_free_remap(cpu_addr, size);
1178
1179 __iommu_remove_mapping(dev, handle, size);
1180 __iommu_free_buffer(dev, pages, size, attrs);
1181 }
1182
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1183 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1184 void *cpu_addr, dma_addr_t dma_addr,
1185 size_t size, unsigned long attrs)
1186 {
1187 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1188 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1189
1190 if (!pages)
1191 return -ENXIO;
1192
1193 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1194 GFP_KERNEL);
1195 }
1196
1197 /*
1198 * Map a part of the scatter-gather list into contiguous io address space
1199 */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,unsigned long attrs)1200 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1201 size_t size, dma_addr_t *handle,
1202 enum dma_data_direction dir, unsigned long attrs)
1203 {
1204 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1205 dma_addr_t iova, iova_base;
1206 int ret = 0;
1207 unsigned int count;
1208 struct scatterlist *s;
1209 int prot;
1210
1211 size = PAGE_ALIGN(size);
1212 *handle = DMA_MAPPING_ERROR;
1213
1214 iova_base = iova = __alloc_iova(mapping, size);
1215 if (iova == DMA_MAPPING_ERROR)
1216 return -ENOMEM;
1217
1218 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1219 phys_addr_t phys = page_to_phys(sg_page(s));
1220 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1221
1222 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1223 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1224
1225 prot = __dma_info_to_prot(dir, attrs);
1226
1227 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1228 if (ret < 0)
1229 goto fail;
1230 count += len >> PAGE_SHIFT;
1231 iova += len;
1232 }
1233 *handle = iova_base;
1234
1235 return 0;
1236 fail:
1237 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1238 __free_iova(mapping, iova_base, size);
1239 return ret;
1240 }
1241
1242 /**
1243 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1244 * @dev: valid struct device pointer
1245 * @sg: list of buffers
1246 * @nents: number of buffers to map
1247 * @dir: DMA transfer direction
1248 *
1249 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1250 * The scatter gather list elements are merged together (if possible) and
1251 * tagged with the appropriate dma address and length. They are obtained via
1252 * sg_dma_{address,length}.
1253 */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1254 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1255 int nents, enum dma_data_direction dir, unsigned long attrs)
1256 {
1257 struct scatterlist *s = sg, *dma = sg, *start = sg;
1258 int i, count = 0, ret;
1259 unsigned int offset = s->offset;
1260 unsigned int size = s->offset + s->length;
1261 unsigned int max = dma_get_max_seg_size(dev);
1262
1263 for (i = 1; i < nents; i++) {
1264 s = sg_next(s);
1265
1266 s->dma_length = 0;
1267
1268 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1269 ret = __map_sg_chunk(dev, start, size,
1270 &dma->dma_address, dir, attrs);
1271 if (ret < 0)
1272 goto bad_mapping;
1273
1274 dma->dma_address += offset;
1275 dma->dma_length = size - offset;
1276
1277 size = offset = s->offset;
1278 start = s;
1279 dma = sg_next(dma);
1280 count += 1;
1281 }
1282 size += s->length;
1283 }
1284 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1285 if (ret < 0)
1286 goto bad_mapping;
1287
1288 dma->dma_address += offset;
1289 dma->dma_length = size - offset;
1290
1291 return count+1;
1292
1293 bad_mapping:
1294 for_each_sg(sg, s, count, i)
1295 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1296 if (ret == -ENOMEM)
1297 return ret;
1298 return -EINVAL;
1299 }
1300
1301 /**
1302 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1303 * @dev: valid struct device pointer
1304 * @sg: list of buffers
1305 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1306 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1307 *
1308 * Unmap a set of streaming mode DMA translations. Again, CPU access
1309 * rules concerning calls here are the same as for dma_unmap_single().
1310 */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1311 static void arm_iommu_unmap_sg(struct device *dev,
1312 struct scatterlist *sg, int nents,
1313 enum dma_data_direction dir,
1314 unsigned long attrs)
1315 {
1316 struct scatterlist *s;
1317 int i;
1318
1319 for_each_sg(sg, s, nents, i) {
1320 if (sg_dma_len(s))
1321 __iommu_remove_mapping(dev, sg_dma_address(s),
1322 sg_dma_len(s));
1323 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1324 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1325 s->length, dir);
1326 }
1327 }
1328
1329 /**
1330 * arm_iommu_sync_sg_for_cpu
1331 * @dev: valid struct device pointer
1332 * @sg: list of buffers
1333 * @nents: number of buffers to map (returned from dma_map_sg)
1334 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1335 */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1336 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1337 struct scatterlist *sg,
1338 int nents, enum dma_data_direction dir)
1339 {
1340 struct scatterlist *s;
1341 int i;
1342
1343 if (dev->dma_coherent)
1344 return;
1345
1346 for_each_sg(sg, s, nents, i)
1347 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1348
1349 }
1350
1351 /**
1352 * arm_iommu_sync_sg_for_device
1353 * @dev: valid struct device pointer
1354 * @sg: list of buffers
1355 * @nents: number of buffers to map (returned from dma_map_sg)
1356 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1357 */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1358 static void arm_iommu_sync_sg_for_device(struct device *dev,
1359 struct scatterlist *sg,
1360 int nents, enum dma_data_direction dir)
1361 {
1362 struct scatterlist *s;
1363 int i;
1364
1365 if (dev->dma_coherent)
1366 return;
1367
1368 for_each_sg(sg, s, nents, i)
1369 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1370 }
1371
1372 /**
1373 * arm_iommu_map_page
1374 * @dev: valid struct device pointer
1375 * @page: page that buffer resides in
1376 * @offset: offset into page for start of buffer
1377 * @size: size of buffer to map
1378 * @dir: DMA transfer direction
1379 *
1380 * IOMMU aware version of arm_dma_map_page()
1381 */
arm_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1382 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1383 unsigned long offset, size_t size, enum dma_data_direction dir,
1384 unsigned long attrs)
1385 {
1386 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1387 dma_addr_t dma_addr;
1388 int ret, prot, len = PAGE_ALIGN(size + offset);
1389
1390 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1391 __dma_page_cpu_to_dev(page, offset, size, dir);
1392
1393 dma_addr = __alloc_iova(mapping, len);
1394 if (dma_addr == DMA_MAPPING_ERROR)
1395 return dma_addr;
1396
1397 prot = __dma_info_to_prot(dir, attrs);
1398
1399 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1400 if (ret < 0)
1401 goto fail;
1402
1403 return dma_addr + offset;
1404 fail:
1405 __free_iova(mapping, dma_addr, len);
1406 return DMA_MAPPING_ERROR;
1407 }
1408
1409 /**
1410 * arm_iommu_unmap_page
1411 * @dev: valid struct device pointer
1412 * @handle: DMA address of buffer
1413 * @size: size of buffer (same as passed to dma_map_page)
1414 * @dir: DMA transfer direction (same as passed to dma_map_page)
1415 *
1416 * IOMMU aware version of arm_dma_unmap_page()
1417 */
arm_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1418 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1419 size_t size, enum dma_data_direction dir, unsigned long attrs)
1420 {
1421 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1422 dma_addr_t iova = handle & PAGE_MASK;
1423 struct page *page;
1424 int offset = handle & ~PAGE_MASK;
1425 int len = PAGE_ALIGN(size + offset);
1426
1427 if (!iova)
1428 return;
1429
1430 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1431 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1432 __dma_page_dev_to_cpu(page, offset, size, dir);
1433 }
1434
1435 iommu_unmap(mapping->domain, iova, len);
1436 __free_iova(mapping, iova, len);
1437 }
1438
1439 /**
1440 * arm_iommu_map_resource - map a device resource for DMA
1441 * @dev: valid struct device pointer
1442 * @phys_addr: physical address of resource
1443 * @size: size of resource to map
1444 * @dir: DMA transfer direction
1445 */
arm_iommu_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)1446 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1447 phys_addr_t phys_addr, size_t size,
1448 enum dma_data_direction dir, unsigned long attrs)
1449 {
1450 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1451 dma_addr_t dma_addr;
1452 int ret, prot;
1453 phys_addr_t addr = phys_addr & PAGE_MASK;
1454 unsigned int offset = phys_addr & ~PAGE_MASK;
1455 size_t len = PAGE_ALIGN(size + offset);
1456
1457 dma_addr = __alloc_iova(mapping, len);
1458 if (dma_addr == DMA_MAPPING_ERROR)
1459 return dma_addr;
1460
1461 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1462
1463 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1464 if (ret < 0)
1465 goto fail;
1466
1467 return dma_addr + offset;
1468 fail:
1469 __free_iova(mapping, dma_addr, len);
1470 return DMA_MAPPING_ERROR;
1471 }
1472
1473 /**
1474 * arm_iommu_unmap_resource - unmap a device DMA resource
1475 * @dev: valid struct device pointer
1476 * @dma_handle: DMA address to resource
1477 * @size: size of resource to map
1478 * @dir: DMA transfer direction
1479 */
arm_iommu_unmap_resource(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1480 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1481 size_t size, enum dma_data_direction dir,
1482 unsigned long attrs)
1483 {
1484 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1485 dma_addr_t iova = dma_handle & PAGE_MASK;
1486 unsigned int offset = dma_handle & ~PAGE_MASK;
1487 size_t len = PAGE_ALIGN(size + offset);
1488
1489 if (!iova)
1490 return;
1491
1492 iommu_unmap(mapping->domain, iova, len);
1493 __free_iova(mapping, iova, len);
1494 }
1495
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1496 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1497 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1498 {
1499 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1500 dma_addr_t iova = handle & PAGE_MASK;
1501 struct page *page;
1502 unsigned int offset = handle & ~PAGE_MASK;
1503
1504 if (dev->dma_coherent || !iova)
1505 return;
1506
1507 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1508 __dma_page_dev_to_cpu(page, offset, size, dir);
1509 }
1510
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1511 static void arm_iommu_sync_single_for_device(struct device *dev,
1512 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1513 {
1514 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1515 dma_addr_t iova = handle & PAGE_MASK;
1516 struct page *page;
1517 unsigned int offset = handle & ~PAGE_MASK;
1518
1519 if (dev->dma_coherent || !iova)
1520 return;
1521
1522 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1523 __dma_page_cpu_to_dev(page, offset, size, dir);
1524 }
1525
1526 static const struct dma_map_ops iommu_ops = {
1527 .alloc = arm_iommu_alloc_attrs,
1528 .free = arm_iommu_free_attrs,
1529 .mmap = arm_iommu_mmap_attrs,
1530 .get_sgtable = arm_iommu_get_sgtable,
1531
1532 .map_page = arm_iommu_map_page,
1533 .unmap_page = arm_iommu_unmap_page,
1534 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1535 .sync_single_for_device = arm_iommu_sync_single_for_device,
1536
1537 .map_sg = arm_iommu_map_sg,
1538 .unmap_sg = arm_iommu_unmap_sg,
1539 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1540 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1541
1542 .map_resource = arm_iommu_map_resource,
1543 .unmap_resource = arm_iommu_unmap_resource,
1544 };
1545
1546 /**
1547 * arm_iommu_create_mapping
1548 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1549 * @base: start address of the valid IO address space
1550 * @size: maximum size of the valid IO address space
1551 *
1552 * Creates a mapping structure which holds information about used/unused
1553 * IO address ranges, which is required to perform memory allocation and
1554 * mapping with IOMMU aware functions.
1555 *
1556 * The client device need to be attached to the mapping with
1557 * arm_iommu_attach_device function.
1558 */
1559 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type * bus,dma_addr_t base,u64 size)1560 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1561 {
1562 unsigned int bits = size >> PAGE_SHIFT;
1563 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1564 struct dma_iommu_mapping *mapping;
1565 int extensions = 1;
1566 int err = -ENOMEM;
1567
1568 /* currently only 32-bit DMA address space is supported */
1569 if (size > DMA_BIT_MASK(32) + 1)
1570 return ERR_PTR(-ERANGE);
1571
1572 if (!bitmap_size)
1573 return ERR_PTR(-EINVAL);
1574
1575 if (bitmap_size > PAGE_SIZE) {
1576 extensions = bitmap_size / PAGE_SIZE;
1577 bitmap_size = PAGE_SIZE;
1578 }
1579
1580 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1581 if (!mapping)
1582 goto err;
1583
1584 mapping->bitmap_size = bitmap_size;
1585 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1586 GFP_KERNEL);
1587 if (!mapping->bitmaps)
1588 goto err2;
1589
1590 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1591 if (!mapping->bitmaps[0])
1592 goto err3;
1593
1594 mapping->nr_bitmaps = 1;
1595 mapping->extensions = extensions;
1596 mapping->base = base;
1597 mapping->bits = BITS_PER_BYTE * bitmap_size;
1598
1599 spin_lock_init(&mapping->lock);
1600
1601 mapping->domain = iommu_domain_alloc(bus);
1602 if (!mapping->domain)
1603 goto err4;
1604
1605 kref_init(&mapping->kref);
1606 return mapping;
1607 err4:
1608 kfree(mapping->bitmaps[0]);
1609 err3:
1610 kfree(mapping->bitmaps);
1611 err2:
1612 kfree(mapping);
1613 err:
1614 return ERR_PTR(err);
1615 }
1616 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1617
release_iommu_mapping(struct kref * kref)1618 static void release_iommu_mapping(struct kref *kref)
1619 {
1620 int i;
1621 struct dma_iommu_mapping *mapping =
1622 container_of(kref, struct dma_iommu_mapping, kref);
1623
1624 iommu_domain_free(mapping->domain);
1625 for (i = 0; i < mapping->nr_bitmaps; i++)
1626 kfree(mapping->bitmaps[i]);
1627 kfree(mapping->bitmaps);
1628 kfree(mapping);
1629 }
1630
extend_iommu_mapping(struct dma_iommu_mapping * mapping)1631 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1632 {
1633 int next_bitmap;
1634
1635 if (mapping->nr_bitmaps >= mapping->extensions)
1636 return -EINVAL;
1637
1638 next_bitmap = mapping->nr_bitmaps;
1639 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1640 GFP_ATOMIC);
1641 if (!mapping->bitmaps[next_bitmap])
1642 return -ENOMEM;
1643
1644 mapping->nr_bitmaps++;
1645
1646 return 0;
1647 }
1648
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)1649 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650 {
1651 if (mapping)
1652 kref_put(&mapping->kref, release_iommu_mapping);
1653 }
1654 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1655
__arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1656 static int __arm_iommu_attach_device(struct device *dev,
1657 struct dma_iommu_mapping *mapping)
1658 {
1659 int err;
1660
1661 err = iommu_attach_device(mapping->domain, dev);
1662 if (err)
1663 return err;
1664
1665 kref_get(&mapping->kref);
1666 to_dma_iommu_mapping(dev) = mapping;
1667
1668 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1669 return 0;
1670 }
1671
1672 /**
1673 * arm_iommu_attach_device
1674 * @dev: valid struct device pointer
1675 * @mapping: io address space mapping structure (returned from
1676 * arm_iommu_create_mapping)
1677 *
1678 * Attaches specified io address space mapping to the provided device.
1679 * This replaces the dma operations (dma_map_ops pointer) with the
1680 * IOMMU aware version.
1681 *
1682 * More than one client might be attached to the same io address space
1683 * mapping.
1684 */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1685 int arm_iommu_attach_device(struct device *dev,
1686 struct dma_iommu_mapping *mapping)
1687 {
1688 int err;
1689
1690 err = __arm_iommu_attach_device(dev, mapping);
1691 if (err)
1692 return err;
1693
1694 set_dma_ops(dev, &iommu_ops);
1695 return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1698
1699 /**
1700 * arm_iommu_detach_device
1701 * @dev: valid struct device pointer
1702 *
1703 * Detaches the provided device from a previously attached map.
1704 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1705 */
arm_iommu_detach_device(struct device * dev)1706 void arm_iommu_detach_device(struct device *dev)
1707 {
1708 struct dma_iommu_mapping *mapping;
1709
1710 mapping = to_dma_iommu_mapping(dev);
1711 if (!mapping) {
1712 dev_warn(dev, "Not attached\n");
1713 return;
1714 }
1715
1716 iommu_detach_device(mapping->domain, dev);
1717 kref_put(&mapping->kref, release_iommu_mapping);
1718 to_dma_iommu_mapping(dev) = NULL;
1719 set_dma_ops(dev, NULL);
1720
1721 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1722 }
1723 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1724
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)1725 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1726 const struct iommu_ops *iommu, bool coherent)
1727 {
1728 struct dma_iommu_mapping *mapping;
1729
1730 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1731 if (IS_ERR(mapping)) {
1732 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1733 size, dev_name(dev));
1734 return;
1735 }
1736
1737 if (__arm_iommu_attach_device(dev, mapping)) {
1738 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1739 dev_name(dev));
1740 arm_iommu_release_mapping(mapping);
1741 return;
1742 }
1743
1744 set_dma_ops(dev, &iommu_ops);
1745 }
1746
arm_teardown_iommu_dma_ops(struct device * dev)1747 static void arm_teardown_iommu_dma_ops(struct device *dev)
1748 {
1749 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1750
1751 if (!mapping)
1752 return;
1753
1754 arm_iommu_detach_device(dev);
1755 arm_iommu_release_mapping(mapping);
1756 }
1757
1758 #else
1759
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)1760 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1761 const struct iommu_ops *iommu, bool coherent)
1762 {
1763 }
1764
arm_teardown_iommu_dma_ops(struct device * dev)1765 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1766
1767 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
1768
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)1769 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1770 const struct iommu_ops *iommu, bool coherent)
1771 {
1772 /*
1773 * Due to legacy code that sets the ->dma_coherent flag from a bus
1774 * notifier we can't just assign coherent to the ->dma_coherent flag
1775 * here, but instead have to make sure we only set but never clear it
1776 * for now.
1777 */
1778 if (coherent)
1779 dev->dma_coherent = true;
1780
1781 /*
1782 * Don't override the dma_ops if they have already been set. Ideally
1783 * this should be the only location where dma_ops are set, remove this
1784 * check when all other callers of set_dma_ops will have disappeared.
1785 */
1786 if (dev->dma_ops)
1787 return;
1788
1789 if (iommu)
1790 arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1791
1792 xen_setup_dma_ops(dev);
1793 dev->archdata.dma_ops_setup = true;
1794 }
1795
arch_teardown_dma_ops(struct device * dev)1796 void arch_teardown_dma_ops(struct device *dev)
1797 {
1798 if (!dev->archdata.dma_ops_setup)
1799 return;
1800
1801 arm_teardown_iommu_dma_ops(dev);
1802 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1803 set_dma_ops(dev, NULL);
1804 }
1805
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)1806 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1807 enum dma_data_direction dir)
1808 {
1809 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1810 size, dir);
1811 }
1812
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)1813 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1814 enum dma_data_direction dir)
1815 {
1816 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1817 size, dir);
1818 }
1819
arch_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1820 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1821 gfp_t gfp, unsigned long attrs)
1822 {
1823 return __dma_alloc(dev, size, dma_handle, gfp,
1824 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1825 attrs, __builtin_return_address(0));
1826 }
1827
arch_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)1828 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1829 dma_addr_t dma_handle, unsigned long attrs)
1830 {
1831 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1832 }
1833