1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PMac DBDMA lowlevel functions
4 *
5 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
6 * code based on dmasound.c.
7 */
8
9
10 #include <linux/io.h>
11 #include <asm/irq.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/pci.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <sound/core.h>
21 #include "pmac.h"
22 #include <sound/pcm_params.h>
23 #include <asm/pmac_feature.h>
24
25
26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
27 static int awacs_freqs[8] = {
28 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
29 };
30 /* fixed frequency table for tumbler */
31 static int tumbler_freqs[1] = {
32 44100
33 };
34
35
36 /*
37 * we will allocate a single 'emergency' dbdma cmd block to use if the
38 * tx status comes up "DEAD". This happens on some PowerComputing Pmac
39 * clones, either owing to a bug in dbdma or some interaction between
40 * IDE and sound. However, this measure would deal with DEAD status if
41 * it appeared elsewhere.
42 */
43 static struct pmac_dbdma emergency_dbdma;
44 static int emergency_in_use;
45
46
47 /*
48 * allocate DBDMA command arrays
49 */
snd_pmac_dbdma_alloc(struct snd_pmac * chip,struct pmac_dbdma * rec,int size)50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
51 {
52 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
53
54 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
55 &rec->dma_base, GFP_KERNEL);
56 if (rec->space == NULL)
57 return -ENOMEM;
58 rec->size = size;
59 memset(rec->space, 0, rsize);
60 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
61 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
62
63 return 0;
64 }
65
snd_pmac_dbdma_free(struct snd_pmac * chip,struct pmac_dbdma * rec)66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
67 {
68 if (rec->space) {
69 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
70
71 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
72 }
73 }
74
75
76 /*
77 * pcm stuff
78 */
79
80 /*
81 * look up frequency table
82 */
83
snd_pmac_rate_index(struct snd_pmac * chip,struct pmac_stream * rec,unsigned int rate)84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
85 {
86 int i, ok, found;
87
88 ok = rec->cur_freqs;
89 if (rate > chip->freq_table[0])
90 return 0;
91 found = 0;
92 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
93 if (! (ok & 1)) continue;
94 found = i;
95 if (rate >= chip->freq_table[i])
96 break;
97 }
98 return found;
99 }
100
101 /*
102 * check whether another stream is active
103 */
another_stream(int stream)104 static inline int another_stream(int stream)
105 {
106 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108 }
109
110 /*
111 * allocate buffers
112 */
snd_pmac_pcm_hw_params(struct snd_pcm_substream * subs,struct snd_pcm_hw_params * hw_params)113 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
114 struct snd_pcm_hw_params *hw_params)
115 {
116 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
117 }
118
119 /*
120 * release buffers
121 */
snd_pmac_pcm_hw_free(struct snd_pcm_substream * subs)122 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
123 {
124 snd_pcm_lib_free_pages(subs);
125 return 0;
126 }
127
128 /*
129 * get a stream of the opposite direction
130 */
snd_pmac_get_stream(struct snd_pmac * chip,int stream)131 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
132 {
133 switch (stream) {
134 case SNDRV_PCM_STREAM_PLAYBACK:
135 return &chip->playback;
136 case SNDRV_PCM_STREAM_CAPTURE:
137 return &chip->capture;
138 default:
139 snd_BUG();
140 return NULL;
141 }
142 }
143
144 /*
145 * wait while run status is on
146 */
147 static inline void
snd_pmac_wait_ack(struct pmac_stream * rec)148 snd_pmac_wait_ack(struct pmac_stream *rec)
149 {
150 int timeout = 50000;
151 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
152 udelay(1);
153 }
154
155 /*
156 * set the format and rate to the chip.
157 * call the lowlevel function if defined (e.g. for AWACS).
158 */
snd_pmac_pcm_set_format(struct snd_pmac * chip)159 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
160 {
161 /* set up frequency and format */
162 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
163 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
164 if (chip->set_format)
165 chip->set_format(chip);
166 }
167
168 /*
169 * stop the DMA transfer
170 */
snd_pmac_dma_stop(struct pmac_stream * rec)171 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
172 {
173 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
174 snd_pmac_wait_ack(rec);
175 }
176
177 /*
178 * set the command pointer address
179 */
snd_pmac_dma_set_command(struct pmac_stream * rec,struct pmac_dbdma * cmd)180 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
181 {
182 out_le32(&rec->dma->cmdptr, cmd->addr);
183 }
184
185 /*
186 * start the DMA
187 */
snd_pmac_dma_run(struct pmac_stream * rec,int status)188 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
189 {
190 out_le32(&rec->dma->control, status | (status << 16));
191 }
192
193
194 /*
195 * prepare playback/capture stream
196 */
snd_pmac_pcm_prepare(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)197 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
198 {
199 int i;
200 volatile struct dbdma_cmd __iomem *cp;
201 struct snd_pcm_runtime *runtime = subs->runtime;
202 int rate_index;
203 long offset;
204 struct pmac_stream *astr;
205
206 rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
207 rec->period_size = snd_pcm_lib_period_bytes(subs);
208 rec->nperiods = rec->dma_size / rec->period_size;
209 rec->cur_period = 0;
210 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
211
212 /* set up constraints */
213 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
214 if (! astr)
215 return -EINVAL;
216 astr->cur_freqs = 1 << rate_index;
217 astr->cur_formats = 1 << runtime->format;
218 chip->rate_index = rate_index;
219 chip->format = runtime->format;
220
221 /* We really want to execute a DMA stop command, after the AWACS
222 * is initialized.
223 * For reasons I don't understand, it stops the hissing noise
224 * common to many PowerBook G3 systems and random noise otherwise
225 * captured on iBook2's about every third time. -ReneR
226 */
227 spin_lock_irq(&chip->reg_lock);
228 snd_pmac_dma_stop(rec);
229 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
230 snd_pmac_dma_set_command(rec, &chip->extra_dma);
231 snd_pmac_dma_run(rec, RUN);
232 spin_unlock_irq(&chip->reg_lock);
233 mdelay(5);
234 spin_lock_irq(&chip->reg_lock);
235 /* continuous DMA memory type doesn't provide the physical address,
236 * so we need to resolve the address here...
237 */
238 offset = runtime->dma_addr;
239 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
240 cp->phy_addr = cpu_to_le32(offset);
241 cp->req_count = cpu_to_le16(rec->period_size);
242 /*cp->res_count = cpu_to_le16(0);*/
243 cp->xfer_status = cpu_to_le16(0);
244 offset += rec->period_size;
245 }
246 /* make loop */
247 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
248 cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
249
250 snd_pmac_dma_stop(rec);
251 snd_pmac_dma_set_command(rec, &rec->cmd);
252 spin_unlock_irq(&chip->reg_lock);
253
254 return 0;
255 }
256
257
258 /*
259 * PCM trigger/stop
260 */
snd_pmac_pcm_trigger(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs,int cmd)261 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
262 struct snd_pcm_substream *subs, int cmd)
263 {
264 volatile struct dbdma_cmd __iomem *cp;
265 int i, command;
266
267 switch (cmd) {
268 case SNDRV_PCM_TRIGGER_START:
269 case SNDRV_PCM_TRIGGER_RESUME:
270 if (rec->running)
271 return -EBUSY;
272 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
273 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
274 spin_lock(&chip->reg_lock);
275 snd_pmac_beep_stop(chip);
276 snd_pmac_pcm_set_format(chip);
277 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
278 out_le16(&cp->command, command);
279 snd_pmac_dma_set_command(rec, &rec->cmd);
280 (void)in_le32(&rec->dma->status);
281 snd_pmac_dma_run(rec, RUN|WAKE);
282 rec->running = 1;
283 spin_unlock(&chip->reg_lock);
284 break;
285
286 case SNDRV_PCM_TRIGGER_STOP:
287 case SNDRV_PCM_TRIGGER_SUSPEND:
288 spin_lock(&chip->reg_lock);
289 rec->running = 0;
290 /*printk(KERN_DEBUG "stopped!!\n");*/
291 snd_pmac_dma_stop(rec);
292 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
293 out_le16(&cp->command, DBDMA_STOP);
294 spin_unlock(&chip->reg_lock);
295 break;
296
297 default:
298 return -EINVAL;
299 }
300
301 return 0;
302 }
303
304 /*
305 * return the current pointer
306 */
307 inline
snd_pmac_pcm_pointer(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)308 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
309 struct pmac_stream *rec,
310 struct snd_pcm_substream *subs)
311 {
312 int count = 0;
313
314 #if 1 /* hmm.. how can we get the current dma pointer?? */
315 int stat;
316 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
317 stat = le16_to_cpu(cp->xfer_status);
318 if (stat & (ACTIVE|DEAD)) {
319 count = in_le16(&cp->res_count);
320 if (count)
321 count = rec->period_size - count;
322 }
323 #endif
324 count += rec->cur_period * rec->period_size;
325 /*printk(KERN_DEBUG "pointer=%d\n", count);*/
326 return bytes_to_frames(subs->runtime, count);
327 }
328
329 /*
330 * playback
331 */
332
snd_pmac_playback_prepare(struct snd_pcm_substream * subs)333 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
334 {
335 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
336 return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
337 }
338
snd_pmac_playback_trigger(struct snd_pcm_substream * subs,int cmd)339 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
340 int cmd)
341 {
342 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
343 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
344 }
345
snd_pmac_playback_pointer(struct snd_pcm_substream * subs)346 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
347 {
348 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
349 return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
350 }
351
352
353 /*
354 * capture
355 */
356
snd_pmac_capture_prepare(struct snd_pcm_substream * subs)357 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
358 {
359 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
360 return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
361 }
362
snd_pmac_capture_trigger(struct snd_pcm_substream * subs,int cmd)363 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
364 int cmd)
365 {
366 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
367 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
368 }
369
snd_pmac_capture_pointer(struct snd_pcm_substream * subs)370 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
371 {
372 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
373 return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
374 }
375
376
377 /*
378 * Handle DEAD DMA transfers:
379 * if the TX status comes up "DEAD" - reported on some Power Computing machines
380 * we need to re-start the dbdma - but from a different physical start address
381 * and with a different transfer length. It would get very messy to do this
382 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
383 * addresses each time. So, we will keep a single dbdma_cmd block which can be
384 * fiddled with.
385 * When DEAD status is first reported the content of the faulted dbdma block is
386 * copied into the emergency buffer and we note that the buffer is in use.
387 * we then bump the start physical address by the amount that was successfully
388 * output before it died.
389 * On any subsequent DEAD result we just do the bump-ups (we know that we are
390 * already using the emergency dbdma_cmd).
391 * CHECK: this just tries to "do it". It is possible that we should abandon
392 * xfers when the number of residual bytes gets below a certain value - I can
393 * see that this might cause a loop-forever if a too small transfer causes
394 * DEAD status. However this is a TODO for now - we'll see what gets reported.
395 * When we get a successful transfer result with the emergency buffer we just
396 * pretend that it completed using the original dmdma_cmd and carry on. The
397 * 'next_cmd' field will already point back to the original loop of blocks.
398 */
snd_pmac_pcm_dead_xfer(struct pmac_stream * rec,volatile struct dbdma_cmd __iomem * cp)399 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
400 volatile struct dbdma_cmd __iomem *cp)
401 {
402 unsigned short req, res ;
403 unsigned int phy ;
404
405 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
406
407 /* to clear DEAD status we must first clear RUN
408 set it to quiescent to be on the safe side */
409 (void)in_le32(&rec->dma->status);
410 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
411
412 if (!emergency_in_use) { /* new problem */
413 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
414 sizeof(struct dbdma_cmd));
415 emergency_in_use = 1;
416 cp->xfer_status = cpu_to_le16(0);
417 cp->req_count = cpu_to_le16(rec->period_size);
418 cp = emergency_dbdma.cmds;
419 }
420
421 /* now bump the values to reflect the amount
422 we haven't yet shifted */
423 req = le16_to_cpu(cp->req_count);
424 res = le16_to_cpu(cp->res_count);
425 phy = le32_to_cpu(cp->phy_addr);
426 phy += (req - res);
427 cp->req_count = cpu_to_le16(res);
428 cp->res_count = cpu_to_le16(0);
429 cp->xfer_status = cpu_to_le16(0);
430 cp->phy_addr = cpu_to_le32(phy);
431
432 cp->cmd_dep = cpu_to_le32(rec->cmd.addr
433 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
434
435 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
436
437 /* point at our patched up command block */
438 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
439
440 /* we must re-start the controller */
441 (void)in_le32(&rec->dma->status);
442 /* should complete clearing the DEAD status */
443 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
444 }
445
446 /*
447 * update playback/capture pointer from interrupts
448 */
snd_pmac_pcm_update(struct snd_pmac * chip,struct pmac_stream * rec)449 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
450 {
451 volatile struct dbdma_cmd __iomem *cp;
452 int c;
453 int stat;
454
455 spin_lock(&chip->reg_lock);
456 if (rec->running) {
457 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
458
459 if (emergency_in_use) /* already using DEAD xfer? */
460 cp = emergency_dbdma.cmds;
461 else
462 cp = &rec->cmd.cmds[rec->cur_period];
463
464 stat = le16_to_cpu(cp->xfer_status);
465
466 if (stat & DEAD) {
467 snd_pmac_pcm_dead_xfer(rec, cp);
468 break; /* this block is still going */
469 }
470
471 if (emergency_in_use)
472 emergency_in_use = 0 ; /* done that */
473
474 if (! (stat & ACTIVE))
475 break;
476
477 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
478 cp->xfer_status = cpu_to_le16(0);
479 cp->req_count = cpu_to_le16(rec->period_size);
480 /*cp->res_count = cpu_to_le16(0);*/
481 rec->cur_period++;
482 if (rec->cur_period >= rec->nperiods) {
483 rec->cur_period = 0;
484 }
485
486 spin_unlock(&chip->reg_lock);
487 snd_pcm_period_elapsed(rec->substream);
488 spin_lock(&chip->reg_lock);
489 }
490 }
491 spin_unlock(&chip->reg_lock);
492 }
493
494
495 /*
496 * hw info
497 */
498
499 static const struct snd_pcm_hardware snd_pmac_playback =
500 {
501 .info = (SNDRV_PCM_INFO_INTERLEAVED |
502 SNDRV_PCM_INFO_MMAP |
503 SNDRV_PCM_INFO_MMAP_VALID |
504 SNDRV_PCM_INFO_RESUME),
505 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
506 .rates = SNDRV_PCM_RATE_8000_44100,
507 .rate_min = 7350,
508 .rate_max = 44100,
509 .channels_min = 2,
510 .channels_max = 2,
511 .buffer_bytes_max = 131072,
512 .period_bytes_min = 256,
513 .period_bytes_max = 16384,
514 .periods_min = 3,
515 .periods_max = PMAC_MAX_FRAGS,
516 };
517
518 static const struct snd_pcm_hardware snd_pmac_capture =
519 {
520 .info = (SNDRV_PCM_INFO_INTERLEAVED |
521 SNDRV_PCM_INFO_MMAP |
522 SNDRV_PCM_INFO_MMAP_VALID |
523 SNDRV_PCM_INFO_RESUME),
524 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
525 .rates = SNDRV_PCM_RATE_8000_44100,
526 .rate_min = 7350,
527 .rate_max = 44100,
528 .channels_min = 2,
529 .channels_max = 2,
530 .buffer_bytes_max = 131072,
531 .period_bytes_min = 256,
532 .period_bytes_max = 16384,
533 .periods_min = 3,
534 .periods_max = PMAC_MAX_FRAGS,
535 };
536
537
538 #if 0 // NYI
539 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
540 struct snd_pcm_hw_rule *rule)
541 {
542 struct snd_pmac *chip = rule->private;
543 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
544 int i, freq_table[8], num_freqs;
545
546 if (! rec)
547 return -EINVAL;
548 num_freqs = 0;
549 for (i = chip->num_freqs - 1; i >= 0; i--) {
550 if (rec->cur_freqs & (1 << i))
551 freq_table[num_freqs++] = chip->freq_table[i];
552 }
553
554 return snd_interval_list(hw_param_interval(params, rule->var),
555 num_freqs, freq_table, 0);
556 }
557
558 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
559 struct snd_pcm_hw_rule *rule)
560 {
561 struct snd_pmac *chip = rule->private;
562 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
563
564 if (! rec)
565 return -EINVAL;
566 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
567 rec->cur_formats);
568 }
569 #endif // NYI
570
snd_pmac_pcm_open(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)571 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
572 struct snd_pcm_substream *subs)
573 {
574 struct snd_pcm_runtime *runtime = subs->runtime;
575 int i;
576
577 /* look up frequency table and fill bit mask */
578 runtime->hw.rates = 0;
579 for (i = 0; i < chip->num_freqs; i++)
580 if (chip->freqs_ok & (1 << i))
581 runtime->hw.rates |=
582 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
583
584 /* check for minimum and maximum rates */
585 for (i = 0; i < chip->num_freqs; i++) {
586 if (chip->freqs_ok & (1 << i)) {
587 runtime->hw.rate_max = chip->freq_table[i];
588 break;
589 }
590 }
591 for (i = chip->num_freqs - 1; i >= 0; i--) {
592 if (chip->freqs_ok & (1 << i)) {
593 runtime->hw.rate_min = chip->freq_table[i];
594 break;
595 }
596 }
597 runtime->hw.formats = chip->formats_ok;
598 if (chip->can_capture) {
599 if (! chip->can_duplex)
600 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
601 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
602 }
603 runtime->private_data = rec;
604 rec->substream = subs;
605
606 #if 0 /* FIXME: still under development.. */
607 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
608 snd_pmac_hw_rule_rate, chip, rec->stream, -1);
609 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
610 snd_pmac_hw_rule_format, chip, rec->stream, -1);
611 #endif
612
613 runtime->hw.periods_max = rec->cmd.size - 1;
614
615 /* constraints to fix choppy sound */
616 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
617 return 0;
618 }
619
snd_pmac_pcm_close(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)620 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
621 struct snd_pcm_substream *subs)
622 {
623 struct pmac_stream *astr;
624
625 snd_pmac_dma_stop(rec);
626
627 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
628 if (! astr)
629 return -EINVAL;
630
631 /* reset constraints */
632 astr->cur_freqs = chip->freqs_ok;
633 astr->cur_formats = chip->formats_ok;
634
635 return 0;
636 }
637
snd_pmac_playback_open(struct snd_pcm_substream * subs)638 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
639 {
640 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
641
642 subs->runtime->hw = snd_pmac_playback;
643 return snd_pmac_pcm_open(chip, &chip->playback, subs);
644 }
645
snd_pmac_capture_open(struct snd_pcm_substream * subs)646 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
647 {
648 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
649
650 subs->runtime->hw = snd_pmac_capture;
651 return snd_pmac_pcm_open(chip, &chip->capture, subs);
652 }
653
snd_pmac_playback_close(struct snd_pcm_substream * subs)654 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
655 {
656 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
657
658 return snd_pmac_pcm_close(chip, &chip->playback, subs);
659 }
660
snd_pmac_capture_close(struct snd_pcm_substream * subs)661 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
662 {
663 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
664
665 return snd_pmac_pcm_close(chip, &chip->capture, subs);
666 }
667
668 /*
669 */
670
671 static const struct snd_pcm_ops snd_pmac_playback_ops = {
672 .open = snd_pmac_playback_open,
673 .close = snd_pmac_playback_close,
674 .ioctl = snd_pcm_lib_ioctl,
675 .hw_params = snd_pmac_pcm_hw_params,
676 .hw_free = snd_pmac_pcm_hw_free,
677 .prepare = snd_pmac_playback_prepare,
678 .trigger = snd_pmac_playback_trigger,
679 .pointer = snd_pmac_playback_pointer,
680 };
681
682 static const struct snd_pcm_ops snd_pmac_capture_ops = {
683 .open = snd_pmac_capture_open,
684 .close = snd_pmac_capture_close,
685 .ioctl = snd_pcm_lib_ioctl,
686 .hw_params = snd_pmac_pcm_hw_params,
687 .hw_free = snd_pmac_pcm_hw_free,
688 .prepare = snd_pmac_capture_prepare,
689 .trigger = snd_pmac_capture_trigger,
690 .pointer = snd_pmac_capture_pointer,
691 };
692
snd_pmac_pcm_new(struct snd_pmac * chip)693 int snd_pmac_pcm_new(struct snd_pmac *chip)
694 {
695 struct snd_pcm *pcm;
696 int err;
697 int num_captures = 1;
698
699 if (! chip->can_capture)
700 num_captures = 0;
701 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
702 if (err < 0)
703 return err;
704
705 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
706 if (chip->can_capture)
707 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
708
709 pcm->private_data = chip;
710 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
711 strcpy(pcm->name, chip->card->shortname);
712 chip->pcm = pcm;
713
714 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
715 if (chip->can_byte_swap)
716 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
717
718 chip->playback.cur_formats = chip->formats_ok;
719 chip->capture.cur_formats = chip->formats_ok;
720 chip->playback.cur_freqs = chip->freqs_ok;
721 chip->capture.cur_freqs = chip->freqs_ok;
722
723 /* preallocate 64k buffer */
724 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
725 &chip->pdev->dev,
726 64 * 1024, 64 * 1024);
727
728 return 0;
729 }
730
731
snd_pmac_dbdma_reset(struct snd_pmac * chip)732 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
733 {
734 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
735 snd_pmac_wait_ack(&chip->playback);
736 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
737 snd_pmac_wait_ack(&chip->capture);
738 }
739
740
741 /*
742 * handling beep
743 */
snd_pmac_beep_dma_start(struct snd_pmac * chip,int bytes,unsigned long addr,int speed)744 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
745 {
746 struct pmac_stream *rec = &chip->playback;
747
748 snd_pmac_dma_stop(rec);
749 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
750 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
751 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
752 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
753 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS);
754 out_le32(&chip->awacs->control,
755 (in_le32(&chip->awacs->control) & ~0x1f00)
756 | (speed << 8));
757 out_le32(&chip->awacs->byteswap, 0);
758 snd_pmac_dma_set_command(rec, &chip->extra_dma);
759 snd_pmac_dma_run(rec, RUN);
760 }
761
snd_pmac_beep_dma_stop(struct snd_pmac * chip)762 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
763 {
764 snd_pmac_dma_stop(&chip->playback);
765 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
766 snd_pmac_pcm_set_format(chip); /* reset format */
767 }
768
769
770 /*
771 * interrupt handlers
772 */
773 static irqreturn_t
snd_pmac_tx_intr(int irq,void * devid)774 snd_pmac_tx_intr(int irq, void *devid)
775 {
776 struct snd_pmac *chip = devid;
777 snd_pmac_pcm_update(chip, &chip->playback);
778 return IRQ_HANDLED;
779 }
780
781
782 static irqreturn_t
snd_pmac_rx_intr(int irq,void * devid)783 snd_pmac_rx_intr(int irq, void *devid)
784 {
785 struct snd_pmac *chip = devid;
786 snd_pmac_pcm_update(chip, &chip->capture);
787 return IRQ_HANDLED;
788 }
789
790
791 static irqreturn_t
snd_pmac_ctrl_intr(int irq,void * devid)792 snd_pmac_ctrl_intr(int irq, void *devid)
793 {
794 struct snd_pmac *chip = devid;
795 int ctrl = in_le32(&chip->awacs->control);
796
797 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
798 if (ctrl & MASK_PORTCHG) {
799 /* do something when headphone is plugged/unplugged? */
800 if (chip->update_automute)
801 chip->update_automute(chip, 1);
802 }
803 if (ctrl & MASK_CNTLERR) {
804 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
805 if (err && chip->model <= PMAC_SCREAMER)
806 snd_printk(KERN_DEBUG "error %x\n", err);
807 }
808 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
809 out_le32(&chip->awacs->control, ctrl);
810 return IRQ_HANDLED;
811 }
812
813
814 /*
815 * a wrapper to feature call for compatibility
816 */
snd_pmac_sound_feature(struct snd_pmac * chip,int enable)817 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
818 {
819 if (ppc_md.feature_call)
820 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
821 }
822
823 /*
824 * release resources
825 */
826
snd_pmac_free(struct snd_pmac * chip)827 static int snd_pmac_free(struct snd_pmac *chip)
828 {
829 /* stop sounds */
830 if (chip->initialized) {
831 snd_pmac_dbdma_reset(chip);
832 /* disable interrupts from awacs interface */
833 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
834 }
835
836 if (chip->node)
837 snd_pmac_sound_feature(chip, 0);
838
839 /* clean up mixer if any */
840 if (chip->mixer_free)
841 chip->mixer_free(chip);
842
843 snd_pmac_detach_beep(chip);
844
845 /* release resources */
846 if (chip->irq >= 0)
847 free_irq(chip->irq, (void*)chip);
848 if (chip->tx_irq >= 0)
849 free_irq(chip->tx_irq, (void*)chip);
850 if (chip->rx_irq >= 0)
851 free_irq(chip->rx_irq, (void*)chip);
852 snd_pmac_dbdma_free(chip, &chip->playback.cmd);
853 snd_pmac_dbdma_free(chip, &chip->capture.cmd);
854 snd_pmac_dbdma_free(chip, &chip->extra_dma);
855 snd_pmac_dbdma_free(chip, &emergency_dbdma);
856 iounmap(chip->macio_base);
857 iounmap(chip->latch_base);
858 iounmap(chip->awacs);
859 iounmap(chip->playback.dma);
860 iounmap(chip->capture.dma);
861
862 if (chip->node) {
863 int i;
864 for (i = 0; i < 3; i++) {
865 if (chip->requested & (1 << i))
866 release_mem_region(chip->rsrc[i].start,
867 resource_size(&chip->rsrc[i]));
868 }
869 }
870
871 pci_dev_put(chip->pdev);
872 of_node_put(chip->node);
873 kfree(chip);
874 return 0;
875 }
876
877
878 /*
879 * free the device
880 */
snd_pmac_dev_free(struct snd_device * device)881 static int snd_pmac_dev_free(struct snd_device *device)
882 {
883 struct snd_pmac *chip = device->device_data;
884 return snd_pmac_free(chip);
885 }
886
887
888 /*
889 * check the machine support byteswap (little-endian)
890 */
891
detect_byte_swap(struct snd_pmac * chip)892 static void detect_byte_swap(struct snd_pmac *chip)
893 {
894 struct device_node *mio;
895
896 /* if seems that Keylargo can't byte-swap */
897 for (mio = chip->node->parent; mio; mio = mio->parent) {
898 if (of_node_name_eq(mio, "mac-io")) {
899 if (of_device_is_compatible(mio, "Keylargo"))
900 chip->can_byte_swap = 0;
901 break;
902 }
903 }
904
905 /* it seems the Pismo & iBook can't byte-swap in hardware. */
906 if (of_machine_is_compatible("PowerBook3,1") ||
907 of_machine_is_compatible("PowerBook2,1"))
908 chip->can_byte_swap = 0 ;
909
910 if (of_machine_is_compatible("PowerBook2,1"))
911 chip->can_duplex = 0;
912 }
913
914
915 /*
916 * detect a sound chip
917 */
snd_pmac_detect(struct snd_pmac * chip)918 static int snd_pmac_detect(struct snd_pmac *chip)
919 {
920 struct device_node *sound;
921 struct device_node *dn;
922 const unsigned int *prop;
923 unsigned int l;
924 struct macio_chip* macio;
925
926 if (!machine_is(powermac))
927 return -ENODEV;
928
929 chip->subframe = 0;
930 chip->revision = 0;
931 chip->freqs_ok = 0xff; /* all ok */
932 chip->model = PMAC_AWACS;
933 chip->can_byte_swap = 1;
934 chip->can_duplex = 1;
935 chip->can_capture = 1;
936 chip->num_freqs = ARRAY_SIZE(awacs_freqs);
937 chip->freq_table = awacs_freqs;
938 chip->pdev = NULL;
939
940 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
941
942 /* check machine type */
943 if (of_machine_is_compatible("AAPL,3400/2400")
944 || of_machine_is_compatible("AAPL,3500"))
945 chip->is_pbook_3400 = 1;
946 else if (of_machine_is_compatible("PowerBook1,1")
947 || of_machine_is_compatible("AAPL,PowerBook1998"))
948 chip->is_pbook_G3 = 1;
949 chip->node = of_find_node_by_name(NULL, "awacs");
950 sound = of_node_get(chip->node);
951
952 /*
953 * powermac G3 models have a node called "davbus"
954 * with a child called "sound".
955 */
956 if (!chip->node)
957 chip->node = of_find_node_by_name(NULL, "davbus");
958 /*
959 * if we didn't find a davbus device, try 'i2s-a' since
960 * this seems to be what iBooks have
961 */
962 if (! chip->node) {
963 chip->node = of_find_node_by_name(NULL, "i2s-a");
964 if (chip->node && chip->node->parent &&
965 chip->node->parent->parent) {
966 if (of_device_is_compatible(chip->node->parent->parent,
967 "K2-Keylargo"))
968 chip->is_k2 = 1;
969 }
970 }
971 if (! chip->node)
972 return -ENODEV;
973
974 if (!sound) {
975 for_each_node_by_name(sound, "sound")
976 if (sound->parent == chip->node)
977 break;
978 }
979 if (! sound) {
980 of_node_put(chip->node);
981 chip->node = NULL;
982 return -ENODEV;
983 }
984 prop = of_get_property(sound, "sub-frame", NULL);
985 if (prop && *prop < 16)
986 chip->subframe = *prop;
987 prop = of_get_property(sound, "layout-id", NULL);
988 if (prop) {
989 /* partly deprecate snd-powermac, for those machines
990 * that have a layout-id property for now */
991 printk(KERN_INFO "snd-powermac no longer handles any "
992 "machines with a layout-id property "
993 "in the device-tree, use snd-aoa.\n");
994 of_node_put(sound);
995 of_node_put(chip->node);
996 chip->node = NULL;
997 return -ENODEV;
998 }
999 /* This should be verified on older screamers */
1000 if (of_device_is_compatible(sound, "screamer")) {
1001 chip->model = PMAC_SCREAMER;
1002 // chip->can_byte_swap = 0; /* FIXME: check this */
1003 }
1004 if (of_device_is_compatible(sound, "burgundy")) {
1005 chip->model = PMAC_BURGUNDY;
1006 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1007 }
1008 if (of_device_is_compatible(sound, "daca")) {
1009 chip->model = PMAC_DACA;
1010 chip->can_capture = 0; /* no capture */
1011 chip->can_duplex = 0;
1012 // chip->can_byte_swap = 0; /* FIXME: check this */
1013 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1014 }
1015 if (of_device_is_compatible(sound, "tumbler")) {
1016 chip->model = PMAC_TUMBLER;
1017 chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1018 || of_machine_is_compatible("PowerBook3,2")
1019 || of_machine_is_compatible("PowerBook3,3")
1020 || of_machine_is_compatible("PowerBook4,1")
1021 || of_machine_is_compatible("PowerBook4,2")
1022 || of_machine_is_compatible("PowerBook4,3");
1023 chip->can_duplex = 0;
1024 // chip->can_byte_swap = 0; /* FIXME: check this */
1025 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1026 chip->freq_table = tumbler_freqs;
1027 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1028 }
1029 if (of_device_is_compatible(sound, "snapper")) {
1030 chip->model = PMAC_SNAPPER;
1031 // chip->can_byte_swap = 0; /* FIXME: check this */
1032 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1033 chip->freq_table = tumbler_freqs;
1034 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1035 }
1036 prop = of_get_property(sound, "device-id", NULL);
1037 if (prop)
1038 chip->device_id = *prop;
1039 dn = of_find_node_by_name(NULL, "perch");
1040 chip->has_iic = (dn != NULL);
1041 of_node_put(dn);
1042
1043 /* We need the PCI device for DMA allocations, let's use a crude method
1044 * for now ...
1045 */
1046 macio = macio_find(chip->node, macio_unknown);
1047 if (macio == NULL)
1048 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1049 else {
1050 struct pci_dev *pdev = NULL;
1051
1052 for_each_pci_dev(pdev) {
1053 struct device_node *np = pci_device_to_OF_node(pdev);
1054 if (np && np == macio->of_node) {
1055 chip->pdev = pdev;
1056 break;
1057 }
1058 }
1059 }
1060 if (chip->pdev == NULL)
1061 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1062 " device !\n");
1063
1064 detect_byte_swap(chip);
1065
1066 /* look for a property saying what sample rates
1067 are available */
1068 prop = of_get_property(sound, "sample-rates", &l);
1069 if (! prop)
1070 prop = of_get_property(sound, "output-frame-rates", &l);
1071 if (prop) {
1072 int i;
1073 chip->freqs_ok = 0;
1074 for (l /= sizeof(int); l > 0; --l) {
1075 unsigned int r = *prop++;
1076 /* Apple 'Fixed' format */
1077 if (r >= 0x10000)
1078 r >>= 16;
1079 for (i = 0; i < chip->num_freqs; ++i) {
1080 if (r == chip->freq_table[i]) {
1081 chip->freqs_ok |= (1 << i);
1082 break;
1083 }
1084 }
1085 }
1086 } else {
1087 /* assume only 44.1khz */
1088 chip->freqs_ok = 1;
1089 }
1090
1091 of_node_put(sound);
1092 return 0;
1093 }
1094
1095 #ifdef PMAC_SUPPORT_AUTOMUTE
1096 /*
1097 * auto-mute
1098 */
pmac_auto_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1099 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1100 struct snd_ctl_elem_value *ucontrol)
1101 {
1102 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1103 ucontrol->value.integer.value[0] = chip->auto_mute;
1104 return 0;
1105 }
1106
pmac_auto_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1107 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1108 struct snd_ctl_elem_value *ucontrol)
1109 {
1110 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1111 if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1112 chip->auto_mute = !!ucontrol->value.integer.value[0];
1113 if (chip->update_automute)
1114 chip->update_automute(chip, 1);
1115 return 1;
1116 }
1117 return 0;
1118 }
1119
pmac_hp_detect_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1120 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1121 struct snd_ctl_elem_value *ucontrol)
1122 {
1123 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1124 if (chip->detect_headphone)
1125 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1126 else
1127 ucontrol->value.integer.value[0] = 0;
1128 return 0;
1129 }
1130
1131 static struct snd_kcontrol_new auto_mute_controls[] = {
1132 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1133 .name = "Auto Mute Switch",
1134 .info = snd_pmac_boolean_mono_info,
1135 .get = pmac_auto_mute_get,
1136 .put = pmac_auto_mute_put,
1137 },
1138 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1139 .name = "Headphone Detection",
1140 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1141 .info = snd_pmac_boolean_mono_info,
1142 .get = pmac_hp_detect_get,
1143 },
1144 };
1145
snd_pmac_add_automute(struct snd_pmac * chip)1146 int snd_pmac_add_automute(struct snd_pmac *chip)
1147 {
1148 int err;
1149 chip->auto_mute = 1;
1150 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1151 if (err < 0) {
1152 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1153 return err;
1154 }
1155 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1156 return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1157 }
1158 #endif /* PMAC_SUPPORT_AUTOMUTE */
1159
1160 /*
1161 * create and detect a pmac chip record
1162 */
snd_pmac_new(struct snd_card * card,struct snd_pmac ** chip_return)1163 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1164 {
1165 struct snd_pmac *chip;
1166 struct device_node *np;
1167 int i, err;
1168 unsigned int irq;
1169 unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1170 static struct snd_device_ops ops = {
1171 .dev_free = snd_pmac_dev_free,
1172 };
1173
1174 *chip_return = NULL;
1175
1176 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1177 if (chip == NULL)
1178 return -ENOMEM;
1179 chip->card = card;
1180
1181 spin_lock_init(&chip->reg_lock);
1182 chip->irq = chip->tx_irq = chip->rx_irq = -1;
1183
1184 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1185 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1186
1187 if ((err = snd_pmac_detect(chip)) < 0)
1188 goto __error;
1189
1190 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1191 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1192 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1193 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1194 err = -ENOMEM;
1195 goto __error;
1196 }
1197
1198 np = chip->node;
1199 chip->requested = 0;
1200 if (chip->is_k2) {
1201 static char *rnames[] = {
1202 "Sound Control", "Sound DMA" };
1203 for (i = 0; i < 2; i ++) {
1204 if (of_address_to_resource(np->parent, i,
1205 &chip->rsrc[i])) {
1206 printk(KERN_ERR "snd: can't translate rsrc "
1207 " %d (%s)\n", i, rnames[i]);
1208 err = -ENODEV;
1209 goto __error;
1210 }
1211 if (request_mem_region(chip->rsrc[i].start,
1212 resource_size(&chip->rsrc[i]),
1213 rnames[i]) == NULL) {
1214 printk(KERN_ERR "snd: can't request rsrc "
1215 " %d (%s: %pR)\n",
1216 i, rnames[i], &chip->rsrc[i]);
1217 err = -ENODEV;
1218 goto __error;
1219 }
1220 chip->requested |= (1 << i);
1221 }
1222 ctrl_addr = chip->rsrc[0].start;
1223 txdma_addr = chip->rsrc[1].start;
1224 rxdma_addr = txdma_addr + 0x100;
1225 } else {
1226 static char *rnames[] = {
1227 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1228 for (i = 0; i < 3; i ++) {
1229 if (of_address_to_resource(np, i,
1230 &chip->rsrc[i])) {
1231 printk(KERN_ERR "snd: can't translate rsrc "
1232 " %d (%s)\n", i, rnames[i]);
1233 err = -ENODEV;
1234 goto __error;
1235 }
1236 if (request_mem_region(chip->rsrc[i].start,
1237 resource_size(&chip->rsrc[i]),
1238 rnames[i]) == NULL) {
1239 printk(KERN_ERR "snd: can't request rsrc "
1240 " %d (%s: %pR)\n",
1241 i, rnames[i], &chip->rsrc[i]);
1242 err = -ENODEV;
1243 goto __error;
1244 }
1245 chip->requested |= (1 << i);
1246 }
1247 ctrl_addr = chip->rsrc[0].start;
1248 txdma_addr = chip->rsrc[1].start;
1249 rxdma_addr = chip->rsrc[2].start;
1250 }
1251
1252 chip->awacs = ioremap(ctrl_addr, 0x1000);
1253 chip->playback.dma = ioremap(txdma_addr, 0x100);
1254 chip->capture.dma = ioremap(rxdma_addr, 0x100);
1255 if (chip->model <= PMAC_BURGUNDY) {
1256 irq = irq_of_parse_and_map(np, 0);
1257 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1258 "PMac", (void*)chip)) {
1259 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1260 irq);
1261 err = -EBUSY;
1262 goto __error;
1263 }
1264 chip->irq = irq;
1265 }
1266 irq = irq_of_parse_and_map(np, 1);
1267 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1268 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1269 err = -EBUSY;
1270 goto __error;
1271 }
1272 chip->tx_irq = irq;
1273 irq = irq_of_parse_and_map(np, 2);
1274 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1275 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1276 err = -EBUSY;
1277 goto __error;
1278 }
1279 chip->rx_irq = irq;
1280
1281 snd_pmac_sound_feature(chip, 1);
1282
1283 /* reset & enable interrupts */
1284 if (chip->model <= PMAC_BURGUNDY)
1285 out_le32(&chip->awacs->control, chip->control_mask);
1286
1287 /* Powerbooks have odd ways of enabling inputs such as
1288 an expansion-bay CD or sound from an internal modem
1289 or a PC-card modem. */
1290 if (chip->is_pbook_3400) {
1291 /* Enable CD and PC-card sound inputs. */
1292 /* This is done by reading from address
1293 * f301a000, + 0x10 to enable the expansion-bay
1294 * CD sound input, + 0x80 to enable the PC-card
1295 * sound input. The 0x100 enables the SCSI bus
1296 * terminator power.
1297 */
1298 chip->latch_base = ioremap (0xf301a000, 0x1000);
1299 in_8(chip->latch_base + 0x190);
1300 } else if (chip->is_pbook_G3) {
1301 struct device_node* mio;
1302 for (mio = chip->node->parent; mio; mio = mio->parent) {
1303 if (of_node_name_eq(mio, "mac-io")) {
1304 struct resource r;
1305 if (of_address_to_resource(mio, 0, &r) == 0)
1306 chip->macio_base =
1307 ioremap(r.start, 0x40);
1308 break;
1309 }
1310 }
1311 /* Enable CD sound input. */
1312 /* The relevant bits for writing to this byte are 0x8f.
1313 * I haven't found out what the 0x80 bit does.
1314 * For the 0xf bits, writing 3 or 7 enables the CD
1315 * input, any other value disables it. Values
1316 * 1, 3, 5, 7 enable the microphone. Values 0, 2,
1317 * 4, 6, 8 - f enable the input from the modem.
1318 */
1319 if (chip->macio_base)
1320 out_8(chip->macio_base + 0x37, 3);
1321 }
1322
1323 /* Reset dbdma channels */
1324 snd_pmac_dbdma_reset(chip);
1325
1326 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1327 goto __error;
1328
1329 *chip_return = chip;
1330 return 0;
1331
1332 __error:
1333 snd_pmac_free(chip);
1334 return err;
1335 }
1336
1337
1338 /*
1339 * sleep notify for powerbook
1340 */
1341
1342 #ifdef CONFIG_PM
1343
1344 /*
1345 * Save state when going to sleep, restore it afterwards.
1346 */
1347
snd_pmac_suspend(struct snd_pmac * chip)1348 void snd_pmac_suspend(struct snd_pmac *chip)
1349 {
1350 unsigned long flags;
1351
1352 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1353 if (chip->suspend)
1354 chip->suspend(chip);
1355 spin_lock_irqsave(&chip->reg_lock, flags);
1356 snd_pmac_beep_stop(chip);
1357 spin_unlock_irqrestore(&chip->reg_lock, flags);
1358 if (chip->irq >= 0)
1359 disable_irq(chip->irq);
1360 if (chip->tx_irq >= 0)
1361 disable_irq(chip->tx_irq);
1362 if (chip->rx_irq >= 0)
1363 disable_irq(chip->rx_irq);
1364 snd_pmac_sound_feature(chip, 0);
1365 }
1366
snd_pmac_resume(struct snd_pmac * chip)1367 void snd_pmac_resume(struct snd_pmac *chip)
1368 {
1369 snd_pmac_sound_feature(chip, 1);
1370 if (chip->resume)
1371 chip->resume(chip);
1372 /* enable CD sound input */
1373 if (chip->macio_base && chip->is_pbook_G3)
1374 out_8(chip->macio_base + 0x37, 3);
1375 else if (chip->is_pbook_3400)
1376 in_8(chip->latch_base + 0x190);
1377
1378 snd_pmac_pcm_set_format(chip);
1379
1380 if (chip->irq >= 0)
1381 enable_irq(chip->irq);
1382 if (chip->tx_irq >= 0)
1383 enable_irq(chip->tx_irq);
1384 if (chip->rx_irq >= 0)
1385 enable_irq(chip->rx_irq);
1386
1387 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1388 }
1389
1390 #endif /* CONFIG_PM */
1391
1392