1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52 TLSV4,
53 TLSV6,
54 TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 struct proto *base);
67
update_sk_prot(struct sock * sk,struct tls_context * ctx)68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
wait_on_pending_writer(struct sock * sk,long * timeo)75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77 int rc = 0;
78 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 if (!*timeo) {
83 rc = -EAGAIN;
84 break;
85 }
86
87 if (signal_pending(current)) {
88 rc = sock_intr_errno(*timeo);
89 break;
90 }
91
92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 break;
94 }
95 remove_wait_queue(sk_sleep(sk), &wait);
96 return rc;
97 }
98
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)99 int tls_push_sg(struct sock *sk,
100 struct tls_context *ctx,
101 struct scatterlist *sg,
102 u16 first_offset,
103 int flags)
104 {
105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 int ret = 0;
107 struct page *p;
108 size_t size;
109 int offset = first_offset;
110
111 size = sg->length - offset;
112 offset += sg->offset;
113
114 ctx->in_tcp_sendpages = true;
115 while (1) {
116 if (sg_is_last(sg))
117 sendpage_flags = flags;
118
119 /* is sending application-limited? */
120 tcp_rate_check_app_limited(sk);
121 p = sg_page(sg);
122 retry:
123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125 if (ret != size) {
126 if (ret > 0) {
127 offset += ret;
128 size -= ret;
129 goto retry;
130 }
131
132 offset -= sg->offset;
133 ctx->partially_sent_offset = offset;
134 ctx->partially_sent_record = (void *)sg;
135 ctx->in_tcp_sendpages = false;
136 return ret;
137 }
138
139 put_page(p);
140 sk_mem_uncharge(sk, sg->length);
141 sg = sg_next(sg);
142 if (!sg)
143 break;
144
145 offset = sg->offset;
146 size = sg->length;
147 }
148
149 ctx->in_tcp_sendpages = false;
150
151 return 0;
152 }
153
tls_handle_open_record(struct sock * sk,int flags)154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 struct tls_context *ctx = tls_get_ctx(sk);
157
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
160
161 return 0;
162 }
163
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
166 {
167 struct cmsghdr *cmsg;
168 int rc = -EINVAL;
169
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
172 return -EINVAL;
173 if (cmsg->cmsg_level != SOL_TLS)
174 continue;
175
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 return -EINVAL;
180
181 if (msg->msg_flags & MSG_MORE)
182 return -EINVAL;
183
184 rc = tls_handle_open_record(sk, msg->msg_flags);
185 if (rc)
186 return rc;
187
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 rc = 0;
190 break;
191 default:
192 return -EINVAL;
193 }
194 }
195
196 return rc;
197 }
198
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 int flags)
201 {
202 struct scatterlist *sg;
203 u16 offset;
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214 struct scatterlist *sg;
215
216 sg = ctx->partially_sent_record;
217 if (!sg)
218 return false;
219
220 while (1) {
221 put_page(sg_page(sg));
222 sk_mem_uncharge(sk, sg->length);
223
224 if (sg_is_last(sg))
225 break;
226 sg++;
227 }
228 ctx->partially_sent_record = NULL;
229 return true;
230 }
231
tls_write_space(struct sock * sk)232 static void tls_write_space(struct sock *sk)
233 {
234 struct tls_context *ctx = tls_get_ctx(sk);
235
236 /* If in_tcp_sendpages call lower protocol write space handler
237 * to ensure we wake up any waiting operations there. For example
238 * if do_tcp_sendpages where to call sk_wait_event.
239 */
240 if (ctx->in_tcp_sendpages) {
241 ctx->sk_write_space(sk);
242 return;
243 }
244
245 #ifdef CONFIG_TLS_DEVICE
246 if (ctx->tx_conf == TLS_HW)
247 tls_device_write_space(sk, ctx);
248 else
249 #endif
250 tls_sw_write_space(sk, ctx);
251
252 ctx->sk_write_space(sk);
253 }
254
255 /**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk: socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264 {
265 if (!ctx)
266 return;
267
268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270 mutex_destroy(&ctx->tx_lock);
271
272 if (sk)
273 kfree_rcu(ctx, rcu);
274 else
275 kfree(ctx);
276 }
277
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)278 static void tls_sk_proto_cleanup(struct sock *sk,
279 struct tls_context *ctx, long timeo)
280 {
281 if (unlikely(sk->sk_write_pending) &&
282 !wait_on_pending_writer(sk, &timeo))
283 tls_handle_open_record(sk, 0);
284
285 /* We need these for tls_sw_fallback handling of other packets */
286 if (ctx->tx_conf == TLS_SW) {
287 kfree(ctx->tx.rec_seq);
288 kfree(ctx->tx.iv);
289 tls_sw_release_resources_tx(sk);
290 } else if (ctx->tx_conf == TLS_HW) {
291 tls_device_free_resources_tx(sk);
292 }
293
294 if (ctx->rx_conf == TLS_SW)
295 tls_sw_release_resources_rx(sk);
296 else if (ctx->rx_conf == TLS_HW)
297 tls_device_offload_cleanup_rx(sk);
298 }
299
tls_sk_proto_close(struct sock * sk,long timeout)300 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 {
302 struct inet_connection_sock *icsk = inet_csk(sk);
303 struct tls_context *ctx = tls_get_ctx(sk);
304 long timeo = sock_sndtimeo(sk, 0);
305 bool free_ctx;
306
307 if (ctx->tx_conf == TLS_SW)
308 tls_sw_cancel_work_tx(ctx);
309
310 lock_sock(sk);
311 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316 write_lock_bh(&sk->sk_callback_lock);
317 if (free_ctx)
318 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319 sk->sk_prot = ctx->sk_proto;
320 if (sk->sk_write_space == tls_write_space)
321 sk->sk_write_space = ctx->sk_write_space;
322 write_unlock_bh(&sk->sk_callback_lock);
323 release_sock(sk);
324 if (ctx->tx_conf == TLS_SW)
325 tls_sw_free_ctx_tx(ctx);
326 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327 tls_sw_strparser_done(ctx);
328 if (ctx->rx_conf == TLS_SW)
329 tls_sw_free_ctx_rx(ctx);
330 ctx->sk_proto->close(sk, timeout);
331
332 if (free_ctx)
333 tls_ctx_free(sk, ctx);
334 }
335
do_tls_getsockopt_tx(struct sock * sk,char __user * optval,int __user * optlen)336 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337 int __user *optlen)
338 {
339 int rc = 0;
340 struct tls_context *ctx = tls_get_ctx(sk);
341 struct tls_crypto_info *crypto_info;
342 int len;
343
344 if (get_user(len, optlen))
345 return -EFAULT;
346
347 if (!optval || (len < sizeof(*crypto_info))) {
348 rc = -EINVAL;
349 goto out;
350 }
351
352 if (!ctx) {
353 rc = -EBUSY;
354 goto out;
355 }
356
357 /* get user crypto info */
358 crypto_info = &ctx->crypto_send.info;
359
360 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361 rc = -EBUSY;
362 goto out;
363 }
364
365 if (len == sizeof(*crypto_info)) {
366 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367 rc = -EFAULT;
368 goto out;
369 }
370
371 switch (crypto_info->cipher_type) {
372 case TLS_CIPHER_AES_GCM_128: {
373 struct tls12_crypto_info_aes_gcm_128 *
374 crypto_info_aes_gcm_128 =
375 container_of(crypto_info,
376 struct tls12_crypto_info_aes_gcm_128,
377 info);
378
379 if (len != sizeof(*crypto_info_aes_gcm_128)) {
380 rc = -EINVAL;
381 goto out;
382 }
383 lock_sock(sk);
384 memcpy(crypto_info_aes_gcm_128->iv,
385 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386 TLS_CIPHER_AES_GCM_128_IV_SIZE);
387 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389 release_sock(sk);
390 if (copy_to_user(optval,
391 crypto_info_aes_gcm_128,
392 sizeof(*crypto_info_aes_gcm_128)))
393 rc = -EFAULT;
394 break;
395 }
396 case TLS_CIPHER_AES_GCM_256: {
397 struct tls12_crypto_info_aes_gcm_256 *
398 crypto_info_aes_gcm_256 =
399 container_of(crypto_info,
400 struct tls12_crypto_info_aes_gcm_256,
401 info);
402
403 if (len != sizeof(*crypto_info_aes_gcm_256)) {
404 rc = -EINVAL;
405 goto out;
406 }
407 lock_sock(sk);
408 memcpy(crypto_info_aes_gcm_256->iv,
409 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410 TLS_CIPHER_AES_GCM_256_IV_SIZE);
411 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413 release_sock(sk);
414 if (copy_to_user(optval,
415 crypto_info_aes_gcm_256,
416 sizeof(*crypto_info_aes_gcm_256)))
417 rc = -EFAULT;
418 break;
419 }
420 default:
421 rc = -EINVAL;
422 }
423
424 out:
425 return rc;
426 }
427
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)428 static int do_tls_getsockopt(struct sock *sk, int optname,
429 char __user *optval, int __user *optlen)
430 {
431 int rc = 0;
432
433 switch (optname) {
434 case TLS_TX:
435 rc = do_tls_getsockopt_tx(sk, optval, optlen);
436 break;
437 default:
438 rc = -ENOPROTOOPT;
439 break;
440 }
441 return rc;
442 }
443
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)444 static int tls_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen)
446 {
447 struct tls_context *ctx = tls_get_ctx(sk);
448
449 if (level != SOL_TLS)
450 return ctx->sk_proto->getsockopt(sk, level,
451 optname, optval, optlen);
452
453 return do_tls_getsockopt(sk, optname, optval, optlen);
454 }
455
do_tls_setsockopt_conf(struct sock * sk,char __user * optval,unsigned int optlen,int tx)456 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457 unsigned int optlen, int tx)
458 {
459 struct tls_crypto_info *crypto_info;
460 struct tls_crypto_info *alt_crypto_info;
461 struct tls_context *ctx = tls_get_ctx(sk);
462 size_t optsize;
463 int rc = 0;
464 int conf;
465
466 if (!optval || (optlen < sizeof(*crypto_info))) {
467 rc = -EINVAL;
468 goto out;
469 }
470
471 if (tx) {
472 crypto_info = &ctx->crypto_send.info;
473 alt_crypto_info = &ctx->crypto_recv.info;
474 } else {
475 crypto_info = &ctx->crypto_recv.info;
476 alt_crypto_info = &ctx->crypto_send.info;
477 }
478
479 /* Currently we don't support set crypto info more than one time */
480 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481 rc = -EBUSY;
482 goto out;
483 }
484
485 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486 if (rc) {
487 rc = -EFAULT;
488 goto err_crypto_info;
489 }
490
491 /* check version */
492 if (crypto_info->version != TLS_1_2_VERSION &&
493 crypto_info->version != TLS_1_3_VERSION) {
494 rc = -ENOTSUPP;
495 goto err_crypto_info;
496 }
497
498 /* Ensure that TLS version and ciphers are same in both directions */
499 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500 if (alt_crypto_info->version != crypto_info->version ||
501 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502 rc = -EINVAL;
503 goto err_crypto_info;
504 }
505 }
506
507 switch (crypto_info->cipher_type) {
508 case TLS_CIPHER_AES_GCM_128:
509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510 break;
511 case TLS_CIPHER_AES_GCM_256: {
512 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513 break;
514 }
515 case TLS_CIPHER_AES_CCM_128:
516 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517 break;
518 default:
519 rc = -EINVAL;
520 goto err_crypto_info;
521 }
522
523 if (optlen != optsize) {
524 rc = -EINVAL;
525 goto err_crypto_info;
526 }
527
528 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529 optlen - sizeof(*crypto_info));
530 if (rc) {
531 rc = -EFAULT;
532 goto err_crypto_info;
533 }
534
535 if (tx) {
536 rc = tls_set_device_offload(sk, ctx);
537 conf = TLS_HW;
538 if (rc) {
539 rc = tls_set_sw_offload(sk, ctx, 1);
540 if (rc)
541 goto err_crypto_info;
542 conf = TLS_SW;
543 }
544 } else {
545 rc = tls_set_device_offload_rx(sk, ctx);
546 conf = TLS_HW;
547 if (rc) {
548 rc = tls_set_sw_offload(sk, ctx, 0);
549 if (rc)
550 goto err_crypto_info;
551 conf = TLS_SW;
552 }
553 tls_sw_strparser_arm(sk, ctx);
554 }
555
556 if (tx)
557 ctx->tx_conf = conf;
558 else
559 ctx->rx_conf = conf;
560 update_sk_prot(sk, ctx);
561 if (tx) {
562 ctx->sk_write_space = sk->sk_write_space;
563 sk->sk_write_space = tls_write_space;
564 } else {
565 sk->sk_socket->ops = &tls_sw_proto_ops;
566 }
567 goto out;
568
569 err_crypto_info:
570 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571 out:
572 return rc;
573 }
574
do_tls_setsockopt(struct sock * sk,int optname,char __user * optval,unsigned int optlen)575 static int do_tls_setsockopt(struct sock *sk, int optname,
576 char __user *optval, unsigned int optlen)
577 {
578 int rc = 0;
579
580 switch (optname) {
581 case TLS_TX:
582 case TLS_RX:
583 lock_sock(sk);
584 rc = do_tls_setsockopt_conf(sk, optval, optlen,
585 optname == TLS_TX);
586 release_sock(sk);
587 break;
588 default:
589 rc = -ENOPROTOOPT;
590 break;
591 }
592 return rc;
593 }
594
tls_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)595 static int tls_setsockopt(struct sock *sk, int level, int optname,
596 char __user *optval, unsigned int optlen)
597 {
598 struct tls_context *ctx = tls_get_ctx(sk);
599
600 if (level != SOL_TLS)
601 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602 optlen);
603
604 return do_tls_setsockopt(sk, optname, optval, optlen);
605 }
606
create_ctx(struct sock * sk)607 static struct tls_context *create_ctx(struct sock *sk)
608 {
609 struct inet_connection_sock *icsk = inet_csk(sk);
610 struct tls_context *ctx;
611
612 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613 if (!ctx)
614 return NULL;
615
616 mutex_init(&ctx->tx_lock);
617 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618 ctx->sk_proto = sk->sk_prot;
619 return ctx;
620 }
621
tls_build_proto(struct sock * sk)622 static void tls_build_proto(struct sock *sk)
623 {
624 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
625
626 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627 if (ip_ver == TLSV6 &&
628 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629 mutex_lock(&tcpv6_prot_mutex);
630 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631 build_protos(tls_prots[TLSV6], sk->sk_prot);
632 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633 }
634 mutex_unlock(&tcpv6_prot_mutex);
635 }
636
637 if (ip_ver == TLSV4 &&
638 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639 mutex_lock(&tcpv4_prot_mutex);
640 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641 build_protos(tls_prots[TLSV4], sk->sk_prot);
642 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643 }
644 mutex_unlock(&tcpv4_prot_mutex);
645 }
646 }
647
tls_hw_sk_destruct(struct sock * sk)648 static void tls_hw_sk_destruct(struct sock *sk)
649 {
650 struct tls_context *ctx = tls_get_ctx(sk);
651 struct inet_connection_sock *icsk = inet_csk(sk);
652
653 ctx->sk_destruct(sk);
654 /* Free ctx */
655 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656 tls_ctx_free(sk, ctx);
657 }
658
tls_hw_prot(struct sock * sk)659 static int tls_hw_prot(struct sock *sk)
660 {
661 struct tls_context *ctx;
662 struct tls_device *dev;
663 int rc = 0;
664
665 spin_lock_bh(&device_spinlock);
666 list_for_each_entry(dev, &device_list, dev_list) {
667 if (dev->feature && dev->feature(dev)) {
668 ctx = create_ctx(sk);
669 if (!ctx)
670 goto out;
671
672 spin_unlock_bh(&device_spinlock);
673 tls_build_proto(sk);
674 ctx->sk_destruct = sk->sk_destruct;
675 sk->sk_destruct = tls_hw_sk_destruct;
676 ctx->rx_conf = TLS_HW_RECORD;
677 ctx->tx_conf = TLS_HW_RECORD;
678 update_sk_prot(sk, ctx);
679 spin_lock_bh(&device_spinlock);
680 rc = 1;
681 break;
682 }
683 }
684 out:
685 spin_unlock_bh(&device_spinlock);
686 return rc;
687 }
688
tls_hw_unhash(struct sock * sk)689 static void tls_hw_unhash(struct sock *sk)
690 {
691 struct tls_context *ctx = tls_get_ctx(sk);
692 struct tls_device *dev;
693
694 spin_lock_bh(&device_spinlock);
695 list_for_each_entry(dev, &device_list, dev_list) {
696 if (dev->unhash) {
697 kref_get(&dev->kref);
698 spin_unlock_bh(&device_spinlock);
699 dev->unhash(dev, sk);
700 kref_put(&dev->kref, dev->release);
701 spin_lock_bh(&device_spinlock);
702 }
703 }
704 spin_unlock_bh(&device_spinlock);
705 ctx->sk_proto->unhash(sk);
706 }
707
tls_hw_hash(struct sock * sk)708 static int tls_hw_hash(struct sock *sk)
709 {
710 struct tls_context *ctx = tls_get_ctx(sk);
711 struct tls_device *dev;
712 int err;
713
714 err = ctx->sk_proto->hash(sk);
715 spin_lock_bh(&device_spinlock);
716 list_for_each_entry(dev, &device_list, dev_list) {
717 if (dev->hash) {
718 kref_get(&dev->kref);
719 spin_unlock_bh(&device_spinlock);
720 err |= dev->hash(dev, sk);
721 kref_put(&dev->kref, dev->release);
722 spin_lock_bh(&device_spinlock);
723 }
724 }
725 spin_unlock_bh(&device_spinlock);
726
727 if (err)
728 tls_hw_unhash(sk);
729 return err;
730 }
731
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],struct proto * base)732 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733 struct proto *base)
734 {
735 prot[TLS_BASE][TLS_BASE] = *base;
736 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
737 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
738 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
739
740 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
742 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
743
744 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
746 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
748
749 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
751 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
752 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
753
754 #ifdef CONFIG_TLS_DEVICE
755 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
757 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
758
759 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
761 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
762
763 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768 #endif
769
770 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
772 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
773 }
774
tls_init(struct sock * sk)775 static int tls_init(struct sock *sk)
776 {
777 struct tls_context *ctx;
778 int rc = 0;
779
780 if (tls_hw_prot(sk))
781 return 0;
782
783 /* The TLS ulp is currently supported only for TCP sockets
784 * in ESTABLISHED state.
785 * Supporting sockets in LISTEN state will require us
786 * to modify the accept implementation to clone rather then
787 * share the ulp context.
788 */
789 if (sk->sk_state != TCP_ESTABLISHED)
790 return -ENOTSUPP;
791
792 tls_build_proto(sk);
793
794 /* allocate tls context */
795 write_lock_bh(&sk->sk_callback_lock);
796 ctx = create_ctx(sk);
797 if (!ctx) {
798 rc = -ENOMEM;
799 goto out;
800 }
801
802 ctx->tx_conf = TLS_BASE;
803 ctx->rx_conf = TLS_BASE;
804 update_sk_prot(sk, ctx);
805 out:
806 write_unlock_bh(&sk->sk_callback_lock);
807 return rc;
808 }
809
tls_update(struct sock * sk,struct proto * p)810 static void tls_update(struct sock *sk, struct proto *p)
811 {
812 struct tls_context *ctx;
813
814 ctx = tls_get_ctx(sk);
815 if (likely(ctx))
816 ctx->sk_proto = p;
817 else
818 sk->sk_prot = p;
819 }
820
tls_get_info(const struct sock * sk,struct sk_buff * skb)821 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822 {
823 u16 version, cipher_type;
824 struct tls_context *ctx;
825 struct nlattr *start;
826 int err;
827
828 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829 if (!start)
830 return -EMSGSIZE;
831
832 rcu_read_lock();
833 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834 if (!ctx) {
835 err = 0;
836 goto nla_failure;
837 }
838 version = ctx->prot_info.version;
839 if (version) {
840 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841 if (err)
842 goto nla_failure;
843 }
844 cipher_type = ctx->prot_info.cipher_type;
845 if (cipher_type) {
846 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847 if (err)
848 goto nla_failure;
849 }
850 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851 if (err)
852 goto nla_failure;
853
854 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855 if (err)
856 goto nla_failure;
857
858 rcu_read_unlock();
859 nla_nest_end(skb, start);
860 return 0;
861
862 nla_failure:
863 rcu_read_unlock();
864 nla_nest_cancel(skb, start);
865 return err;
866 }
867
tls_get_info_size(const struct sock * sk)868 static size_t tls_get_info_size(const struct sock *sk)
869 {
870 size_t size = 0;
871
872 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
873 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
874 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
875 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
876 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
877 0;
878
879 return size;
880 }
881
tls_register_device(struct tls_device * device)882 void tls_register_device(struct tls_device *device)
883 {
884 spin_lock_bh(&device_spinlock);
885 list_add_tail(&device->dev_list, &device_list);
886 spin_unlock_bh(&device_spinlock);
887 }
888 EXPORT_SYMBOL(tls_register_device);
889
tls_unregister_device(struct tls_device * device)890 void tls_unregister_device(struct tls_device *device)
891 {
892 spin_lock_bh(&device_spinlock);
893 list_del(&device->dev_list);
894 spin_unlock_bh(&device_spinlock);
895 }
896 EXPORT_SYMBOL(tls_unregister_device);
897
898 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899 .name = "tls",
900 .owner = THIS_MODULE,
901 .init = tls_init,
902 .update = tls_update,
903 .get_info = tls_get_info,
904 .get_info_size = tls_get_info_size,
905 };
906
tls_register(void)907 static int __init tls_register(void)
908 {
909 tls_sw_proto_ops = inet_stream_ops;
910 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
912
913 tls_device_init();
914 tcp_register_ulp(&tcp_tls_ulp_ops);
915
916 return 0;
917 }
918
tls_unregister(void)919 static void __exit tls_unregister(void)
920 {
921 tcp_unregister_ulp(&tcp_tls_ulp_ops);
922 tls_device_cleanup();
923 }
924
925 module_init(tls_register);
926 module_exit(tls_unregister);
927