1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50 }
51
52 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)53 static void zero_zones_numa_counters(void)
54 {
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59 }
60
61 /* zero global numa counters */
zero_global_numa_counters(void)62 static void zero_global_numa_counters(void)
63 {
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68 }
69
invalid_numa_statistics(void)70 static void invalid_numa_statistics(void)
71 {
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74 }
75
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void __user *buffer, size_t *length, loff_t *ppos)
80 {
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104 }
105 #endif
106
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
sum_vm_events(unsigned long * ret)111 static void sum_vm_events(unsigned long *ret)
112 {
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124 }
125
126 /*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130 */
all_vm_events(unsigned long * ret)131 void all_vm_events(unsigned long *ret)
132 {
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138
139 /*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
vm_events_fold_cpu(int cpu)145 void vm_events_fold_cpu(int cpu)
146 {
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154 }
155
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157
158 /*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169
170 #ifdef CONFIG_SMP
171
calculate_pressure_threshold(struct zone * zone)172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194 }
195
calculate_normal_threshold(struct zone * zone)196 int calculate_normal_threshold(struct zone *zone)
197 {
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241 }
242
243 /*
244 * Refresh the thresholds for each zone.
245 */
refresh_zone_stat_thresholds(void)246 void refresh_zone_stat_thresholds(void)
247 {
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289 }
290
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293 {
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309 }
310
311 /*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(x > t || x < -t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338 {
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 x = delta + __this_cpu_read(*p);
345
346 t = __this_cpu_read(pcp->stat_threshold);
347
348 if (unlikely(x > t || x < -t)) {
349 node_page_state_add(x, pgdat, item);
350 x = 0;
351 }
352 __this_cpu_write(*p, x);
353 }
354 EXPORT_SYMBOL(__mod_node_page_state);
355
356 /*
357 * Optimized increment and decrement functions.
358 *
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
362 *
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
366 * The increment or decrement is known and therefore one boundary check can
367 * be omitted.
368 *
369 * NOTE: These functions are very performance sensitive. Change only
370 * with care.
371 *
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
378 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)379 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380 {
381 struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 s8 __percpu *p = pcp->vm_stat_diff + item;
383 s8 v, t;
384
385 v = __this_cpu_inc_return(*p);
386 t = __this_cpu_read(pcp->stat_threshold);
387 if (unlikely(v > t)) {
388 s8 overstep = t >> 1;
389
390 zone_page_state_add(v + overstep, zone, item);
391 __this_cpu_write(*p, -overstep);
392 }
393 }
394
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)395 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396 {
397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 s8 v, t;
400
401 v = __this_cpu_inc_return(*p);
402 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(v > t)) {
404 s8 overstep = t >> 1;
405
406 node_page_state_add(v + overstep, pgdat, item);
407 __this_cpu_write(*p, -overstep);
408 }
409 }
410
__inc_zone_page_state(struct page * page,enum zone_stat_item item)411 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 __inc_zone_state(page_zone(page), item);
414 }
415 EXPORT_SYMBOL(__inc_zone_page_state);
416
__inc_node_page_state(struct page * page,enum node_stat_item item)417 void __inc_node_page_state(struct page *page, enum node_stat_item item)
418 {
419 __inc_node_state(page_pgdat(page), item);
420 }
421 EXPORT_SYMBOL(__inc_node_page_state);
422
__dec_zone_state(struct zone * zone,enum zone_stat_item item)423 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424 {
425 struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 s8 __percpu *p = pcp->vm_stat_diff + item;
427 s8 v, t;
428
429 v = __this_cpu_dec_return(*p);
430 t = __this_cpu_read(pcp->stat_threshold);
431 if (unlikely(v < - t)) {
432 s8 overstep = t >> 1;
433
434 zone_page_state_add(v - overstep, zone, item);
435 __this_cpu_write(*p, overstep);
436 }
437 }
438
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)439 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440 {
441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 s8 v, t;
444
445 v = __this_cpu_dec_return(*p);
446 t = __this_cpu_read(pcp->stat_threshold);
447 if (unlikely(v < - t)) {
448 s8 overstep = t >> 1;
449
450 node_page_state_add(v - overstep, pgdat, item);
451 __this_cpu_write(*p, overstep);
452 }
453 }
454
__dec_zone_page_state(struct page * page,enum zone_stat_item item)455 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457 __dec_zone_state(page_zone(page), item);
458 }
459 EXPORT_SYMBOL(__dec_zone_page_state);
460
__dec_node_page_state(struct page * page,enum node_stat_item item)461 void __dec_node_page_state(struct page *page, enum node_stat_item item)
462 {
463 __dec_node_state(page_pgdat(page), item);
464 }
465 EXPORT_SYMBOL(__dec_node_page_state);
466
467 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468 /*
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 *
472 * mod_state() modifies the zone counter state through atomic per cpu
473 * operations.
474 *
475 * Overstep mode specifies how overstep should handled:
476 * 0 No overstepping
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
479 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)480 static inline void mod_zone_state(struct zone *zone,
481 enum zone_stat_item item, long delta, int overstep_mode)
482 {
483 struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 s8 __percpu *p = pcp->vm_stat_diff + item;
485 long o, n, t, z;
486
487 do {
488 z = 0; /* overflow to zone counters */
489
490 /*
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
496 *
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
499 */
500 t = this_cpu_read(pcp->stat_threshold);
501
502 o = this_cpu_read(*p);
503 n = delta + o;
504
505 if (n > t || n < -t) {
506 int os = overstep_mode * (t >> 1) ;
507
508 /* Overflow must be added to zone counters */
509 z = n + os;
510 n = -os;
511 }
512 } while (this_cpu_cmpxchg(*p, o, n) != o);
513
514 if (z)
515 zone_page_state_add(z, zone, item);
516 }
517
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)518 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
519 long delta)
520 {
521 mod_zone_state(zone, item, delta, 0);
522 }
523 EXPORT_SYMBOL(mod_zone_page_state);
524
inc_zone_page_state(struct page * page,enum zone_stat_item item)525 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526 {
527 mod_zone_state(page_zone(page), item, 1, 1);
528 }
529 EXPORT_SYMBOL(inc_zone_page_state);
530
dec_zone_page_state(struct page * page,enum zone_stat_item item)531 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532 {
533 mod_zone_state(page_zone(page), item, -1, -1);
534 }
535 EXPORT_SYMBOL(dec_zone_page_state);
536
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)537 static inline void mod_node_state(struct pglist_data *pgdat,
538 enum node_stat_item item, int delta, int overstep_mode)
539 {
540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 long o, n, t, z;
543
544 do {
545 z = 0; /* overflow to node counters */
546
547 /*
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
553 *
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
556 */
557 t = this_cpu_read(pcp->stat_threshold);
558
559 o = this_cpu_read(*p);
560 n = delta + o;
561
562 if (n > t || n < -t) {
563 int os = overstep_mode * (t >> 1) ;
564
565 /* Overflow must be added to node counters */
566 z = n + os;
567 n = -os;
568 }
569 } while (this_cpu_cmpxchg(*p, o, n) != o);
570
571 if (z)
572 node_page_state_add(z, pgdat, item);
573 }
574
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)575 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 long delta)
577 {
578 mod_node_state(pgdat, item, delta, 0);
579 }
580 EXPORT_SYMBOL(mod_node_page_state);
581
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)582 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583 {
584 mod_node_state(pgdat, item, 1, 1);
585 }
586
inc_node_page_state(struct page * page,enum node_stat_item item)587 void inc_node_page_state(struct page *page, enum node_stat_item item)
588 {
589 mod_node_state(page_pgdat(page), item, 1, 1);
590 }
591 EXPORT_SYMBOL(inc_node_page_state);
592
dec_node_page_state(struct page * page,enum node_stat_item item)593 void dec_node_page_state(struct page *page, enum node_stat_item item)
594 {
595 mod_node_state(page_pgdat(page), item, -1, -1);
596 }
597 EXPORT_SYMBOL(dec_node_page_state);
598 #else
599 /*
600 * Use interrupt disable to serialize counter updates
601 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)602 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
603 long delta)
604 {
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_zone_page_state(zone, item, delta);
609 local_irq_restore(flags);
610 }
611 EXPORT_SYMBOL(mod_zone_page_state);
612
inc_zone_page_state(struct page * page,enum zone_stat_item item)613 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614 {
615 unsigned long flags;
616 struct zone *zone;
617
618 zone = page_zone(page);
619 local_irq_save(flags);
620 __inc_zone_state(zone, item);
621 local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL(inc_zone_page_state);
624
dec_zone_page_state(struct page * page,enum zone_stat_item item)625 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626 {
627 unsigned long flags;
628
629 local_irq_save(flags);
630 __dec_zone_page_state(page, item);
631 local_irq_restore(flags);
632 }
633 EXPORT_SYMBOL(dec_zone_page_state);
634
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)635 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636 {
637 unsigned long flags;
638
639 local_irq_save(flags);
640 __inc_node_state(pgdat, item);
641 local_irq_restore(flags);
642 }
643 EXPORT_SYMBOL(inc_node_state);
644
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)645 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 long delta)
647 {
648 unsigned long flags;
649
650 local_irq_save(flags);
651 __mod_node_page_state(pgdat, item, delta);
652 local_irq_restore(flags);
653 }
654 EXPORT_SYMBOL(mod_node_page_state);
655
inc_node_page_state(struct page * page,enum node_stat_item item)656 void inc_node_page_state(struct page *page, enum node_stat_item item)
657 {
658 unsigned long flags;
659 struct pglist_data *pgdat;
660
661 pgdat = page_pgdat(page);
662 local_irq_save(flags);
663 __inc_node_state(pgdat, item);
664 local_irq_restore(flags);
665 }
666 EXPORT_SYMBOL(inc_node_page_state);
667
dec_node_page_state(struct page * page,enum node_stat_item item)668 void dec_node_page_state(struct page *page, enum node_stat_item item)
669 {
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __dec_node_page_state(page, item);
674 local_irq_restore(flags);
675 }
676 EXPORT_SYMBOL(dec_node_page_state);
677 #endif
678
679 /*
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
682 */
683 #ifdef CONFIG_NUMA
fold_diff(int * zone_diff,int * numa_diff,int * node_diff)684 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685 {
686 int i;
687 int changes = 0;
688
689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 if (zone_diff[i]) {
691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 changes++;
693 }
694
695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 if (numa_diff[i]) {
697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 changes++;
699 }
700
701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 if (node_diff[i]) {
703 atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 changes++;
705 }
706 return changes;
707 }
708 #else
fold_diff(int * zone_diff,int * node_diff)709 static int fold_diff(int *zone_diff, int *node_diff)
710 {
711 int i;
712 int changes = 0;
713
714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
715 if (zone_diff[i]) {
716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 changes++;
718 }
719
720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 if (node_diff[i]) {
722 atomic_long_add(node_diff[i], &vm_node_stat[i]);
723 changes++;
724 }
725 return changes;
726 }
727 #endif /* CONFIG_NUMA */
728
729 /*
730 * Update the zone counters for the current cpu.
731 *
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
736 * the processor.
737 *
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
742 *
743 * The function returns the number of global counters updated.
744 */
refresh_cpu_vm_stats(bool do_pagesets)745 static int refresh_cpu_vm_stats(bool do_pagesets)
746 {
747 struct pglist_data *pgdat;
748 struct zone *zone;
749 int i;
750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
751 #ifdef CONFIG_NUMA
752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753 #endif
754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
755 int changes = 0;
756
757 for_each_populated_zone(zone) {
758 struct per_cpu_pageset __percpu *p = zone->pageset;
759
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 int v;
762
763 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 if (v) {
765
766 atomic_long_add(v, &zone->vm_stat[i]);
767 global_zone_diff[i] += v;
768 #ifdef CONFIG_NUMA
769 /* 3 seconds idle till flush */
770 __this_cpu_write(p->expire, 3);
771 #endif
772 }
773 }
774 #ifdef CONFIG_NUMA
775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 int v;
777
778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 if (v) {
780
781 atomic_long_add(v, &zone->vm_numa_stat[i]);
782 global_numa_diff[i] += v;
783 __this_cpu_write(p->expire, 3);
784 }
785 }
786
787 if (do_pagesets) {
788 cond_resched();
789 /*
790 * Deal with draining the remote pageset of this
791 * processor
792 *
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
795 */
796 if (!__this_cpu_read(p->expire) ||
797 !__this_cpu_read(p->pcp.count))
798 continue;
799
800 /*
801 * We never drain zones local to this processor.
802 */
803 if (zone_to_nid(zone) == numa_node_id()) {
804 __this_cpu_write(p->expire, 0);
805 continue;
806 }
807
808 if (__this_cpu_dec_return(p->expire))
809 continue;
810
811 if (__this_cpu_read(p->pcp.count)) {
812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 changes++;
814 }
815 }
816 #endif
817 }
818
819 for_each_online_pgdat(pgdat) {
820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821
822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 if (v) {
827 atomic_long_add(v, &pgdat->vm_stat[i]);
828 global_node_diff[i] += v;
829 }
830 }
831 }
832
833 #ifdef CONFIG_NUMA
834 changes += fold_diff(global_zone_diff, global_numa_diff,
835 global_node_diff);
836 #else
837 changes += fold_diff(global_zone_diff, global_node_diff);
838 #endif
839 return changes;
840 }
841
842 /*
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
846 */
cpu_vm_stats_fold(int cpu)847 void cpu_vm_stats_fold(int cpu)
848 {
849 struct pglist_data *pgdat;
850 struct zone *zone;
851 int i;
852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
853 #ifdef CONFIG_NUMA
854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855 #endif
856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857
858 for_each_populated_zone(zone) {
859 struct per_cpu_pageset *p;
860
861 p = per_cpu_ptr(zone->pageset, cpu);
862
863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 if (p->vm_stat_diff[i]) {
865 int v;
866
867 v = p->vm_stat_diff[i];
868 p->vm_stat_diff[i] = 0;
869 atomic_long_add(v, &zone->vm_stat[i]);
870 global_zone_diff[i] += v;
871 }
872
873 #ifdef CONFIG_NUMA
874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 if (p->vm_numa_stat_diff[i]) {
876 int v;
877
878 v = p->vm_numa_stat_diff[i];
879 p->vm_numa_stat_diff[i] = 0;
880 atomic_long_add(v, &zone->vm_numa_stat[i]);
881 global_numa_diff[i] += v;
882 }
883 #endif
884 }
885
886 for_each_online_pgdat(pgdat) {
887 struct per_cpu_nodestat *p;
888
889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890
891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 if (p->vm_node_stat_diff[i]) {
893 int v;
894
895 v = p->vm_node_stat_diff[i];
896 p->vm_node_stat_diff[i] = 0;
897 atomic_long_add(v, &pgdat->vm_stat[i]);
898 global_node_diff[i] += v;
899 }
900 }
901
902 #ifdef CONFIG_NUMA
903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904 #else
905 fold_diff(global_zone_diff, global_node_diff);
906 #endif
907 }
908
909 /*
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
912 */
drain_zonestat(struct zone * zone,struct per_cpu_pageset * pset)913 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914 {
915 int i;
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 if (pset->vm_stat_diff[i]) {
919 int v = pset->vm_stat_diff[i];
920 pset->vm_stat_diff[i] = 0;
921 atomic_long_add(v, &zone->vm_stat[i]);
922 atomic_long_add(v, &vm_zone_stat[i]);
923 }
924
925 #ifdef CONFIG_NUMA
926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 if (pset->vm_numa_stat_diff[i]) {
928 int v = pset->vm_numa_stat_diff[i];
929
930 pset->vm_numa_stat_diff[i] = 0;
931 atomic_long_add(v, &zone->vm_numa_stat[i]);
932 atomic_long_add(v, &vm_numa_stat[i]);
933 }
934 #endif
935 }
936 #endif
937
938 #ifdef CONFIG_NUMA
__inc_numa_state(struct zone * zone,enum numa_stat_item item)939 void __inc_numa_state(struct zone *zone,
940 enum numa_stat_item item)
941 {
942 struct per_cpu_pageset __percpu *pcp = zone->pageset;
943 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 u16 v;
945
946 v = __this_cpu_inc_return(*p);
947
948 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 zone_numa_state_add(v, zone, item);
950 __this_cpu_write(*p, 0);
951 }
952 }
953
954 /*
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
958 */
sum_zone_node_page_state(int node,enum zone_stat_item item)959 unsigned long sum_zone_node_page_state(int node,
960 enum zone_stat_item item)
961 {
962 struct zone *zones = NODE_DATA(node)->node_zones;
963 int i;
964 unsigned long count = 0;
965
966 for (i = 0; i < MAX_NR_ZONES; i++)
967 count += zone_page_state(zones + i, item);
968
969 return count;
970 }
971
972 /*
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 */
sum_zone_numa_state(int node,enum numa_stat_item item)976 unsigned long sum_zone_numa_state(int node,
977 enum numa_stat_item item)
978 {
979 struct zone *zones = NODE_DATA(node)->node_zones;
980 int i;
981 unsigned long count = 0;
982
983 for (i = 0; i < MAX_NR_ZONES; i++)
984 count += zone_numa_state_snapshot(zones + i, item);
985
986 return count;
987 }
988
989 /*
990 * Determine the per node value of a stat item.
991 */
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)992 unsigned long node_page_state(struct pglist_data *pgdat,
993 enum node_stat_item item)
994 {
995 long x = atomic_long_read(&pgdat->vm_stat[item]);
996 #ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999 #endif
1000 return x;
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_COMPACTION
1005
1006 struct contig_page_info {
1007 unsigned long free_pages;
1008 unsigned long free_blocks_total;
1009 unsigned long free_blocks_suitable;
1010 };
1011
1012 /*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1020 static void fill_contig_page_info(struct zone *zone,
1021 unsigned int suitable_order,
1022 struct contig_page_info *info)
1023 {
1024 unsigned int order;
1025
1026 info->free_pages = 0;
1027 info->free_blocks_total = 0;
1028 info->free_blocks_suitable = 0;
1029
1030 for (order = 0; order < MAX_ORDER; order++) {
1031 unsigned long blocks;
1032
1033 /* Count number of free blocks */
1034 blocks = zone->free_area[order].nr_free;
1035 info->free_blocks_total += blocks;
1036
1037 /* Count free base pages */
1038 info->free_pages += blocks << order;
1039
1040 /* Count the suitable free blocks */
1041 if (order >= suitable_order)
1042 info->free_blocks_suitable += blocks <<
1043 (order - suitable_order);
1044 }
1045 }
1046
1047 /*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1054 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055 {
1056 unsigned long requested = 1UL << order;
1057
1058 if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 return 0;
1060
1061 if (!info->free_blocks_total)
1062 return 0;
1063
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info->free_blocks_suitable)
1066 return -1000;
1067
1068 /*
1069 * Index is between 0 and 1 so return within 3 decimal places
1070 *
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1073 */
1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075 }
1076
1077 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1078 int fragmentation_index(struct zone *zone, unsigned int order)
1079 {
1080 struct contig_page_info info;
1081
1082 fill_contig_page_info(zone, order, &info);
1083 return __fragmentation_index(order, &info);
1084 }
1085 #endif
1086
1087 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1088 #ifdef CONFIG_ZONE_DMA
1089 #define TEXT_FOR_DMA(xx) xx "_dma",
1090 #else
1091 #define TEXT_FOR_DMA(xx)
1092 #endif
1093
1094 #ifdef CONFIG_ZONE_DMA32
1095 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1096 #else
1097 #define TEXT_FOR_DMA32(xx)
1098 #endif
1099
1100 #ifdef CONFIG_HIGHMEM
1101 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1102 #else
1103 #define TEXT_FOR_HIGHMEM(xx)
1104 #endif
1105
1106 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1107 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108
1109 const char * const vmstat_text[] = {
1110 /* enum zone_stat_item countes */
1111 "nr_free_pages",
1112 "nr_zone_inactive_anon",
1113 "nr_zone_active_anon",
1114 "nr_zone_inactive_file",
1115 "nr_zone_active_file",
1116 "nr_zone_unevictable",
1117 "nr_zone_write_pending",
1118 "nr_mlock",
1119 "nr_page_table_pages",
1120 "nr_kernel_stack",
1121 "nr_bounce",
1122 #if IS_ENABLED(CONFIG_ZSMALLOC)
1123 "nr_zspages",
1124 #endif
1125 "nr_free_cma",
1126
1127 /* enum numa_stat_item counters */
1128 #ifdef CONFIG_NUMA
1129 "numa_hit",
1130 "numa_miss",
1131 "numa_foreign",
1132 "numa_interleave",
1133 "numa_local",
1134 "numa_other",
1135 #endif
1136
1137 /* Node-based counters */
1138 "nr_inactive_anon",
1139 "nr_active_anon",
1140 "nr_inactive_file",
1141 "nr_active_file",
1142 "nr_unevictable",
1143 "nr_slab_reclaimable",
1144 "nr_slab_unreclaimable",
1145 "nr_isolated_anon",
1146 "nr_isolated_file",
1147 "workingset_nodes",
1148 "workingset_refault",
1149 "workingset_activate",
1150 "workingset_restore",
1151 "workingset_nodereclaim",
1152 "nr_anon_pages",
1153 "nr_mapped",
1154 "nr_file_pages",
1155 "nr_dirty",
1156 "nr_writeback",
1157 "nr_writeback_temp",
1158 "nr_shmem",
1159 "nr_shmem_hugepages",
1160 "nr_shmem_pmdmapped",
1161 "nr_file_hugepages",
1162 "nr_file_pmdmapped",
1163 "nr_anon_transparent_hugepages",
1164 "nr_unstable",
1165 "nr_vmscan_write",
1166 "nr_vmscan_immediate_reclaim",
1167 "nr_dirtied",
1168 "nr_written",
1169 "nr_kernel_misc_reclaimable",
1170
1171 /* enum writeback_stat_item counters */
1172 "nr_dirty_threshold",
1173 "nr_dirty_background_threshold",
1174
1175 #ifdef CONFIG_VM_EVENT_COUNTERS
1176 /* enum vm_event_item counters */
1177 "pgpgin",
1178 "pgpgout",
1179 "pswpin",
1180 "pswpout",
1181
1182 TEXTS_FOR_ZONES("pgalloc")
1183 TEXTS_FOR_ZONES("allocstall")
1184 TEXTS_FOR_ZONES("pgskip")
1185
1186 "pgfree",
1187 "pgactivate",
1188 "pgdeactivate",
1189 "pglazyfree",
1190
1191 "pgfault",
1192 "pgmajfault",
1193 "pglazyfreed",
1194
1195 "pgrefill",
1196 "pgsteal_kswapd",
1197 "pgsteal_direct",
1198 "pgscan_kswapd",
1199 "pgscan_direct",
1200 "pgscan_direct_throttle",
1201
1202 #ifdef CONFIG_NUMA
1203 "zone_reclaim_failed",
1204 #endif
1205 "pginodesteal",
1206 "slabs_scanned",
1207 "kswapd_inodesteal",
1208 "kswapd_low_wmark_hit_quickly",
1209 "kswapd_high_wmark_hit_quickly",
1210 "pageoutrun",
1211
1212 "pgrotated",
1213
1214 "drop_pagecache",
1215 "drop_slab",
1216 "oom_kill",
1217
1218 #ifdef CONFIG_NUMA_BALANCING
1219 "numa_pte_updates",
1220 "numa_huge_pte_updates",
1221 "numa_hint_faults",
1222 "numa_hint_faults_local",
1223 "numa_pages_migrated",
1224 #endif
1225 #ifdef CONFIG_MIGRATION
1226 "pgmigrate_success",
1227 "pgmigrate_fail",
1228 #endif
1229 #ifdef CONFIG_COMPACTION
1230 "compact_migrate_scanned",
1231 "compact_free_scanned",
1232 "compact_isolated",
1233 "compact_stall",
1234 "compact_fail",
1235 "compact_success",
1236 "compact_daemon_wake",
1237 "compact_daemon_migrate_scanned",
1238 "compact_daemon_free_scanned",
1239 #endif
1240
1241 #ifdef CONFIG_HUGETLB_PAGE
1242 "htlb_buddy_alloc_success",
1243 "htlb_buddy_alloc_fail",
1244 #endif
1245 "unevictable_pgs_culled",
1246 "unevictable_pgs_scanned",
1247 "unevictable_pgs_rescued",
1248 "unevictable_pgs_mlocked",
1249 "unevictable_pgs_munlocked",
1250 "unevictable_pgs_cleared",
1251 "unevictable_pgs_stranded",
1252
1253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1254 "thp_fault_alloc",
1255 "thp_fault_fallback",
1256 "thp_collapse_alloc",
1257 "thp_collapse_alloc_failed",
1258 "thp_file_alloc",
1259 "thp_file_mapped",
1260 "thp_split_page",
1261 "thp_split_page_failed",
1262 "thp_deferred_split_page",
1263 "thp_split_pmd",
1264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1265 "thp_split_pud",
1266 #endif
1267 "thp_zero_page_alloc",
1268 "thp_zero_page_alloc_failed",
1269 "thp_swpout",
1270 "thp_swpout_fallback",
1271 #endif
1272 #ifdef CONFIG_MEMORY_BALLOON
1273 "balloon_inflate",
1274 "balloon_deflate",
1275 #ifdef CONFIG_BALLOON_COMPACTION
1276 "balloon_migrate",
1277 #endif
1278 #endif /* CONFIG_MEMORY_BALLOON */
1279 #ifdef CONFIG_DEBUG_TLBFLUSH
1280 "nr_tlb_remote_flush",
1281 "nr_tlb_remote_flush_received",
1282 "nr_tlb_local_flush_all",
1283 "nr_tlb_local_flush_one",
1284 #endif /* CONFIG_DEBUG_TLBFLUSH */
1285
1286 #ifdef CONFIG_DEBUG_VM_VMACACHE
1287 "vmacache_find_calls",
1288 "vmacache_find_hits",
1289 #endif
1290 #ifdef CONFIG_SWAP
1291 "swap_ra",
1292 "swap_ra_hit",
1293 #endif
1294 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1295 };
1296 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1297
1298 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1299 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1300 static void *frag_start(struct seq_file *m, loff_t *pos)
1301 {
1302 pg_data_t *pgdat;
1303 loff_t node = *pos;
1304
1305 for (pgdat = first_online_pgdat();
1306 pgdat && node;
1307 pgdat = next_online_pgdat(pgdat))
1308 --node;
1309
1310 return pgdat;
1311 }
1312
frag_next(struct seq_file * m,void * arg,loff_t * pos)1313 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1314 {
1315 pg_data_t *pgdat = (pg_data_t *)arg;
1316
1317 (*pos)++;
1318 return next_online_pgdat(pgdat);
1319 }
1320
frag_stop(struct seq_file * m,void * arg)1321 static void frag_stop(struct seq_file *m, void *arg)
1322 {
1323 }
1324
1325 /*
1326 * Walk zones in a node and print using a callback.
1327 * If @assert_populated is true, only use callback for zones that are populated.
1328 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1329 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1330 bool assert_populated, bool nolock,
1331 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1332 {
1333 struct zone *zone;
1334 struct zone *node_zones = pgdat->node_zones;
1335 unsigned long flags;
1336
1337 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1338 if (assert_populated && !populated_zone(zone))
1339 continue;
1340
1341 if (!nolock)
1342 spin_lock_irqsave(&zone->lock, flags);
1343 print(m, pgdat, zone);
1344 if (!nolock)
1345 spin_unlock_irqrestore(&zone->lock, flags);
1346 }
1347 }
1348 #endif
1349
1350 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1351 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1352 struct zone *zone)
1353 {
1354 int order;
1355
1356 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1357 for (order = 0; order < MAX_ORDER; ++order)
1358 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1359 seq_putc(m, '\n');
1360 }
1361
1362 /*
1363 * This walks the free areas for each zone.
1364 */
frag_show(struct seq_file * m,void * arg)1365 static int frag_show(struct seq_file *m, void *arg)
1366 {
1367 pg_data_t *pgdat = (pg_data_t *)arg;
1368 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1369 return 0;
1370 }
1371
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1372 static void pagetypeinfo_showfree_print(struct seq_file *m,
1373 pg_data_t *pgdat, struct zone *zone)
1374 {
1375 int order, mtype;
1376
1377 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1378 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1379 pgdat->node_id,
1380 zone->name,
1381 migratetype_names[mtype]);
1382 for (order = 0; order < MAX_ORDER; ++order) {
1383 unsigned long freecount = 0;
1384 struct free_area *area;
1385 struct list_head *curr;
1386 bool overflow = false;
1387
1388 area = &(zone->free_area[order]);
1389
1390 list_for_each(curr, &area->free_list[mtype]) {
1391 /*
1392 * Cap the free_list iteration because it might
1393 * be really large and we are under a spinlock
1394 * so a long time spent here could trigger a
1395 * hard lockup detector. Anyway this is a
1396 * debugging tool so knowing there is a handful
1397 * of pages of this order should be more than
1398 * sufficient.
1399 */
1400 if (++freecount >= 100000) {
1401 overflow = true;
1402 break;
1403 }
1404 }
1405 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1406 spin_unlock_irq(&zone->lock);
1407 cond_resched();
1408 spin_lock_irq(&zone->lock);
1409 }
1410 seq_putc(m, '\n');
1411 }
1412 }
1413
1414 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1415 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1416 {
1417 int order;
1418 pg_data_t *pgdat = (pg_data_t *)arg;
1419
1420 /* Print header */
1421 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1422 for (order = 0; order < MAX_ORDER; ++order)
1423 seq_printf(m, "%6d ", order);
1424 seq_putc(m, '\n');
1425
1426 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1427
1428 return 0;
1429 }
1430
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1431 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1432 pg_data_t *pgdat, struct zone *zone)
1433 {
1434 int mtype;
1435 unsigned long pfn;
1436 unsigned long start_pfn = zone->zone_start_pfn;
1437 unsigned long end_pfn = zone_end_pfn(zone);
1438 unsigned long count[MIGRATE_TYPES] = { 0, };
1439
1440 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1441 struct page *page;
1442
1443 page = pfn_to_online_page(pfn);
1444 if (!page)
1445 continue;
1446
1447 /* Watch for unexpected holes punched in the memmap */
1448 if (!memmap_valid_within(pfn, page, zone))
1449 continue;
1450
1451 if (page_zone(page) != zone)
1452 continue;
1453
1454 mtype = get_pageblock_migratetype(page);
1455
1456 if (mtype < MIGRATE_TYPES)
1457 count[mtype]++;
1458 }
1459
1460 /* Print counts */
1461 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1462 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1463 seq_printf(m, "%12lu ", count[mtype]);
1464 seq_putc(m, '\n');
1465 }
1466
1467 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1468 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1469 {
1470 int mtype;
1471 pg_data_t *pgdat = (pg_data_t *)arg;
1472
1473 seq_printf(m, "\n%-23s", "Number of blocks type ");
1474 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1475 seq_printf(m, "%12s ", migratetype_names[mtype]);
1476 seq_putc(m, '\n');
1477 walk_zones_in_node(m, pgdat, true, false,
1478 pagetypeinfo_showblockcount_print);
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Print out the number of pageblocks for each migratetype that contain pages
1485 * of other types. This gives an indication of how well fallbacks are being
1486 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1487 * to determine what is going on
1488 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1489 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1490 {
1491 #ifdef CONFIG_PAGE_OWNER
1492 int mtype;
1493
1494 if (!static_branch_unlikely(&page_owner_inited))
1495 return;
1496
1497 drain_all_pages(NULL);
1498
1499 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1500 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1501 seq_printf(m, "%12s ", migratetype_names[mtype]);
1502 seq_putc(m, '\n');
1503
1504 walk_zones_in_node(m, pgdat, true, true,
1505 pagetypeinfo_showmixedcount_print);
1506 #endif /* CONFIG_PAGE_OWNER */
1507 }
1508
1509 /*
1510 * This prints out statistics in relation to grouping pages by mobility.
1511 * It is expensive to collect so do not constantly read the file.
1512 */
pagetypeinfo_show(struct seq_file * m,void * arg)1513 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1514 {
1515 pg_data_t *pgdat = (pg_data_t *)arg;
1516
1517 /* check memoryless node */
1518 if (!node_state(pgdat->node_id, N_MEMORY))
1519 return 0;
1520
1521 seq_printf(m, "Page block order: %d\n", pageblock_order);
1522 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1523 seq_putc(m, '\n');
1524 pagetypeinfo_showfree(m, pgdat);
1525 pagetypeinfo_showblockcount(m, pgdat);
1526 pagetypeinfo_showmixedcount(m, pgdat);
1527
1528 return 0;
1529 }
1530
1531 static const struct seq_operations fragmentation_op = {
1532 .start = frag_start,
1533 .next = frag_next,
1534 .stop = frag_stop,
1535 .show = frag_show,
1536 };
1537
1538 static const struct seq_operations pagetypeinfo_op = {
1539 .start = frag_start,
1540 .next = frag_next,
1541 .stop = frag_stop,
1542 .show = pagetypeinfo_show,
1543 };
1544
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1545 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1546 {
1547 int zid;
1548
1549 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1550 struct zone *compare = &pgdat->node_zones[zid];
1551
1552 if (populated_zone(compare))
1553 return zone == compare;
1554 }
1555
1556 return false;
1557 }
1558
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1559 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1560 struct zone *zone)
1561 {
1562 int i;
1563 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1564 if (is_zone_first_populated(pgdat, zone)) {
1565 seq_printf(m, "\n per-node stats");
1566 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1567 seq_printf(m, "\n %-12s %lu",
1568 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1569 NR_VM_NUMA_STAT_ITEMS],
1570 node_page_state(pgdat, i));
1571 }
1572 }
1573 seq_printf(m,
1574 "\n pages free %lu"
1575 "\n min %lu"
1576 "\n low %lu"
1577 "\n high %lu"
1578 "\n spanned %lu"
1579 "\n present %lu"
1580 "\n managed %lu",
1581 zone_page_state(zone, NR_FREE_PAGES),
1582 min_wmark_pages(zone),
1583 low_wmark_pages(zone),
1584 high_wmark_pages(zone),
1585 zone->spanned_pages,
1586 zone->present_pages,
1587 zone_managed_pages(zone));
1588
1589 seq_printf(m,
1590 "\n protection: (%ld",
1591 zone->lowmem_reserve[0]);
1592 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1593 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1594 seq_putc(m, ')');
1595
1596 /* If unpopulated, no other information is useful */
1597 if (!populated_zone(zone)) {
1598 seq_putc(m, '\n');
1599 return;
1600 }
1601
1602 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1603 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1604 zone_page_state(zone, i));
1605
1606 #ifdef CONFIG_NUMA
1607 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1608 seq_printf(m, "\n %-12s %lu",
1609 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1610 zone_numa_state_snapshot(zone, i));
1611 #endif
1612
1613 seq_printf(m, "\n pagesets");
1614 for_each_online_cpu(i) {
1615 struct per_cpu_pageset *pageset;
1616
1617 pageset = per_cpu_ptr(zone->pageset, i);
1618 seq_printf(m,
1619 "\n cpu: %i"
1620 "\n count: %i"
1621 "\n high: %i"
1622 "\n batch: %i",
1623 i,
1624 pageset->pcp.count,
1625 pageset->pcp.high,
1626 pageset->pcp.batch);
1627 #ifdef CONFIG_SMP
1628 seq_printf(m, "\n vm stats threshold: %d",
1629 pageset->stat_threshold);
1630 #endif
1631 }
1632 seq_printf(m,
1633 "\n node_unreclaimable: %u"
1634 "\n start_pfn: %lu",
1635 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1636 zone->zone_start_pfn);
1637 seq_putc(m, '\n');
1638 }
1639
1640 /*
1641 * Output information about zones in @pgdat. All zones are printed regardless
1642 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1643 * set of all zones and userspace would not be aware of such zones if they are
1644 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1645 */
zoneinfo_show(struct seq_file * m,void * arg)1646 static int zoneinfo_show(struct seq_file *m, void *arg)
1647 {
1648 pg_data_t *pgdat = (pg_data_t *)arg;
1649 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1650 return 0;
1651 }
1652
1653 static const struct seq_operations zoneinfo_op = {
1654 .start = frag_start, /* iterate over all zones. The same as in
1655 * fragmentation. */
1656 .next = frag_next,
1657 .stop = frag_stop,
1658 .show = zoneinfo_show,
1659 };
1660
1661 enum writeback_stat_item {
1662 NR_DIRTY_THRESHOLD,
1663 NR_DIRTY_BG_THRESHOLD,
1664 NR_VM_WRITEBACK_STAT_ITEMS,
1665 };
1666
vmstat_start(struct seq_file * m,loff_t * pos)1667 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1668 {
1669 unsigned long *v;
1670 int i, stat_items_size;
1671
1672 if (*pos >= ARRAY_SIZE(vmstat_text))
1673 return NULL;
1674 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1675 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1676 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1677 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1678
1679 #ifdef CONFIG_VM_EVENT_COUNTERS
1680 stat_items_size += sizeof(struct vm_event_state);
1681 #endif
1682
1683 BUILD_BUG_ON(stat_items_size !=
1684 ARRAY_SIZE(vmstat_text) * sizeof(unsigned long));
1685 v = kmalloc(stat_items_size, GFP_KERNEL);
1686 m->private = v;
1687 if (!v)
1688 return ERR_PTR(-ENOMEM);
1689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1690 v[i] = global_zone_page_state(i);
1691 v += NR_VM_ZONE_STAT_ITEMS;
1692
1693 #ifdef CONFIG_NUMA
1694 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1695 v[i] = global_numa_state(i);
1696 v += NR_VM_NUMA_STAT_ITEMS;
1697 #endif
1698
1699 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1700 v[i] = global_node_page_state(i);
1701 v += NR_VM_NODE_STAT_ITEMS;
1702
1703 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1704 v + NR_DIRTY_THRESHOLD);
1705 v += NR_VM_WRITEBACK_STAT_ITEMS;
1706
1707 #ifdef CONFIG_VM_EVENT_COUNTERS
1708 all_vm_events(v);
1709 v[PGPGIN] /= 2; /* sectors -> kbytes */
1710 v[PGPGOUT] /= 2;
1711 #endif
1712 return (unsigned long *)m->private + *pos;
1713 }
1714
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1715 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1716 {
1717 (*pos)++;
1718 if (*pos >= ARRAY_SIZE(vmstat_text))
1719 return NULL;
1720 return (unsigned long *)m->private + *pos;
1721 }
1722
vmstat_show(struct seq_file * m,void * arg)1723 static int vmstat_show(struct seq_file *m, void *arg)
1724 {
1725 unsigned long *l = arg;
1726 unsigned long off = l - (unsigned long *)m->private;
1727
1728 seq_puts(m, vmstat_text[off]);
1729 seq_put_decimal_ull(m, " ", *l);
1730 seq_putc(m, '\n');
1731 return 0;
1732 }
1733
vmstat_stop(struct seq_file * m,void * arg)1734 static void vmstat_stop(struct seq_file *m, void *arg)
1735 {
1736 kfree(m->private);
1737 m->private = NULL;
1738 }
1739
1740 static const struct seq_operations vmstat_op = {
1741 .start = vmstat_start,
1742 .next = vmstat_next,
1743 .stop = vmstat_stop,
1744 .show = vmstat_show,
1745 };
1746 #endif /* CONFIG_PROC_FS */
1747
1748 #ifdef CONFIG_SMP
1749 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1750 int sysctl_stat_interval __read_mostly = HZ;
1751
1752 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1753 static void refresh_vm_stats(struct work_struct *work)
1754 {
1755 refresh_cpu_vm_stats(true);
1756 }
1757
vmstat_refresh(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1758 int vmstat_refresh(struct ctl_table *table, int write,
1759 void __user *buffer, size_t *lenp, loff_t *ppos)
1760 {
1761 long val;
1762 int err;
1763 int i;
1764
1765 /*
1766 * The regular update, every sysctl_stat_interval, may come later
1767 * than expected: leaving a significant amount in per_cpu buckets.
1768 * This is particularly misleading when checking a quantity of HUGE
1769 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1770 * which can equally be echo'ed to or cat'ted from (by root),
1771 * can be used to update the stats just before reading them.
1772 *
1773 * Oh, and since global_zone_page_state() etc. are so careful to hide
1774 * transiently negative values, report an error here if any of
1775 * the stats is negative, so we know to go looking for imbalance.
1776 */
1777 err = schedule_on_each_cpu(refresh_vm_stats);
1778 if (err)
1779 return err;
1780 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1781 val = atomic_long_read(&vm_zone_stat[i]);
1782 if (val < 0) {
1783 pr_warn("%s: %s %ld\n",
1784 __func__, vmstat_text[i], val);
1785 err = -EINVAL;
1786 }
1787 }
1788 #ifdef CONFIG_NUMA
1789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1790 val = atomic_long_read(&vm_numa_stat[i]);
1791 if (val < 0) {
1792 pr_warn("%s: %s %ld\n",
1793 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1794 err = -EINVAL;
1795 }
1796 }
1797 #endif
1798 if (err)
1799 return err;
1800 if (write)
1801 *ppos += *lenp;
1802 else
1803 *lenp = 0;
1804 return 0;
1805 }
1806 #endif /* CONFIG_PROC_FS */
1807
vmstat_update(struct work_struct * w)1808 static void vmstat_update(struct work_struct *w)
1809 {
1810 if (refresh_cpu_vm_stats(true)) {
1811 /*
1812 * Counters were updated so we expect more updates
1813 * to occur in the future. Keep on running the
1814 * update worker thread.
1815 */
1816 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1817 this_cpu_ptr(&vmstat_work),
1818 round_jiffies_relative(sysctl_stat_interval));
1819 }
1820 }
1821
1822 /*
1823 * Switch off vmstat processing and then fold all the remaining differentials
1824 * until the diffs stay at zero. The function is used by NOHZ and can only be
1825 * invoked when tick processing is not active.
1826 */
1827 /*
1828 * Check if the diffs for a certain cpu indicate that
1829 * an update is needed.
1830 */
need_update(int cpu)1831 static bool need_update(int cpu)
1832 {
1833 struct zone *zone;
1834
1835 for_each_populated_zone(zone) {
1836 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1837
1838 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1839 #ifdef CONFIG_NUMA
1840 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1841 #endif
1842
1843 /*
1844 * The fast way of checking if there are any vmstat diffs.
1845 */
1846 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1847 sizeof(p->vm_stat_diff[0])))
1848 return true;
1849 #ifdef CONFIG_NUMA
1850 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1851 sizeof(p->vm_numa_stat_diff[0])))
1852 return true;
1853 #endif
1854 }
1855 return false;
1856 }
1857
1858 /*
1859 * Switch off vmstat processing and then fold all the remaining differentials
1860 * until the diffs stay at zero. The function is used by NOHZ and can only be
1861 * invoked when tick processing is not active.
1862 */
quiet_vmstat(void)1863 void quiet_vmstat(void)
1864 {
1865 if (system_state != SYSTEM_RUNNING)
1866 return;
1867
1868 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1869 return;
1870
1871 if (!need_update(smp_processor_id()))
1872 return;
1873
1874 /*
1875 * Just refresh counters and do not care about the pending delayed
1876 * vmstat_update. It doesn't fire that often to matter and canceling
1877 * it would be too expensive from this path.
1878 * vmstat_shepherd will take care about that for us.
1879 */
1880 refresh_cpu_vm_stats(false);
1881 }
1882
1883 /*
1884 * Shepherd worker thread that checks the
1885 * differentials of processors that have their worker
1886 * threads for vm statistics updates disabled because of
1887 * inactivity.
1888 */
1889 static void vmstat_shepherd(struct work_struct *w);
1890
1891 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1892
vmstat_shepherd(struct work_struct * w)1893 static void vmstat_shepherd(struct work_struct *w)
1894 {
1895 int cpu;
1896
1897 get_online_cpus();
1898 /* Check processors whose vmstat worker threads have been disabled */
1899 for_each_online_cpu(cpu) {
1900 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1901
1902 if (!delayed_work_pending(dw) && need_update(cpu))
1903 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1904 }
1905 put_online_cpus();
1906
1907 schedule_delayed_work(&shepherd,
1908 round_jiffies_relative(sysctl_stat_interval));
1909 }
1910
start_shepherd_timer(void)1911 static void __init start_shepherd_timer(void)
1912 {
1913 int cpu;
1914
1915 for_each_possible_cpu(cpu)
1916 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1917 vmstat_update);
1918
1919 schedule_delayed_work(&shepherd,
1920 round_jiffies_relative(sysctl_stat_interval));
1921 }
1922
init_cpu_node_state(void)1923 static void __init init_cpu_node_state(void)
1924 {
1925 int node;
1926
1927 for_each_online_node(node) {
1928 if (cpumask_weight(cpumask_of_node(node)) > 0)
1929 node_set_state(node, N_CPU);
1930 }
1931 }
1932
vmstat_cpu_online(unsigned int cpu)1933 static int vmstat_cpu_online(unsigned int cpu)
1934 {
1935 refresh_zone_stat_thresholds();
1936 node_set_state(cpu_to_node(cpu), N_CPU);
1937 return 0;
1938 }
1939
vmstat_cpu_down_prep(unsigned int cpu)1940 static int vmstat_cpu_down_prep(unsigned int cpu)
1941 {
1942 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1943 return 0;
1944 }
1945
vmstat_cpu_dead(unsigned int cpu)1946 static int vmstat_cpu_dead(unsigned int cpu)
1947 {
1948 const struct cpumask *node_cpus;
1949 int node;
1950
1951 node = cpu_to_node(cpu);
1952
1953 refresh_zone_stat_thresholds();
1954 node_cpus = cpumask_of_node(node);
1955 if (cpumask_weight(node_cpus) > 0)
1956 return 0;
1957
1958 node_clear_state(node, N_CPU);
1959 return 0;
1960 }
1961
1962 #endif
1963
1964 struct workqueue_struct *mm_percpu_wq;
1965
init_mm_internals(void)1966 void __init init_mm_internals(void)
1967 {
1968 int ret __maybe_unused;
1969
1970 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1971
1972 #ifdef CONFIG_SMP
1973 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1974 NULL, vmstat_cpu_dead);
1975 if (ret < 0)
1976 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1977
1978 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1979 vmstat_cpu_online,
1980 vmstat_cpu_down_prep);
1981 if (ret < 0)
1982 pr_err("vmstat: failed to register 'online' hotplug state\n");
1983
1984 get_online_cpus();
1985 init_cpu_node_state();
1986 put_online_cpus();
1987
1988 start_shepherd_timer();
1989 #endif
1990 #ifdef CONFIG_PROC_FS
1991 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
1992 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
1993 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1994 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
1995 #endif
1996 }
1997
1998 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1999
2000 /*
2001 * Return an index indicating how much of the available free memory is
2002 * unusable for an allocation of the requested size.
2003 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2004 static int unusable_free_index(unsigned int order,
2005 struct contig_page_info *info)
2006 {
2007 /* No free memory is interpreted as all free memory is unusable */
2008 if (info->free_pages == 0)
2009 return 1000;
2010
2011 /*
2012 * Index should be a value between 0 and 1. Return a value to 3
2013 * decimal places.
2014 *
2015 * 0 => no fragmentation
2016 * 1 => high fragmentation
2017 */
2018 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2019
2020 }
2021
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2022 static void unusable_show_print(struct seq_file *m,
2023 pg_data_t *pgdat, struct zone *zone)
2024 {
2025 unsigned int order;
2026 int index;
2027 struct contig_page_info info;
2028
2029 seq_printf(m, "Node %d, zone %8s ",
2030 pgdat->node_id,
2031 zone->name);
2032 for (order = 0; order < MAX_ORDER; ++order) {
2033 fill_contig_page_info(zone, order, &info);
2034 index = unusable_free_index(order, &info);
2035 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2036 }
2037
2038 seq_putc(m, '\n');
2039 }
2040
2041 /*
2042 * Display unusable free space index
2043 *
2044 * The unusable free space index measures how much of the available free
2045 * memory cannot be used to satisfy an allocation of a given size and is a
2046 * value between 0 and 1. The higher the value, the more of free memory is
2047 * unusable and by implication, the worse the external fragmentation is. This
2048 * can be expressed as a percentage by multiplying by 100.
2049 */
unusable_show(struct seq_file * m,void * arg)2050 static int unusable_show(struct seq_file *m, void *arg)
2051 {
2052 pg_data_t *pgdat = (pg_data_t *)arg;
2053
2054 /* check memoryless node */
2055 if (!node_state(pgdat->node_id, N_MEMORY))
2056 return 0;
2057
2058 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2059
2060 return 0;
2061 }
2062
2063 static const struct seq_operations unusable_op = {
2064 .start = frag_start,
2065 .next = frag_next,
2066 .stop = frag_stop,
2067 .show = unusable_show,
2068 };
2069
unusable_open(struct inode * inode,struct file * file)2070 static int unusable_open(struct inode *inode, struct file *file)
2071 {
2072 return seq_open(file, &unusable_op);
2073 }
2074
2075 static const struct file_operations unusable_file_ops = {
2076 .open = unusable_open,
2077 .read = seq_read,
2078 .llseek = seq_lseek,
2079 .release = seq_release,
2080 };
2081
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2082 static void extfrag_show_print(struct seq_file *m,
2083 pg_data_t *pgdat, struct zone *zone)
2084 {
2085 unsigned int order;
2086 int index;
2087
2088 /* Alloc on stack as interrupts are disabled for zone walk */
2089 struct contig_page_info info;
2090
2091 seq_printf(m, "Node %d, zone %8s ",
2092 pgdat->node_id,
2093 zone->name);
2094 for (order = 0; order < MAX_ORDER; ++order) {
2095 fill_contig_page_info(zone, order, &info);
2096 index = __fragmentation_index(order, &info);
2097 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2098 }
2099
2100 seq_putc(m, '\n');
2101 }
2102
2103 /*
2104 * Display fragmentation index for orders that allocations would fail for
2105 */
extfrag_show(struct seq_file * m,void * arg)2106 static int extfrag_show(struct seq_file *m, void *arg)
2107 {
2108 pg_data_t *pgdat = (pg_data_t *)arg;
2109
2110 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2111
2112 return 0;
2113 }
2114
2115 static const struct seq_operations extfrag_op = {
2116 .start = frag_start,
2117 .next = frag_next,
2118 .stop = frag_stop,
2119 .show = extfrag_show,
2120 };
2121
extfrag_open(struct inode * inode,struct file * file)2122 static int extfrag_open(struct inode *inode, struct file *file)
2123 {
2124 return seq_open(file, &extfrag_op);
2125 }
2126
2127 static const struct file_operations extfrag_file_ops = {
2128 .open = extfrag_open,
2129 .read = seq_read,
2130 .llseek = seq_lseek,
2131 .release = seq_release,
2132 };
2133
extfrag_debug_init(void)2134 static int __init extfrag_debug_init(void)
2135 {
2136 struct dentry *extfrag_debug_root;
2137
2138 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2139
2140 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2141 &unusable_file_ops);
2142
2143 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2144 &extfrag_file_ops);
2145
2146 return 0;
2147 }
2148
2149 module_init(extfrag_debug_init);
2150 #endif
2151