1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
kmem_cache_debug(struct kmem_cache * s)119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
fixup_red_left(struct kmem_cache * s,void * p)128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
kmem_cache_has_cpu_partial(struct kmem_cache * s)136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
sysfs_slab_add(struct kmem_cache * s)222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
memcg_propagate_slab_attrs(struct kmem_cache * s)225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
sysfs_slab_remove(struct kmem_cache * s)226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
stat(const struct kmem_cache * s,enum stat_item si)229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
get_freepointer(struct kmem_cache * s,void * object)278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
prefetch_freepointer(const struct kmem_cache * s,void * object)283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
get_freepointer_safe(struct kmem_cache * s,void * object)288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
set_freepointer(struct kmem_cache * s,void * object,void * fp)301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
slab_index(void * p,struct kmem_cache * s,void * addr)319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
order_objects(unsigned int order,unsigned int size)324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
oo_make(unsigned int order,unsigned int size)329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
oo_order(struct kmem_cache_order_objects x)339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
oo_objects(struct kmem_cache_order_objects x)344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
slab_lock(struct page * page)352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
slab_unlock(struct page * page)358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
get_map(struct kmem_cache * s,struct page * page,unsigned long * map)450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
size_from_object(struct kmem_cache * s)459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
restore_red_left(struct kmem_cache * s,void * p)467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
metadata_access_enable(void)493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
metadata_access_disable(void)498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
print_section(char * level,char * text,u8 * addr,unsigned int length)527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
init_tracking(struct kmem_cache * s,void * object)574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
print_track(const char * s,struct track * t,unsigned long pr_time)583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
print_tracking(struct kmem_cache * s,void * object)602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
print_page_info(struct page * page)612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
slab_bug(struct kmem_cache * s,char * fmt,...)619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
slab_fix(struct kmem_cache * s,char * fmt,...)635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
init_object(struct kmem_cache * s,void * object,u8 val)710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = page_size(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
check_slab(struct kmem_cache * s,struct page * page)910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
node_nr_slabs(struct kmem_cache_node * n)1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1079 {
1080 	if (!(s->flags & SLAB_POISON))
1081 		return;
1082 
1083 	metadata_access_enable();
1084 	memset(addr, POISON_INUSE, page_size(page));
1085 	metadata_access_disable();
1086 }
1087 
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1088 static inline int alloc_consistency_checks(struct kmem_cache *s,
1089 					struct page *page, void *object)
1090 {
1091 	if (!check_slab(s, page))
1092 		return 0;
1093 
1094 	if (!check_valid_pointer(s, page, object)) {
1095 		object_err(s, page, object, "Freelist Pointer check fails");
1096 		return 0;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1100 		return 0;
1101 
1102 	return 1;
1103 }
1104 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1105 static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 					struct page *page,
1107 					void *object, unsigned long addr)
1108 {
1109 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1110 		if (!alloc_consistency_checks(s, page, object))
1111 			goto bad;
1112 	}
1113 
1114 	/* Success perform special debug activities for allocs */
1115 	if (s->flags & SLAB_STORE_USER)
1116 		set_track(s, object, TRACK_ALLOC, addr);
1117 	trace(s, page, object, 1);
1118 	init_object(s, object, SLUB_RED_ACTIVE);
1119 	return 1;
1120 
1121 bad:
1122 	if (PageSlab(page)) {
1123 		/*
1124 		 * If this is a slab page then lets do the best we can
1125 		 * to avoid issues in the future. Marking all objects
1126 		 * as used avoids touching the remaining objects.
1127 		 */
1128 		slab_fix(s, "Marking all objects used");
1129 		page->inuse = page->objects;
1130 		page->freelist = NULL;
1131 	}
1132 	return 0;
1133 }
1134 
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1135 static inline int free_consistency_checks(struct kmem_cache *s,
1136 		struct page *page, void *object, unsigned long addr)
1137 {
1138 	if (!check_valid_pointer(s, page, object)) {
1139 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1140 		return 0;
1141 	}
1142 
1143 	if (on_freelist(s, page, object)) {
1144 		object_err(s, page, object, "Object already free");
1145 		return 0;
1146 	}
1147 
1148 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1149 		return 0;
1150 
1151 	if (unlikely(s != page->slab_cache)) {
1152 		if (!PageSlab(page)) {
1153 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 				 object);
1155 		} else if (!page->slab_cache) {
1156 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 			       object);
1158 			dump_stack();
1159 		} else
1160 			object_err(s, page, object,
1161 					"page slab pointer corrupt.");
1162 		return 0;
1163 	}
1164 	return 1;
1165 }
1166 
1167 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1168 static noinline int free_debug_processing(
1169 	struct kmem_cache *s, struct page *page,
1170 	void *head, void *tail, int bulk_cnt,
1171 	unsigned long addr)
1172 {
1173 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 	void *object = head;
1175 	int cnt = 0;
1176 	unsigned long uninitialized_var(flags);
1177 	int ret = 0;
1178 
1179 	spin_lock_irqsave(&n->list_lock, flags);
1180 	slab_lock(page);
1181 
1182 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 		if (!check_slab(s, page))
1184 			goto out;
1185 	}
1186 
1187 next_object:
1188 	cnt++;
1189 
1190 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 		if (!free_consistency_checks(s, page, object, addr))
1192 			goto out;
1193 	}
1194 
1195 	if (s->flags & SLAB_STORE_USER)
1196 		set_track(s, object, TRACK_FREE, addr);
1197 	trace(s, page, object, 0);
1198 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1199 	init_object(s, object, SLUB_RED_INACTIVE);
1200 
1201 	/* Reached end of constructed freelist yet? */
1202 	if (object != tail) {
1203 		object = get_freepointer(s, object);
1204 		goto next_object;
1205 	}
1206 	ret = 1;
1207 
1208 out:
1209 	if (cnt != bulk_cnt)
1210 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 			 bulk_cnt, cnt);
1212 
1213 	slab_unlock(page);
1214 	spin_unlock_irqrestore(&n->list_lock, flags);
1215 	if (!ret)
1216 		slab_fix(s, "Object at 0x%p not freed", object);
1217 	return ret;
1218 }
1219 
setup_slub_debug(char * str)1220 static int __init setup_slub_debug(char *str)
1221 {
1222 	slub_debug = DEBUG_DEFAULT_FLAGS;
1223 	if (*str++ != '=' || !*str)
1224 		/*
1225 		 * No options specified. Switch on full debugging.
1226 		 */
1227 		goto out;
1228 
1229 	if (*str == ',')
1230 		/*
1231 		 * No options but restriction on slabs. This means full
1232 		 * debugging for slabs matching a pattern.
1233 		 */
1234 		goto check_slabs;
1235 
1236 	slub_debug = 0;
1237 	if (*str == '-')
1238 		/*
1239 		 * Switch off all debugging measures.
1240 		 */
1241 		goto out;
1242 
1243 	/*
1244 	 * Determine which debug features should be switched on
1245 	 */
1246 	for (; *str && *str != ','; str++) {
1247 		switch (tolower(*str)) {
1248 		case 'f':
1249 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1250 			break;
1251 		case 'z':
1252 			slub_debug |= SLAB_RED_ZONE;
1253 			break;
1254 		case 'p':
1255 			slub_debug |= SLAB_POISON;
1256 			break;
1257 		case 'u':
1258 			slub_debug |= SLAB_STORE_USER;
1259 			break;
1260 		case 't':
1261 			slub_debug |= SLAB_TRACE;
1262 			break;
1263 		case 'a':
1264 			slub_debug |= SLAB_FAILSLAB;
1265 			break;
1266 		case 'o':
1267 			/*
1268 			 * Avoid enabling debugging on caches if its minimum
1269 			 * order would increase as a result.
1270 			 */
1271 			disable_higher_order_debug = 1;
1272 			break;
1273 		default:
1274 			pr_err("slub_debug option '%c' unknown. skipped\n",
1275 			       *str);
1276 		}
1277 	}
1278 
1279 check_slabs:
1280 	if (*str == ',')
1281 		slub_debug_slabs = str + 1;
1282 out:
1283 	if ((static_branch_unlikely(&init_on_alloc) ||
1284 	     static_branch_unlikely(&init_on_free)) &&
1285 	    (slub_debug & SLAB_POISON))
1286 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1287 	return 1;
1288 }
1289 
1290 __setup("slub_debug", setup_slub_debug);
1291 
1292 /*
1293  * kmem_cache_flags - apply debugging options to the cache
1294  * @object_size:	the size of an object without meta data
1295  * @flags:		flags to set
1296  * @name:		name of the cache
1297  * @ctor:		constructor function
1298  *
1299  * Debug option(s) are applied to @flags. In addition to the debug
1300  * option(s), if a slab name (or multiple) is specified i.e.
1301  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302  * then only the select slabs will receive the debug option(s).
1303  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))1304 slab_flags_t kmem_cache_flags(unsigned int object_size,
1305 	slab_flags_t flags, const char *name,
1306 	void (*ctor)(void *))
1307 {
1308 	char *iter;
1309 	size_t len;
1310 
1311 	/* If slub_debug = 0, it folds into the if conditional. */
1312 	if (!slub_debug_slabs)
1313 		return flags | slub_debug;
1314 
1315 	len = strlen(name);
1316 	iter = slub_debug_slabs;
1317 	while (*iter) {
1318 		char *end, *glob;
1319 		size_t cmplen;
1320 
1321 		end = strchrnul(iter, ',');
1322 
1323 		glob = strnchr(iter, end - iter, '*');
1324 		if (glob)
1325 			cmplen = glob - iter;
1326 		else
1327 			cmplen = max_t(size_t, len, (end - iter));
1328 
1329 		if (!strncmp(name, iter, cmplen)) {
1330 			flags |= slub_debug;
1331 			break;
1332 		}
1333 
1334 		if (!*end)
1335 			break;
1336 		iter = end + 1;
1337 	}
1338 
1339 	return flags;
1340 }
1341 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1342 static inline void setup_object_debug(struct kmem_cache *s,
1343 			struct page *page, void *object) {}
1344 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1346 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1347 static inline int alloc_debug_processing(struct kmem_cache *s,
1348 	struct page *page, void *object, unsigned long addr) { return 0; }
1349 
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1350 static inline int free_debug_processing(
1351 	struct kmem_cache *s, struct page *page,
1352 	void *head, void *tail, int bulk_cnt,
1353 	unsigned long addr) { return 0; }
1354 
slab_pad_check(struct kmem_cache * s,struct page * page)1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1357 static inline int check_object(struct kmem_cache *s, struct page *page,
1358 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 					struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))1363 slab_flags_t kmem_cache_flags(unsigned int object_size,
1364 	slab_flags_t flags, const char *name,
1365 	void (*ctor)(void *))
1366 {
1367 	return flags;
1368 }
1369 #define slub_debug 0
1370 
1371 #define disable_higher_order_debug 0
1372 
slabs_node(struct kmem_cache * s,int node)1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1377 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1379 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 							int objects) {}
1381 
1382 #endif /* CONFIG_SLUB_DEBUG */
1383 
1384 /*
1385  * Hooks for other subsystems that check memory allocations. In a typical
1386  * production configuration these hooks all should produce no code at all.
1387  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1389 {
1390 	ptr = kasan_kmalloc_large(ptr, size, flags);
1391 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1392 	kmemleak_alloc(ptr, size, 1, flags);
1393 	return ptr;
1394 }
1395 
kfree_hook(void * x)1396 static __always_inline void kfree_hook(void *x)
1397 {
1398 	kmemleak_free(x);
1399 	kasan_kfree_large(x, _RET_IP_);
1400 }
1401 
slab_free_hook(struct kmem_cache * s,void * x)1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1403 {
1404 	kmemleak_free_recursive(x, s->flags);
1405 
1406 	/*
1407 	 * Trouble is that we may no longer disable interrupts in the fast path
1408 	 * So in order to make the debug calls that expect irqs to be
1409 	 * disabled we need to disable interrupts temporarily.
1410 	 */
1411 #ifdef CONFIG_LOCKDEP
1412 	{
1413 		unsigned long flags;
1414 
1415 		local_irq_save(flags);
1416 		debug_check_no_locks_freed(x, s->object_size);
1417 		local_irq_restore(flags);
1418 	}
1419 #endif
1420 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 		debug_check_no_obj_freed(x, s->object_size);
1422 
1423 	/* KASAN might put x into memory quarantine, delaying its reuse */
1424 	return kasan_slab_free(s, x, _RET_IP_);
1425 }
1426 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail)1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 					   void **head, void **tail)
1429 {
1430 
1431 	void *object;
1432 	void *next = *head;
1433 	void *old_tail = *tail ? *tail : *head;
1434 	int rsize;
1435 
1436 	/* Head and tail of the reconstructed freelist */
1437 	*head = NULL;
1438 	*tail = NULL;
1439 
1440 	do {
1441 		object = next;
1442 		next = get_freepointer(s, object);
1443 
1444 		if (slab_want_init_on_free(s)) {
1445 			/*
1446 			 * Clear the object and the metadata, but don't touch
1447 			 * the redzone.
1448 			 */
1449 			memset(object, 0, s->object_size);
1450 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1451 							   : 0;
1452 			memset((char *)object + s->inuse, 0,
1453 			       s->size - s->inuse - rsize);
1454 
1455 		}
1456 		/* If object's reuse doesn't have to be delayed */
1457 		if (!slab_free_hook(s, object)) {
1458 			/* Move object to the new freelist */
1459 			set_freepointer(s, object, *head);
1460 			*head = object;
1461 			if (!*tail)
1462 				*tail = object;
1463 		}
1464 	} while (object != old_tail);
1465 
1466 	if (*head == *tail)
1467 		*tail = NULL;
1468 
1469 	return *head != NULL;
1470 }
1471 
setup_object(struct kmem_cache * s,struct page * page,void * object)1472 static void *setup_object(struct kmem_cache *s, struct page *page,
1473 				void *object)
1474 {
1475 	setup_object_debug(s, page, object);
1476 	object = kasan_init_slab_obj(s, object);
1477 	if (unlikely(s->ctor)) {
1478 		kasan_unpoison_object_data(s, object);
1479 		s->ctor(object);
1480 		kasan_poison_object_data(s, object);
1481 	}
1482 	return object;
1483 }
1484 
1485 /*
1486  * Slab allocation and freeing
1487  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1488 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1489 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1490 {
1491 	struct page *page;
1492 	unsigned int order = oo_order(oo);
1493 
1494 	if (node == NUMA_NO_NODE)
1495 		page = alloc_pages(flags, order);
1496 	else
1497 		page = __alloc_pages_node(node, flags, order);
1498 
1499 	if (page && charge_slab_page(page, flags, order, s)) {
1500 		__free_pages(page, order);
1501 		page = NULL;
1502 	}
1503 
1504 	return page;
1505 }
1506 
1507 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1508 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1509 static int init_cache_random_seq(struct kmem_cache *s)
1510 {
1511 	unsigned int count = oo_objects(s->oo);
1512 	int err;
1513 
1514 	/* Bailout if already initialised */
1515 	if (s->random_seq)
1516 		return 0;
1517 
1518 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1519 	if (err) {
1520 		pr_err("SLUB: Unable to initialize free list for %s\n",
1521 			s->name);
1522 		return err;
1523 	}
1524 
1525 	/* Transform to an offset on the set of pages */
1526 	if (s->random_seq) {
1527 		unsigned int i;
1528 
1529 		for (i = 0; i < count; i++)
1530 			s->random_seq[i] *= s->size;
1531 	}
1532 	return 0;
1533 }
1534 
1535 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1536 static void __init init_freelist_randomization(void)
1537 {
1538 	struct kmem_cache *s;
1539 
1540 	mutex_lock(&slab_mutex);
1541 
1542 	list_for_each_entry(s, &slab_caches, list)
1543 		init_cache_random_seq(s);
1544 
1545 	mutex_unlock(&slab_mutex);
1546 }
1547 
1548 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1549 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1550 				unsigned long *pos, void *start,
1551 				unsigned long page_limit,
1552 				unsigned long freelist_count)
1553 {
1554 	unsigned int idx;
1555 
1556 	/*
1557 	 * If the target page allocation failed, the number of objects on the
1558 	 * page might be smaller than the usual size defined by the cache.
1559 	 */
1560 	do {
1561 		idx = s->random_seq[*pos];
1562 		*pos += 1;
1563 		if (*pos >= freelist_count)
1564 			*pos = 0;
1565 	} while (unlikely(idx >= page_limit));
1566 
1567 	return (char *)start + idx;
1568 }
1569 
1570 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1571 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1572 {
1573 	void *start;
1574 	void *cur;
1575 	void *next;
1576 	unsigned long idx, pos, page_limit, freelist_count;
1577 
1578 	if (page->objects < 2 || !s->random_seq)
1579 		return false;
1580 
1581 	freelist_count = oo_objects(s->oo);
1582 	pos = get_random_int() % freelist_count;
1583 
1584 	page_limit = page->objects * s->size;
1585 	start = fixup_red_left(s, page_address(page));
1586 
1587 	/* First entry is used as the base of the freelist */
1588 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1589 				freelist_count);
1590 	cur = setup_object(s, page, cur);
1591 	page->freelist = cur;
1592 
1593 	for (idx = 1; idx < page->objects; idx++) {
1594 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1595 			freelist_count);
1596 		next = setup_object(s, page, next);
1597 		set_freepointer(s, cur, next);
1598 		cur = next;
1599 	}
1600 	set_freepointer(s, cur, NULL);
1601 
1602 	return true;
1603 }
1604 #else
init_cache_random_seq(struct kmem_cache * s)1605 static inline int init_cache_random_seq(struct kmem_cache *s)
1606 {
1607 	return 0;
1608 }
init_freelist_randomization(void)1609 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1610 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1611 {
1612 	return false;
1613 }
1614 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1615 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1616 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1617 {
1618 	struct page *page;
1619 	struct kmem_cache_order_objects oo = s->oo;
1620 	gfp_t alloc_gfp;
1621 	void *start, *p, *next;
1622 	int idx;
1623 	bool shuffle;
1624 
1625 	flags &= gfp_allowed_mask;
1626 
1627 	if (gfpflags_allow_blocking(flags))
1628 		local_irq_enable();
1629 
1630 	flags |= s->allocflags;
1631 
1632 	/*
1633 	 * Let the initial higher-order allocation fail under memory pressure
1634 	 * so we fall-back to the minimum order allocation.
1635 	 */
1636 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1637 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1638 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1639 
1640 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1641 	if (unlikely(!page)) {
1642 		oo = s->min;
1643 		alloc_gfp = flags;
1644 		/*
1645 		 * Allocation may have failed due to fragmentation.
1646 		 * Try a lower order alloc if possible
1647 		 */
1648 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1649 		if (unlikely(!page))
1650 			goto out;
1651 		stat(s, ORDER_FALLBACK);
1652 	}
1653 
1654 	page->objects = oo_objects(oo);
1655 
1656 	page->slab_cache = s;
1657 	__SetPageSlab(page);
1658 	if (page_is_pfmemalloc(page))
1659 		SetPageSlabPfmemalloc(page);
1660 
1661 	kasan_poison_slab(page);
1662 
1663 	start = page_address(page);
1664 
1665 	setup_page_debug(s, page, start);
1666 
1667 	shuffle = shuffle_freelist(s, page);
1668 
1669 	if (!shuffle) {
1670 		start = fixup_red_left(s, start);
1671 		start = setup_object(s, page, start);
1672 		page->freelist = start;
1673 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1674 			next = p + s->size;
1675 			next = setup_object(s, page, next);
1676 			set_freepointer(s, p, next);
1677 			p = next;
1678 		}
1679 		set_freepointer(s, p, NULL);
1680 	}
1681 
1682 	page->inuse = page->objects;
1683 	page->frozen = 1;
1684 
1685 out:
1686 	if (gfpflags_allow_blocking(flags))
1687 		local_irq_disable();
1688 	if (!page)
1689 		return NULL;
1690 
1691 	inc_slabs_node(s, page_to_nid(page), page->objects);
1692 
1693 	return page;
1694 }
1695 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1696 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697 {
1698 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 		flags &= ~GFP_SLAB_BUG_MASK;
1701 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 				invalid_mask, &invalid_mask, flags, &flags);
1703 		dump_stack();
1704 	}
1705 
1706 	return allocate_slab(s,
1707 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708 }
1709 
__free_slab(struct kmem_cache * s,struct page * page)1710 static void __free_slab(struct kmem_cache *s, struct page *page)
1711 {
1712 	int order = compound_order(page);
1713 	int pages = 1 << order;
1714 
1715 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716 		void *p;
1717 
1718 		slab_pad_check(s, page);
1719 		for_each_object(p, s, page_address(page),
1720 						page->objects)
1721 			check_object(s, page, p, SLUB_RED_INACTIVE);
1722 	}
1723 
1724 	__ClearPageSlabPfmemalloc(page);
1725 	__ClearPageSlab(page);
1726 
1727 	page->mapping = NULL;
1728 	if (current->reclaim_state)
1729 		current->reclaim_state->reclaimed_slab += pages;
1730 	uncharge_slab_page(page, order, s);
1731 	__free_pages(page, order);
1732 }
1733 
rcu_free_slab(struct rcu_head * h)1734 static void rcu_free_slab(struct rcu_head *h)
1735 {
1736 	struct page *page = container_of(h, struct page, rcu_head);
1737 
1738 	__free_slab(page->slab_cache, page);
1739 }
1740 
free_slab(struct kmem_cache * s,struct page * page)1741 static void free_slab(struct kmem_cache *s, struct page *page)
1742 {
1743 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1744 		call_rcu(&page->rcu_head, rcu_free_slab);
1745 	} else
1746 		__free_slab(s, page);
1747 }
1748 
discard_slab(struct kmem_cache * s,struct page * page)1749 static void discard_slab(struct kmem_cache *s, struct page *page)
1750 {
1751 	dec_slabs_node(s, page_to_nid(page), page->objects);
1752 	free_slab(s, page);
1753 }
1754 
1755 /*
1756  * Management of partially allocated slabs.
1757  */
1758 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1759 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1760 {
1761 	n->nr_partial++;
1762 	if (tail == DEACTIVATE_TO_TAIL)
1763 		list_add_tail(&page->slab_list, &n->partial);
1764 	else
1765 		list_add(&page->slab_list, &n->partial);
1766 }
1767 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1768 static inline void add_partial(struct kmem_cache_node *n,
1769 				struct page *page, int tail)
1770 {
1771 	lockdep_assert_held(&n->list_lock);
1772 	__add_partial(n, page, tail);
1773 }
1774 
remove_partial(struct kmem_cache_node * n,struct page * page)1775 static inline void remove_partial(struct kmem_cache_node *n,
1776 					struct page *page)
1777 {
1778 	lockdep_assert_held(&n->list_lock);
1779 	list_del(&page->slab_list);
1780 	n->nr_partial--;
1781 }
1782 
1783 /*
1784  * Remove slab from the partial list, freeze it and
1785  * return the pointer to the freelist.
1786  *
1787  * Returns a list of objects or NULL if it fails.
1788  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1789 static inline void *acquire_slab(struct kmem_cache *s,
1790 		struct kmem_cache_node *n, struct page *page,
1791 		int mode, int *objects)
1792 {
1793 	void *freelist;
1794 	unsigned long counters;
1795 	struct page new;
1796 
1797 	lockdep_assert_held(&n->list_lock);
1798 
1799 	/*
1800 	 * Zap the freelist and set the frozen bit.
1801 	 * The old freelist is the list of objects for the
1802 	 * per cpu allocation list.
1803 	 */
1804 	freelist = page->freelist;
1805 	counters = page->counters;
1806 	new.counters = counters;
1807 	*objects = new.objects - new.inuse;
1808 	if (mode) {
1809 		new.inuse = page->objects;
1810 		new.freelist = NULL;
1811 	} else {
1812 		new.freelist = freelist;
1813 	}
1814 
1815 	VM_BUG_ON(new.frozen);
1816 	new.frozen = 1;
1817 
1818 	if (!__cmpxchg_double_slab(s, page,
1819 			freelist, counters,
1820 			new.freelist, new.counters,
1821 			"acquire_slab"))
1822 		return NULL;
1823 
1824 	remove_partial(n, page);
1825 	WARN_ON(!freelist);
1826 	return freelist;
1827 }
1828 
1829 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1830 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1831 
1832 /*
1833  * Try to allocate a partial slab from a specific node.
1834  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)1835 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1836 				struct kmem_cache_cpu *c, gfp_t flags)
1837 {
1838 	struct page *page, *page2;
1839 	void *object = NULL;
1840 	unsigned int available = 0;
1841 	int objects;
1842 
1843 	/*
1844 	 * Racy check. If we mistakenly see no partial slabs then we
1845 	 * just allocate an empty slab. If we mistakenly try to get a
1846 	 * partial slab and there is none available then get_partials()
1847 	 * will return NULL.
1848 	 */
1849 	if (!n || !n->nr_partial)
1850 		return NULL;
1851 
1852 	spin_lock(&n->list_lock);
1853 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1854 		void *t;
1855 
1856 		if (!pfmemalloc_match(page, flags))
1857 			continue;
1858 
1859 		t = acquire_slab(s, n, page, object == NULL, &objects);
1860 		if (!t)
1861 			break;
1862 
1863 		available += objects;
1864 		if (!object) {
1865 			c->page = page;
1866 			stat(s, ALLOC_FROM_PARTIAL);
1867 			object = t;
1868 		} else {
1869 			put_cpu_partial(s, page, 0);
1870 			stat(s, CPU_PARTIAL_NODE);
1871 		}
1872 		if (!kmem_cache_has_cpu_partial(s)
1873 			|| available > slub_cpu_partial(s) / 2)
1874 			break;
1875 
1876 	}
1877 	spin_unlock(&n->list_lock);
1878 	return object;
1879 }
1880 
1881 /*
1882  * Get a page from somewhere. Search in increasing NUMA distances.
1883  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)1884 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1885 		struct kmem_cache_cpu *c)
1886 {
1887 #ifdef CONFIG_NUMA
1888 	struct zonelist *zonelist;
1889 	struct zoneref *z;
1890 	struct zone *zone;
1891 	enum zone_type high_zoneidx = gfp_zone(flags);
1892 	void *object;
1893 	unsigned int cpuset_mems_cookie;
1894 
1895 	/*
1896 	 * The defrag ratio allows a configuration of the tradeoffs between
1897 	 * inter node defragmentation and node local allocations. A lower
1898 	 * defrag_ratio increases the tendency to do local allocations
1899 	 * instead of attempting to obtain partial slabs from other nodes.
1900 	 *
1901 	 * If the defrag_ratio is set to 0 then kmalloc() always
1902 	 * returns node local objects. If the ratio is higher then kmalloc()
1903 	 * may return off node objects because partial slabs are obtained
1904 	 * from other nodes and filled up.
1905 	 *
1906 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1907 	 * (which makes defrag_ratio = 1000) then every (well almost)
1908 	 * allocation will first attempt to defrag slab caches on other nodes.
1909 	 * This means scanning over all nodes to look for partial slabs which
1910 	 * may be expensive if we do it every time we are trying to find a slab
1911 	 * with available objects.
1912 	 */
1913 	if (!s->remote_node_defrag_ratio ||
1914 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1915 		return NULL;
1916 
1917 	do {
1918 		cpuset_mems_cookie = read_mems_allowed_begin();
1919 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1920 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1921 			struct kmem_cache_node *n;
1922 
1923 			n = get_node(s, zone_to_nid(zone));
1924 
1925 			if (n && cpuset_zone_allowed(zone, flags) &&
1926 					n->nr_partial > s->min_partial) {
1927 				object = get_partial_node(s, n, c, flags);
1928 				if (object) {
1929 					/*
1930 					 * Don't check read_mems_allowed_retry()
1931 					 * here - if mems_allowed was updated in
1932 					 * parallel, that was a harmless race
1933 					 * between allocation and the cpuset
1934 					 * update
1935 					 */
1936 					return object;
1937 				}
1938 			}
1939 		}
1940 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1941 #endif	/* CONFIG_NUMA */
1942 	return NULL;
1943 }
1944 
1945 /*
1946  * Get a partial page, lock it and return it.
1947  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)1948 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1949 		struct kmem_cache_cpu *c)
1950 {
1951 	void *object;
1952 	int searchnode = node;
1953 
1954 	if (node == NUMA_NO_NODE)
1955 		searchnode = numa_mem_id();
1956 	else if (!node_present_pages(node))
1957 		searchnode = node_to_mem_node(node);
1958 
1959 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1960 	if (object || node != NUMA_NO_NODE)
1961 		return object;
1962 
1963 	return get_any_partial(s, flags, c);
1964 }
1965 
1966 #ifdef CONFIG_PREEMPT
1967 /*
1968  * Calculate the next globally unique transaction for disambiguiation
1969  * during cmpxchg. The transactions start with the cpu number and are then
1970  * incremented by CONFIG_NR_CPUS.
1971  */
1972 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1973 #else
1974 /*
1975  * No preemption supported therefore also no need to check for
1976  * different cpus.
1977  */
1978 #define TID_STEP 1
1979 #endif
1980 
next_tid(unsigned long tid)1981 static inline unsigned long next_tid(unsigned long tid)
1982 {
1983 	return tid + TID_STEP;
1984 }
1985 
1986 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)1987 static inline unsigned int tid_to_cpu(unsigned long tid)
1988 {
1989 	return tid % TID_STEP;
1990 }
1991 
tid_to_event(unsigned long tid)1992 static inline unsigned long tid_to_event(unsigned long tid)
1993 {
1994 	return tid / TID_STEP;
1995 }
1996 #endif
1997 
init_tid(int cpu)1998 static inline unsigned int init_tid(int cpu)
1999 {
2000 	return cpu;
2001 }
2002 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2003 static inline void note_cmpxchg_failure(const char *n,
2004 		const struct kmem_cache *s, unsigned long tid)
2005 {
2006 #ifdef SLUB_DEBUG_CMPXCHG
2007 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2008 
2009 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2010 
2011 #ifdef CONFIG_PREEMPT
2012 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2013 		pr_warn("due to cpu change %d -> %d\n",
2014 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2015 	else
2016 #endif
2017 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2018 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2019 			tid_to_event(tid), tid_to_event(actual_tid));
2020 	else
2021 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2022 			actual_tid, tid, next_tid(tid));
2023 #endif
2024 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2025 }
2026 
init_kmem_cache_cpus(struct kmem_cache * s)2027 static void init_kmem_cache_cpus(struct kmem_cache *s)
2028 {
2029 	int cpu;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2033 }
2034 
2035 /*
2036  * Remove the cpu slab
2037  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist,struct kmem_cache_cpu * c)2038 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2039 				void *freelist, struct kmem_cache_cpu *c)
2040 {
2041 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2042 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2043 	int lock = 0;
2044 	enum slab_modes l = M_NONE, m = M_NONE;
2045 	void *nextfree;
2046 	int tail = DEACTIVATE_TO_HEAD;
2047 	struct page new;
2048 	struct page old;
2049 
2050 	if (page->freelist) {
2051 		stat(s, DEACTIVATE_REMOTE_FREES);
2052 		tail = DEACTIVATE_TO_TAIL;
2053 	}
2054 
2055 	/*
2056 	 * Stage one: Free all available per cpu objects back
2057 	 * to the page freelist while it is still frozen. Leave the
2058 	 * last one.
2059 	 *
2060 	 * There is no need to take the list->lock because the page
2061 	 * is still frozen.
2062 	 */
2063 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2064 		void *prior;
2065 		unsigned long counters;
2066 
2067 		do {
2068 			prior = page->freelist;
2069 			counters = page->counters;
2070 			set_freepointer(s, freelist, prior);
2071 			new.counters = counters;
2072 			new.inuse--;
2073 			VM_BUG_ON(!new.frozen);
2074 
2075 		} while (!__cmpxchg_double_slab(s, page,
2076 			prior, counters,
2077 			freelist, new.counters,
2078 			"drain percpu freelist"));
2079 
2080 		freelist = nextfree;
2081 	}
2082 
2083 	/*
2084 	 * Stage two: Ensure that the page is unfrozen while the
2085 	 * list presence reflects the actual number of objects
2086 	 * during unfreeze.
2087 	 *
2088 	 * We setup the list membership and then perform a cmpxchg
2089 	 * with the count. If there is a mismatch then the page
2090 	 * is not unfrozen but the page is on the wrong list.
2091 	 *
2092 	 * Then we restart the process which may have to remove
2093 	 * the page from the list that we just put it on again
2094 	 * because the number of objects in the slab may have
2095 	 * changed.
2096 	 */
2097 redo:
2098 
2099 	old.freelist = page->freelist;
2100 	old.counters = page->counters;
2101 	VM_BUG_ON(!old.frozen);
2102 
2103 	/* Determine target state of the slab */
2104 	new.counters = old.counters;
2105 	if (freelist) {
2106 		new.inuse--;
2107 		set_freepointer(s, freelist, old.freelist);
2108 		new.freelist = freelist;
2109 	} else
2110 		new.freelist = old.freelist;
2111 
2112 	new.frozen = 0;
2113 
2114 	if (!new.inuse && n->nr_partial >= s->min_partial)
2115 		m = M_FREE;
2116 	else if (new.freelist) {
2117 		m = M_PARTIAL;
2118 		if (!lock) {
2119 			lock = 1;
2120 			/*
2121 			 * Taking the spinlock removes the possibility
2122 			 * that acquire_slab() will see a slab page that
2123 			 * is frozen
2124 			 */
2125 			spin_lock(&n->list_lock);
2126 		}
2127 	} else {
2128 		m = M_FULL;
2129 		if (kmem_cache_debug(s) && !lock) {
2130 			lock = 1;
2131 			/*
2132 			 * This also ensures that the scanning of full
2133 			 * slabs from diagnostic functions will not see
2134 			 * any frozen slabs.
2135 			 */
2136 			spin_lock(&n->list_lock);
2137 		}
2138 	}
2139 
2140 	if (l != m) {
2141 		if (l == M_PARTIAL)
2142 			remove_partial(n, page);
2143 		else if (l == M_FULL)
2144 			remove_full(s, n, page);
2145 
2146 		if (m == M_PARTIAL)
2147 			add_partial(n, page, tail);
2148 		else if (m == M_FULL)
2149 			add_full(s, n, page);
2150 	}
2151 
2152 	l = m;
2153 	if (!__cmpxchg_double_slab(s, page,
2154 				old.freelist, old.counters,
2155 				new.freelist, new.counters,
2156 				"unfreezing slab"))
2157 		goto redo;
2158 
2159 	if (lock)
2160 		spin_unlock(&n->list_lock);
2161 
2162 	if (m == M_PARTIAL)
2163 		stat(s, tail);
2164 	else if (m == M_FULL)
2165 		stat(s, DEACTIVATE_FULL);
2166 	else if (m == M_FREE) {
2167 		stat(s, DEACTIVATE_EMPTY);
2168 		discard_slab(s, page);
2169 		stat(s, FREE_SLAB);
2170 	}
2171 
2172 	c->page = NULL;
2173 	c->freelist = NULL;
2174 }
2175 
2176 /*
2177  * Unfreeze all the cpu partial slabs.
2178  *
2179  * This function must be called with interrupts disabled
2180  * for the cpu using c (or some other guarantee must be there
2181  * to guarantee no concurrent accesses).
2182  */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)2183 static void unfreeze_partials(struct kmem_cache *s,
2184 		struct kmem_cache_cpu *c)
2185 {
2186 #ifdef CONFIG_SLUB_CPU_PARTIAL
2187 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2188 	struct page *page, *discard_page = NULL;
2189 
2190 	while ((page = c->partial)) {
2191 		struct page new;
2192 		struct page old;
2193 
2194 		c->partial = page->next;
2195 
2196 		n2 = get_node(s, page_to_nid(page));
2197 		if (n != n2) {
2198 			if (n)
2199 				spin_unlock(&n->list_lock);
2200 
2201 			n = n2;
2202 			spin_lock(&n->list_lock);
2203 		}
2204 
2205 		do {
2206 
2207 			old.freelist = page->freelist;
2208 			old.counters = page->counters;
2209 			VM_BUG_ON(!old.frozen);
2210 
2211 			new.counters = old.counters;
2212 			new.freelist = old.freelist;
2213 
2214 			new.frozen = 0;
2215 
2216 		} while (!__cmpxchg_double_slab(s, page,
2217 				old.freelist, old.counters,
2218 				new.freelist, new.counters,
2219 				"unfreezing slab"));
2220 
2221 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2222 			page->next = discard_page;
2223 			discard_page = page;
2224 		} else {
2225 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2226 			stat(s, FREE_ADD_PARTIAL);
2227 		}
2228 	}
2229 
2230 	if (n)
2231 		spin_unlock(&n->list_lock);
2232 
2233 	while (discard_page) {
2234 		page = discard_page;
2235 		discard_page = discard_page->next;
2236 
2237 		stat(s, DEACTIVATE_EMPTY);
2238 		discard_slab(s, page);
2239 		stat(s, FREE_SLAB);
2240 	}
2241 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2242 }
2243 
2244 /*
2245  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2246  * partial page slot if available.
2247  *
2248  * If we did not find a slot then simply move all the partials to the
2249  * per node partial list.
2250  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2252 {
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 	struct page *oldpage;
2255 	int pages;
2256 	int pobjects;
2257 
2258 	preempt_disable();
2259 	do {
2260 		pages = 0;
2261 		pobjects = 0;
2262 		oldpage = this_cpu_read(s->cpu_slab->partial);
2263 
2264 		if (oldpage) {
2265 			pobjects = oldpage->pobjects;
2266 			pages = oldpage->pages;
2267 			if (drain && pobjects > s->cpu_partial) {
2268 				unsigned long flags;
2269 				/*
2270 				 * partial array is full. Move the existing
2271 				 * set to the per node partial list.
2272 				 */
2273 				local_irq_save(flags);
2274 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2275 				local_irq_restore(flags);
2276 				oldpage = NULL;
2277 				pobjects = 0;
2278 				pages = 0;
2279 				stat(s, CPU_PARTIAL_DRAIN);
2280 			}
2281 		}
2282 
2283 		pages++;
2284 		pobjects += page->objects - page->inuse;
2285 
2286 		page->pages = pages;
2287 		page->pobjects = pobjects;
2288 		page->next = oldpage;
2289 
2290 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 								!= oldpage);
2292 	if (unlikely(!s->cpu_partial)) {
2293 		unsigned long flags;
2294 
2295 		local_irq_save(flags);
2296 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 		local_irq_restore(flags);
2298 	}
2299 	preempt_enable();
2300 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2301 }
2302 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2304 {
2305 	stat(s, CPUSLAB_FLUSH);
2306 	deactivate_slab(s, c->page, c->freelist, c);
2307 
2308 	c->tid = next_tid(c->tid);
2309 }
2310 
2311 /*
2312  * Flush cpu slab.
2313  *
2314  * Called from IPI handler with interrupts disabled.
2315  */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2317 {
2318 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319 
2320 	if (c->page)
2321 		flush_slab(s, c);
2322 
2323 	unfreeze_partials(s, c);
2324 }
2325 
flush_cpu_slab(void * d)2326 static void flush_cpu_slab(void *d)
2327 {
2328 	struct kmem_cache *s = d;
2329 
2330 	__flush_cpu_slab(s, smp_processor_id());
2331 }
2332 
has_cpu_slab(int cpu,void * info)2333 static bool has_cpu_slab(int cpu, void *info)
2334 {
2335 	struct kmem_cache *s = info;
2336 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2337 
2338 	return c->page || slub_percpu_partial(c);
2339 }
2340 
flush_all(struct kmem_cache * s)2341 static void flush_all(struct kmem_cache *s)
2342 {
2343 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2344 }
2345 
2346 /*
2347  * Use the cpu notifier to insure that the cpu slabs are flushed when
2348  * necessary.
2349  */
slub_cpu_dead(unsigned int cpu)2350 static int slub_cpu_dead(unsigned int cpu)
2351 {
2352 	struct kmem_cache *s;
2353 	unsigned long flags;
2354 
2355 	mutex_lock(&slab_mutex);
2356 	list_for_each_entry(s, &slab_caches, list) {
2357 		local_irq_save(flags);
2358 		__flush_cpu_slab(s, cpu);
2359 		local_irq_restore(flags);
2360 	}
2361 	mutex_unlock(&slab_mutex);
2362 	return 0;
2363 }
2364 
2365 /*
2366  * Check if the objects in a per cpu structure fit numa
2367  * locality expectations.
2368  */
node_match(struct page * page,int node)2369 static inline int node_match(struct page *page, int node)
2370 {
2371 #ifdef CONFIG_NUMA
2372 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2373 		return 0;
2374 #endif
2375 	return 1;
2376 }
2377 
2378 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2379 static int count_free(struct page *page)
2380 {
2381 	return page->objects - page->inuse;
2382 }
2383 
node_nr_objs(struct kmem_cache_node * n)2384 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2385 {
2386 	return atomic_long_read(&n->total_objects);
2387 }
2388 #endif /* CONFIG_SLUB_DEBUG */
2389 
2390 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2391 static unsigned long count_partial(struct kmem_cache_node *n,
2392 					int (*get_count)(struct page *))
2393 {
2394 	unsigned long flags;
2395 	unsigned long x = 0;
2396 	struct page *page;
2397 
2398 	spin_lock_irqsave(&n->list_lock, flags);
2399 	list_for_each_entry(page, &n->partial, slab_list)
2400 		x += get_count(page);
2401 	spin_unlock_irqrestore(&n->list_lock, flags);
2402 	return x;
2403 }
2404 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2405 
2406 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2407 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2408 {
2409 #ifdef CONFIG_SLUB_DEBUG
2410 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2411 				      DEFAULT_RATELIMIT_BURST);
2412 	int node;
2413 	struct kmem_cache_node *n;
2414 
2415 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2416 		return;
2417 
2418 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2419 		nid, gfpflags, &gfpflags);
2420 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2421 		s->name, s->object_size, s->size, oo_order(s->oo),
2422 		oo_order(s->min));
2423 
2424 	if (oo_order(s->min) > get_order(s->object_size))
2425 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2426 			s->name);
2427 
2428 	for_each_kmem_cache_node(s, node, n) {
2429 		unsigned long nr_slabs;
2430 		unsigned long nr_objs;
2431 		unsigned long nr_free;
2432 
2433 		nr_free  = count_partial(n, count_free);
2434 		nr_slabs = node_nr_slabs(n);
2435 		nr_objs  = node_nr_objs(n);
2436 
2437 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2438 			node, nr_slabs, nr_objs, nr_free);
2439 	}
2440 #endif
2441 }
2442 
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2443 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2444 			int node, struct kmem_cache_cpu **pc)
2445 {
2446 	void *freelist;
2447 	struct kmem_cache_cpu *c = *pc;
2448 	struct page *page;
2449 
2450 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2451 
2452 	freelist = get_partial(s, flags, node, c);
2453 
2454 	if (freelist)
2455 		return freelist;
2456 
2457 	page = new_slab(s, flags, node);
2458 	if (page) {
2459 		c = raw_cpu_ptr(s->cpu_slab);
2460 		if (c->page)
2461 			flush_slab(s, c);
2462 
2463 		/*
2464 		 * No other reference to the page yet so we can
2465 		 * muck around with it freely without cmpxchg
2466 		 */
2467 		freelist = page->freelist;
2468 		page->freelist = NULL;
2469 
2470 		stat(s, ALLOC_SLAB);
2471 		c->page = page;
2472 		*pc = c;
2473 	}
2474 
2475 	return freelist;
2476 }
2477 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2478 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2479 {
2480 	if (unlikely(PageSlabPfmemalloc(page)))
2481 		return gfp_pfmemalloc_allowed(gfpflags);
2482 
2483 	return true;
2484 }
2485 
2486 /*
2487  * Check the page->freelist of a page and either transfer the freelist to the
2488  * per cpu freelist or deactivate the page.
2489  *
2490  * The page is still frozen if the return value is not NULL.
2491  *
2492  * If this function returns NULL then the page has been unfrozen.
2493  *
2494  * This function must be called with interrupt disabled.
2495  */
get_freelist(struct kmem_cache * s,struct page * page)2496 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2497 {
2498 	struct page new;
2499 	unsigned long counters;
2500 	void *freelist;
2501 
2502 	do {
2503 		freelist = page->freelist;
2504 		counters = page->counters;
2505 
2506 		new.counters = counters;
2507 		VM_BUG_ON(!new.frozen);
2508 
2509 		new.inuse = page->objects;
2510 		new.frozen = freelist != NULL;
2511 
2512 	} while (!__cmpxchg_double_slab(s, page,
2513 		freelist, counters,
2514 		NULL, new.counters,
2515 		"get_freelist"));
2516 
2517 	return freelist;
2518 }
2519 
2520 /*
2521  * Slow path. The lockless freelist is empty or we need to perform
2522  * debugging duties.
2523  *
2524  * Processing is still very fast if new objects have been freed to the
2525  * regular freelist. In that case we simply take over the regular freelist
2526  * as the lockless freelist and zap the regular freelist.
2527  *
2528  * If that is not working then we fall back to the partial lists. We take the
2529  * first element of the freelist as the object to allocate now and move the
2530  * rest of the freelist to the lockless freelist.
2531  *
2532  * And if we were unable to get a new slab from the partial slab lists then
2533  * we need to allocate a new slab. This is the slowest path since it involves
2534  * a call to the page allocator and the setup of a new slab.
2535  *
2536  * Version of __slab_alloc to use when we know that interrupts are
2537  * already disabled (which is the case for bulk allocation).
2538  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2539 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2540 			  unsigned long addr, struct kmem_cache_cpu *c)
2541 {
2542 	void *freelist;
2543 	struct page *page;
2544 
2545 	page = c->page;
2546 	if (!page)
2547 		goto new_slab;
2548 redo:
2549 
2550 	if (unlikely(!node_match(page, node))) {
2551 		int searchnode = node;
2552 
2553 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2554 			searchnode = node_to_mem_node(node);
2555 
2556 		if (unlikely(!node_match(page, searchnode))) {
2557 			stat(s, ALLOC_NODE_MISMATCH);
2558 			deactivate_slab(s, page, c->freelist, c);
2559 			goto new_slab;
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * By rights, we should be searching for a slab page that was
2565 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2566 	 * information when the page leaves the per-cpu allocator
2567 	 */
2568 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2569 		deactivate_slab(s, page, c->freelist, c);
2570 		goto new_slab;
2571 	}
2572 
2573 	/* must check again c->freelist in case of cpu migration or IRQ */
2574 	freelist = c->freelist;
2575 	if (freelist)
2576 		goto load_freelist;
2577 
2578 	freelist = get_freelist(s, page);
2579 
2580 	if (!freelist) {
2581 		c->page = NULL;
2582 		stat(s, DEACTIVATE_BYPASS);
2583 		goto new_slab;
2584 	}
2585 
2586 	stat(s, ALLOC_REFILL);
2587 
2588 load_freelist:
2589 	/*
2590 	 * freelist is pointing to the list of objects to be used.
2591 	 * page is pointing to the page from which the objects are obtained.
2592 	 * That page must be frozen for per cpu allocations to work.
2593 	 */
2594 	VM_BUG_ON(!c->page->frozen);
2595 	c->freelist = get_freepointer(s, freelist);
2596 	c->tid = next_tid(c->tid);
2597 	return freelist;
2598 
2599 new_slab:
2600 
2601 	if (slub_percpu_partial(c)) {
2602 		page = c->page = slub_percpu_partial(c);
2603 		slub_set_percpu_partial(c, page);
2604 		stat(s, CPU_PARTIAL_ALLOC);
2605 		goto redo;
2606 	}
2607 
2608 	freelist = new_slab_objects(s, gfpflags, node, &c);
2609 
2610 	if (unlikely(!freelist)) {
2611 		slab_out_of_memory(s, gfpflags, node);
2612 		return NULL;
2613 	}
2614 
2615 	page = c->page;
2616 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2617 		goto load_freelist;
2618 
2619 	/* Only entered in the debug case */
2620 	if (kmem_cache_debug(s) &&
2621 			!alloc_debug_processing(s, page, freelist, addr))
2622 		goto new_slab;	/* Slab failed checks. Next slab needed */
2623 
2624 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2625 	return freelist;
2626 }
2627 
2628 /*
2629  * Another one that disabled interrupt and compensates for possible
2630  * cpu changes by refetching the per cpu area pointer.
2631  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2632 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2633 			  unsigned long addr, struct kmem_cache_cpu *c)
2634 {
2635 	void *p;
2636 	unsigned long flags;
2637 
2638 	local_irq_save(flags);
2639 #ifdef CONFIG_PREEMPT
2640 	/*
2641 	 * We may have been preempted and rescheduled on a different
2642 	 * cpu before disabling interrupts. Need to reload cpu area
2643 	 * pointer.
2644 	 */
2645 	c = this_cpu_ptr(s->cpu_slab);
2646 #endif
2647 
2648 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2649 	local_irq_restore(flags);
2650 	return p;
2651 }
2652 
2653 /*
2654  * If the object has been wiped upon free, make sure it's fully initialized by
2655  * zeroing out freelist pointer.
2656  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)2657 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2658 						   void *obj)
2659 {
2660 	if (unlikely(slab_want_init_on_free(s)) && obj)
2661 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2662 }
2663 
2664 /*
2665  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2666  * have the fastpath folded into their functions. So no function call
2667  * overhead for requests that can be satisfied on the fastpath.
2668  *
2669  * The fastpath works by first checking if the lockless freelist can be used.
2670  * If not then __slab_alloc is called for slow processing.
2671  *
2672  * Otherwise we can simply pick the next object from the lockless free list.
2673  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr)2674 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2675 		gfp_t gfpflags, int node, unsigned long addr)
2676 {
2677 	void *object;
2678 	struct kmem_cache_cpu *c;
2679 	struct page *page;
2680 	unsigned long tid;
2681 
2682 	s = slab_pre_alloc_hook(s, gfpflags);
2683 	if (!s)
2684 		return NULL;
2685 redo:
2686 	/*
2687 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2688 	 * enabled. We may switch back and forth between cpus while
2689 	 * reading from one cpu area. That does not matter as long
2690 	 * as we end up on the original cpu again when doing the cmpxchg.
2691 	 *
2692 	 * We should guarantee that tid and kmem_cache are retrieved on
2693 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2694 	 * to check if it is matched or not.
2695 	 */
2696 	do {
2697 		tid = this_cpu_read(s->cpu_slab->tid);
2698 		c = raw_cpu_ptr(s->cpu_slab);
2699 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2700 		 unlikely(tid != READ_ONCE(c->tid)));
2701 
2702 	/*
2703 	 * Irqless object alloc/free algorithm used here depends on sequence
2704 	 * of fetching cpu_slab's data. tid should be fetched before anything
2705 	 * on c to guarantee that object and page associated with previous tid
2706 	 * won't be used with current tid. If we fetch tid first, object and
2707 	 * page could be one associated with next tid and our alloc/free
2708 	 * request will be failed. In this case, we will retry. So, no problem.
2709 	 */
2710 	barrier();
2711 
2712 	/*
2713 	 * The transaction ids are globally unique per cpu and per operation on
2714 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2715 	 * occurs on the right processor and that there was no operation on the
2716 	 * linked list in between.
2717 	 */
2718 
2719 	object = c->freelist;
2720 	page = c->page;
2721 	if (unlikely(!object || !node_match(page, node))) {
2722 		object = __slab_alloc(s, gfpflags, node, addr, c);
2723 		stat(s, ALLOC_SLOWPATH);
2724 	} else {
2725 		void *next_object = get_freepointer_safe(s, object);
2726 
2727 		/*
2728 		 * The cmpxchg will only match if there was no additional
2729 		 * operation and if we are on the right processor.
2730 		 *
2731 		 * The cmpxchg does the following atomically (without lock
2732 		 * semantics!)
2733 		 * 1. Relocate first pointer to the current per cpu area.
2734 		 * 2. Verify that tid and freelist have not been changed
2735 		 * 3. If they were not changed replace tid and freelist
2736 		 *
2737 		 * Since this is without lock semantics the protection is only
2738 		 * against code executing on this cpu *not* from access by
2739 		 * other cpus.
2740 		 */
2741 		if (unlikely(!this_cpu_cmpxchg_double(
2742 				s->cpu_slab->freelist, s->cpu_slab->tid,
2743 				object, tid,
2744 				next_object, next_tid(tid)))) {
2745 
2746 			note_cmpxchg_failure("slab_alloc", s, tid);
2747 			goto redo;
2748 		}
2749 		prefetch_freepointer(s, next_object);
2750 		stat(s, ALLOC_FASTPATH);
2751 	}
2752 
2753 	maybe_wipe_obj_freeptr(s, object);
2754 
2755 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2756 		memset(object, 0, s->object_size);
2757 
2758 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2759 
2760 	return object;
2761 }
2762 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr)2763 static __always_inline void *slab_alloc(struct kmem_cache *s,
2764 		gfp_t gfpflags, unsigned long addr)
2765 {
2766 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2767 }
2768 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2769 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2770 {
2771 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772 
2773 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2774 				s->size, gfpflags);
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL(kmem_cache_alloc);
2779 
2780 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2781 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2782 {
2783 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2785 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2786 	return ret;
2787 }
2788 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2789 #endif
2790 
2791 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2792 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2793 {
2794 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795 
2796 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2797 				    s->object_size, s->size, gfpflags, node);
2798 
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL(kmem_cache_alloc_node);
2802 
2803 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)2804 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2805 				    gfp_t gfpflags,
2806 				    int node, size_t size)
2807 {
2808 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809 
2810 	trace_kmalloc_node(_RET_IP_, ret,
2811 			   size, s->size, gfpflags, node);
2812 
2813 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2817 #endif
2818 #endif	/* CONFIG_NUMA */
2819 
2820 /*
2821  * Slow path handling. This may still be called frequently since objects
2822  * have a longer lifetime than the cpu slabs in most processing loads.
2823  *
2824  * So we still attempt to reduce cache line usage. Just take the slab
2825  * lock and free the item. If there is no additional partial page
2826  * handling required then we can return immediately.
2827  */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2828 static void __slab_free(struct kmem_cache *s, struct page *page,
2829 			void *head, void *tail, int cnt,
2830 			unsigned long addr)
2831 
2832 {
2833 	void *prior;
2834 	int was_frozen;
2835 	struct page new;
2836 	unsigned long counters;
2837 	struct kmem_cache_node *n = NULL;
2838 	unsigned long uninitialized_var(flags);
2839 
2840 	stat(s, FREE_SLOWPATH);
2841 
2842 	if (kmem_cache_debug(s) &&
2843 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2844 		return;
2845 
2846 	do {
2847 		if (unlikely(n)) {
2848 			spin_unlock_irqrestore(&n->list_lock, flags);
2849 			n = NULL;
2850 		}
2851 		prior = page->freelist;
2852 		counters = page->counters;
2853 		set_freepointer(s, tail, prior);
2854 		new.counters = counters;
2855 		was_frozen = new.frozen;
2856 		new.inuse -= cnt;
2857 		if ((!new.inuse || !prior) && !was_frozen) {
2858 
2859 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2860 
2861 				/*
2862 				 * Slab was on no list before and will be
2863 				 * partially empty
2864 				 * We can defer the list move and instead
2865 				 * freeze it.
2866 				 */
2867 				new.frozen = 1;
2868 
2869 			} else { /* Needs to be taken off a list */
2870 
2871 				n = get_node(s, page_to_nid(page));
2872 				/*
2873 				 * Speculatively acquire the list_lock.
2874 				 * If the cmpxchg does not succeed then we may
2875 				 * drop the list_lock without any processing.
2876 				 *
2877 				 * Otherwise the list_lock will synchronize with
2878 				 * other processors updating the list of slabs.
2879 				 */
2880 				spin_lock_irqsave(&n->list_lock, flags);
2881 
2882 			}
2883 		}
2884 
2885 	} while (!cmpxchg_double_slab(s, page,
2886 		prior, counters,
2887 		head, new.counters,
2888 		"__slab_free"));
2889 
2890 	if (likely(!n)) {
2891 
2892 		/*
2893 		 * If we just froze the page then put it onto the
2894 		 * per cpu partial list.
2895 		 */
2896 		if (new.frozen && !was_frozen) {
2897 			put_cpu_partial(s, page, 1);
2898 			stat(s, CPU_PARTIAL_FREE);
2899 		}
2900 		/*
2901 		 * The list lock was not taken therefore no list
2902 		 * activity can be necessary.
2903 		 */
2904 		if (was_frozen)
2905 			stat(s, FREE_FROZEN);
2906 		return;
2907 	}
2908 
2909 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2910 		goto slab_empty;
2911 
2912 	/*
2913 	 * Objects left in the slab. If it was not on the partial list before
2914 	 * then add it.
2915 	 */
2916 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2917 		remove_full(s, n, page);
2918 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2919 		stat(s, FREE_ADD_PARTIAL);
2920 	}
2921 	spin_unlock_irqrestore(&n->list_lock, flags);
2922 	return;
2923 
2924 slab_empty:
2925 	if (prior) {
2926 		/*
2927 		 * Slab on the partial list.
2928 		 */
2929 		remove_partial(n, page);
2930 		stat(s, FREE_REMOVE_PARTIAL);
2931 	} else {
2932 		/* Slab must be on the full list */
2933 		remove_full(s, n, page);
2934 	}
2935 
2936 	spin_unlock_irqrestore(&n->list_lock, flags);
2937 	stat(s, FREE_SLAB);
2938 	discard_slab(s, page);
2939 }
2940 
2941 /*
2942  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2943  * can perform fastpath freeing without additional function calls.
2944  *
2945  * The fastpath is only possible if we are freeing to the current cpu slab
2946  * of this processor. This typically the case if we have just allocated
2947  * the item before.
2948  *
2949  * If fastpath is not possible then fall back to __slab_free where we deal
2950  * with all sorts of special processing.
2951  *
2952  * Bulk free of a freelist with several objects (all pointing to the
2953  * same page) possible by specifying head and tail ptr, plus objects
2954  * count (cnt). Bulk free indicated by tail pointer being set.
2955  */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2956 static __always_inline void do_slab_free(struct kmem_cache *s,
2957 				struct page *page, void *head, void *tail,
2958 				int cnt, unsigned long addr)
2959 {
2960 	void *tail_obj = tail ? : head;
2961 	struct kmem_cache_cpu *c;
2962 	unsigned long tid;
2963 redo:
2964 	/*
2965 	 * Determine the currently cpus per cpu slab.
2966 	 * The cpu may change afterward. However that does not matter since
2967 	 * data is retrieved via this pointer. If we are on the same cpu
2968 	 * during the cmpxchg then the free will succeed.
2969 	 */
2970 	do {
2971 		tid = this_cpu_read(s->cpu_slab->tid);
2972 		c = raw_cpu_ptr(s->cpu_slab);
2973 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2974 		 unlikely(tid != READ_ONCE(c->tid)));
2975 
2976 	/* Same with comment on barrier() in slab_alloc_node() */
2977 	barrier();
2978 
2979 	if (likely(page == c->page)) {
2980 		set_freepointer(s, tail_obj, c->freelist);
2981 
2982 		if (unlikely(!this_cpu_cmpxchg_double(
2983 				s->cpu_slab->freelist, s->cpu_slab->tid,
2984 				c->freelist, tid,
2985 				head, next_tid(tid)))) {
2986 
2987 			note_cmpxchg_failure("slab_free", s, tid);
2988 			goto redo;
2989 		}
2990 		stat(s, FREE_FASTPATH);
2991 	} else
2992 		__slab_free(s, page, head, tail_obj, cnt, addr);
2993 
2994 }
2995 
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2996 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2997 				      void *head, void *tail, int cnt,
2998 				      unsigned long addr)
2999 {
3000 	/*
3001 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3002 	 * to remove objects, whose reuse must be delayed.
3003 	 */
3004 	if (slab_free_freelist_hook(s, &head, &tail))
3005 		do_slab_free(s, page, head, tail, cnt, addr);
3006 }
3007 
3008 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3009 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3010 {
3011 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3012 }
3013 #endif
3014 
kmem_cache_free(struct kmem_cache * s,void * x)3015 void kmem_cache_free(struct kmem_cache *s, void *x)
3016 {
3017 	s = cache_from_obj(s, x);
3018 	if (!s)
3019 		return;
3020 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3021 	trace_kmem_cache_free(_RET_IP_, x);
3022 }
3023 EXPORT_SYMBOL(kmem_cache_free);
3024 
3025 struct detached_freelist {
3026 	struct page *page;
3027 	void *tail;
3028 	void *freelist;
3029 	int cnt;
3030 	struct kmem_cache *s;
3031 };
3032 
3033 /*
3034  * This function progressively scans the array with free objects (with
3035  * a limited look ahead) and extract objects belonging to the same
3036  * page.  It builds a detached freelist directly within the given
3037  * page/objects.  This can happen without any need for
3038  * synchronization, because the objects are owned by running process.
3039  * The freelist is build up as a single linked list in the objects.
3040  * The idea is, that this detached freelist can then be bulk
3041  * transferred to the real freelist(s), but only requiring a single
3042  * synchronization primitive.  Look ahead in the array is limited due
3043  * to performance reasons.
3044  */
3045 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3046 int build_detached_freelist(struct kmem_cache *s, size_t size,
3047 			    void **p, struct detached_freelist *df)
3048 {
3049 	size_t first_skipped_index = 0;
3050 	int lookahead = 3;
3051 	void *object;
3052 	struct page *page;
3053 
3054 	/* Always re-init detached_freelist */
3055 	df->page = NULL;
3056 
3057 	do {
3058 		object = p[--size];
3059 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3060 	} while (!object && size);
3061 
3062 	if (!object)
3063 		return 0;
3064 
3065 	page = virt_to_head_page(object);
3066 	if (!s) {
3067 		/* Handle kalloc'ed objects */
3068 		if (unlikely(!PageSlab(page))) {
3069 			BUG_ON(!PageCompound(page));
3070 			kfree_hook(object);
3071 			__free_pages(page, compound_order(page));
3072 			p[size] = NULL; /* mark object processed */
3073 			return size;
3074 		}
3075 		/* Derive kmem_cache from object */
3076 		df->s = page->slab_cache;
3077 	} else {
3078 		df->s = cache_from_obj(s, object); /* Support for memcg */
3079 	}
3080 
3081 	/* Start new detached freelist */
3082 	df->page = page;
3083 	set_freepointer(df->s, object, NULL);
3084 	df->tail = object;
3085 	df->freelist = object;
3086 	p[size] = NULL; /* mark object processed */
3087 	df->cnt = 1;
3088 
3089 	while (size) {
3090 		object = p[--size];
3091 		if (!object)
3092 			continue; /* Skip processed objects */
3093 
3094 		/* df->page is always set at this point */
3095 		if (df->page == virt_to_head_page(object)) {
3096 			/* Opportunity build freelist */
3097 			set_freepointer(df->s, object, df->freelist);
3098 			df->freelist = object;
3099 			df->cnt++;
3100 			p[size] = NULL; /* mark object processed */
3101 
3102 			continue;
3103 		}
3104 
3105 		/* Limit look ahead search */
3106 		if (!--lookahead)
3107 			break;
3108 
3109 		if (!first_skipped_index)
3110 			first_skipped_index = size + 1;
3111 	}
3112 
3113 	return first_skipped_index;
3114 }
3115 
3116 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3117 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3118 {
3119 	if (WARN_ON(!size))
3120 		return;
3121 
3122 	do {
3123 		struct detached_freelist df;
3124 
3125 		size = build_detached_freelist(s, size, p, &df);
3126 		if (!df.page)
3127 			continue;
3128 
3129 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3130 	} while (likely(size));
3131 }
3132 EXPORT_SYMBOL(kmem_cache_free_bulk);
3133 
3134 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3135 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3136 			  void **p)
3137 {
3138 	struct kmem_cache_cpu *c;
3139 	int i;
3140 
3141 	/* memcg and kmem_cache debug support */
3142 	s = slab_pre_alloc_hook(s, flags);
3143 	if (unlikely(!s))
3144 		return false;
3145 	/*
3146 	 * Drain objects in the per cpu slab, while disabling local
3147 	 * IRQs, which protects against PREEMPT and interrupts
3148 	 * handlers invoking normal fastpath.
3149 	 */
3150 	local_irq_disable();
3151 	c = this_cpu_ptr(s->cpu_slab);
3152 
3153 	for (i = 0; i < size; i++) {
3154 		void *object = c->freelist;
3155 
3156 		if (unlikely(!object)) {
3157 			/*
3158 			 * Invoking slow path likely have side-effect
3159 			 * of re-populating per CPU c->freelist
3160 			 */
3161 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3162 					    _RET_IP_, c);
3163 			if (unlikely(!p[i]))
3164 				goto error;
3165 
3166 			c = this_cpu_ptr(s->cpu_slab);
3167 			maybe_wipe_obj_freeptr(s, p[i]);
3168 
3169 			continue; /* goto for-loop */
3170 		}
3171 		c->freelist = get_freepointer(s, object);
3172 		p[i] = object;
3173 		maybe_wipe_obj_freeptr(s, p[i]);
3174 	}
3175 	c->tid = next_tid(c->tid);
3176 	local_irq_enable();
3177 
3178 	/* Clear memory outside IRQ disabled fastpath loop */
3179 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3180 		int j;
3181 
3182 		for (j = 0; j < i; j++)
3183 			memset(p[j], 0, s->object_size);
3184 	}
3185 
3186 	/* memcg and kmem_cache debug support */
3187 	slab_post_alloc_hook(s, flags, size, p);
3188 	return i;
3189 error:
3190 	local_irq_enable();
3191 	slab_post_alloc_hook(s, flags, i, p);
3192 	__kmem_cache_free_bulk(s, i, p);
3193 	return 0;
3194 }
3195 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3196 
3197 
3198 /*
3199  * Object placement in a slab is made very easy because we always start at
3200  * offset 0. If we tune the size of the object to the alignment then we can
3201  * get the required alignment by putting one properly sized object after
3202  * another.
3203  *
3204  * Notice that the allocation order determines the sizes of the per cpu
3205  * caches. Each processor has always one slab available for allocations.
3206  * Increasing the allocation order reduces the number of times that slabs
3207  * must be moved on and off the partial lists and is therefore a factor in
3208  * locking overhead.
3209  */
3210 
3211 /*
3212  * Mininum / Maximum order of slab pages. This influences locking overhead
3213  * and slab fragmentation. A higher order reduces the number of partial slabs
3214  * and increases the number of allocations possible without having to
3215  * take the list_lock.
3216  */
3217 static unsigned int slub_min_order;
3218 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3219 static unsigned int slub_min_objects;
3220 
3221 /*
3222  * Calculate the order of allocation given an slab object size.
3223  *
3224  * The order of allocation has significant impact on performance and other
3225  * system components. Generally order 0 allocations should be preferred since
3226  * order 0 does not cause fragmentation in the page allocator. Larger objects
3227  * be problematic to put into order 0 slabs because there may be too much
3228  * unused space left. We go to a higher order if more than 1/16th of the slab
3229  * would be wasted.
3230  *
3231  * In order to reach satisfactory performance we must ensure that a minimum
3232  * number of objects is in one slab. Otherwise we may generate too much
3233  * activity on the partial lists which requires taking the list_lock. This is
3234  * less a concern for large slabs though which are rarely used.
3235  *
3236  * slub_max_order specifies the order where we begin to stop considering the
3237  * number of objects in a slab as critical. If we reach slub_max_order then
3238  * we try to keep the page order as low as possible. So we accept more waste
3239  * of space in favor of a small page order.
3240  *
3241  * Higher order allocations also allow the placement of more objects in a
3242  * slab and thereby reduce object handling overhead. If the user has
3243  * requested a higher mininum order then we start with that one instead of
3244  * the smallest order which will fit the object.
3245  */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3246 static inline unsigned int slab_order(unsigned int size,
3247 		unsigned int min_objects, unsigned int max_order,
3248 		unsigned int fract_leftover)
3249 {
3250 	unsigned int min_order = slub_min_order;
3251 	unsigned int order;
3252 
3253 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3254 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3255 
3256 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3257 			order <= max_order; order++) {
3258 
3259 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3260 		unsigned int rem;
3261 
3262 		rem = slab_size % size;
3263 
3264 		if (rem <= slab_size / fract_leftover)
3265 			break;
3266 	}
3267 
3268 	return order;
3269 }
3270 
calculate_order(unsigned int size)3271 static inline int calculate_order(unsigned int size)
3272 {
3273 	unsigned int order;
3274 	unsigned int min_objects;
3275 	unsigned int max_objects;
3276 
3277 	/*
3278 	 * Attempt to find best configuration for a slab. This
3279 	 * works by first attempting to generate a layout with
3280 	 * the best configuration and backing off gradually.
3281 	 *
3282 	 * First we increase the acceptable waste in a slab. Then
3283 	 * we reduce the minimum objects required in a slab.
3284 	 */
3285 	min_objects = slub_min_objects;
3286 	if (!min_objects)
3287 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3288 	max_objects = order_objects(slub_max_order, size);
3289 	min_objects = min(min_objects, max_objects);
3290 
3291 	while (min_objects > 1) {
3292 		unsigned int fraction;
3293 
3294 		fraction = 16;
3295 		while (fraction >= 4) {
3296 			order = slab_order(size, min_objects,
3297 					slub_max_order, fraction);
3298 			if (order <= slub_max_order)
3299 				return order;
3300 			fraction /= 2;
3301 		}
3302 		min_objects--;
3303 	}
3304 
3305 	/*
3306 	 * We were unable to place multiple objects in a slab. Now
3307 	 * lets see if we can place a single object there.
3308 	 */
3309 	order = slab_order(size, 1, slub_max_order, 1);
3310 	if (order <= slub_max_order)
3311 		return order;
3312 
3313 	/*
3314 	 * Doh this slab cannot be placed using slub_max_order.
3315 	 */
3316 	order = slab_order(size, 1, MAX_ORDER, 1);
3317 	if (order < MAX_ORDER)
3318 		return order;
3319 	return -ENOSYS;
3320 }
3321 
3322 static void
init_kmem_cache_node(struct kmem_cache_node * n)3323 init_kmem_cache_node(struct kmem_cache_node *n)
3324 {
3325 	n->nr_partial = 0;
3326 	spin_lock_init(&n->list_lock);
3327 	INIT_LIST_HEAD(&n->partial);
3328 #ifdef CONFIG_SLUB_DEBUG
3329 	atomic_long_set(&n->nr_slabs, 0);
3330 	atomic_long_set(&n->total_objects, 0);
3331 	INIT_LIST_HEAD(&n->full);
3332 #endif
3333 }
3334 
alloc_kmem_cache_cpus(struct kmem_cache * s)3335 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3336 {
3337 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3338 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3339 
3340 	/*
3341 	 * Must align to double word boundary for the double cmpxchg
3342 	 * instructions to work; see __pcpu_double_call_return_bool().
3343 	 */
3344 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3345 				     2 * sizeof(void *));
3346 
3347 	if (!s->cpu_slab)
3348 		return 0;
3349 
3350 	init_kmem_cache_cpus(s);
3351 
3352 	return 1;
3353 }
3354 
3355 static struct kmem_cache *kmem_cache_node;
3356 
3357 /*
3358  * No kmalloc_node yet so do it by hand. We know that this is the first
3359  * slab on the node for this slabcache. There are no concurrent accesses
3360  * possible.
3361  *
3362  * Note that this function only works on the kmem_cache_node
3363  * when allocating for the kmem_cache_node. This is used for bootstrapping
3364  * memory on a fresh node that has no slab structures yet.
3365  */
early_kmem_cache_node_alloc(int node)3366 static void early_kmem_cache_node_alloc(int node)
3367 {
3368 	struct page *page;
3369 	struct kmem_cache_node *n;
3370 
3371 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3372 
3373 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3374 
3375 	BUG_ON(!page);
3376 	if (page_to_nid(page) != node) {
3377 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3378 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3379 	}
3380 
3381 	n = page->freelist;
3382 	BUG_ON(!n);
3383 #ifdef CONFIG_SLUB_DEBUG
3384 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3385 	init_tracking(kmem_cache_node, n);
3386 #endif
3387 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3388 		      GFP_KERNEL);
3389 	page->freelist = get_freepointer(kmem_cache_node, n);
3390 	page->inuse = 1;
3391 	page->frozen = 0;
3392 	kmem_cache_node->node[node] = n;
3393 	init_kmem_cache_node(n);
3394 	inc_slabs_node(kmem_cache_node, node, page->objects);
3395 
3396 	/*
3397 	 * No locks need to be taken here as it has just been
3398 	 * initialized and there is no concurrent access.
3399 	 */
3400 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3401 }
3402 
free_kmem_cache_nodes(struct kmem_cache * s)3403 static void free_kmem_cache_nodes(struct kmem_cache *s)
3404 {
3405 	int node;
3406 	struct kmem_cache_node *n;
3407 
3408 	for_each_kmem_cache_node(s, node, n) {
3409 		s->node[node] = NULL;
3410 		kmem_cache_free(kmem_cache_node, n);
3411 	}
3412 }
3413 
__kmem_cache_release(struct kmem_cache * s)3414 void __kmem_cache_release(struct kmem_cache *s)
3415 {
3416 	cache_random_seq_destroy(s);
3417 	free_percpu(s->cpu_slab);
3418 	free_kmem_cache_nodes(s);
3419 }
3420 
init_kmem_cache_nodes(struct kmem_cache * s)3421 static int init_kmem_cache_nodes(struct kmem_cache *s)
3422 {
3423 	int node;
3424 
3425 	for_each_node_state(node, N_NORMAL_MEMORY) {
3426 		struct kmem_cache_node *n;
3427 
3428 		if (slab_state == DOWN) {
3429 			early_kmem_cache_node_alloc(node);
3430 			continue;
3431 		}
3432 		n = kmem_cache_alloc_node(kmem_cache_node,
3433 						GFP_KERNEL, node);
3434 
3435 		if (!n) {
3436 			free_kmem_cache_nodes(s);
3437 			return 0;
3438 		}
3439 
3440 		init_kmem_cache_node(n);
3441 		s->node[node] = n;
3442 	}
3443 	return 1;
3444 }
3445 
set_min_partial(struct kmem_cache * s,unsigned long min)3446 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3447 {
3448 	if (min < MIN_PARTIAL)
3449 		min = MIN_PARTIAL;
3450 	else if (min > MAX_PARTIAL)
3451 		min = MAX_PARTIAL;
3452 	s->min_partial = min;
3453 }
3454 
set_cpu_partial(struct kmem_cache * s)3455 static void set_cpu_partial(struct kmem_cache *s)
3456 {
3457 #ifdef CONFIG_SLUB_CPU_PARTIAL
3458 	/*
3459 	 * cpu_partial determined the maximum number of objects kept in the
3460 	 * per cpu partial lists of a processor.
3461 	 *
3462 	 * Per cpu partial lists mainly contain slabs that just have one
3463 	 * object freed. If they are used for allocation then they can be
3464 	 * filled up again with minimal effort. The slab will never hit the
3465 	 * per node partial lists and therefore no locking will be required.
3466 	 *
3467 	 * This setting also determines
3468 	 *
3469 	 * A) The number of objects from per cpu partial slabs dumped to the
3470 	 *    per node list when we reach the limit.
3471 	 * B) The number of objects in cpu partial slabs to extract from the
3472 	 *    per node list when we run out of per cpu objects. We only fetch
3473 	 *    50% to keep some capacity around for frees.
3474 	 */
3475 	if (!kmem_cache_has_cpu_partial(s))
3476 		s->cpu_partial = 0;
3477 	else if (s->size >= PAGE_SIZE)
3478 		s->cpu_partial = 2;
3479 	else if (s->size >= 1024)
3480 		s->cpu_partial = 6;
3481 	else if (s->size >= 256)
3482 		s->cpu_partial = 13;
3483 	else
3484 		s->cpu_partial = 30;
3485 #endif
3486 }
3487 
3488 /*
3489  * calculate_sizes() determines the order and the distribution of data within
3490  * a slab object.
3491  */
calculate_sizes(struct kmem_cache * s,int forced_order)3492 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3493 {
3494 	slab_flags_t flags = s->flags;
3495 	unsigned int size = s->object_size;
3496 	unsigned int order;
3497 
3498 	/*
3499 	 * Round up object size to the next word boundary. We can only
3500 	 * place the free pointer at word boundaries and this determines
3501 	 * the possible location of the free pointer.
3502 	 */
3503 	size = ALIGN(size, sizeof(void *));
3504 
3505 #ifdef CONFIG_SLUB_DEBUG
3506 	/*
3507 	 * Determine if we can poison the object itself. If the user of
3508 	 * the slab may touch the object after free or before allocation
3509 	 * then we should never poison the object itself.
3510 	 */
3511 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3512 			!s->ctor)
3513 		s->flags |= __OBJECT_POISON;
3514 	else
3515 		s->flags &= ~__OBJECT_POISON;
3516 
3517 
3518 	/*
3519 	 * If we are Redzoning then check if there is some space between the
3520 	 * end of the object and the free pointer. If not then add an
3521 	 * additional word to have some bytes to store Redzone information.
3522 	 */
3523 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3524 		size += sizeof(void *);
3525 #endif
3526 
3527 	/*
3528 	 * With that we have determined the number of bytes in actual use
3529 	 * by the object. This is the potential offset to the free pointer.
3530 	 */
3531 	s->inuse = size;
3532 
3533 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3534 		s->ctor)) {
3535 		/*
3536 		 * Relocate free pointer after the object if it is not
3537 		 * permitted to overwrite the first word of the object on
3538 		 * kmem_cache_free.
3539 		 *
3540 		 * This is the case if we do RCU, have a constructor or
3541 		 * destructor or are poisoning the objects.
3542 		 */
3543 		s->offset = size;
3544 		size += sizeof(void *);
3545 	}
3546 
3547 #ifdef CONFIG_SLUB_DEBUG
3548 	if (flags & SLAB_STORE_USER)
3549 		/*
3550 		 * Need to store information about allocs and frees after
3551 		 * the object.
3552 		 */
3553 		size += 2 * sizeof(struct track);
3554 #endif
3555 
3556 	kasan_cache_create(s, &size, &s->flags);
3557 #ifdef CONFIG_SLUB_DEBUG
3558 	if (flags & SLAB_RED_ZONE) {
3559 		/*
3560 		 * Add some empty padding so that we can catch
3561 		 * overwrites from earlier objects rather than let
3562 		 * tracking information or the free pointer be
3563 		 * corrupted if a user writes before the start
3564 		 * of the object.
3565 		 */
3566 		size += sizeof(void *);
3567 
3568 		s->red_left_pad = sizeof(void *);
3569 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3570 		size += s->red_left_pad;
3571 	}
3572 #endif
3573 
3574 	/*
3575 	 * SLUB stores one object immediately after another beginning from
3576 	 * offset 0. In order to align the objects we have to simply size
3577 	 * each object to conform to the alignment.
3578 	 */
3579 	size = ALIGN(size, s->align);
3580 	s->size = size;
3581 	if (forced_order >= 0)
3582 		order = forced_order;
3583 	else
3584 		order = calculate_order(size);
3585 
3586 	if ((int)order < 0)
3587 		return 0;
3588 
3589 	s->allocflags = 0;
3590 	if (order)
3591 		s->allocflags |= __GFP_COMP;
3592 
3593 	if (s->flags & SLAB_CACHE_DMA)
3594 		s->allocflags |= GFP_DMA;
3595 
3596 	if (s->flags & SLAB_CACHE_DMA32)
3597 		s->allocflags |= GFP_DMA32;
3598 
3599 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3600 		s->allocflags |= __GFP_RECLAIMABLE;
3601 
3602 	/*
3603 	 * Determine the number of objects per slab
3604 	 */
3605 	s->oo = oo_make(order, size);
3606 	s->min = oo_make(get_order(size), size);
3607 	if (oo_objects(s->oo) > oo_objects(s->max))
3608 		s->max = s->oo;
3609 
3610 	return !!oo_objects(s->oo);
3611 }
3612 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)3613 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3614 {
3615 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3616 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3617 	s->random = get_random_long();
3618 #endif
3619 
3620 	if (!calculate_sizes(s, -1))
3621 		goto error;
3622 	if (disable_higher_order_debug) {
3623 		/*
3624 		 * Disable debugging flags that store metadata if the min slab
3625 		 * order increased.
3626 		 */
3627 		if (get_order(s->size) > get_order(s->object_size)) {
3628 			s->flags &= ~DEBUG_METADATA_FLAGS;
3629 			s->offset = 0;
3630 			if (!calculate_sizes(s, -1))
3631 				goto error;
3632 		}
3633 	}
3634 
3635 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3636     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3637 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3638 		/* Enable fast mode */
3639 		s->flags |= __CMPXCHG_DOUBLE;
3640 #endif
3641 
3642 	/*
3643 	 * The larger the object size is, the more pages we want on the partial
3644 	 * list to avoid pounding the page allocator excessively.
3645 	 */
3646 	set_min_partial(s, ilog2(s->size) / 2);
3647 
3648 	set_cpu_partial(s);
3649 
3650 #ifdef CONFIG_NUMA
3651 	s->remote_node_defrag_ratio = 1000;
3652 #endif
3653 
3654 	/* Initialize the pre-computed randomized freelist if slab is up */
3655 	if (slab_state >= UP) {
3656 		if (init_cache_random_seq(s))
3657 			goto error;
3658 	}
3659 
3660 	if (!init_kmem_cache_nodes(s))
3661 		goto error;
3662 
3663 	if (alloc_kmem_cache_cpus(s))
3664 		return 0;
3665 
3666 	free_kmem_cache_nodes(s);
3667 error:
3668 	return -EINVAL;
3669 }
3670 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3671 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3672 							const char *text)
3673 {
3674 #ifdef CONFIG_SLUB_DEBUG
3675 	void *addr = page_address(page);
3676 	void *p;
3677 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3678 	if (!map)
3679 		return;
3680 	slab_err(s, page, text, s->name);
3681 	slab_lock(page);
3682 
3683 	get_map(s, page, map);
3684 	for_each_object(p, s, addr, page->objects) {
3685 
3686 		if (!test_bit(slab_index(p, s, addr), map)) {
3687 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3688 			print_tracking(s, p);
3689 		}
3690 	}
3691 	slab_unlock(page);
3692 	bitmap_free(map);
3693 #endif
3694 }
3695 
3696 /*
3697  * Attempt to free all partial slabs on a node.
3698  * This is called from __kmem_cache_shutdown(). We must take list_lock
3699  * because sysfs file might still access partial list after the shutdowning.
3700  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3701 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3702 {
3703 	LIST_HEAD(discard);
3704 	struct page *page, *h;
3705 
3706 	BUG_ON(irqs_disabled());
3707 	spin_lock_irq(&n->list_lock);
3708 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3709 		if (!page->inuse) {
3710 			remove_partial(n, page);
3711 			list_add(&page->slab_list, &discard);
3712 		} else {
3713 			list_slab_objects(s, page,
3714 			"Objects remaining in %s on __kmem_cache_shutdown()");
3715 		}
3716 	}
3717 	spin_unlock_irq(&n->list_lock);
3718 
3719 	list_for_each_entry_safe(page, h, &discard, slab_list)
3720 		discard_slab(s, page);
3721 }
3722 
__kmem_cache_empty(struct kmem_cache * s)3723 bool __kmem_cache_empty(struct kmem_cache *s)
3724 {
3725 	int node;
3726 	struct kmem_cache_node *n;
3727 
3728 	for_each_kmem_cache_node(s, node, n)
3729 		if (n->nr_partial || slabs_node(s, node))
3730 			return false;
3731 	return true;
3732 }
3733 
3734 /*
3735  * Release all resources used by a slab cache.
3736  */
__kmem_cache_shutdown(struct kmem_cache * s)3737 int __kmem_cache_shutdown(struct kmem_cache *s)
3738 {
3739 	int node;
3740 	struct kmem_cache_node *n;
3741 
3742 	flush_all(s);
3743 	/* Attempt to free all objects */
3744 	for_each_kmem_cache_node(s, node, n) {
3745 		free_partial(s, n);
3746 		if (n->nr_partial || slabs_node(s, node))
3747 			return 1;
3748 	}
3749 	sysfs_slab_remove(s);
3750 	return 0;
3751 }
3752 
3753 /********************************************************************
3754  *		Kmalloc subsystem
3755  *******************************************************************/
3756 
setup_slub_min_order(char * str)3757 static int __init setup_slub_min_order(char *str)
3758 {
3759 	get_option(&str, (int *)&slub_min_order);
3760 
3761 	return 1;
3762 }
3763 
3764 __setup("slub_min_order=", setup_slub_min_order);
3765 
setup_slub_max_order(char * str)3766 static int __init setup_slub_max_order(char *str)
3767 {
3768 	get_option(&str, (int *)&slub_max_order);
3769 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3770 
3771 	return 1;
3772 }
3773 
3774 __setup("slub_max_order=", setup_slub_max_order);
3775 
setup_slub_min_objects(char * str)3776 static int __init setup_slub_min_objects(char *str)
3777 {
3778 	get_option(&str, (int *)&slub_min_objects);
3779 
3780 	return 1;
3781 }
3782 
3783 __setup("slub_min_objects=", setup_slub_min_objects);
3784 
__kmalloc(size_t size,gfp_t flags)3785 void *__kmalloc(size_t size, gfp_t flags)
3786 {
3787 	struct kmem_cache *s;
3788 	void *ret;
3789 
3790 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3791 		return kmalloc_large(size, flags);
3792 
3793 	s = kmalloc_slab(size, flags);
3794 
3795 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3796 		return s;
3797 
3798 	ret = slab_alloc(s, flags, _RET_IP_);
3799 
3800 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3801 
3802 	ret = kasan_kmalloc(s, ret, size, flags);
3803 
3804 	return ret;
3805 }
3806 EXPORT_SYMBOL(__kmalloc);
3807 
3808 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)3809 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3810 {
3811 	struct page *page;
3812 	void *ptr = NULL;
3813 	unsigned int order = get_order(size);
3814 
3815 	flags |= __GFP_COMP;
3816 	page = alloc_pages_node(node, flags, order);
3817 	if (page) {
3818 		ptr = page_address(page);
3819 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3820 				    1 << order);
3821 	}
3822 
3823 	return kmalloc_large_node_hook(ptr, size, flags);
3824 }
3825 
__kmalloc_node(size_t size,gfp_t flags,int node)3826 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3827 {
3828 	struct kmem_cache *s;
3829 	void *ret;
3830 
3831 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 		ret = kmalloc_large_node(size, flags, node);
3833 
3834 		trace_kmalloc_node(_RET_IP_, ret,
3835 				   size, PAGE_SIZE << get_order(size),
3836 				   flags, node);
3837 
3838 		return ret;
3839 	}
3840 
3841 	s = kmalloc_slab(size, flags);
3842 
3843 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3844 		return s;
3845 
3846 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3847 
3848 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3849 
3850 	ret = kasan_kmalloc(s, ret, size, flags);
3851 
3852 	return ret;
3853 }
3854 EXPORT_SYMBOL(__kmalloc_node);
3855 #endif	/* CONFIG_NUMA */
3856 
3857 #ifdef CONFIG_HARDENED_USERCOPY
3858 /*
3859  * Rejects incorrectly sized objects and objects that are to be copied
3860  * to/from userspace but do not fall entirely within the containing slab
3861  * cache's usercopy region.
3862  *
3863  * Returns NULL if check passes, otherwise const char * to name of cache
3864  * to indicate an error.
3865  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)3866 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3867 			 bool to_user)
3868 {
3869 	struct kmem_cache *s;
3870 	unsigned int offset;
3871 	size_t object_size;
3872 
3873 	ptr = kasan_reset_tag(ptr);
3874 
3875 	/* Find object and usable object size. */
3876 	s = page->slab_cache;
3877 
3878 	/* Reject impossible pointers. */
3879 	if (ptr < page_address(page))
3880 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3881 			       to_user, 0, n);
3882 
3883 	/* Find offset within object. */
3884 	offset = (ptr - page_address(page)) % s->size;
3885 
3886 	/* Adjust for redzone and reject if within the redzone. */
3887 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3888 		if (offset < s->red_left_pad)
3889 			usercopy_abort("SLUB object in left red zone",
3890 				       s->name, to_user, offset, n);
3891 		offset -= s->red_left_pad;
3892 	}
3893 
3894 	/* Allow address range falling entirely within usercopy region. */
3895 	if (offset >= s->useroffset &&
3896 	    offset - s->useroffset <= s->usersize &&
3897 	    n <= s->useroffset - offset + s->usersize)
3898 		return;
3899 
3900 	/*
3901 	 * If the copy is still within the allocated object, produce
3902 	 * a warning instead of rejecting the copy. This is intended
3903 	 * to be a temporary method to find any missing usercopy
3904 	 * whitelists.
3905 	 */
3906 	object_size = slab_ksize(s);
3907 	if (usercopy_fallback &&
3908 	    offset <= object_size && n <= object_size - offset) {
3909 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3910 		return;
3911 	}
3912 
3913 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3914 }
3915 #endif /* CONFIG_HARDENED_USERCOPY */
3916 
__ksize(const void * object)3917 size_t __ksize(const void *object)
3918 {
3919 	struct page *page;
3920 
3921 	if (unlikely(object == ZERO_SIZE_PTR))
3922 		return 0;
3923 
3924 	page = virt_to_head_page(object);
3925 
3926 	if (unlikely(!PageSlab(page))) {
3927 		WARN_ON(!PageCompound(page));
3928 		return page_size(page);
3929 	}
3930 
3931 	return slab_ksize(page->slab_cache);
3932 }
3933 EXPORT_SYMBOL(__ksize);
3934 
kfree(const void * x)3935 void kfree(const void *x)
3936 {
3937 	struct page *page;
3938 	void *object = (void *)x;
3939 
3940 	trace_kfree(_RET_IP_, x);
3941 
3942 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3943 		return;
3944 
3945 	page = virt_to_head_page(x);
3946 	if (unlikely(!PageSlab(page))) {
3947 		unsigned int order = compound_order(page);
3948 
3949 		BUG_ON(!PageCompound(page));
3950 		kfree_hook(object);
3951 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3952 				    -(1 << order));
3953 		__free_pages(page, order);
3954 		return;
3955 	}
3956 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3957 }
3958 EXPORT_SYMBOL(kfree);
3959 
3960 #define SHRINK_PROMOTE_MAX 32
3961 
3962 /*
3963  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3964  * up most to the head of the partial lists. New allocations will then
3965  * fill those up and thus they can be removed from the partial lists.
3966  *
3967  * The slabs with the least items are placed last. This results in them
3968  * being allocated from last increasing the chance that the last objects
3969  * are freed in them.
3970  */
__kmem_cache_shrink(struct kmem_cache * s)3971 int __kmem_cache_shrink(struct kmem_cache *s)
3972 {
3973 	int node;
3974 	int i;
3975 	struct kmem_cache_node *n;
3976 	struct page *page;
3977 	struct page *t;
3978 	struct list_head discard;
3979 	struct list_head promote[SHRINK_PROMOTE_MAX];
3980 	unsigned long flags;
3981 	int ret = 0;
3982 
3983 	flush_all(s);
3984 	for_each_kmem_cache_node(s, node, n) {
3985 		INIT_LIST_HEAD(&discard);
3986 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3987 			INIT_LIST_HEAD(promote + i);
3988 
3989 		spin_lock_irqsave(&n->list_lock, flags);
3990 
3991 		/*
3992 		 * Build lists of slabs to discard or promote.
3993 		 *
3994 		 * Note that concurrent frees may occur while we hold the
3995 		 * list_lock. page->inuse here is the upper limit.
3996 		 */
3997 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3998 			int free = page->objects - page->inuse;
3999 
4000 			/* Do not reread page->inuse */
4001 			barrier();
4002 
4003 			/* We do not keep full slabs on the list */
4004 			BUG_ON(free <= 0);
4005 
4006 			if (free == page->objects) {
4007 				list_move(&page->slab_list, &discard);
4008 				n->nr_partial--;
4009 			} else if (free <= SHRINK_PROMOTE_MAX)
4010 				list_move(&page->slab_list, promote + free - 1);
4011 		}
4012 
4013 		/*
4014 		 * Promote the slabs filled up most to the head of the
4015 		 * partial list.
4016 		 */
4017 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4018 			list_splice(promote + i, &n->partial);
4019 
4020 		spin_unlock_irqrestore(&n->list_lock, flags);
4021 
4022 		/* Release empty slabs */
4023 		list_for_each_entry_safe(page, t, &discard, slab_list)
4024 			discard_slab(s, page);
4025 
4026 		if (slabs_node(s, node))
4027 			ret = 1;
4028 	}
4029 
4030 	return ret;
4031 }
4032 
4033 #ifdef CONFIG_MEMCG
__kmemcg_cache_deactivate_after_rcu(struct kmem_cache * s)4034 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4035 {
4036 	/*
4037 	 * Called with all the locks held after a sched RCU grace period.
4038 	 * Even if @s becomes empty after shrinking, we can't know that @s
4039 	 * doesn't have allocations already in-flight and thus can't
4040 	 * destroy @s until the associated memcg is released.
4041 	 *
4042 	 * However, let's remove the sysfs files for empty caches here.
4043 	 * Each cache has a lot of interface files which aren't
4044 	 * particularly useful for empty draining caches; otherwise, we can
4045 	 * easily end up with millions of unnecessary sysfs files on
4046 	 * systems which have a lot of memory and transient cgroups.
4047 	 */
4048 	if (!__kmem_cache_shrink(s))
4049 		sysfs_slab_remove(s);
4050 }
4051 
__kmemcg_cache_deactivate(struct kmem_cache * s)4052 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4053 {
4054 	/*
4055 	 * Disable empty slabs caching. Used to avoid pinning offline
4056 	 * memory cgroups by kmem pages that can be freed.
4057 	 */
4058 	slub_set_cpu_partial(s, 0);
4059 	s->min_partial = 0;
4060 }
4061 #endif	/* CONFIG_MEMCG */
4062 
slab_mem_going_offline_callback(void * arg)4063 static int slab_mem_going_offline_callback(void *arg)
4064 {
4065 	struct kmem_cache *s;
4066 
4067 	mutex_lock(&slab_mutex);
4068 	list_for_each_entry(s, &slab_caches, list)
4069 		__kmem_cache_shrink(s);
4070 	mutex_unlock(&slab_mutex);
4071 
4072 	return 0;
4073 }
4074 
slab_mem_offline_callback(void * arg)4075 static void slab_mem_offline_callback(void *arg)
4076 {
4077 	struct kmem_cache_node *n;
4078 	struct kmem_cache *s;
4079 	struct memory_notify *marg = arg;
4080 	int offline_node;
4081 
4082 	offline_node = marg->status_change_nid_normal;
4083 
4084 	/*
4085 	 * If the node still has available memory. we need kmem_cache_node
4086 	 * for it yet.
4087 	 */
4088 	if (offline_node < 0)
4089 		return;
4090 
4091 	mutex_lock(&slab_mutex);
4092 	list_for_each_entry(s, &slab_caches, list) {
4093 		n = get_node(s, offline_node);
4094 		if (n) {
4095 			/*
4096 			 * if n->nr_slabs > 0, slabs still exist on the node
4097 			 * that is going down. We were unable to free them,
4098 			 * and offline_pages() function shouldn't call this
4099 			 * callback. So, we must fail.
4100 			 */
4101 			BUG_ON(slabs_node(s, offline_node));
4102 
4103 			s->node[offline_node] = NULL;
4104 			kmem_cache_free(kmem_cache_node, n);
4105 		}
4106 	}
4107 	mutex_unlock(&slab_mutex);
4108 }
4109 
slab_mem_going_online_callback(void * arg)4110 static int slab_mem_going_online_callback(void *arg)
4111 {
4112 	struct kmem_cache_node *n;
4113 	struct kmem_cache *s;
4114 	struct memory_notify *marg = arg;
4115 	int nid = marg->status_change_nid_normal;
4116 	int ret = 0;
4117 
4118 	/*
4119 	 * If the node's memory is already available, then kmem_cache_node is
4120 	 * already created. Nothing to do.
4121 	 */
4122 	if (nid < 0)
4123 		return 0;
4124 
4125 	/*
4126 	 * We are bringing a node online. No memory is available yet. We must
4127 	 * allocate a kmem_cache_node structure in order to bring the node
4128 	 * online.
4129 	 */
4130 	mutex_lock(&slab_mutex);
4131 	list_for_each_entry(s, &slab_caches, list) {
4132 		/*
4133 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4134 		 *      since memory is not yet available from the node that
4135 		 *      is brought up.
4136 		 */
4137 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4138 		if (!n) {
4139 			ret = -ENOMEM;
4140 			goto out;
4141 		}
4142 		init_kmem_cache_node(n);
4143 		s->node[nid] = n;
4144 	}
4145 out:
4146 	mutex_unlock(&slab_mutex);
4147 	return ret;
4148 }
4149 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4150 static int slab_memory_callback(struct notifier_block *self,
4151 				unsigned long action, void *arg)
4152 {
4153 	int ret = 0;
4154 
4155 	switch (action) {
4156 	case MEM_GOING_ONLINE:
4157 		ret = slab_mem_going_online_callback(arg);
4158 		break;
4159 	case MEM_GOING_OFFLINE:
4160 		ret = slab_mem_going_offline_callback(arg);
4161 		break;
4162 	case MEM_OFFLINE:
4163 	case MEM_CANCEL_ONLINE:
4164 		slab_mem_offline_callback(arg);
4165 		break;
4166 	case MEM_ONLINE:
4167 	case MEM_CANCEL_OFFLINE:
4168 		break;
4169 	}
4170 	if (ret)
4171 		ret = notifier_from_errno(ret);
4172 	else
4173 		ret = NOTIFY_OK;
4174 	return ret;
4175 }
4176 
4177 static struct notifier_block slab_memory_callback_nb = {
4178 	.notifier_call = slab_memory_callback,
4179 	.priority = SLAB_CALLBACK_PRI,
4180 };
4181 
4182 /********************************************************************
4183  *			Basic setup of slabs
4184  *******************************************************************/
4185 
4186 /*
4187  * Used for early kmem_cache structures that were allocated using
4188  * the page allocator. Allocate them properly then fix up the pointers
4189  * that may be pointing to the wrong kmem_cache structure.
4190  */
4191 
bootstrap(struct kmem_cache * static_cache)4192 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4193 {
4194 	int node;
4195 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4196 	struct kmem_cache_node *n;
4197 
4198 	memcpy(s, static_cache, kmem_cache->object_size);
4199 
4200 	/*
4201 	 * This runs very early, and only the boot processor is supposed to be
4202 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4203 	 * IPIs around.
4204 	 */
4205 	__flush_cpu_slab(s, smp_processor_id());
4206 	for_each_kmem_cache_node(s, node, n) {
4207 		struct page *p;
4208 
4209 		list_for_each_entry(p, &n->partial, slab_list)
4210 			p->slab_cache = s;
4211 
4212 #ifdef CONFIG_SLUB_DEBUG
4213 		list_for_each_entry(p, &n->full, slab_list)
4214 			p->slab_cache = s;
4215 #endif
4216 	}
4217 	slab_init_memcg_params(s);
4218 	list_add(&s->list, &slab_caches);
4219 	memcg_link_cache(s, NULL);
4220 	return s;
4221 }
4222 
kmem_cache_init(void)4223 void __init kmem_cache_init(void)
4224 {
4225 	static __initdata struct kmem_cache boot_kmem_cache,
4226 		boot_kmem_cache_node;
4227 
4228 	if (debug_guardpage_minorder())
4229 		slub_max_order = 0;
4230 
4231 	kmem_cache_node = &boot_kmem_cache_node;
4232 	kmem_cache = &boot_kmem_cache;
4233 
4234 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4235 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4236 
4237 	register_hotmemory_notifier(&slab_memory_callback_nb);
4238 
4239 	/* Able to allocate the per node structures */
4240 	slab_state = PARTIAL;
4241 
4242 	create_boot_cache(kmem_cache, "kmem_cache",
4243 			offsetof(struct kmem_cache, node) +
4244 				nr_node_ids * sizeof(struct kmem_cache_node *),
4245 		       SLAB_HWCACHE_ALIGN, 0, 0);
4246 
4247 	kmem_cache = bootstrap(&boot_kmem_cache);
4248 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249 
4250 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 	setup_kmalloc_cache_index_table();
4252 	create_kmalloc_caches(0);
4253 
4254 	/* Setup random freelists for each cache */
4255 	init_freelist_randomization();
4256 
4257 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 				  slub_cpu_dead);
4259 
4260 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4261 		cache_line_size(),
4262 		slub_min_order, slub_max_order, slub_min_objects,
4263 		nr_cpu_ids, nr_node_ids);
4264 }
4265 
kmem_cache_init_late(void)4266 void __init kmem_cache_init_late(void)
4267 {
4268 }
4269 
4270 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 		   slab_flags_t flags, void (*ctor)(void *))
4273 {
4274 	struct kmem_cache *s, *c;
4275 
4276 	s = find_mergeable(size, align, flags, name, ctor);
4277 	if (s) {
4278 		s->refcount++;
4279 
4280 		/*
4281 		 * Adjust the object sizes so that we clear
4282 		 * the complete object on kzalloc.
4283 		 */
4284 		s->object_size = max(s->object_size, size);
4285 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286 
4287 		for_each_memcg_cache(c, s) {
4288 			c->object_size = s->object_size;
4289 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290 		}
4291 
4292 		if (sysfs_slab_alias(s, name)) {
4293 			s->refcount--;
4294 			s = NULL;
4295 		}
4296 	}
4297 
4298 	return s;
4299 }
4300 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302 {
4303 	int err;
4304 
4305 	err = kmem_cache_open(s, flags);
4306 	if (err)
4307 		return err;
4308 
4309 	/* Mutex is not taken during early boot */
4310 	if (slab_state <= UP)
4311 		return 0;
4312 
4313 	memcg_propagate_slab_attrs(s);
4314 	err = sysfs_slab_add(s);
4315 	if (err)
4316 		__kmem_cache_release(s);
4317 
4318 	return err;
4319 }
4320 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322 {
4323 	struct kmem_cache *s;
4324 	void *ret;
4325 
4326 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 		return kmalloc_large(size, gfpflags);
4328 
4329 	s = kmalloc_slab(size, gfpflags);
4330 
4331 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 		return s;
4333 
4334 	ret = slab_alloc(s, gfpflags, caller);
4335 
4336 	/* Honor the call site pointer we received. */
4337 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338 
4339 	return ret;
4340 }
4341 
4342 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 					int node, unsigned long caller)
4345 {
4346 	struct kmem_cache *s;
4347 	void *ret;
4348 
4349 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 		ret = kmalloc_large_node(size, gfpflags, node);
4351 
4352 		trace_kmalloc_node(caller, ret,
4353 				   size, PAGE_SIZE << get_order(size),
4354 				   gfpflags, node);
4355 
4356 		return ret;
4357 	}
4358 
4359 	s = kmalloc_slab(size, gfpflags);
4360 
4361 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 		return s;
4363 
4364 	ret = slab_alloc_node(s, gfpflags, node, caller);
4365 
4366 	/* Honor the call site pointer we received. */
4367 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368 
4369 	return ret;
4370 }
4371 #endif
4372 
4373 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4374 static int count_inuse(struct page *page)
4375 {
4376 	return page->inuse;
4377 }
4378 
count_total(struct page * page)4379 static int count_total(struct page *page)
4380 {
4381 	return page->objects;
4382 }
4383 #endif
4384 
4385 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page,unsigned long * map)4386 static int validate_slab(struct kmem_cache *s, struct page *page,
4387 						unsigned long *map)
4388 {
4389 	void *p;
4390 	void *addr = page_address(page);
4391 
4392 	if (!check_slab(s, page) ||
4393 			!on_freelist(s, page, NULL))
4394 		return 0;
4395 
4396 	/* Now we know that a valid freelist exists */
4397 	bitmap_zero(map, page->objects);
4398 
4399 	get_map(s, page, map);
4400 	for_each_object(p, s, addr, page->objects) {
4401 		if (test_bit(slab_index(p, s, addr), map))
4402 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 				return 0;
4404 	}
4405 
4406 	for_each_object(p, s, addr, page->objects)
4407 		if (!test_bit(slab_index(p, s, addr), map))
4408 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 				return 0;
4410 	return 1;
4411 }
4412 
validate_slab_slab(struct kmem_cache * s,struct page * page,unsigned long * map)4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 						unsigned long *map)
4415 {
4416 	slab_lock(page);
4417 	validate_slab(s, page, map);
4418 	slab_unlock(page);
4419 }
4420 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * map)4421 static int validate_slab_node(struct kmem_cache *s,
4422 		struct kmem_cache_node *n, unsigned long *map)
4423 {
4424 	unsigned long count = 0;
4425 	struct page *page;
4426 	unsigned long flags;
4427 
4428 	spin_lock_irqsave(&n->list_lock, flags);
4429 
4430 	list_for_each_entry(page, &n->partial, slab_list) {
4431 		validate_slab_slab(s, page, map);
4432 		count++;
4433 	}
4434 	if (count != n->nr_partial)
4435 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 		       s->name, count, n->nr_partial);
4437 
4438 	if (!(s->flags & SLAB_STORE_USER))
4439 		goto out;
4440 
4441 	list_for_each_entry(page, &n->full, slab_list) {
4442 		validate_slab_slab(s, page, map);
4443 		count++;
4444 	}
4445 	if (count != atomic_long_read(&n->nr_slabs))
4446 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 		       s->name, count, atomic_long_read(&n->nr_slabs));
4448 
4449 out:
4450 	spin_unlock_irqrestore(&n->list_lock, flags);
4451 	return count;
4452 }
4453 
validate_slab_cache(struct kmem_cache * s)4454 static long validate_slab_cache(struct kmem_cache *s)
4455 {
4456 	int node;
4457 	unsigned long count = 0;
4458 	struct kmem_cache_node *n;
4459 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4460 
4461 	if (!map)
4462 		return -ENOMEM;
4463 
4464 	flush_all(s);
4465 	for_each_kmem_cache_node(s, node, n)
4466 		count += validate_slab_node(s, n, map);
4467 	bitmap_free(map);
4468 	return count;
4469 }
4470 /*
4471  * Generate lists of code addresses where slabcache objects are allocated
4472  * and freed.
4473  */
4474 
4475 struct location {
4476 	unsigned long count;
4477 	unsigned long addr;
4478 	long long sum_time;
4479 	long min_time;
4480 	long max_time;
4481 	long min_pid;
4482 	long max_pid;
4483 	DECLARE_BITMAP(cpus, NR_CPUS);
4484 	nodemask_t nodes;
4485 };
4486 
4487 struct loc_track {
4488 	unsigned long max;
4489 	unsigned long count;
4490 	struct location *loc;
4491 };
4492 
free_loc_track(struct loc_track * t)4493 static void free_loc_track(struct loc_track *t)
4494 {
4495 	if (t->max)
4496 		free_pages((unsigned long)t->loc,
4497 			get_order(sizeof(struct location) * t->max));
4498 }
4499 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)4500 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4501 {
4502 	struct location *l;
4503 	int order;
4504 
4505 	order = get_order(sizeof(struct location) * max);
4506 
4507 	l = (void *)__get_free_pages(flags, order);
4508 	if (!l)
4509 		return 0;
4510 
4511 	if (t->count) {
4512 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4513 		free_loc_track(t);
4514 	}
4515 	t->max = max;
4516 	t->loc = l;
4517 	return 1;
4518 }
4519 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)4520 static int add_location(struct loc_track *t, struct kmem_cache *s,
4521 				const struct track *track)
4522 {
4523 	long start, end, pos;
4524 	struct location *l;
4525 	unsigned long caddr;
4526 	unsigned long age = jiffies - track->when;
4527 
4528 	start = -1;
4529 	end = t->count;
4530 
4531 	for ( ; ; ) {
4532 		pos = start + (end - start + 1) / 2;
4533 
4534 		/*
4535 		 * There is nothing at "end". If we end up there
4536 		 * we need to add something to before end.
4537 		 */
4538 		if (pos == end)
4539 			break;
4540 
4541 		caddr = t->loc[pos].addr;
4542 		if (track->addr == caddr) {
4543 
4544 			l = &t->loc[pos];
4545 			l->count++;
4546 			if (track->when) {
4547 				l->sum_time += age;
4548 				if (age < l->min_time)
4549 					l->min_time = age;
4550 				if (age > l->max_time)
4551 					l->max_time = age;
4552 
4553 				if (track->pid < l->min_pid)
4554 					l->min_pid = track->pid;
4555 				if (track->pid > l->max_pid)
4556 					l->max_pid = track->pid;
4557 
4558 				cpumask_set_cpu(track->cpu,
4559 						to_cpumask(l->cpus));
4560 			}
4561 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4562 			return 1;
4563 		}
4564 
4565 		if (track->addr < caddr)
4566 			end = pos;
4567 		else
4568 			start = pos;
4569 	}
4570 
4571 	/*
4572 	 * Not found. Insert new tracking element.
4573 	 */
4574 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4575 		return 0;
4576 
4577 	l = t->loc + pos;
4578 	if (pos < t->count)
4579 		memmove(l + 1, l,
4580 			(t->count - pos) * sizeof(struct location));
4581 	t->count++;
4582 	l->count = 1;
4583 	l->addr = track->addr;
4584 	l->sum_time = age;
4585 	l->min_time = age;
4586 	l->max_time = age;
4587 	l->min_pid = track->pid;
4588 	l->max_pid = track->pid;
4589 	cpumask_clear(to_cpumask(l->cpus));
4590 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4591 	nodes_clear(l->nodes);
4592 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4593 	return 1;
4594 }
4595 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * map)4596 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4597 		struct page *page, enum track_item alloc,
4598 		unsigned long *map)
4599 {
4600 	void *addr = page_address(page);
4601 	void *p;
4602 
4603 	bitmap_zero(map, page->objects);
4604 	get_map(s, page, map);
4605 
4606 	for_each_object(p, s, addr, page->objects)
4607 		if (!test_bit(slab_index(p, s, addr), map))
4608 			add_location(t, s, get_track(s, p, alloc));
4609 }
4610 
list_locations(struct kmem_cache * s,char * buf,enum track_item alloc)4611 static int list_locations(struct kmem_cache *s, char *buf,
4612 					enum track_item alloc)
4613 {
4614 	int len = 0;
4615 	unsigned long i;
4616 	struct loc_track t = { 0, 0, NULL };
4617 	int node;
4618 	struct kmem_cache_node *n;
4619 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4620 
4621 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4622 				     GFP_KERNEL)) {
4623 		bitmap_free(map);
4624 		return sprintf(buf, "Out of memory\n");
4625 	}
4626 	/* Push back cpu slabs */
4627 	flush_all(s);
4628 
4629 	for_each_kmem_cache_node(s, node, n) {
4630 		unsigned long flags;
4631 		struct page *page;
4632 
4633 		if (!atomic_long_read(&n->nr_slabs))
4634 			continue;
4635 
4636 		spin_lock_irqsave(&n->list_lock, flags);
4637 		list_for_each_entry(page, &n->partial, slab_list)
4638 			process_slab(&t, s, page, alloc, map);
4639 		list_for_each_entry(page, &n->full, slab_list)
4640 			process_slab(&t, s, page, alloc, map);
4641 		spin_unlock_irqrestore(&n->list_lock, flags);
4642 	}
4643 
4644 	for (i = 0; i < t.count; i++) {
4645 		struct location *l = &t.loc[i];
4646 
4647 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4648 			break;
4649 		len += sprintf(buf + len, "%7ld ", l->count);
4650 
4651 		if (l->addr)
4652 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4653 		else
4654 			len += sprintf(buf + len, "<not-available>");
4655 
4656 		if (l->sum_time != l->min_time) {
4657 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4658 				l->min_time,
4659 				(long)div_u64(l->sum_time, l->count),
4660 				l->max_time);
4661 		} else
4662 			len += sprintf(buf + len, " age=%ld",
4663 				l->min_time);
4664 
4665 		if (l->min_pid != l->max_pid)
4666 			len += sprintf(buf + len, " pid=%ld-%ld",
4667 				l->min_pid, l->max_pid);
4668 		else
4669 			len += sprintf(buf + len, " pid=%ld",
4670 				l->min_pid);
4671 
4672 		if (num_online_cpus() > 1 &&
4673 				!cpumask_empty(to_cpumask(l->cpus)) &&
4674 				len < PAGE_SIZE - 60)
4675 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4676 					 " cpus=%*pbl",
4677 					 cpumask_pr_args(to_cpumask(l->cpus)));
4678 
4679 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4680 				len < PAGE_SIZE - 60)
4681 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4682 					 " nodes=%*pbl",
4683 					 nodemask_pr_args(&l->nodes));
4684 
4685 		len += sprintf(buf + len, "\n");
4686 	}
4687 
4688 	free_loc_track(&t);
4689 	bitmap_free(map);
4690 	if (!t.count)
4691 		len += sprintf(buf, "No data\n");
4692 	return len;
4693 }
4694 #endif	/* CONFIG_SLUB_DEBUG */
4695 
4696 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4697 static void __init resiliency_test(void)
4698 {
4699 	u8 *p;
4700 	int type = KMALLOC_NORMAL;
4701 
4702 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4703 
4704 	pr_err("SLUB resiliency testing\n");
4705 	pr_err("-----------------------\n");
4706 	pr_err("A. Corruption after allocation\n");
4707 
4708 	p = kzalloc(16, GFP_KERNEL);
4709 	p[16] = 0x12;
4710 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4711 	       p + 16);
4712 
4713 	validate_slab_cache(kmalloc_caches[type][4]);
4714 
4715 	/* Hmmm... The next two are dangerous */
4716 	p = kzalloc(32, GFP_KERNEL);
4717 	p[32 + sizeof(void *)] = 0x34;
4718 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4719 	       p);
4720 	pr_err("If allocated object is overwritten then not detectable\n\n");
4721 
4722 	validate_slab_cache(kmalloc_caches[type][5]);
4723 	p = kzalloc(64, GFP_KERNEL);
4724 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4725 	*p = 0x56;
4726 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4727 	       p);
4728 	pr_err("If allocated object is overwritten then not detectable\n\n");
4729 	validate_slab_cache(kmalloc_caches[type][6]);
4730 
4731 	pr_err("\nB. Corruption after free\n");
4732 	p = kzalloc(128, GFP_KERNEL);
4733 	kfree(p);
4734 	*p = 0x78;
4735 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4736 	validate_slab_cache(kmalloc_caches[type][7]);
4737 
4738 	p = kzalloc(256, GFP_KERNEL);
4739 	kfree(p);
4740 	p[50] = 0x9a;
4741 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4742 	validate_slab_cache(kmalloc_caches[type][8]);
4743 
4744 	p = kzalloc(512, GFP_KERNEL);
4745 	kfree(p);
4746 	p[512] = 0xab;
4747 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4748 	validate_slab_cache(kmalloc_caches[type][9]);
4749 }
4750 #else
4751 #ifdef CONFIG_SYSFS
resiliency_test(void)4752 static void resiliency_test(void) {};
4753 #endif
4754 #endif	/* SLUB_RESILIENCY_TEST */
4755 
4756 #ifdef CONFIG_SYSFS
4757 enum slab_stat_type {
4758 	SL_ALL,			/* All slabs */
4759 	SL_PARTIAL,		/* Only partially allocated slabs */
4760 	SL_CPU,			/* Only slabs used for cpu caches */
4761 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4762 	SL_TOTAL		/* Determine object capacity not slabs */
4763 };
4764 
4765 #define SO_ALL		(1 << SL_ALL)
4766 #define SO_PARTIAL	(1 << SL_PARTIAL)
4767 #define SO_CPU		(1 << SL_CPU)
4768 #define SO_OBJECTS	(1 << SL_OBJECTS)
4769 #define SO_TOTAL	(1 << SL_TOTAL)
4770 
4771 #ifdef CONFIG_MEMCG
4772 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4773 
setup_slub_memcg_sysfs(char * str)4774 static int __init setup_slub_memcg_sysfs(char *str)
4775 {
4776 	int v;
4777 
4778 	if (get_option(&str, &v) > 0)
4779 		memcg_sysfs_enabled = v;
4780 
4781 	return 1;
4782 }
4783 
4784 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4785 #endif
4786 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4787 static ssize_t show_slab_objects(struct kmem_cache *s,
4788 			    char *buf, unsigned long flags)
4789 {
4790 	unsigned long total = 0;
4791 	int node;
4792 	int x;
4793 	unsigned long *nodes;
4794 
4795 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4796 	if (!nodes)
4797 		return -ENOMEM;
4798 
4799 	if (flags & SO_CPU) {
4800 		int cpu;
4801 
4802 		for_each_possible_cpu(cpu) {
4803 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4804 							       cpu);
4805 			int node;
4806 			struct page *page;
4807 
4808 			page = READ_ONCE(c->page);
4809 			if (!page)
4810 				continue;
4811 
4812 			node = page_to_nid(page);
4813 			if (flags & SO_TOTAL)
4814 				x = page->objects;
4815 			else if (flags & SO_OBJECTS)
4816 				x = page->inuse;
4817 			else
4818 				x = 1;
4819 
4820 			total += x;
4821 			nodes[node] += x;
4822 
4823 			page = slub_percpu_partial_read_once(c);
4824 			if (page) {
4825 				node = page_to_nid(page);
4826 				if (flags & SO_TOTAL)
4827 					WARN_ON_ONCE(1);
4828 				else if (flags & SO_OBJECTS)
4829 					WARN_ON_ONCE(1);
4830 				else
4831 					x = page->pages;
4832 				total += x;
4833 				nodes[node] += x;
4834 			}
4835 		}
4836 	}
4837 
4838 	/*
4839 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4840 	 * already held which will conflict with an existing lock order:
4841 	 *
4842 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4843 	 *
4844 	 * We don't really need mem_hotplug_lock (to hold off
4845 	 * slab_mem_going_offline_callback) here because slab's memory hot
4846 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4847 	 */
4848 
4849 #ifdef CONFIG_SLUB_DEBUG
4850 	if (flags & SO_ALL) {
4851 		struct kmem_cache_node *n;
4852 
4853 		for_each_kmem_cache_node(s, node, n) {
4854 
4855 			if (flags & SO_TOTAL)
4856 				x = atomic_long_read(&n->total_objects);
4857 			else if (flags & SO_OBJECTS)
4858 				x = atomic_long_read(&n->total_objects) -
4859 					count_partial(n, count_free);
4860 			else
4861 				x = atomic_long_read(&n->nr_slabs);
4862 			total += x;
4863 			nodes[node] += x;
4864 		}
4865 
4866 	} else
4867 #endif
4868 	if (flags & SO_PARTIAL) {
4869 		struct kmem_cache_node *n;
4870 
4871 		for_each_kmem_cache_node(s, node, n) {
4872 			if (flags & SO_TOTAL)
4873 				x = count_partial(n, count_total);
4874 			else if (flags & SO_OBJECTS)
4875 				x = count_partial(n, count_inuse);
4876 			else
4877 				x = n->nr_partial;
4878 			total += x;
4879 			nodes[node] += x;
4880 		}
4881 	}
4882 	x = sprintf(buf, "%lu", total);
4883 #ifdef CONFIG_NUMA
4884 	for (node = 0; node < nr_node_ids; node++)
4885 		if (nodes[node])
4886 			x += sprintf(buf + x, " N%d=%lu",
4887 					node, nodes[node]);
4888 #endif
4889 	kfree(nodes);
4890 	return x + sprintf(buf + x, "\n");
4891 }
4892 
4893 #ifdef CONFIG_SLUB_DEBUG
any_slab_objects(struct kmem_cache * s)4894 static int any_slab_objects(struct kmem_cache *s)
4895 {
4896 	int node;
4897 	struct kmem_cache_node *n;
4898 
4899 	for_each_kmem_cache_node(s, node, n)
4900 		if (atomic_long_read(&n->total_objects))
4901 			return 1;
4902 
4903 	return 0;
4904 }
4905 #endif
4906 
4907 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4908 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4909 
4910 struct slab_attribute {
4911 	struct attribute attr;
4912 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4913 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4914 };
4915 
4916 #define SLAB_ATTR_RO(_name) \
4917 	static struct slab_attribute _name##_attr = \
4918 	__ATTR(_name, 0400, _name##_show, NULL)
4919 
4920 #define SLAB_ATTR(_name) \
4921 	static struct slab_attribute _name##_attr =  \
4922 	__ATTR(_name, 0600, _name##_show, _name##_store)
4923 
slab_size_show(struct kmem_cache * s,char * buf)4924 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4925 {
4926 	return sprintf(buf, "%u\n", s->size);
4927 }
4928 SLAB_ATTR_RO(slab_size);
4929 
align_show(struct kmem_cache * s,char * buf)4930 static ssize_t align_show(struct kmem_cache *s, char *buf)
4931 {
4932 	return sprintf(buf, "%u\n", s->align);
4933 }
4934 SLAB_ATTR_RO(align);
4935 
object_size_show(struct kmem_cache * s,char * buf)4936 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4937 {
4938 	return sprintf(buf, "%u\n", s->object_size);
4939 }
4940 SLAB_ATTR_RO(object_size);
4941 
objs_per_slab_show(struct kmem_cache * s,char * buf)4942 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4943 {
4944 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4945 }
4946 SLAB_ATTR_RO(objs_per_slab);
4947 
order_store(struct kmem_cache * s,const char * buf,size_t length)4948 static ssize_t order_store(struct kmem_cache *s,
4949 				const char *buf, size_t length)
4950 {
4951 	unsigned int order;
4952 	int err;
4953 
4954 	err = kstrtouint(buf, 10, &order);
4955 	if (err)
4956 		return err;
4957 
4958 	if (order > slub_max_order || order < slub_min_order)
4959 		return -EINVAL;
4960 
4961 	calculate_sizes(s, order);
4962 	return length;
4963 }
4964 
order_show(struct kmem_cache * s,char * buf)4965 static ssize_t order_show(struct kmem_cache *s, char *buf)
4966 {
4967 	return sprintf(buf, "%u\n", oo_order(s->oo));
4968 }
4969 SLAB_ATTR(order);
4970 
min_partial_show(struct kmem_cache * s,char * buf)4971 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4972 {
4973 	return sprintf(buf, "%lu\n", s->min_partial);
4974 }
4975 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)4976 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4977 				 size_t length)
4978 {
4979 	unsigned long min;
4980 	int err;
4981 
4982 	err = kstrtoul(buf, 10, &min);
4983 	if (err)
4984 		return err;
4985 
4986 	set_min_partial(s, min);
4987 	return length;
4988 }
4989 SLAB_ATTR(min_partial);
4990 
cpu_partial_show(struct kmem_cache * s,char * buf)4991 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4992 {
4993 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4994 }
4995 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)4996 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4997 				 size_t length)
4998 {
4999 	unsigned int objects;
5000 	int err;
5001 
5002 	err = kstrtouint(buf, 10, &objects);
5003 	if (err)
5004 		return err;
5005 	if (objects && !kmem_cache_has_cpu_partial(s))
5006 		return -EINVAL;
5007 
5008 	slub_set_cpu_partial(s, objects);
5009 	flush_all(s);
5010 	return length;
5011 }
5012 SLAB_ATTR(cpu_partial);
5013 
ctor_show(struct kmem_cache * s,char * buf)5014 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5015 {
5016 	if (!s->ctor)
5017 		return 0;
5018 	return sprintf(buf, "%pS\n", s->ctor);
5019 }
5020 SLAB_ATTR_RO(ctor);
5021 
aliases_show(struct kmem_cache * s,char * buf)5022 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5023 {
5024 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5025 }
5026 SLAB_ATTR_RO(aliases);
5027 
partial_show(struct kmem_cache * s,char * buf)5028 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5029 {
5030 	return show_slab_objects(s, buf, SO_PARTIAL);
5031 }
5032 SLAB_ATTR_RO(partial);
5033 
cpu_slabs_show(struct kmem_cache * s,char * buf)5034 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5035 {
5036 	return show_slab_objects(s, buf, SO_CPU);
5037 }
5038 SLAB_ATTR_RO(cpu_slabs);
5039 
objects_show(struct kmem_cache * s,char * buf)5040 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5041 {
5042 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5043 }
5044 SLAB_ATTR_RO(objects);
5045 
objects_partial_show(struct kmem_cache * s,char * buf)5046 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5047 {
5048 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5049 }
5050 SLAB_ATTR_RO(objects_partial);
5051 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5052 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5053 {
5054 	int objects = 0;
5055 	int pages = 0;
5056 	int cpu;
5057 	int len;
5058 
5059 	for_each_online_cpu(cpu) {
5060 		struct page *page;
5061 
5062 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5063 
5064 		if (page) {
5065 			pages += page->pages;
5066 			objects += page->pobjects;
5067 		}
5068 	}
5069 
5070 	len = sprintf(buf, "%d(%d)", objects, pages);
5071 
5072 #ifdef CONFIG_SMP
5073 	for_each_online_cpu(cpu) {
5074 		struct page *page;
5075 
5076 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5077 
5078 		if (page && len < PAGE_SIZE - 20)
5079 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5080 				page->pobjects, page->pages);
5081 	}
5082 #endif
5083 	return len + sprintf(buf + len, "\n");
5084 }
5085 SLAB_ATTR_RO(slabs_cpu_partial);
5086 
reclaim_account_show(struct kmem_cache * s,char * buf)5087 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5088 {
5089 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5090 }
5091 
reclaim_account_store(struct kmem_cache * s,const char * buf,size_t length)5092 static ssize_t reclaim_account_store(struct kmem_cache *s,
5093 				const char *buf, size_t length)
5094 {
5095 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5096 	if (buf[0] == '1')
5097 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5098 	return length;
5099 }
5100 SLAB_ATTR(reclaim_account);
5101 
hwcache_align_show(struct kmem_cache * s,char * buf)5102 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5103 {
5104 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5105 }
5106 SLAB_ATTR_RO(hwcache_align);
5107 
5108 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5109 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5112 }
5113 SLAB_ATTR_RO(cache_dma);
5114 #endif
5115 
usersize_show(struct kmem_cache * s,char * buf)5116 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5117 {
5118 	return sprintf(buf, "%u\n", s->usersize);
5119 }
5120 SLAB_ATTR_RO(usersize);
5121 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5122 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5123 {
5124 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5125 }
5126 SLAB_ATTR_RO(destroy_by_rcu);
5127 
5128 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5129 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5130 {
5131 	return show_slab_objects(s, buf, SO_ALL);
5132 }
5133 SLAB_ATTR_RO(slabs);
5134 
total_objects_show(struct kmem_cache * s,char * buf)5135 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5138 }
5139 SLAB_ATTR_RO(total_objects);
5140 
sanity_checks_show(struct kmem_cache * s,char * buf)5141 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5142 {
5143 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5144 }
5145 
sanity_checks_store(struct kmem_cache * s,const char * buf,size_t length)5146 static ssize_t sanity_checks_store(struct kmem_cache *s,
5147 				const char *buf, size_t length)
5148 {
5149 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5150 	if (buf[0] == '1') {
5151 		s->flags &= ~__CMPXCHG_DOUBLE;
5152 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5153 	}
5154 	return length;
5155 }
5156 SLAB_ATTR(sanity_checks);
5157 
trace_show(struct kmem_cache * s,char * buf)5158 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5159 {
5160 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5161 }
5162 
trace_store(struct kmem_cache * s,const char * buf,size_t length)5163 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5164 							size_t length)
5165 {
5166 	/*
5167 	 * Tracing a merged cache is going to give confusing results
5168 	 * as well as cause other issues like converting a mergeable
5169 	 * cache into an umergeable one.
5170 	 */
5171 	if (s->refcount > 1)
5172 		return -EINVAL;
5173 
5174 	s->flags &= ~SLAB_TRACE;
5175 	if (buf[0] == '1') {
5176 		s->flags &= ~__CMPXCHG_DOUBLE;
5177 		s->flags |= SLAB_TRACE;
5178 	}
5179 	return length;
5180 }
5181 SLAB_ATTR(trace);
5182 
red_zone_show(struct kmem_cache * s,char * buf)5183 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5184 {
5185 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5186 }
5187 
red_zone_store(struct kmem_cache * s,const char * buf,size_t length)5188 static ssize_t red_zone_store(struct kmem_cache *s,
5189 				const char *buf, size_t length)
5190 {
5191 	if (any_slab_objects(s))
5192 		return -EBUSY;
5193 
5194 	s->flags &= ~SLAB_RED_ZONE;
5195 	if (buf[0] == '1') {
5196 		s->flags |= SLAB_RED_ZONE;
5197 	}
5198 	calculate_sizes(s, -1);
5199 	return length;
5200 }
5201 SLAB_ATTR(red_zone);
5202 
poison_show(struct kmem_cache * s,char * buf)5203 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5204 {
5205 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5206 }
5207 
poison_store(struct kmem_cache * s,const char * buf,size_t length)5208 static ssize_t poison_store(struct kmem_cache *s,
5209 				const char *buf, size_t length)
5210 {
5211 	if (any_slab_objects(s))
5212 		return -EBUSY;
5213 
5214 	s->flags &= ~SLAB_POISON;
5215 	if (buf[0] == '1') {
5216 		s->flags |= SLAB_POISON;
5217 	}
5218 	calculate_sizes(s, -1);
5219 	return length;
5220 }
5221 SLAB_ATTR(poison);
5222 
store_user_show(struct kmem_cache * s,char * buf)5223 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5224 {
5225 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5226 }
5227 
store_user_store(struct kmem_cache * s,const char * buf,size_t length)5228 static ssize_t store_user_store(struct kmem_cache *s,
5229 				const char *buf, size_t length)
5230 {
5231 	if (any_slab_objects(s))
5232 		return -EBUSY;
5233 
5234 	s->flags &= ~SLAB_STORE_USER;
5235 	if (buf[0] == '1') {
5236 		s->flags &= ~__CMPXCHG_DOUBLE;
5237 		s->flags |= SLAB_STORE_USER;
5238 	}
5239 	calculate_sizes(s, -1);
5240 	return length;
5241 }
5242 SLAB_ATTR(store_user);
5243 
validate_show(struct kmem_cache * s,char * buf)5244 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5245 {
5246 	return 0;
5247 }
5248 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5249 static ssize_t validate_store(struct kmem_cache *s,
5250 			const char *buf, size_t length)
5251 {
5252 	int ret = -EINVAL;
5253 
5254 	if (buf[0] == '1') {
5255 		ret = validate_slab_cache(s);
5256 		if (ret >= 0)
5257 			ret = length;
5258 	}
5259 	return ret;
5260 }
5261 SLAB_ATTR(validate);
5262 
alloc_calls_show(struct kmem_cache * s,char * buf)5263 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5264 {
5265 	if (!(s->flags & SLAB_STORE_USER))
5266 		return -ENOSYS;
5267 	return list_locations(s, buf, TRACK_ALLOC);
5268 }
5269 SLAB_ATTR_RO(alloc_calls);
5270 
free_calls_show(struct kmem_cache * s,char * buf)5271 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5272 {
5273 	if (!(s->flags & SLAB_STORE_USER))
5274 		return -ENOSYS;
5275 	return list_locations(s, buf, TRACK_FREE);
5276 }
5277 SLAB_ATTR_RO(free_calls);
5278 #endif /* CONFIG_SLUB_DEBUG */
5279 
5280 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5281 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5282 {
5283 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5284 }
5285 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)5286 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5287 							size_t length)
5288 {
5289 	if (s->refcount > 1)
5290 		return -EINVAL;
5291 
5292 	s->flags &= ~SLAB_FAILSLAB;
5293 	if (buf[0] == '1')
5294 		s->flags |= SLAB_FAILSLAB;
5295 	return length;
5296 }
5297 SLAB_ATTR(failslab);
5298 #endif
5299 
shrink_show(struct kmem_cache * s,char * buf)5300 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5301 {
5302 	return 0;
5303 }
5304 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5305 static ssize_t shrink_store(struct kmem_cache *s,
5306 			const char *buf, size_t length)
5307 {
5308 	if (buf[0] == '1')
5309 		kmem_cache_shrink_all(s);
5310 	else
5311 		return -EINVAL;
5312 	return length;
5313 }
5314 SLAB_ATTR(shrink);
5315 
5316 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5317 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5318 {
5319 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5320 }
5321 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5322 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5323 				const char *buf, size_t length)
5324 {
5325 	unsigned int ratio;
5326 	int err;
5327 
5328 	err = kstrtouint(buf, 10, &ratio);
5329 	if (err)
5330 		return err;
5331 	if (ratio > 100)
5332 		return -ERANGE;
5333 
5334 	s->remote_node_defrag_ratio = ratio * 10;
5335 
5336 	return length;
5337 }
5338 SLAB_ATTR(remote_node_defrag_ratio);
5339 #endif
5340 
5341 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5342 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5343 {
5344 	unsigned long sum  = 0;
5345 	int cpu;
5346 	int len;
5347 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5348 
5349 	if (!data)
5350 		return -ENOMEM;
5351 
5352 	for_each_online_cpu(cpu) {
5353 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5354 
5355 		data[cpu] = x;
5356 		sum += x;
5357 	}
5358 
5359 	len = sprintf(buf, "%lu", sum);
5360 
5361 #ifdef CONFIG_SMP
5362 	for_each_online_cpu(cpu) {
5363 		if (data[cpu] && len < PAGE_SIZE - 20)
5364 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5365 	}
5366 #endif
5367 	kfree(data);
5368 	return len + sprintf(buf + len, "\n");
5369 }
5370 
clear_stat(struct kmem_cache * s,enum stat_item si)5371 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5372 {
5373 	int cpu;
5374 
5375 	for_each_online_cpu(cpu)
5376 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5377 }
5378 
5379 #define STAT_ATTR(si, text) 					\
5380 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5381 {								\
5382 	return show_stat(s, buf, si);				\
5383 }								\
5384 static ssize_t text##_store(struct kmem_cache *s,		\
5385 				const char *buf, size_t length)	\
5386 {								\
5387 	if (buf[0] != '0')					\
5388 		return -EINVAL;					\
5389 	clear_stat(s, si);					\
5390 	return length;						\
5391 }								\
5392 SLAB_ATTR(text);						\
5393 
5394 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5395 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5396 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5397 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5398 STAT_ATTR(FREE_FROZEN, free_frozen);
5399 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5400 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5401 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5402 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5403 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5404 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5405 STAT_ATTR(FREE_SLAB, free_slab);
5406 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5407 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5408 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5409 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5410 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5411 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5412 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5413 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5414 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5415 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5416 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5417 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5418 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5419 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5420 #endif	/* CONFIG_SLUB_STATS */
5421 
5422 static struct attribute *slab_attrs[] = {
5423 	&slab_size_attr.attr,
5424 	&object_size_attr.attr,
5425 	&objs_per_slab_attr.attr,
5426 	&order_attr.attr,
5427 	&min_partial_attr.attr,
5428 	&cpu_partial_attr.attr,
5429 	&objects_attr.attr,
5430 	&objects_partial_attr.attr,
5431 	&partial_attr.attr,
5432 	&cpu_slabs_attr.attr,
5433 	&ctor_attr.attr,
5434 	&aliases_attr.attr,
5435 	&align_attr.attr,
5436 	&hwcache_align_attr.attr,
5437 	&reclaim_account_attr.attr,
5438 	&destroy_by_rcu_attr.attr,
5439 	&shrink_attr.attr,
5440 	&slabs_cpu_partial_attr.attr,
5441 #ifdef CONFIG_SLUB_DEBUG
5442 	&total_objects_attr.attr,
5443 	&slabs_attr.attr,
5444 	&sanity_checks_attr.attr,
5445 	&trace_attr.attr,
5446 	&red_zone_attr.attr,
5447 	&poison_attr.attr,
5448 	&store_user_attr.attr,
5449 	&validate_attr.attr,
5450 	&alloc_calls_attr.attr,
5451 	&free_calls_attr.attr,
5452 #endif
5453 #ifdef CONFIG_ZONE_DMA
5454 	&cache_dma_attr.attr,
5455 #endif
5456 #ifdef CONFIG_NUMA
5457 	&remote_node_defrag_ratio_attr.attr,
5458 #endif
5459 #ifdef CONFIG_SLUB_STATS
5460 	&alloc_fastpath_attr.attr,
5461 	&alloc_slowpath_attr.attr,
5462 	&free_fastpath_attr.attr,
5463 	&free_slowpath_attr.attr,
5464 	&free_frozen_attr.attr,
5465 	&free_add_partial_attr.attr,
5466 	&free_remove_partial_attr.attr,
5467 	&alloc_from_partial_attr.attr,
5468 	&alloc_slab_attr.attr,
5469 	&alloc_refill_attr.attr,
5470 	&alloc_node_mismatch_attr.attr,
5471 	&free_slab_attr.attr,
5472 	&cpuslab_flush_attr.attr,
5473 	&deactivate_full_attr.attr,
5474 	&deactivate_empty_attr.attr,
5475 	&deactivate_to_head_attr.attr,
5476 	&deactivate_to_tail_attr.attr,
5477 	&deactivate_remote_frees_attr.attr,
5478 	&deactivate_bypass_attr.attr,
5479 	&order_fallback_attr.attr,
5480 	&cmpxchg_double_fail_attr.attr,
5481 	&cmpxchg_double_cpu_fail_attr.attr,
5482 	&cpu_partial_alloc_attr.attr,
5483 	&cpu_partial_free_attr.attr,
5484 	&cpu_partial_node_attr.attr,
5485 	&cpu_partial_drain_attr.attr,
5486 #endif
5487 #ifdef CONFIG_FAILSLAB
5488 	&failslab_attr.attr,
5489 #endif
5490 	&usersize_attr.attr,
5491 
5492 	NULL
5493 };
5494 
5495 static const struct attribute_group slab_attr_group = {
5496 	.attrs = slab_attrs,
5497 };
5498 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5499 static ssize_t slab_attr_show(struct kobject *kobj,
5500 				struct attribute *attr,
5501 				char *buf)
5502 {
5503 	struct slab_attribute *attribute;
5504 	struct kmem_cache *s;
5505 	int err;
5506 
5507 	attribute = to_slab_attr(attr);
5508 	s = to_slab(kobj);
5509 
5510 	if (!attribute->show)
5511 		return -EIO;
5512 
5513 	err = attribute->show(s, buf);
5514 
5515 	return err;
5516 }
5517 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5518 static ssize_t slab_attr_store(struct kobject *kobj,
5519 				struct attribute *attr,
5520 				const char *buf, size_t len)
5521 {
5522 	struct slab_attribute *attribute;
5523 	struct kmem_cache *s;
5524 	int err;
5525 
5526 	attribute = to_slab_attr(attr);
5527 	s = to_slab(kobj);
5528 
5529 	if (!attribute->store)
5530 		return -EIO;
5531 
5532 	err = attribute->store(s, buf, len);
5533 #ifdef CONFIG_MEMCG
5534 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5535 		struct kmem_cache *c;
5536 
5537 		mutex_lock(&slab_mutex);
5538 		if (s->max_attr_size < len)
5539 			s->max_attr_size = len;
5540 
5541 		/*
5542 		 * This is a best effort propagation, so this function's return
5543 		 * value will be determined by the parent cache only. This is
5544 		 * basically because not all attributes will have a well
5545 		 * defined semantics for rollbacks - most of the actions will
5546 		 * have permanent effects.
5547 		 *
5548 		 * Returning the error value of any of the children that fail
5549 		 * is not 100 % defined, in the sense that users seeing the
5550 		 * error code won't be able to know anything about the state of
5551 		 * the cache.
5552 		 *
5553 		 * Only returning the error code for the parent cache at least
5554 		 * has well defined semantics. The cache being written to
5555 		 * directly either failed or succeeded, in which case we loop
5556 		 * through the descendants with best-effort propagation.
5557 		 */
5558 		for_each_memcg_cache(c, s)
5559 			attribute->store(c, buf, len);
5560 		mutex_unlock(&slab_mutex);
5561 	}
5562 #endif
5563 	return err;
5564 }
5565 
memcg_propagate_slab_attrs(struct kmem_cache * s)5566 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5567 {
5568 #ifdef CONFIG_MEMCG
5569 	int i;
5570 	char *buffer = NULL;
5571 	struct kmem_cache *root_cache;
5572 
5573 	if (is_root_cache(s))
5574 		return;
5575 
5576 	root_cache = s->memcg_params.root_cache;
5577 
5578 	/*
5579 	 * This mean this cache had no attribute written. Therefore, no point
5580 	 * in copying default values around
5581 	 */
5582 	if (!root_cache->max_attr_size)
5583 		return;
5584 
5585 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5586 		char mbuf[64];
5587 		char *buf;
5588 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5589 		ssize_t len;
5590 
5591 		if (!attr || !attr->store || !attr->show)
5592 			continue;
5593 
5594 		/*
5595 		 * It is really bad that we have to allocate here, so we will
5596 		 * do it only as a fallback. If we actually allocate, though,
5597 		 * we can just use the allocated buffer until the end.
5598 		 *
5599 		 * Most of the slub attributes will tend to be very small in
5600 		 * size, but sysfs allows buffers up to a page, so they can
5601 		 * theoretically happen.
5602 		 */
5603 		if (buffer)
5604 			buf = buffer;
5605 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5606 			buf = mbuf;
5607 		else {
5608 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5609 			if (WARN_ON(!buffer))
5610 				continue;
5611 			buf = buffer;
5612 		}
5613 
5614 		len = attr->show(root_cache, buf);
5615 		if (len > 0)
5616 			attr->store(s, buf, len);
5617 	}
5618 
5619 	if (buffer)
5620 		free_page((unsigned long)buffer);
5621 #endif	/* CONFIG_MEMCG */
5622 }
5623 
kmem_cache_release(struct kobject * k)5624 static void kmem_cache_release(struct kobject *k)
5625 {
5626 	slab_kmem_cache_release(to_slab(k));
5627 }
5628 
5629 static const struct sysfs_ops slab_sysfs_ops = {
5630 	.show = slab_attr_show,
5631 	.store = slab_attr_store,
5632 };
5633 
5634 static struct kobj_type slab_ktype = {
5635 	.sysfs_ops = &slab_sysfs_ops,
5636 	.release = kmem_cache_release,
5637 };
5638 
uevent_filter(struct kset * kset,struct kobject * kobj)5639 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5640 {
5641 	struct kobj_type *ktype = get_ktype(kobj);
5642 
5643 	if (ktype == &slab_ktype)
5644 		return 1;
5645 	return 0;
5646 }
5647 
5648 static const struct kset_uevent_ops slab_uevent_ops = {
5649 	.filter = uevent_filter,
5650 };
5651 
5652 static struct kset *slab_kset;
5653 
cache_kset(struct kmem_cache * s)5654 static inline struct kset *cache_kset(struct kmem_cache *s)
5655 {
5656 #ifdef CONFIG_MEMCG
5657 	if (!is_root_cache(s))
5658 		return s->memcg_params.root_cache->memcg_kset;
5659 #endif
5660 	return slab_kset;
5661 }
5662 
5663 #define ID_STR_LENGTH 64
5664 
5665 /* Create a unique string id for a slab cache:
5666  *
5667  * Format	:[flags-]size
5668  */
create_unique_id(struct kmem_cache * s)5669 static char *create_unique_id(struct kmem_cache *s)
5670 {
5671 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5672 	char *p = name;
5673 
5674 	BUG_ON(!name);
5675 
5676 	*p++ = ':';
5677 	/*
5678 	 * First flags affecting slabcache operations. We will only
5679 	 * get here for aliasable slabs so we do not need to support
5680 	 * too many flags. The flags here must cover all flags that
5681 	 * are matched during merging to guarantee that the id is
5682 	 * unique.
5683 	 */
5684 	if (s->flags & SLAB_CACHE_DMA)
5685 		*p++ = 'd';
5686 	if (s->flags & SLAB_CACHE_DMA32)
5687 		*p++ = 'D';
5688 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5689 		*p++ = 'a';
5690 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5691 		*p++ = 'F';
5692 	if (s->flags & SLAB_ACCOUNT)
5693 		*p++ = 'A';
5694 	if (p != name + 1)
5695 		*p++ = '-';
5696 	p += sprintf(p, "%07u", s->size);
5697 
5698 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5699 	return name;
5700 }
5701 
sysfs_slab_remove_workfn(struct work_struct * work)5702 static void sysfs_slab_remove_workfn(struct work_struct *work)
5703 {
5704 	struct kmem_cache *s =
5705 		container_of(work, struct kmem_cache, kobj_remove_work);
5706 
5707 	if (!s->kobj.state_in_sysfs)
5708 		/*
5709 		 * For a memcg cache, this may be called during
5710 		 * deactivation and again on shutdown.  Remove only once.
5711 		 * A cache is never shut down before deactivation is
5712 		 * complete, so no need to worry about synchronization.
5713 		 */
5714 		goto out;
5715 
5716 #ifdef CONFIG_MEMCG
5717 	kset_unregister(s->memcg_kset);
5718 #endif
5719 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5720 out:
5721 	kobject_put(&s->kobj);
5722 }
5723 
sysfs_slab_add(struct kmem_cache * s)5724 static int sysfs_slab_add(struct kmem_cache *s)
5725 {
5726 	int err;
5727 	const char *name;
5728 	struct kset *kset = cache_kset(s);
5729 	int unmergeable = slab_unmergeable(s);
5730 
5731 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5732 
5733 	if (!kset) {
5734 		kobject_init(&s->kobj, &slab_ktype);
5735 		return 0;
5736 	}
5737 
5738 	if (!unmergeable && disable_higher_order_debug &&
5739 			(slub_debug & DEBUG_METADATA_FLAGS))
5740 		unmergeable = 1;
5741 
5742 	if (unmergeable) {
5743 		/*
5744 		 * Slabcache can never be merged so we can use the name proper.
5745 		 * This is typically the case for debug situations. In that
5746 		 * case we can catch duplicate names easily.
5747 		 */
5748 		sysfs_remove_link(&slab_kset->kobj, s->name);
5749 		name = s->name;
5750 	} else {
5751 		/*
5752 		 * Create a unique name for the slab as a target
5753 		 * for the symlinks.
5754 		 */
5755 		name = create_unique_id(s);
5756 	}
5757 
5758 	s->kobj.kset = kset;
5759 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5760 	if (err)
5761 		goto out;
5762 
5763 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5764 	if (err)
5765 		goto out_del_kobj;
5766 
5767 #ifdef CONFIG_MEMCG
5768 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5769 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5770 		if (!s->memcg_kset) {
5771 			err = -ENOMEM;
5772 			goto out_del_kobj;
5773 		}
5774 	}
5775 #endif
5776 
5777 	kobject_uevent(&s->kobj, KOBJ_ADD);
5778 	if (!unmergeable) {
5779 		/* Setup first alias */
5780 		sysfs_slab_alias(s, s->name);
5781 	}
5782 out:
5783 	if (!unmergeable)
5784 		kfree(name);
5785 	return err;
5786 out_del_kobj:
5787 	kobject_del(&s->kobj);
5788 	goto out;
5789 }
5790 
sysfs_slab_remove(struct kmem_cache * s)5791 static void sysfs_slab_remove(struct kmem_cache *s)
5792 {
5793 	if (slab_state < FULL)
5794 		/*
5795 		 * Sysfs has not been setup yet so no need to remove the
5796 		 * cache from sysfs.
5797 		 */
5798 		return;
5799 
5800 	kobject_get(&s->kobj);
5801 	schedule_work(&s->kobj_remove_work);
5802 }
5803 
sysfs_slab_unlink(struct kmem_cache * s)5804 void sysfs_slab_unlink(struct kmem_cache *s)
5805 {
5806 	if (slab_state >= FULL)
5807 		kobject_del(&s->kobj);
5808 }
5809 
sysfs_slab_release(struct kmem_cache * s)5810 void sysfs_slab_release(struct kmem_cache *s)
5811 {
5812 	if (slab_state >= FULL)
5813 		kobject_put(&s->kobj);
5814 }
5815 
5816 /*
5817  * Need to buffer aliases during bootup until sysfs becomes
5818  * available lest we lose that information.
5819  */
5820 struct saved_alias {
5821 	struct kmem_cache *s;
5822 	const char *name;
5823 	struct saved_alias *next;
5824 };
5825 
5826 static struct saved_alias *alias_list;
5827 
sysfs_slab_alias(struct kmem_cache * s,const char * name)5828 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5829 {
5830 	struct saved_alias *al;
5831 
5832 	if (slab_state == FULL) {
5833 		/*
5834 		 * If we have a leftover link then remove it.
5835 		 */
5836 		sysfs_remove_link(&slab_kset->kobj, name);
5837 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5838 	}
5839 
5840 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5841 	if (!al)
5842 		return -ENOMEM;
5843 
5844 	al->s = s;
5845 	al->name = name;
5846 	al->next = alias_list;
5847 	alias_list = al;
5848 	return 0;
5849 }
5850 
slab_sysfs_init(void)5851 static int __init slab_sysfs_init(void)
5852 {
5853 	struct kmem_cache *s;
5854 	int err;
5855 
5856 	mutex_lock(&slab_mutex);
5857 
5858 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5859 	if (!slab_kset) {
5860 		mutex_unlock(&slab_mutex);
5861 		pr_err("Cannot register slab subsystem.\n");
5862 		return -ENOSYS;
5863 	}
5864 
5865 	slab_state = FULL;
5866 
5867 	list_for_each_entry(s, &slab_caches, list) {
5868 		err = sysfs_slab_add(s);
5869 		if (err)
5870 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5871 			       s->name);
5872 	}
5873 
5874 	while (alias_list) {
5875 		struct saved_alias *al = alias_list;
5876 
5877 		alias_list = alias_list->next;
5878 		err = sysfs_slab_alias(al->s, al->name);
5879 		if (err)
5880 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5881 			       al->name);
5882 		kfree(al);
5883 	}
5884 
5885 	mutex_unlock(&slab_mutex);
5886 	resiliency_test();
5887 	return 0;
5888 }
5889 
5890 __initcall(slab_sysfs_init);
5891 #endif /* CONFIG_SYSFS */
5892 
5893 /*
5894  * The /proc/slabinfo ABI
5895  */
5896 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5897 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5898 {
5899 	unsigned long nr_slabs = 0;
5900 	unsigned long nr_objs = 0;
5901 	unsigned long nr_free = 0;
5902 	int node;
5903 	struct kmem_cache_node *n;
5904 
5905 	for_each_kmem_cache_node(s, node, n) {
5906 		nr_slabs += node_nr_slabs(n);
5907 		nr_objs += node_nr_objs(n);
5908 		nr_free += count_partial(n, count_free);
5909 	}
5910 
5911 	sinfo->active_objs = nr_objs - nr_free;
5912 	sinfo->num_objs = nr_objs;
5913 	sinfo->active_slabs = nr_slabs;
5914 	sinfo->num_slabs = nr_slabs;
5915 	sinfo->objects_per_slab = oo_objects(s->oo);
5916 	sinfo->cache_order = oo_order(s->oo);
5917 }
5918 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5919 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5920 {
5921 }
5922 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)5923 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5924 		       size_t count, loff_t *ppos)
5925 {
5926 	return -EIO;
5927 }
5928 #endif /* CONFIG_SLUB_DEBUG */
5929