1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
vmalloc_user(unsigned long size)158 void *vmalloc_user(unsigned long size)
159 {
160 void *ret;
161
162 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
165
166 down_write(¤t->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(¤t->mm->mmap_sem);
171 }
172
173 return ret;
174 }
175 EXPORT_SYMBOL(vmalloc_user);
176
vmalloc_to_page(const void * addr)177 struct page *vmalloc_to_page(const void *addr)
178 {
179 return virt_to_page(addr);
180 }
181 EXPORT_SYMBOL(vmalloc_to_page);
182
vmalloc_to_pfn(const void * addr)183 unsigned long vmalloc_to_pfn(const void *addr)
184 {
185 return page_to_pfn(virt_to_page(addr));
186 }
187 EXPORT_SYMBOL(vmalloc_to_pfn);
188
vread(char * buf,char * addr,unsigned long count)189 long vread(char *buf, char *addr, unsigned long count)
190 {
191 /* Don't allow overflow */
192 if ((unsigned long) buf + count < count)
193 count = -(unsigned long) buf;
194
195 memcpy(buf, addr, count);
196 return count;
197 }
198
vwrite(char * buf,char * addr,unsigned long count)199 long vwrite(char *buf, char *addr, unsigned long count)
200 {
201 /* Don't allow overflow */
202 if ((unsigned long) addr + count < count)
203 count = -(unsigned long) addr;
204
205 memcpy(addr, buf, count);
206 return count;
207 }
208
209 /*
210 * vmalloc - allocate virtually contiguous memory
211 *
212 * @size: allocation size
213 *
214 * Allocate enough pages to cover @size from the page level
215 * allocator and map them into contiguous kernel virtual space.
216 *
217 * For tight control over page level allocator and protection flags
218 * use __vmalloc() instead.
219 */
vmalloc(unsigned long size)220 void *vmalloc(unsigned long size)
221 {
222 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223 }
224 EXPORT_SYMBOL(vmalloc);
225
226 /*
227 * vzalloc - allocate virtually contiguous memory with zero fill
228 *
229 * @size: allocation size
230 *
231 * Allocate enough pages to cover @size from the page level
232 * allocator and map them into contiguous kernel virtual space.
233 * The memory allocated is set to zero.
234 *
235 * For tight control over page level allocator and protection flags
236 * use __vmalloc() instead.
237 */
vzalloc(unsigned long size)238 void *vzalloc(unsigned long size)
239 {
240 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242 }
243 EXPORT_SYMBOL(vzalloc);
244
245 /**
246 * vmalloc_node - allocate memory on a specific node
247 * @size: allocation size
248 * @node: numa node
249 *
250 * Allocate enough pages to cover @size from the page level
251 * allocator and map them into contiguous kernel virtual space.
252 *
253 * For tight control over page level allocator and protection flags
254 * use __vmalloc() instead.
255 */
vmalloc_node(unsigned long size,int node)256 void *vmalloc_node(unsigned long size, int node)
257 {
258 return vmalloc(size);
259 }
260 EXPORT_SYMBOL(vmalloc_node);
261
262 /**
263 * vzalloc_node - allocate memory on a specific node with zero fill
264 * @size: allocation size
265 * @node: numa node
266 *
267 * Allocate enough pages to cover @size from the page level
268 * allocator and map them into contiguous kernel virtual space.
269 * The memory allocated is set to zero.
270 *
271 * For tight control over page level allocator and protection flags
272 * use __vmalloc() instead.
273 */
vzalloc_node(unsigned long size,int node)274 void *vzalloc_node(unsigned long size, int node)
275 {
276 return vzalloc(size);
277 }
278 EXPORT_SYMBOL(vzalloc_node);
279
280 /**
281 * vmalloc_exec - allocate virtually contiguous, executable memory
282 * @size: allocation size
283 *
284 * Kernel-internal function to allocate enough pages to cover @size
285 * the page level allocator and map them into contiguous and
286 * executable kernel virtual space.
287 *
288 * For tight control over page level allocator and protection flags
289 * use __vmalloc() instead.
290 */
291
vmalloc_exec(unsigned long size)292 void *vmalloc_exec(unsigned long size)
293 {
294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295 }
296
297 /**
298 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
299 * @size: allocation size
300 *
301 * Allocate enough 32bit PA addressable pages to cover @size from the
302 * page level allocator and map them into contiguous kernel virtual space.
303 */
vmalloc_32(unsigned long size)304 void *vmalloc_32(unsigned long size)
305 {
306 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307 }
308 EXPORT_SYMBOL(vmalloc_32);
309
310 /**
311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312 * @size: allocation size
313 *
314 * The resulting memory area is 32bit addressable and zeroed so it can be
315 * mapped to userspace without leaking data.
316 *
317 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318 * remap_vmalloc_range() are permissible.
319 */
vmalloc_32_user(unsigned long size)320 void *vmalloc_32_user(unsigned long size)
321 {
322 /*
323 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 * but for now this can simply use vmalloc_user() directly.
325 */
326 return vmalloc_user(size);
327 }
328 EXPORT_SYMBOL(vmalloc_32_user);
329
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)330 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331 {
332 BUG();
333 return NULL;
334 }
335 EXPORT_SYMBOL(vmap);
336
vunmap(const void * addr)337 void vunmap(const void *addr)
338 {
339 BUG();
340 }
341 EXPORT_SYMBOL(vunmap);
342
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)343 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344 {
345 BUG();
346 return NULL;
347 }
348 EXPORT_SYMBOL(vm_map_ram);
349
vm_unmap_ram(const void * mem,unsigned int count)350 void vm_unmap_ram(const void *mem, unsigned int count)
351 {
352 BUG();
353 }
354 EXPORT_SYMBOL(vm_unmap_ram);
355
vm_unmap_aliases(void)356 void vm_unmap_aliases(void)
357 {
358 }
359 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360
361 /*
362 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
363 * have one.
364 */
vmalloc_sync_all(void)365 void __weak vmalloc_sync_all(void)
366 {
367 }
368
alloc_vm_area(size_t size,pte_t ** ptes)369 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
370 {
371 BUG();
372 return NULL;
373 }
374 EXPORT_SYMBOL_GPL(alloc_vm_area);
375
free_vm_area(struct vm_struct * area)376 void free_vm_area(struct vm_struct *area)
377 {
378 BUG();
379 }
380 EXPORT_SYMBOL_GPL(free_vm_area);
381
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)382 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
383 struct page *page)
384 {
385 return -EINVAL;
386 }
387 EXPORT_SYMBOL(vm_insert_page);
388
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)389 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
390 unsigned long num)
391 {
392 return -EINVAL;
393 }
394 EXPORT_SYMBOL(vm_map_pages);
395
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)396 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
397 unsigned long num)
398 {
399 return -EINVAL;
400 }
401 EXPORT_SYMBOL(vm_map_pages_zero);
402
403 /*
404 * sys_brk() for the most part doesn't need the global kernel
405 * lock, except when an application is doing something nasty
406 * like trying to un-brk an area that has already been mapped
407 * to a regular file. in this case, the unmapping will need
408 * to invoke file system routines that need the global lock.
409 */
SYSCALL_DEFINE1(brk,unsigned long,brk)410 SYSCALL_DEFINE1(brk, unsigned long, brk)
411 {
412 struct mm_struct *mm = current->mm;
413
414 if (brk < mm->start_brk || brk > mm->context.end_brk)
415 return mm->brk;
416
417 if (mm->brk == brk)
418 return mm->brk;
419
420 /*
421 * Always allow shrinking brk
422 */
423 if (brk <= mm->brk) {
424 mm->brk = brk;
425 return brk;
426 }
427
428 /*
429 * Ok, looks good - let it rip.
430 */
431 flush_icache_range(mm->brk, brk);
432 return mm->brk = brk;
433 }
434
435 /*
436 * initialise the percpu counter for VM and region record slabs
437 */
mmap_init(void)438 void __init mmap_init(void)
439 {
440 int ret;
441
442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
443 VM_BUG_ON(ret);
444 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
445 }
446
447 /*
448 * validate the region tree
449 * - the caller must hold the region lock
450 */
451 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)452 static noinline void validate_nommu_regions(void)
453 {
454 struct vm_region *region, *last;
455 struct rb_node *p, *lastp;
456
457 lastp = rb_first(&nommu_region_tree);
458 if (!lastp)
459 return;
460
461 last = rb_entry(lastp, struct vm_region, vm_rb);
462 BUG_ON(last->vm_end <= last->vm_start);
463 BUG_ON(last->vm_top < last->vm_end);
464
465 while ((p = rb_next(lastp))) {
466 region = rb_entry(p, struct vm_region, vm_rb);
467 last = rb_entry(lastp, struct vm_region, vm_rb);
468
469 BUG_ON(region->vm_end <= region->vm_start);
470 BUG_ON(region->vm_top < region->vm_end);
471 BUG_ON(region->vm_start < last->vm_top);
472
473 lastp = p;
474 }
475 }
476 #else
validate_nommu_regions(void)477 static void validate_nommu_regions(void)
478 {
479 }
480 #endif
481
482 /*
483 * add a region into the global tree
484 */
add_nommu_region(struct vm_region * region)485 static void add_nommu_region(struct vm_region *region)
486 {
487 struct vm_region *pregion;
488 struct rb_node **p, *parent;
489
490 validate_nommu_regions();
491
492 parent = NULL;
493 p = &nommu_region_tree.rb_node;
494 while (*p) {
495 parent = *p;
496 pregion = rb_entry(parent, struct vm_region, vm_rb);
497 if (region->vm_start < pregion->vm_start)
498 p = &(*p)->rb_left;
499 else if (region->vm_start > pregion->vm_start)
500 p = &(*p)->rb_right;
501 else if (pregion == region)
502 return;
503 else
504 BUG();
505 }
506
507 rb_link_node(®ion->vm_rb, parent, p);
508 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
509
510 validate_nommu_regions();
511 }
512
513 /*
514 * delete a region from the global tree
515 */
delete_nommu_region(struct vm_region * region)516 static void delete_nommu_region(struct vm_region *region)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 validate_nommu_regions();
521 rb_erase(®ion->vm_rb, &nommu_region_tree);
522 validate_nommu_regions();
523 }
524
525 /*
526 * free a contiguous series of pages
527 */
free_page_series(unsigned long from,unsigned long to)528 static void free_page_series(unsigned long from, unsigned long to)
529 {
530 for (; from < to; from += PAGE_SIZE) {
531 struct page *page = virt_to_page(from);
532
533 atomic_long_dec(&mmap_pages_allocated);
534 put_page(page);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 * - the caller must hold the region semaphore for writing, which this releases
541 * - the region may not have been added to the tree yet, in which case vm_top
542 * will equal vm_start
543 */
__put_nommu_region(struct vm_region * region)544 static void __put_nommu_region(struct vm_region *region)
545 __releases(nommu_region_sem)
546 {
547 BUG_ON(!nommu_region_tree.rb_node);
548
549 if (--region->vm_usage == 0) {
550 if (region->vm_top > region->vm_start)
551 delete_nommu_region(region);
552 up_write(&nommu_region_sem);
553
554 if (region->vm_file)
555 fput(region->vm_file);
556
557 /* IO memory and memory shared directly out of the pagecache
558 * from ramfs/tmpfs mustn't be released here */
559 if (region->vm_flags & VM_MAPPED_COPY)
560 free_page_series(region->vm_start, region->vm_top);
561 kmem_cache_free(vm_region_jar, region);
562 } else {
563 up_write(&nommu_region_sem);
564 }
565 }
566
567 /*
568 * release a reference to a region
569 */
put_nommu_region(struct vm_region * region)570 static void put_nommu_region(struct vm_region *region)
571 {
572 down_write(&nommu_region_sem);
573 __put_nommu_region(region);
574 }
575
576 /*
577 * add a VMA into a process's mm_struct in the appropriate place in the list
578 * and tree and add to the address space's page tree also if not an anonymous
579 * page
580 * - should be called with mm->mmap_sem held writelocked
581 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)582 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
583 {
584 struct vm_area_struct *pvma, *prev;
585 struct address_space *mapping;
586 struct rb_node **p, *parent, *rb_prev;
587
588 BUG_ON(!vma->vm_region);
589
590 mm->map_count++;
591 vma->vm_mm = mm;
592
593 /* add the VMA to the mapping */
594 if (vma->vm_file) {
595 mapping = vma->vm_file->f_mapping;
596
597 i_mmap_lock_write(mapping);
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 i_mmap_unlock_write(mapping);
602 }
603
604 /* add the VMA to the tree */
605 parent = rb_prev = NULL;
606 p = &mm->mm_rb.rb_node;
607 while (*p) {
608 parent = *p;
609 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
610
611 /* sort by: start addr, end addr, VMA struct addr in that order
612 * (the latter is necessary as we may get identical VMAs) */
613 if (vma->vm_start < pvma->vm_start)
614 p = &(*p)->rb_left;
615 else if (vma->vm_start > pvma->vm_start) {
616 rb_prev = parent;
617 p = &(*p)->rb_right;
618 } else if (vma->vm_end < pvma->vm_end)
619 p = &(*p)->rb_left;
620 else if (vma->vm_end > pvma->vm_end) {
621 rb_prev = parent;
622 p = &(*p)->rb_right;
623 } else if (vma < pvma)
624 p = &(*p)->rb_left;
625 else if (vma > pvma) {
626 rb_prev = parent;
627 p = &(*p)->rb_right;
628 } else
629 BUG();
630 }
631
632 rb_link_node(&vma->vm_rb, parent, p);
633 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
634
635 /* add VMA to the VMA list also */
636 prev = NULL;
637 if (rb_prev)
638 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
639
640 __vma_link_list(mm, vma, prev, parent);
641 }
642
643 /*
644 * delete a VMA from its owning mm_struct and address space
645 */
delete_vma_from_mm(struct vm_area_struct * vma)646 static void delete_vma_from_mm(struct vm_area_struct *vma)
647 {
648 int i;
649 struct address_space *mapping;
650 struct mm_struct *mm = vma->vm_mm;
651 struct task_struct *curr = current;
652
653 mm->map_count--;
654 for (i = 0; i < VMACACHE_SIZE; i++) {
655 /* if the vma is cached, invalidate the entire cache */
656 if (curr->vmacache.vmas[i] == vma) {
657 vmacache_invalidate(mm);
658 break;
659 }
660 }
661
662 /* remove the VMA from the mapping */
663 if (vma->vm_file) {
664 mapping = vma->vm_file->f_mapping;
665
666 i_mmap_lock_write(mapping);
667 flush_dcache_mmap_lock(mapping);
668 vma_interval_tree_remove(vma, &mapping->i_mmap);
669 flush_dcache_mmap_unlock(mapping);
670 i_mmap_unlock_write(mapping);
671 }
672
673 /* remove from the MM's tree and list */
674 rb_erase(&vma->vm_rb, &mm->mm_rb);
675
676 if (vma->vm_prev)
677 vma->vm_prev->vm_next = vma->vm_next;
678 else
679 mm->mmap = vma->vm_next;
680
681 if (vma->vm_next)
682 vma->vm_next->vm_prev = vma->vm_prev;
683 }
684
685 /*
686 * destroy a VMA record
687 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)688 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690 if (vma->vm_ops && vma->vm_ops->close)
691 vma->vm_ops->close(vma);
692 if (vma->vm_file)
693 fput(vma->vm_file);
694 put_nommu_region(vma->vm_region);
695 vm_area_free(vma);
696 }
697
698 /*
699 * look up the first VMA in which addr resides, NULL if none
700 * - should be called with mm->mmap_sem at least held readlocked
701 */
find_vma(struct mm_struct * mm,unsigned long addr)702 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
703 {
704 struct vm_area_struct *vma;
705
706 /* check the cache first */
707 vma = vmacache_find(mm, addr);
708 if (likely(vma))
709 return vma;
710
711 /* trawl the list (there may be multiple mappings in which addr
712 * resides) */
713 for (vma = mm->mmap; vma; vma = vma->vm_next) {
714 if (vma->vm_start > addr)
715 return NULL;
716 if (vma->vm_end > addr) {
717 vmacache_update(addr, vma);
718 return vma;
719 }
720 }
721
722 return NULL;
723 }
724 EXPORT_SYMBOL(find_vma);
725
726 /*
727 * find a VMA
728 * - we don't extend stack VMAs under NOMMU conditions
729 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)730 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
731 {
732 return find_vma(mm, addr);
733 }
734
735 /*
736 * expand a stack to a given address
737 * - not supported under NOMMU conditions
738 */
expand_stack(struct vm_area_struct * vma,unsigned long address)739 int expand_stack(struct vm_area_struct *vma, unsigned long address)
740 {
741 return -ENOMEM;
742 }
743
744 /*
745 * look up the first VMA exactly that exactly matches addr
746 * - should be called with mm->mmap_sem at least held readlocked
747 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)748 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
749 unsigned long addr,
750 unsigned long len)
751 {
752 struct vm_area_struct *vma;
753 unsigned long end = addr + len;
754
755 /* check the cache first */
756 vma = vmacache_find_exact(mm, addr, end);
757 if (vma)
758 return vma;
759
760 /* trawl the list (there may be multiple mappings in which addr
761 * resides) */
762 for (vma = mm->mmap; vma; vma = vma->vm_next) {
763 if (vma->vm_start < addr)
764 continue;
765 if (vma->vm_start > addr)
766 return NULL;
767 if (vma->vm_end == end) {
768 vmacache_update(addr, vma);
769 return vma;
770 }
771 }
772
773 return NULL;
774 }
775
776 /*
777 * determine whether a mapping should be permitted and, if so, what sort of
778 * mapping we're capable of supporting
779 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)780 static int validate_mmap_request(struct file *file,
781 unsigned long addr,
782 unsigned long len,
783 unsigned long prot,
784 unsigned long flags,
785 unsigned long pgoff,
786 unsigned long *_capabilities)
787 {
788 unsigned long capabilities, rlen;
789 int ret;
790
791 /* do the simple checks first */
792 if (flags & MAP_FIXED)
793 return -EINVAL;
794
795 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
796 (flags & MAP_TYPE) != MAP_SHARED)
797 return -EINVAL;
798
799 if (!len)
800 return -EINVAL;
801
802 /* Careful about overflows.. */
803 rlen = PAGE_ALIGN(len);
804 if (!rlen || rlen > TASK_SIZE)
805 return -ENOMEM;
806
807 /* offset overflow? */
808 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
809 return -EOVERFLOW;
810
811 if (file) {
812 /* files must support mmap */
813 if (!file->f_op->mmap)
814 return -ENODEV;
815
816 /* work out if what we've got could possibly be shared
817 * - we support chardevs that provide their own "memory"
818 * - we support files/blockdevs that are memory backed
819 */
820 if (file->f_op->mmap_capabilities) {
821 capabilities = file->f_op->mmap_capabilities(file);
822 } else {
823 /* no explicit capabilities set, so assume some
824 * defaults */
825 switch (file_inode(file)->i_mode & S_IFMT) {
826 case S_IFREG:
827 case S_IFBLK:
828 capabilities = NOMMU_MAP_COPY;
829 break;
830
831 case S_IFCHR:
832 capabilities =
833 NOMMU_MAP_DIRECT |
834 NOMMU_MAP_READ |
835 NOMMU_MAP_WRITE;
836 break;
837
838 default:
839 return -EINVAL;
840 }
841 }
842
843 /* eliminate any capabilities that we can't support on this
844 * device */
845 if (!file->f_op->get_unmapped_area)
846 capabilities &= ~NOMMU_MAP_DIRECT;
847 if (!(file->f_mode & FMODE_CAN_READ))
848 capabilities &= ~NOMMU_MAP_COPY;
849
850 /* The file shall have been opened with read permission. */
851 if (!(file->f_mode & FMODE_READ))
852 return -EACCES;
853
854 if (flags & MAP_SHARED) {
855 /* do checks for writing, appending and locking */
856 if ((prot & PROT_WRITE) &&
857 !(file->f_mode & FMODE_WRITE))
858 return -EACCES;
859
860 if (IS_APPEND(file_inode(file)) &&
861 (file->f_mode & FMODE_WRITE))
862 return -EACCES;
863
864 if (locks_verify_locked(file))
865 return -EAGAIN;
866
867 if (!(capabilities & NOMMU_MAP_DIRECT))
868 return -ENODEV;
869
870 /* we mustn't privatise shared mappings */
871 capabilities &= ~NOMMU_MAP_COPY;
872 } else {
873 /* we're going to read the file into private memory we
874 * allocate */
875 if (!(capabilities & NOMMU_MAP_COPY))
876 return -ENODEV;
877
878 /* we don't permit a private writable mapping to be
879 * shared with the backing device */
880 if (prot & PROT_WRITE)
881 capabilities &= ~NOMMU_MAP_DIRECT;
882 }
883
884 if (capabilities & NOMMU_MAP_DIRECT) {
885 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
886 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
887 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
888 ) {
889 capabilities &= ~NOMMU_MAP_DIRECT;
890 if (flags & MAP_SHARED) {
891 pr_warn("MAP_SHARED not completely supported on !MMU\n");
892 return -EINVAL;
893 }
894 }
895 }
896
897 /* handle executable mappings and implied executable
898 * mappings */
899 if (path_noexec(&file->f_path)) {
900 if (prot & PROT_EXEC)
901 return -EPERM;
902 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
903 /* handle implication of PROT_EXEC by PROT_READ */
904 if (current->personality & READ_IMPLIES_EXEC) {
905 if (capabilities & NOMMU_MAP_EXEC)
906 prot |= PROT_EXEC;
907 }
908 } else if ((prot & PROT_READ) &&
909 (prot & PROT_EXEC) &&
910 !(capabilities & NOMMU_MAP_EXEC)
911 ) {
912 /* backing file is not executable, try to copy */
913 capabilities &= ~NOMMU_MAP_DIRECT;
914 }
915 } else {
916 /* anonymous mappings are always memory backed and can be
917 * privately mapped
918 */
919 capabilities = NOMMU_MAP_COPY;
920
921 /* handle PROT_EXEC implication by PROT_READ */
922 if ((prot & PROT_READ) &&
923 (current->personality & READ_IMPLIES_EXEC))
924 prot |= PROT_EXEC;
925 }
926
927 /* allow the security API to have its say */
928 ret = security_mmap_addr(addr);
929 if (ret < 0)
930 return ret;
931
932 /* looks okay */
933 *_capabilities = capabilities;
934 return 0;
935 }
936
937 /*
938 * we've determined that we can make the mapping, now translate what we
939 * now know into VMA flags
940 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)941 static unsigned long determine_vm_flags(struct file *file,
942 unsigned long prot,
943 unsigned long flags,
944 unsigned long capabilities)
945 {
946 unsigned long vm_flags;
947
948 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
949 /* vm_flags |= mm->def_flags; */
950
951 if (!(capabilities & NOMMU_MAP_DIRECT)) {
952 /* attempt to share read-only copies of mapped file chunks */
953 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
954 if (file && !(prot & PROT_WRITE))
955 vm_flags |= VM_MAYSHARE;
956 } else {
957 /* overlay a shareable mapping on the backing device or inode
958 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
959 * romfs/cramfs */
960 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
961 if (flags & MAP_SHARED)
962 vm_flags |= VM_SHARED;
963 }
964
965 /* refuse to let anyone share private mappings with this process if
966 * it's being traced - otherwise breakpoints set in it may interfere
967 * with another untraced process
968 */
969 if ((flags & MAP_PRIVATE) && current->ptrace)
970 vm_flags &= ~VM_MAYSHARE;
971
972 return vm_flags;
973 }
974
975 /*
976 * set up a shared mapping on a file (the driver or filesystem provides and
977 * pins the storage)
978 */
do_mmap_shared_file(struct vm_area_struct * vma)979 static int do_mmap_shared_file(struct vm_area_struct *vma)
980 {
981 int ret;
982
983 ret = call_mmap(vma->vm_file, vma);
984 if (ret == 0) {
985 vma->vm_region->vm_top = vma->vm_region->vm_end;
986 return 0;
987 }
988 if (ret != -ENOSYS)
989 return ret;
990
991 /* getting -ENOSYS indicates that direct mmap isn't possible (as
992 * opposed to tried but failed) so we can only give a suitable error as
993 * it's not possible to make a private copy if MAP_SHARED was given */
994 return -ENODEV;
995 }
996
997 /*
998 * set up a private mapping or an anonymous shared mapping
999 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)1000 static int do_mmap_private(struct vm_area_struct *vma,
1001 struct vm_region *region,
1002 unsigned long len,
1003 unsigned long capabilities)
1004 {
1005 unsigned long total, point;
1006 void *base;
1007 int ret, order;
1008
1009 /* invoke the file's mapping function so that it can keep track of
1010 * shared mappings on devices or memory
1011 * - VM_MAYSHARE will be set if it may attempt to share
1012 */
1013 if (capabilities & NOMMU_MAP_DIRECT) {
1014 ret = call_mmap(vma->vm_file, vma);
1015 if (ret == 0) {
1016 /* shouldn't return success if we're not sharing */
1017 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1018 vma->vm_region->vm_top = vma->vm_region->vm_end;
1019 return 0;
1020 }
1021 if (ret != -ENOSYS)
1022 return ret;
1023
1024 /* getting an ENOSYS error indicates that direct mmap isn't
1025 * possible (as opposed to tried but failed) so we'll try to
1026 * make a private copy of the data and map that instead */
1027 }
1028
1029
1030 /* allocate some memory to hold the mapping
1031 * - note that this may not return a page-aligned address if the object
1032 * we're allocating is smaller than a page
1033 */
1034 order = get_order(len);
1035 total = 1 << order;
1036 point = len >> PAGE_SHIFT;
1037
1038 /* we don't want to allocate a power-of-2 sized page set */
1039 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1040 total = point;
1041
1042 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1043 if (!base)
1044 goto enomem;
1045
1046 atomic_long_add(total, &mmap_pages_allocated);
1047
1048 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1049 region->vm_start = (unsigned long) base;
1050 region->vm_end = region->vm_start + len;
1051 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1052
1053 vma->vm_start = region->vm_start;
1054 vma->vm_end = region->vm_start + len;
1055
1056 if (vma->vm_file) {
1057 /* read the contents of a file into the copy */
1058 loff_t fpos;
1059
1060 fpos = vma->vm_pgoff;
1061 fpos <<= PAGE_SHIFT;
1062
1063 ret = kernel_read(vma->vm_file, base, len, &fpos);
1064 if (ret < 0)
1065 goto error_free;
1066
1067 /* clear the last little bit */
1068 if (ret < len)
1069 memset(base + ret, 0, len - ret);
1070
1071 } else {
1072 vma_set_anonymous(vma);
1073 }
1074
1075 return 0;
1076
1077 error_free:
1078 free_page_series(region->vm_start, region->vm_top);
1079 region->vm_start = vma->vm_start = 0;
1080 region->vm_end = vma->vm_end = 0;
1081 region->vm_top = 0;
1082 return ret;
1083
1084 enomem:
1085 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1086 len, current->pid, current->comm);
1087 show_free_areas(0, NULL);
1088 return -ENOMEM;
1089 }
1090
1091 /*
1092 * handle mapping creation for uClinux
1093 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1094 unsigned long do_mmap(struct file *file,
1095 unsigned long addr,
1096 unsigned long len,
1097 unsigned long prot,
1098 unsigned long flags,
1099 vm_flags_t vm_flags,
1100 unsigned long pgoff,
1101 unsigned long *populate,
1102 struct list_head *uf)
1103 {
1104 struct vm_area_struct *vma;
1105 struct vm_region *region;
1106 struct rb_node *rb;
1107 unsigned long capabilities, result;
1108 int ret;
1109
1110 *populate = 0;
1111
1112 /* decide whether we should attempt the mapping, and if so what sort of
1113 * mapping */
1114 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1115 &capabilities);
1116 if (ret < 0)
1117 return ret;
1118
1119 /* we ignore the address hint */
1120 addr = 0;
1121 len = PAGE_ALIGN(len);
1122
1123 /* we've determined that we can make the mapping, now translate what we
1124 * now know into VMA flags */
1125 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1126
1127 /* we're going to need to record the mapping */
1128 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1129 if (!region)
1130 goto error_getting_region;
1131
1132 vma = vm_area_alloc(current->mm);
1133 if (!vma)
1134 goto error_getting_vma;
1135
1136 region->vm_usage = 1;
1137 region->vm_flags = vm_flags;
1138 region->vm_pgoff = pgoff;
1139
1140 vma->vm_flags = vm_flags;
1141 vma->vm_pgoff = pgoff;
1142
1143 if (file) {
1144 region->vm_file = get_file(file);
1145 vma->vm_file = get_file(file);
1146 }
1147
1148 down_write(&nommu_region_sem);
1149
1150 /* if we want to share, we need to check for regions created by other
1151 * mmap() calls that overlap with our proposed mapping
1152 * - we can only share with a superset match on most regular files
1153 * - shared mappings on character devices and memory backed files are
1154 * permitted to overlap inexactly as far as we are concerned for in
1155 * these cases, sharing is handled in the driver or filesystem rather
1156 * than here
1157 */
1158 if (vm_flags & VM_MAYSHARE) {
1159 struct vm_region *pregion;
1160 unsigned long pglen, rpglen, pgend, rpgend, start;
1161
1162 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 pgend = pgoff + pglen;
1164
1165 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1166 pregion = rb_entry(rb, struct vm_region, vm_rb);
1167
1168 if (!(pregion->vm_flags & VM_MAYSHARE))
1169 continue;
1170
1171 /* search for overlapping mappings on the same file */
1172 if (file_inode(pregion->vm_file) !=
1173 file_inode(file))
1174 continue;
1175
1176 if (pregion->vm_pgoff >= pgend)
1177 continue;
1178
1179 rpglen = pregion->vm_end - pregion->vm_start;
1180 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 rpgend = pregion->vm_pgoff + rpglen;
1182 if (pgoff >= rpgend)
1183 continue;
1184
1185 /* handle inexactly overlapping matches between
1186 * mappings */
1187 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1188 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1189 /* new mapping is not a subset of the region */
1190 if (!(capabilities & NOMMU_MAP_DIRECT))
1191 goto sharing_violation;
1192 continue;
1193 }
1194
1195 /* we've found a region we can share */
1196 pregion->vm_usage++;
1197 vma->vm_region = pregion;
1198 start = pregion->vm_start;
1199 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1200 vma->vm_start = start;
1201 vma->vm_end = start + len;
1202
1203 if (pregion->vm_flags & VM_MAPPED_COPY)
1204 vma->vm_flags |= VM_MAPPED_COPY;
1205 else {
1206 ret = do_mmap_shared_file(vma);
1207 if (ret < 0) {
1208 vma->vm_region = NULL;
1209 vma->vm_start = 0;
1210 vma->vm_end = 0;
1211 pregion->vm_usage--;
1212 pregion = NULL;
1213 goto error_just_free;
1214 }
1215 }
1216 fput(region->vm_file);
1217 kmem_cache_free(vm_region_jar, region);
1218 region = pregion;
1219 result = start;
1220 goto share;
1221 }
1222
1223 /* obtain the address at which to make a shared mapping
1224 * - this is the hook for quasi-memory character devices to
1225 * tell us the location of a shared mapping
1226 */
1227 if (capabilities & NOMMU_MAP_DIRECT) {
1228 addr = file->f_op->get_unmapped_area(file, addr, len,
1229 pgoff, flags);
1230 if (IS_ERR_VALUE(addr)) {
1231 ret = addr;
1232 if (ret != -ENOSYS)
1233 goto error_just_free;
1234
1235 /* the driver refused to tell us where to site
1236 * the mapping so we'll have to attempt to copy
1237 * it */
1238 ret = -ENODEV;
1239 if (!(capabilities & NOMMU_MAP_COPY))
1240 goto error_just_free;
1241
1242 capabilities &= ~NOMMU_MAP_DIRECT;
1243 } else {
1244 vma->vm_start = region->vm_start = addr;
1245 vma->vm_end = region->vm_end = addr + len;
1246 }
1247 }
1248 }
1249
1250 vma->vm_region = region;
1251
1252 /* set up the mapping
1253 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1254 */
1255 if (file && vma->vm_flags & VM_SHARED)
1256 ret = do_mmap_shared_file(vma);
1257 else
1258 ret = do_mmap_private(vma, region, len, capabilities);
1259 if (ret < 0)
1260 goto error_just_free;
1261 add_nommu_region(region);
1262
1263 /* clear anonymous mappings that don't ask for uninitialized data */
1264 if (!vma->vm_file &&
1265 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1266 !(flags & MAP_UNINITIALIZED)))
1267 memset((void *)region->vm_start, 0,
1268 region->vm_end - region->vm_start);
1269
1270 /* okay... we have a mapping; now we have to register it */
1271 result = vma->vm_start;
1272
1273 current->mm->total_vm += len >> PAGE_SHIFT;
1274
1275 share:
1276 add_vma_to_mm(current->mm, vma);
1277
1278 /* we flush the region from the icache only when the first executable
1279 * mapping of it is made */
1280 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1281 flush_icache_range(region->vm_start, region->vm_end);
1282 region->vm_icache_flushed = true;
1283 }
1284
1285 up_write(&nommu_region_sem);
1286
1287 return result;
1288
1289 error_just_free:
1290 up_write(&nommu_region_sem);
1291 error:
1292 if (region->vm_file)
1293 fput(region->vm_file);
1294 kmem_cache_free(vm_region_jar, region);
1295 if (vma->vm_file)
1296 fput(vma->vm_file);
1297 vm_area_free(vma);
1298 return ret;
1299
1300 sharing_violation:
1301 up_write(&nommu_region_sem);
1302 pr_warn("Attempt to share mismatched mappings\n");
1303 ret = -EINVAL;
1304 goto error;
1305
1306 error_getting_vma:
1307 kmem_cache_free(vm_region_jar, region);
1308 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1309 len, current->pid);
1310 show_free_areas(0, NULL);
1311 return -ENOMEM;
1312
1313 error_getting_region:
1314 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1315 len, current->pid);
1316 show_free_areas(0, NULL);
1317 return -ENOMEM;
1318 }
1319
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1320 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1321 unsigned long prot, unsigned long flags,
1322 unsigned long fd, unsigned long pgoff)
1323 {
1324 struct file *file = NULL;
1325 unsigned long retval = -EBADF;
1326
1327 audit_mmap_fd(fd, flags);
1328 if (!(flags & MAP_ANONYMOUS)) {
1329 file = fget(fd);
1330 if (!file)
1331 goto out;
1332 }
1333
1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335
1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337
1338 if (file)
1339 fput(file);
1340 out:
1341 return retval;
1342 }
1343
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1344 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1345 unsigned long, prot, unsigned long, flags,
1346 unsigned long, fd, unsigned long, pgoff)
1347 {
1348 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1349 }
1350
1351 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1352 struct mmap_arg_struct {
1353 unsigned long addr;
1354 unsigned long len;
1355 unsigned long prot;
1356 unsigned long flags;
1357 unsigned long fd;
1358 unsigned long offset;
1359 };
1360
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1361 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1362 {
1363 struct mmap_arg_struct a;
1364
1365 if (copy_from_user(&a, arg, sizeof(a)))
1366 return -EFAULT;
1367 if (offset_in_page(a.offset))
1368 return -EINVAL;
1369
1370 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1371 a.offset >> PAGE_SHIFT);
1372 }
1373 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1374
1375 /*
1376 * split a vma into two pieces at address 'addr', a new vma is allocated either
1377 * for the first part or the tail.
1378 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1379 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1380 unsigned long addr, int new_below)
1381 {
1382 struct vm_area_struct *new;
1383 struct vm_region *region;
1384 unsigned long npages;
1385
1386 /* we're only permitted to split anonymous regions (these should have
1387 * only a single usage on the region) */
1388 if (vma->vm_file)
1389 return -ENOMEM;
1390
1391 if (mm->map_count >= sysctl_max_map_count)
1392 return -ENOMEM;
1393
1394 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1395 if (!region)
1396 return -ENOMEM;
1397
1398 new = vm_area_dup(vma);
1399 if (!new) {
1400 kmem_cache_free(vm_region_jar, region);
1401 return -ENOMEM;
1402 }
1403
1404 /* most fields are the same, copy all, and then fixup */
1405 *region = *vma->vm_region;
1406 new->vm_region = region;
1407
1408 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1409
1410 if (new_below) {
1411 region->vm_top = region->vm_end = new->vm_end = addr;
1412 } else {
1413 region->vm_start = new->vm_start = addr;
1414 region->vm_pgoff = new->vm_pgoff += npages;
1415 }
1416
1417 if (new->vm_ops && new->vm_ops->open)
1418 new->vm_ops->open(new);
1419
1420 delete_vma_from_mm(vma);
1421 down_write(&nommu_region_sem);
1422 delete_nommu_region(vma->vm_region);
1423 if (new_below) {
1424 vma->vm_region->vm_start = vma->vm_start = addr;
1425 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1426 } else {
1427 vma->vm_region->vm_end = vma->vm_end = addr;
1428 vma->vm_region->vm_top = addr;
1429 }
1430 add_nommu_region(vma->vm_region);
1431 add_nommu_region(new->vm_region);
1432 up_write(&nommu_region_sem);
1433 add_vma_to_mm(mm, vma);
1434 add_vma_to_mm(mm, new);
1435 return 0;
1436 }
1437
1438 /*
1439 * shrink a VMA by removing the specified chunk from either the beginning or
1440 * the end
1441 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1442 static int shrink_vma(struct mm_struct *mm,
1443 struct vm_area_struct *vma,
1444 unsigned long from, unsigned long to)
1445 {
1446 struct vm_region *region;
1447
1448 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1449 * and list */
1450 delete_vma_from_mm(vma);
1451 if (from > vma->vm_start)
1452 vma->vm_end = from;
1453 else
1454 vma->vm_start = to;
1455 add_vma_to_mm(mm, vma);
1456
1457 /* cut the backing region down to size */
1458 region = vma->vm_region;
1459 BUG_ON(region->vm_usage != 1);
1460
1461 down_write(&nommu_region_sem);
1462 delete_nommu_region(region);
1463 if (from > region->vm_start) {
1464 to = region->vm_top;
1465 region->vm_top = region->vm_end = from;
1466 } else {
1467 region->vm_start = to;
1468 }
1469 add_nommu_region(region);
1470 up_write(&nommu_region_sem);
1471
1472 free_page_series(from, to);
1473 return 0;
1474 }
1475
1476 /*
1477 * release a mapping
1478 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1479 * VMA, though it need not cover the whole VMA
1480 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1481 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1482 {
1483 struct vm_area_struct *vma;
1484 unsigned long end;
1485 int ret;
1486
1487 len = PAGE_ALIGN(len);
1488 if (len == 0)
1489 return -EINVAL;
1490
1491 end = start + len;
1492
1493 /* find the first potentially overlapping VMA */
1494 vma = find_vma(mm, start);
1495 if (!vma) {
1496 static int limit;
1497 if (limit < 5) {
1498 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1499 current->pid, current->comm,
1500 start, start + len - 1);
1501 limit++;
1502 }
1503 return -EINVAL;
1504 }
1505
1506 /* we're allowed to split an anonymous VMA but not a file-backed one */
1507 if (vma->vm_file) {
1508 do {
1509 if (start > vma->vm_start)
1510 return -EINVAL;
1511 if (end == vma->vm_end)
1512 goto erase_whole_vma;
1513 vma = vma->vm_next;
1514 } while (vma);
1515 return -EINVAL;
1516 } else {
1517 /* the chunk must be a subset of the VMA found */
1518 if (start == vma->vm_start && end == vma->vm_end)
1519 goto erase_whole_vma;
1520 if (start < vma->vm_start || end > vma->vm_end)
1521 return -EINVAL;
1522 if (offset_in_page(start))
1523 return -EINVAL;
1524 if (end != vma->vm_end && offset_in_page(end))
1525 return -EINVAL;
1526 if (start != vma->vm_start && end != vma->vm_end) {
1527 ret = split_vma(mm, vma, start, 1);
1528 if (ret < 0)
1529 return ret;
1530 }
1531 return shrink_vma(mm, vma, start, end);
1532 }
1533
1534 erase_whole_vma:
1535 delete_vma_from_mm(vma);
1536 delete_vma(mm, vma);
1537 return 0;
1538 }
1539 EXPORT_SYMBOL(do_munmap);
1540
vm_munmap(unsigned long addr,size_t len)1541 int vm_munmap(unsigned long addr, size_t len)
1542 {
1543 struct mm_struct *mm = current->mm;
1544 int ret;
1545
1546 down_write(&mm->mmap_sem);
1547 ret = do_munmap(mm, addr, len, NULL);
1548 up_write(&mm->mmap_sem);
1549 return ret;
1550 }
1551 EXPORT_SYMBOL(vm_munmap);
1552
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1553 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1554 {
1555 return vm_munmap(addr, len);
1556 }
1557
1558 /*
1559 * release all the mappings made in a process's VM space
1560 */
exit_mmap(struct mm_struct * mm)1561 void exit_mmap(struct mm_struct *mm)
1562 {
1563 struct vm_area_struct *vma;
1564
1565 if (!mm)
1566 return;
1567
1568 mm->total_vm = 0;
1569
1570 while ((vma = mm->mmap)) {
1571 mm->mmap = vma->vm_next;
1572 delete_vma_from_mm(vma);
1573 delete_vma(mm, vma);
1574 cond_resched();
1575 }
1576 }
1577
vm_brk(unsigned long addr,unsigned long len)1578 int vm_brk(unsigned long addr, unsigned long len)
1579 {
1580 return -ENOMEM;
1581 }
1582
1583 /*
1584 * expand (or shrink) an existing mapping, potentially moving it at the same
1585 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1586 *
1587 * under NOMMU conditions, we only permit changing a mapping's size, and only
1588 * as long as it stays within the region allocated by do_mmap_private() and the
1589 * block is not shareable
1590 *
1591 * MREMAP_FIXED is not supported under NOMMU conditions
1592 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1593 static unsigned long do_mremap(unsigned long addr,
1594 unsigned long old_len, unsigned long new_len,
1595 unsigned long flags, unsigned long new_addr)
1596 {
1597 struct vm_area_struct *vma;
1598
1599 /* insanity checks first */
1600 old_len = PAGE_ALIGN(old_len);
1601 new_len = PAGE_ALIGN(new_len);
1602 if (old_len == 0 || new_len == 0)
1603 return (unsigned long) -EINVAL;
1604
1605 if (offset_in_page(addr))
1606 return -EINVAL;
1607
1608 if (flags & MREMAP_FIXED && new_addr != addr)
1609 return (unsigned long) -EINVAL;
1610
1611 vma = find_vma_exact(current->mm, addr, old_len);
1612 if (!vma)
1613 return (unsigned long) -EINVAL;
1614
1615 if (vma->vm_end != vma->vm_start + old_len)
1616 return (unsigned long) -EFAULT;
1617
1618 if (vma->vm_flags & VM_MAYSHARE)
1619 return (unsigned long) -EPERM;
1620
1621 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1622 return (unsigned long) -ENOMEM;
1623
1624 /* all checks complete - do it */
1625 vma->vm_end = vma->vm_start + new_len;
1626 return vma->vm_start;
1627 }
1628
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1629 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1630 unsigned long, new_len, unsigned long, flags,
1631 unsigned long, new_addr)
1632 {
1633 unsigned long ret;
1634
1635 down_write(¤t->mm->mmap_sem);
1636 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1637 up_write(¤t->mm->mmap_sem);
1638 return ret;
1639 }
1640
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1641 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1642 unsigned int foll_flags)
1643 {
1644 return NULL;
1645 }
1646
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1647 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1648 unsigned long pfn, unsigned long size, pgprot_t prot)
1649 {
1650 if (addr != (pfn << PAGE_SHIFT))
1651 return -EINVAL;
1652
1653 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(remap_pfn_range);
1657
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1658 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1659 {
1660 unsigned long pfn = start >> PAGE_SHIFT;
1661 unsigned long vm_len = vma->vm_end - vma->vm_start;
1662
1663 pfn += vma->vm_pgoff;
1664 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1665 }
1666 EXPORT_SYMBOL(vm_iomap_memory);
1667
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1668 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1669 unsigned long pgoff)
1670 {
1671 unsigned int size = vma->vm_end - vma->vm_start;
1672
1673 if (!(vma->vm_flags & VM_USERMAP))
1674 return -EINVAL;
1675
1676 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1677 vma->vm_end = vma->vm_start + size;
1678
1679 return 0;
1680 }
1681 EXPORT_SYMBOL(remap_vmalloc_range);
1682
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1683 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1684 unsigned long len, unsigned long pgoff, unsigned long flags)
1685 {
1686 return -ENOMEM;
1687 }
1688
filemap_fault(struct vm_fault * vmf)1689 vm_fault_t filemap_fault(struct vm_fault *vmf)
1690 {
1691 BUG();
1692 return 0;
1693 }
1694 EXPORT_SYMBOL(filemap_fault);
1695
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1696 void filemap_map_pages(struct vm_fault *vmf,
1697 pgoff_t start_pgoff, pgoff_t end_pgoff)
1698 {
1699 BUG();
1700 }
1701 EXPORT_SYMBOL(filemap_map_pages);
1702
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1703 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1705 {
1706 struct vm_area_struct *vma;
1707 int write = gup_flags & FOLL_WRITE;
1708
1709 if (down_read_killable(&mm->mmap_sem))
1710 return 0;
1711
1712 /* the access must start within one of the target process's mappings */
1713 vma = find_vma(mm, addr);
1714 if (vma) {
1715 /* don't overrun this mapping */
1716 if (addr + len >= vma->vm_end)
1717 len = vma->vm_end - addr;
1718
1719 /* only read or write mappings where it is permitted */
1720 if (write && vma->vm_flags & VM_MAYWRITE)
1721 copy_to_user_page(vma, NULL, addr,
1722 (void *) addr, buf, len);
1723 else if (!write && vma->vm_flags & VM_MAYREAD)
1724 copy_from_user_page(vma, NULL, addr,
1725 buf, (void *) addr, len);
1726 else
1727 len = 0;
1728 } else {
1729 len = 0;
1730 }
1731
1732 up_read(&mm->mmap_sem);
1733
1734 return len;
1735 }
1736
1737 /**
1738 * access_remote_vm - access another process' address space
1739 * @mm: the mm_struct of the target address space
1740 * @addr: start address to access
1741 * @buf: source or destination buffer
1742 * @len: number of bytes to transfer
1743 * @gup_flags: flags modifying lookup behaviour
1744 *
1745 * The caller must hold a reference on @mm.
1746 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1747 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1748 void *buf, int len, unsigned int gup_flags)
1749 {
1750 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1751 }
1752
1753 /*
1754 * Access another process' address space.
1755 * - source/target buffer must be kernel space
1756 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1757 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1758 unsigned int gup_flags)
1759 {
1760 struct mm_struct *mm;
1761
1762 if (addr + len < addr)
1763 return 0;
1764
1765 mm = get_task_mm(tsk);
1766 if (!mm)
1767 return 0;
1768
1769 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1770
1771 mmput(mm);
1772 return len;
1773 }
1774 EXPORT_SYMBOL_GPL(access_process_vm);
1775
1776 /**
1777 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1778 * @inode: The inode to check
1779 * @size: The current filesize of the inode
1780 * @newsize: The proposed filesize of the inode
1781 *
1782 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1783 * make sure that that any outstanding VMAs aren't broken and then shrink the
1784 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1785 * automatically grant mappings that are too large.
1786 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1787 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1788 size_t newsize)
1789 {
1790 struct vm_area_struct *vma;
1791 struct vm_region *region;
1792 pgoff_t low, high;
1793 size_t r_size, r_top;
1794
1795 low = newsize >> PAGE_SHIFT;
1796 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1797
1798 down_write(&nommu_region_sem);
1799 i_mmap_lock_read(inode->i_mapping);
1800
1801 /* search for VMAs that fall within the dead zone */
1802 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1803 /* found one - only interested if it's shared out of the page
1804 * cache */
1805 if (vma->vm_flags & VM_SHARED) {
1806 i_mmap_unlock_read(inode->i_mapping);
1807 up_write(&nommu_region_sem);
1808 return -ETXTBSY; /* not quite true, but near enough */
1809 }
1810 }
1811
1812 /* reduce any regions that overlap the dead zone - if in existence,
1813 * these will be pointed to by VMAs that don't overlap the dead zone
1814 *
1815 * we don't check for any regions that start beyond the EOF as there
1816 * shouldn't be any
1817 */
1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1819 if (!(vma->vm_flags & VM_SHARED))
1820 continue;
1821
1822 region = vma->vm_region;
1823 r_size = region->vm_top - region->vm_start;
1824 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1825
1826 if (r_top > newsize) {
1827 region->vm_top -= r_top - newsize;
1828 if (region->vm_end > region->vm_top)
1829 region->vm_end = region->vm_top;
1830 }
1831 }
1832
1833 i_mmap_unlock_read(inode->i_mapping);
1834 up_write(&nommu_region_sem);
1835 return 0;
1836 }
1837
1838 /*
1839 * Initialise sysctl_user_reserve_kbytes.
1840 *
1841 * This is intended to prevent a user from starting a single memory hogging
1842 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1843 * mode.
1844 *
1845 * The default value is min(3% of free memory, 128MB)
1846 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1847 */
init_user_reserve(void)1848 static int __meminit init_user_reserve(void)
1849 {
1850 unsigned long free_kbytes;
1851
1852 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1853
1854 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1855 return 0;
1856 }
1857 subsys_initcall(init_user_reserve);
1858
1859 /*
1860 * Initialise sysctl_admin_reserve_kbytes.
1861 *
1862 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1863 * to log in and kill a memory hogging process.
1864 *
1865 * Systems with more than 256MB will reserve 8MB, enough to recover
1866 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1867 * only reserve 3% of free pages by default.
1868 */
init_admin_reserve(void)1869 static int __meminit init_admin_reserve(void)
1870 {
1871 unsigned long free_kbytes;
1872
1873 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1874
1875 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1876 return 0;
1877 }
1878 subsys_initcall(init_admin_reserve);
1879