1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 
27 #include "internal.h"
28 
can_do_mlock(void)29 bool can_do_mlock(void)
30 {
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return true;
33 	if (capable(CAP_IPC_LOCK))
34 		return true;
35 	return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38 
39 /*
40  * Mlocked pages are marked with PageMlocked() flag for efficient testing
41  * in vmscan and, possibly, the fault path; and to support semi-accurate
42  * statistics.
43  *
44  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
45  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46  * The unevictable list is an LRU sibling list to the [in]active lists.
47  * PageUnevictable is set to indicate the unevictable state.
48  *
49  * When lazy mlocking via vmscan, it is important to ensure that the
50  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51  * may have mlocked a page that is being munlocked. So lazy mlock must take
52  * the mmap_sem for read, and verify that the vma really is locked
53  * (see mm/rmap.c).
54  */
55 
56 /*
57  *  LRU accounting for clear_page_mlock()
58  */
clear_page_mlock(struct page * page)59 void clear_page_mlock(struct page *page)
60 {
61 	if (!TestClearPageMlocked(page))
62 		return;
63 
64 	mod_zone_page_state(page_zone(page), NR_MLOCK,
65 			    -hpage_nr_pages(page));
66 	count_vm_event(UNEVICTABLE_PGCLEARED);
67 	/*
68 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
69 	 * in __pagevec_lru_add_fn().
70 	 *
71 	 * See __pagevec_lru_add_fn for more explanation.
72 	 */
73 	if (!isolate_lru_page(page)) {
74 		putback_lru_page(page);
75 	} else {
76 		/*
77 		 * We lost the race. the page already moved to evictable list.
78 		 */
79 		if (PageUnevictable(page))
80 			count_vm_event(UNEVICTABLE_PGSTRANDED);
81 	}
82 }
83 
84 /*
85  * Mark page as mlocked if not already.
86  * If page on LRU, isolate and putback to move to unevictable list.
87  */
mlock_vma_page(struct page * page)88 void mlock_vma_page(struct page *page)
89 {
90 	/* Serialize with page migration */
91 	BUG_ON(!PageLocked(page));
92 
93 	VM_BUG_ON_PAGE(PageTail(page), page);
94 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95 
96 	if (!TestSetPageMlocked(page)) {
97 		mod_zone_page_state(page_zone(page), NR_MLOCK,
98 				    hpage_nr_pages(page));
99 		count_vm_event(UNEVICTABLE_PGMLOCKED);
100 		if (!isolate_lru_page(page))
101 			putback_lru_page(page);
102 	}
103 }
104 
105 /*
106  * Isolate a page from LRU with optional get_page() pin.
107  * Assumes lru_lock already held and page already pinned.
108  */
__munlock_isolate_lru_page(struct page * page,bool getpage)109 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110 {
111 	if (PageLRU(page)) {
112 		struct lruvec *lruvec;
113 
114 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115 		if (getpage)
116 			get_page(page);
117 		ClearPageLRU(page);
118 		del_page_from_lru_list(page, lruvec, page_lru(page));
119 		return true;
120 	}
121 
122 	return false;
123 }
124 
125 /*
126  * Finish munlock after successful page isolation
127  *
128  * Page must be locked. This is a wrapper for try_to_munlock()
129  * and putback_lru_page() with munlock accounting.
130  */
__munlock_isolated_page(struct page * page)131 static void __munlock_isolated_page(struct page *page)
132 {
133 	/*
134 	 * Optimization: if the page was mapped just once, that's our mapping
135 	 * and we don't need to check all the other vmas.
136 	 */
137 	if (page_mapcount(page) > 1)
138 		try_to_munlock(page);
139 
140 	/* Did try_to_unlock() succeed or punt? */
141 	if (!PageMlocked(page))
142 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143 
144 	putback_lru_page(page);
145 }
146 
147 /*
148  * Accounting for page isolation fail during munlock
149  *
150  * Performs accounting when page isolation fails in munlock. There is nothing
151  * else to do because it means some other task has already removed the page
152  * from the LRU. putback_lru_page() will take care of removing the page from
153  * the unevictable list, if necessary. vmscan [page_referenced()] will move
154  * the page back to the unevictable list if some other vma has it mlocked.
155  */
__munlock_isolation_failed(struct page * page)156 static void __munlock_isolation_failed(struct page *page)
157 {
158 	if (PageUnevictable(page))
159 		__count_vm_event(UNEVICTABLE_PGSTRANDED);
160 	else
161 		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162 }
163 
164 /**
165  * munlock_vma_page - munlock a vma page
166  * @page: page to be unlocked, either a normal page or THP page head
167  *
168  * returns the size of the page as a page mask (0 for normal page,
169  *         HPAGE_PMD_NR - 1 for THP head page)
170  *
171  * called from munlock()/munmap() path with page supposedly on the LRU.
172  * When we munlock a page, because the vma where we found the page is being
173  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174  * page locked so that we can leave it on the unevictable lru list and not
175  * bother vmscan with it.  However, to walk the page's rmap list in
176  * try_to_munlock() we must isolate the page from the LRU.  If some other
177  * task has removed the page from the LRU, we won't be able to do that.
178  * So we clear the PageMlocked as we might not get another chance.  If we
179  * can't isolate the page, we leave it for putback_lru_page() and vmscan
180  * [page_referenced()/try_to_unmap()] to deal with.
181  */
munlock_vma_page(struct page * page)182 unsigned int munlock_vma_page(struct page *page)
183 {
184 	int nr_pages;
185 	pg_data_t *pgdat = page_pgdat(page);
186 
187 	/* For try_to_munlock() and to serialize with page migration */
188 	BUG_ON(!PageLocked(page));
189 
190 	VM_BUG_ON_PAGE(PageTail(page), page);
191 
192 	/*
193 	 * Serialize with any parallel __split_huge_page_refcount() which
194 	 * might otherwise copy PageMlocked to part of the tail pages before
195 	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
196 	 */
197 	spin_lock_irq(&pgdat->lru_lock);
198 
199 	if (!TestClearPageMlocked(page)) {
200 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201 		nr_pages = 1;
202 		goto unlock_out;
203 	}
204 
205 	nr_pages = hpage_nr_pages(page);
206 	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
207 
208 	if (__munlock_isolate_lru_page(page, true)) {
209 		spin_unlock_irq(&pgdat->lru_lock);
210 		__munlock_isolated_page(page);
211 		goto out;
212 	}
213 	__munlock_isolation_failed(page);
214 
215 unlock_out:
216 	spin_unlock_irq(&pgdat->lru_lock);
217 
218 out:
219 	return nr_pages - 1;
220 }
221 
222 /*
223  * convert get_user_pages() return value to posix mlock() error
224  */
__mlock_posix_error_return(long retval)225 static int __mlock_posix_error_return(long retval)
226 {
227 	if (retval == -EFAULT)
228 		retval = -ENOMEM;
229 	else if (retval == -ENOMEM)
230 		retval = -EAGAIN;
231 	return retval;
232 }
233 
234 /*
235  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236  *
237  * The fast path is available only for evictable pages with single mapping.
238  * Then we can bypass the per-cpu pvec and get better performance.
239  * when mapcount > 1 we need try_to_munlock() which can fail.
240  * when !page_evictable(), we need the full redo logic of putback_lru_page to
241  * avoid leaving evictable page in unevictable list.
242  *
243  * In case of success, @page is added to @pvec and @pgrescued is incremented
244  * in case that the page was previously unevictable. @page is also unlocked.
245  */
__putback_lru_fast_prepare(struct page * page,struct pagevec * pvec,int * pgrescued)246 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247 		int *pgrescued)
248 {
249 	VM_BUG_ON_PAGE(PageLRU(page), page);
250 	VM_BUG_ON_PAGE(!PageLocked(page), page);
251 
252 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
253 		pagevec_add(pvec, page);
254 		if (TestClearPageUnevictable(page))
255 			(*pgrescued)++;
256 		unlock_page(page);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
263 /*
264  * Putback multiple evictable pages to the LRU
265  *
266  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267  * the pages might have meanwhile become unevictable but that is OK.
268  */
__putback_lru_fast(struct pagevec * pvec,int pgrescued)269 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270 {
271 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 	/*
273 	 *__pagevec_lru_add() calls release_pages() so we don't call
274 	 * put_page() explicitly
275 	 */
276 	__pagevec_lru_add(pvec);
277 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278 }
279 
280 /*
281  * Munlock a batch of pages from the same zone
282  *
283  * The work is split to two main phases. First phase clears the Mlocked flag
284  * and attempts to isolate the pages, all under a single zone lru lock.
285  * The second phase finishes the munlock only for pages where isolation
286  * succeeded.
287  *
288  * Note that the pagevec may be modified during the process.
289  */
__munlock_pagevec(struct pagevec * pvec,struct zone * zone)290 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291 {
292 	int i;
293 	int nr = pagevec_count(pvec);
294 	int delta_munlocked = -nr;
295 	struct pagevec pvec_putback;
296 	int pgrescued = 0;
297 
298 	pagevec_init(&pvec_putback);
299 
300 	/* Phase 1: page isolation */
301 	spin_lock_irq(&zone->zone_pgdat->lru_lock);
302 	for (i = 0; i < nr; i++) {
303 		struct page *page = pvec->pages[i];
304 
305 		if (TestClearPageMlocked(page)) {
306 			/*
307 			 * We already have pin from follow_page_mask()
308 			 * so we can spare the get_page() here.
309 			 */
310 			if (__munlock_isolate_lru_page(page, false))
311 				continue;
312 			else
313 				__munlock_isolation_failed(page);
314 		} else {
315 			delta_munlocked++;
316 		}
317 
318 		/*
319 		 * We won't be munlocking this page in the next phase
320 		 * but we still need to release the follow_page_mask()
321 		 * pin. We cannot do it under lru_lock however. If it's
322 		 * the last pin, __page_cache_release() would deadlock.
323 		 */
324 		pagevec_add(&pvec_putback, pvec->pages[i]);
325 		pvec->pages[i] = NULL;
326 	}
327 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328 	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
329 
330 	/* Now we can release pins of pages that we are not munlocking */
331 	pagevec_release(&pvec_putback);
332 
333 	/* Phase 2: page munlock */
334 	for (i = 0; i < nr; i++) {
335 		struct page *page = pvec->pages[i];
336 
337 		if (page) {
338 			lock_page(page);
339 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 					&pgrescued)) {
341 				/*
342 				 * Slow path. We don't want to lose the last
343 				 * pin before unlock_page()
344 				 */
345 				get_page(page); /* for putback_lru_page() */
346 				__munlock_isolated_page(page);
347 				unlock_page(page);
348 				put_page(page); /* from follow_page_mask() */
349 			}
350 		}
351 	}
352 
353 	/*
354 	 * Phase 3: page putback for pages that qualified for the fast path
355 	 * This will also call put_page() to return pin from follow_page_mask()
356 	 */
357 	if (pagevec_count(&pvec_putback))
358 		__putback_lru_fast(&pvec_putback, pgrescued);
359 }
360 
361 /*
362  * Fill up pagevec for __munlock_pagevec using pte walk
363  *
364  * The function expects that the struct page corresponding to @start address is
365  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366  *
367  * The rest of @pvec is filled by subsequent pages within the same pmd and same
368  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369  * pages also get pinned.
370  *
371  * Returns the address of the next page that should be scanned. This equals
372  * @start + PAGE_SIZE when no page could be added by the pte walk.
373  */
__munlock_pagevec_fill(struct pagevec * pvec,struct vm_area_struct * vma,struct zone * zone,unsigned long start,unsigned long end)374 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375 			struct vm_area_struct *vma, struct zone *zone,
376 			unsigned long start, unsigned long end)
377 {
378 	pte_t *pte;
379 	spinlock_t *ptl;
380 
381 	/*
382 	 * Initialize pte walk starting at the already pinned page where we
383 	 * are sure that there is a pte, as it was pinned under the same
384 	 * mmap_sem write op.
385 	 */
386 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
387 	/* Make sure we do not cross the page table boundary */
388 	end = pgd_addr_end(start, end);
389 	end = p4d_addr_end(start, end);
390 	end = pud_addr_end(start, end);
391 	end = pmd_addr_end(start, end);
392 
393 	/* The page next to the pinned page is the first we will try to get */
394 	start += PAGE_SIZE;
395 	while (start < end) {
396 		struct page *page = NULL;
397 		pte++;
398 		if (pte_present(*pte))
399 			page = vm_normal_page(vma, start, *pte);
400 		/*
401 		 * Break if page could not be obtained or the page's node+zone does not
402 		 * match
403 		 */
404 		if (!page || page_zone(page) != zone)
405 			break;
406 
407 		/*
408 		 * Do not use pagevec for PTE-mapped THP,
409 		 * munlock_vma_pages_range() will handle them.
410 		 */
411 		if (PageTransCompound(page))
412 			break;
413 
414 		get_page(page);
415 		/*
416 		 * Increase the address that will be returned *before* the
417 		 * eventual break due to pvec becoming full by adding the page
418 		 */
419 		start += PAGE_SIZE;
420 		if (pagevec_add(pvec, page) == 0)
421 			break;
422 	}
423 	pte_unmap_unlock(pte, ptl);
424 	return start;
425 }
426 
427 /*
428  * munlock_vma_pages_range() - munlock all pages in the vma range.'
429  * @vma - vma containing range to be munlock()ed.
430  * @start - start address in @vma of the range
431  * @end - end of range in @vma.
432  *
433  *  For mremap(), munmap() and exit().
434  *
435  * Called with @vma VM_LOCKED.
436  *
437  * Returns with VM_LOCKED cleared.  Callers must be prepared to
438  * deal with this.
439  *
440  * We don't save and restore VM_LOCKED here because pages are
441  * still on lru.  In unmap path, pages might be scanned by reclaim
442  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443  * free them.  This will result in freeing mlocked pages.
444  */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)445 void munlock_vma_pages_range(struct vm_area_struct *vma,
446 			     unsigned long start, unsigned long end)
447 {
448 	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449 
450 	while (start < end) {
451 		struct page *page;
452 		unsigned int page_mask = 0;
453 		unsigned long page_increm;
454 		struct pagevec pvec;
455 		struct zone *zone;
456 
457 		pagevec_init(&pvec);
458 		/*
459 		 * Although FOLL_DUMP is intended for get_dump_page(),
460 		 * it just so happens that its special treatment of the
461 		 * ZERO_PAGE (returning an error instead of doing get_page)
462 		 * suits munlock very well (and if somehow an abnormal page
463 		 * has sneaked into the range, we won't oops here: great).
464 		 */
465 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466 
467 		if (page && !IS_ERR(page)) {
468 			if (PageTransTail(page)) {
469 				VM_BUG_ON_PAGE(PageMlocked(page), page);
470 				put_page(page); /* follow_page_mask() */
471 			} else if (PageTransHuge(page)) {
472 				lock_page(page);
473 				/*
474 				 * Any THP page found by follow_page_mask() may
475 				 * have gotten split before reaching
476 				 * munlock_vma_page(), so we need to compute
477 				 * the page_mask here instead.
478 				 */
479 				page_mask = munlock_vma_page(page);
480 				unlock_page(page);
481 				put_page(page); /* follow_page_mask() */
482 			} else {
483 				/*
484 				 * Non-huge pages are handled in batches via
485 				 * pagevec. The pin from follow_page_mask()
486 				 * prevents them from collapsing by THP.
487 				 */
488 				pagevec_add(&pvec, page);
489 				zone = page_zone(page);
490 
491 				/*
492 				 * Try to fill the rest of pagevec using fast
493 				 * pte walk. This will also update start to
494 				 * the next page to process. Then munlock the
495 				 * pagevec.
496 				 */
497 				start = __munlock_pagevec_fill(&pvec, vma,
498 						zone, start, end);
499 				__munlock_pagevec(&pvec, zone);
500 				goto next;
501 			}
502 		}
503 		page_increm = 1 + page_mask;
504 		start += page_increm * PAGE_SIZE;
505 next:
506 		cond_resched();
507 	}
508 }
509 
510 /*
511  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
512  *
513  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514  * munlock is a no-op.  However, for some special vmas, we go ahead and
515  * populate the ptes.
516  *
517  * For vmas that pass the filters, merge/split as appropriate.
518  */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,vm_flags_t newflags)519 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520 	unsigned long start, unsigned long end, vm_flags_t newflags)
521 {
522 	struct mm_struct *mm = vma->vm_mm;
523 	pgoff_t pgoff;
524 	int nr_pages;
525 	int ret = 0;
526 	int lock = !!(newflags & VM_LOCKED);
527 	vm_flags_t old_flags = vma->vm_flags;
528 
529 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
530 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531 	    vma_is_dax(vma))
532 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
533 		goto out;
534 
535 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
536 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
537 			  vma->vm_file, pgoff, vma_policy(vma),
538 			  vma->vm_userfaultfd_ctx);
539 	if (*prev) {
540 		vma = *prev;
541 		goto success;
542 	}
543 
544 	if (start != vma->vm_start) {
545 		ret = split_vma(mm, vma, start, 1);
546 		if (ret)
547 			goto out;
548 	}
549 
550 	if (end != vma->vm_end) {
551 		ret = split_vma(mm, vma, end, 0);
552 		if (ret)
553 			goto out;
554 	}
555 
556 success:
557 	/*
558 	 * Keep track of amount of locked VM.
559 	 */
560 	nr_pages = (end - start) >> PAGE_SHIFT;
561 	if (!lock)
562 		nr_pages = -nr_pages;
563 	else if (old_flags & VM_LOCKED)
564 		nr_pages = 0;
565 	mm->locked_vm += nr_pages;
566 
567 	/*
568 	 * vm_flags is protected by the mmap_sem held in write mode.
569 	 * It's okay if try_to_unmap_one unmaps a page just after we
570 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
571 	 */
572 
573 	if (lock)
574 		vma->vm_flags = newflags;
575 	else
576 		munlock_vma_pages_range(vma, start, end);
577 
578 out:
579 	*prev = vma;
580 	return ret;
581 }
582 
apply_vma_lock_flags(unsigned long start,size_t len,vm_flags_t flags)583 static int apply_vma_lock_flags(unsigned long start, size_t len,
584 				vm_flags_t flags)
585 {
586 	unsigned long nstart, end, tmp;
587 	struct vm_area_struct * vma, * prev;
588 	int error;
589 
590 	VM_BUG_ON(offset_in_page(start));
591 	VM_BUG_ON(len != PAGE_ALIGN(len));
592 	end = start + len;
593 	if (end < start)
594 		return -EINVAL;
595 	if (end == start)
596 		return 0;
597 	vma = find_vma(current->mm, start);
598 	if (!vma || vma->vm_start > start)
599 		return -ENOMEM;
600 
601 	prev = vma->vm_prev;
602 	if (start > vma->vm_start)
603 		prev = vma;
604 
605 	for (nstart = start ; ; ) {
606 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
607 
608 		newflags |= flags;
609 
610 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
611 		tmp = vma->vm_end;
612 		if (tmp > end)
613 			tmp = end;
614 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
615 		if (error)
616 			break;
617 		nstart = tmp;
618 		if (nstart < prev->vm_end)
619 			nstart = prev->vm_end;
620 		if (nstart >= end)
621 			break;
622 
623 		vma = prev->vm_next;
624 		if (!vma || vma->vm_start != nstart) {
625 			error = -ENOMEM;
626 			break;
627 		}
628 	}
629 	return error;
630 }
631 
632 /*
633  * Go through vma areas and sum size of mlocked
634  * vma pages, as return value.
635  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636  * is also counted.
637  * Return value: previously mlocked page counts
638  */
count_mm_mlocked_page_nr(struct mm_struct * mm,unsigned long start,size_t len)639 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
640 		unsigned long start, size_t len)
641 {
642 	struct vm_area_struct *vma;
643 	unsigned long count = 0;
644 
645 	if (mm == NULL)
646 		mm = current->mm;
647 
648 	vma = find_vma(mm, start);
649 	if (vma == NULL)
650 		vma = mm->mmap;
651 
652 	for (; vma ; vma = vma->vm_next) {
653 		if (start >= vma->vm_end)
654 			continue;
655 		if (start + len <=  vma->vm_start)
656 			break;
657 		if (vma->vm_flags & VM_LOCKED) {
658 			if (start > vma->vm_start)
659 				count -= (start - vma->vm_start);
660 			if (start + len < vma->vm_end) {
661 				count += start + len - vma->vm_start;
662 				break;
663 			}
664 			count += vma->vm_end - vma->vm_start;
665 		}
666 	}
667 
668 	return count >> PAGE_SHIFT;
669 }
670 
do_mlock(unsigned long start,size_t len,vm_flags_t flags)671 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
672 {
673 	unsigned long locked;
674 	unsigned long lock_limit;
675 	int error = -ENOMEM;
676 
677 	start = untagged_addr(start);
678 
679 	if (!can_do_mlock())
680 		return -EPERM;
681 
682 	len = PAGE_ALIGN(len + (offset_in_page(start)));
683 	start &= PAGE_MASK;
684 
685 	lock_limit = rlimit(RLIMIT_MEMLOCK);
686 	lock_limit >>= PAGE_SHIFT;
687 	locked = len >> PAGE_SHIFT;
688 
689 	if (down_write_killable(&current->mm->mmap_sem))
690 		return -EINTR;
691 
692 	locked += current->mm->locked_vm;
693 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
694 		/*
695 		 * It is possible that the regions requested intersect with
696 		 * previously mlocked areas, that part area in "mm->locked_vm"
697 		 * should not be counted to new mlock increment count. So check
698 		 * and adjust locked count if necessary.
699 		 */
700 		locked -= count_mm_mlocked_page_nr(current->mm,
701 				start, len);
702 	}
703 
704 	/* check against resource limits */
705 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
706 		error = apply_vma_lock_flags(start, len, flags);
707 
708 	up_write(&current->mm->mmap_sem);
709 	if (error)
710 		return error;
711 
712 	error = __mm_populate(start, len, 0);
713 	if (error)
714 		return __mlock_posix_error_return(error);
715 	return 0;
716 }
717 
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)718 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
719 {
720 	return do_mlock(start, len, VM_LOCKED);
721 }
722 
SYSCALL_DEFINE3(mlock2,unsigned long,start,size_t,len,int,flags)723 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
724 {
725 	vm_flags_t vm_flags = VM_LOCKED;
726 
727 	if (flags & ~MLOCK_ONFAULT)
728 		return -EINVAL;
729 
730 	if (flags & MLOCK_ONFAULT)
731 		vm_flags |= VM_LOCKONFAULT;
732 
733 	return do_mlock(start, len, vm_flags);
734 }
735 
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)736 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
737 {
738 	int ret;
739 
740 	start = untagged_addr(start);
741 
742 	len = PAGE_ALIGN(len + (offset_in_page(start)));
743 	start &= PAGE_MASK;
744 
745 	if (down_write_killable(&current->mm->mmap_sem))
746 		return -EINTR;
747 	ret = apply_vma_lock_flags(start, len, 0);
748 	up_write(&current->mm->mmap_sem);
749 
750 	return ret;
751 }
752 
753 /*
754  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
755  * and translate into the appropriate modifications to mm->def_flags and/or the
756  * flags for all current VMAs.
757  *
758  * There are a couple of subtleties with this.  If mlockall() is called multiple
759  * times with different flags, the values do not necessarily stack.  If mlockall
760  * is called once including the MCL_FUTURE flag and then a second time without
761  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
762  */
apply_mlockall_flags(int flags)763 static int apply_mlockall_flags(int flags)
764 {
765 	struct vm_area_struct * vma, * prev = NULL;
766 	vm_flags_t to_add = 0;
767 
768 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
769 	if (flags & MCL_FUTURE) {
770 		current->mm->def_flags |= VM_LOCKED;
771 
772 		if (flags & MCL_ONFAULT)
773 			current->mm->def_flags |= VM_LOCKONFAULT;
774 
775 		if (!(flags & MCL_CURRENT))
776 			goto out;
777 	}
778 
779 	if (flags & MCL_CURRENT) {
780 		to_add |= VM_LOCKED;
781 		if (flags & MCL_ONFAULT)
782 			to_add |= VM_LOCKONFAULT;
783 	}
784 
785 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
786 		vm_flags_t newflags;
787 
788 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
789 		newflags |= to_add;
790 
791 		/* Ignore errors */
792 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
793 		cond_resched();
794 	}
795 out:
796 	return 0;
797 }
798 
SYSCALL_DEFINE1(mlockall,int,flags)799 SYSCALL_DEFINE1(mlockall, int, flags)
800 {
801 	unsigned long lock_limit;
802 	int ret;
803 
804 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
805 	    flags == MCL_ONFAULT)
806 		return -EINVAL;
807 
808 	if (!can_do_mlock())
809 		return -EPERM;
810 
811 	lock_limit = rlimit(RLIMIT_MEMLOCK);
812 	lock_limit >>= PAGE_SHIFT;
813 
814 	if (down_write_killable(&current->mm->mmap_sem))
815 		return -EINTR;
816 
817 	ret = -ENOMEM;
818 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
819 	    capable(CAP_IPC_LOCK))
820 		ret = apply_mlockall_flags(flags);
821 	up_write(&current->mm->mmap_sem);
822 	if (!ret && (flags & MCL_CURRENT))
823 		mm_populate(0, TASK_SIZE);
824 
825 	return ret;
826 }
827 
SYSCALL_DEFINE0(munlockall)828 SYSCALL_DEFINE0(munlockall)
829 {
830 	int ret;
831 
832 	if (down_write_killable(&current->mm->mmap_sem))
833 		return -EINTR;
834 	ret = apply_mlockall_flags(0);
835 	up_write(&current->mm->mmap_sem);
836 	return ret;
837 }
838 
839 /*
840  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
841  * shm segments) get accounted against the user_struct instead.
842  */
843 static DEFINE_SPINLOCK(shmlock_user_lock);
844 
user_shm_lock(size_t size,struct user_struct * user)845 int user_shm_lock(size_t size, struct user_struct *user)
846 {
847 	unsigned long lock_limit, locked;
848 	int allowed = 0;
849 
850 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 	lock_limit = rlimit(RLIMIT_MEMLOCK);
852 	if (lock_limit == RLIM_INFINITY)
853 		allowed = 1;
854 	lock_limit >>= PAGE_SHIFT;
855 	spin_lock(&shmlock_user_lock);
856 	if (!allowed &&
857 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
858 		goto out;
859 	get_uid(user);
860 	user->locked_shm += locked;
861 	allowed = 1;
862 out:
863 	spin_unlock(&shmlock_user_lock);
864 	return allowed;
865 }
866 
user_shm_unlock(size_t size,struct user_struct * user)867 void user_shm_unlock(size_t size, struct user_struct *user)
868 {
869 	spin_lock(&shmlock_user_lock);
870 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
871 	spin_unlock(&shmlock_user_lock);
872 	free_uid(user);
873 }
874