1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
hwpoison_filter_dev(struct page * p)81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
hwpoison_filter_flags(struct page * p)111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
hwpoison_filter_task(struct page * p)147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
hwpoison_filter(struct page * p)150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
hwpoison_filter(struct page * p)167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret;
214 
215 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 		pfn, t->comm, t->pid);
217 
218 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220 				       addr_lsb);
221 	} else {
222 		/*
223 		 * Don't use force here, it's convenient if the signal
224 		 * can be temporarily blocked.
225 		 * This could cause a loop when the user sets SIGBUS
226 		 * to SIG_IGN, but hopefully no one will do that?
227 		 */
228 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229 				      addr_lsb, t);  /* synchronous? */
230 	}
231 	if (ret < 0)
232 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233 			t->comm, t->pid, ret);
234 	return ret;
235 }
236 
237 /*
238  * When a unknown page type is encountered drain as many buffers as possible
239  * in the hope to turn the page into a LRU or free page, which we can handle.
240  */
shake_page(struct page * p,int access)241 void shake_page(struct page *p, int access)
242 {
243 	if (PageHuge(p))
244 		return;
245 
246 	if (!PageSlab(p)) {
247 		lru_add_drain_all();
248 		if (PageLRU(p))
249 			return;
250 		drain_all_pages(page_zone(p));
251 		if (PageLRU(p) || is_free_buddy_page(p))
252 			return;
253 	}
254 
255 	/*
256 	 * Only call shrink_node_slabs here (which would also shrink
257 	 * other caches) if access is not potentially fatal.
258 	 */
259 	if (access)
260 		drop_slab_node(page_to_nid(p));
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)264 static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 		struct vm_area_struct *vma)
266 {
267 	unsigned long address = vma_address(page, vma);
268 	pgd_t *pgd;
269 	p4d_t *p4d;
270 	pud_t *pud;
271 	pmd_t *pmd;
272 	pte_t *pte;
273 
274 	pgd = pgd_offset(vma->vm_mm, address);
275 	if (!pgd_present(*pgd))
276 		return 0;
277 	p4d = p4d_offset(pgd, address);
278 	if (!p4d_present(*p4d))
279 		return 0;
280 	pud = pud_offset(p4d, address);
281 	if (!pud_present(*pud))
282 		return 0;
283 	if (pud_devmap(*pud))
284 		return PUD_SHIFT;
285 	pmd = pmd_offset(pud, address);
286 	if (!pmd_present(*pmd))
287 		return 0;
288 	if (pmd_devmap(*pmd))
289 		return PMD_SHIFT;
290 	pte = pte_offset_map(pmd, address);
291 	if (!pte_present(*pte))
292 		return 0;
293 	if (pte_devmap(*pte))
294 		return PAGE_SHIFT;
295 	return 0;
296 }
297 
298 /*
299  * Failure handling: if we can't find or can't kill a process there's
300  * not much we can do.	We just print a message and ignore otherwise.
301  */
302 
303 /*
304  * Schedule a process for later kill.
305  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
306  * TBD would GFP_NOIO be enough?
307  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)308 static void add_to_kill(struct task_struct *tsk, struct page *p,
309 		       struct vm_area_struct *vma,
310 		       struct list_head *to_kill,
311 		       struct to_kill **tkc)
312 {
313 	struct to_kill *tk;
314 
315 	if (*tkc) {
316 		tk = *tkc;
317 		*tkc = NULL;
318 	} else {
319 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
320 		if (!tk) {
321 			pr_err("Memory failure: Out of memory while machine check handling\n");
322 			return;
323 		}
324 	}
325 	tk->addr = page_address_in_vma(p, vma);
326 	if (is_zone_device_page(p))
327 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
328 	else
329 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
330 
331 	/*
332 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
333 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
334 	 * so "tk->size_shift == 0" effectively checks no mapping on
335 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
336 	 * to a process' address space, it's possible not all N VMAs
337 	 * contain mappings for the page, but at least one VMA does.
338 	 * Only deliver SIGBUS with payload derived from the VMA that
339 	 * has a mapping for the page.
340 	 */
341 	if (tk->addr == -EFAULT) {
342 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
343 			page_to_pfn(p), tsk->comm);
344 	} else if (tk->size_shift == 0) {
345 		kfree(tk);
346 		return;
347 	}
348 	get_task_struct(tsk);
349 	tk->tsk = tsk;
350 	list_add_tail(&tk->nd, to_kill);
351 }
352 
353 /*
354  * Kill the processes that have been collected earlier.
355  *
356  * Only do anything when DOIT is set, otherwise just free the list
357  * (this is used for clean pages which do not need killing)
358  * Also when FAIL is set do a force kill because something went
359  * wrong earlier.
360  */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)361 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
362 		unsigned long pfn, int flags)
363 {
364 	struct to_kill *tk, *next;
365 
366 	list_for_each_entry_safe (tk, next, to_kill, nd) {
367 		if (forcekill) {
368 			/*
369 			 * In case something went wrong with munmapping
370 			 * make sure the process doesn't catch the
371 			 * signal and then access the memory. Just kill it.
372 			 */
373 			if (fail || tk->addr == -EFAULT) {
374 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
375 				       pfn, tk->tsk->comm, tk->tsk->pid);
376 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
377 						 tk->tsk, PIDTYPE_PID);
378 			}
379 
380 			/*
381 			 * In theory the process could have mapped
382 			 * something else on the address in-between. We could
383 			 * check for that, but we need to tell the
384 			 * process anyways.
385 			 */
386 			else if (kill_proc(tk, pfn, flags) < 0)
387 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
388 				       pfn, tk->tsk->comm, tk->tsk->pid);
389 		}
390 		put_task_struct(tk->tsk);
391 		kfree(tk);
392 	}
393 }
394 
395 /*
396  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
397  * on behalf of the thread group. Return task_struct of the (first found)
398  * dedicated thread if found, and return NULL otherwise.
399  *
400  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
401  * have to call rcu_read_lock/unlock() in this function.
402  */
find_early_kill_thread(struct task_struct * tsk)403 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
404 {
405 	struct task_struct *t;
406 
407 	for_each_thread(tsk, t)
408 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
409 			return t;
410 	return NULL;
411 }
412 
413 /*
414  * Determine whether a given process is "early kill" process which expects
415  * to be signaled when some page under the process is hwpoisoned.
416  * Return task_struct of the dedicated thread (main thread unless explicitly
417  * specified) if the process is "early kill," and otherwise returns NULL.
418  */
task_early_kill(struct task_struct * tsk,int force_early)419 static struct task_struct *task_early_kill(struct task_struct *tsk,
420 					   int force_early)
421 {
422 	struct task_struct *t;
423 	if (!tsk->mm)
424 		return NULL;
425 	if (force_early)
426 		return tsk;
427 	t = find_early_kill_thread(tsk);
428 	if (t)
429 		return t;
430 	if (sysctl_memory_failure_early_kill)
431 		return tsk;
432 	return NULL;
433 }
434 
435 /*
436  * Collect processes when the error hit an anonymous page.
437  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)438 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
439 			      struct to_kill **tkc, int force_early)
440 {
441 	struct vm_area_struct *vma;
442 	struct task_struct *tsk;
443 	struct anon_vma *av;
444 	pgoff_t pgoff;
445 
446 	av = page_lock_anon_vma_read(page);
447 	if (av == NULL)	/* Not actually mapped anymore */
448 		return;
449 
450 	pgoff = page_to_pgoff(page);
451 	read_lock(&tasklist_lock);
452 	for_each_process (tsk) {
453 		struct anon_vma_chain *vmac;
454 		struct task_struct *t = task_early_kill(tsk, force_early);
455 
456 		if (!t)
457 			continue;
458 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
459 					       pgoff, pgoff) {
460 			vma = vmac->vma;
461 			if (!page_mapped_in_vma(page, vma))
462 				continue;
463 			if (vma->vm_mm == t->mm)
464 				add_to_kill(t, page, vma, to_kill, tkc);
465 		}
466 	}
467 	read_unlock(&tasklist_lock);
468 	page_unlock_anon_vma_read(av);
469 }
470 
471 /*
472  * Collect processes when the error hit a file mapped page.
473  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)474 static void collect_procs_file(struct page *page, struct list_head *to_kill,
475 			      struct to_kill **tkc, int force_early)
476 {
477 	struct vm_area_struct *vma;
478 	struct task_struct *tsk;
479 	struct address_space *mapping = page->mapping;
480 
481 	i_mmap_lock_read(mapping);
482 	read_lock(&tasklist_lock);
483 	for_each_process(tsk) {
484 		pgoff_t pgoff = page_to_pgoff(page);
485 		struct task_struct *t = task_early_kill(tsk, force_early);
486 
487 		if (!t)
488 			continue;
489 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
490 				      pgoff) {
491 			/*
492 			 * Send early kill signal to tasks where a vma covers
493 			 * the page but the corrupted page is not necessarily
494 			 * mapped it in its pte.
495 			 * Assume applications who requested early kill want
496 			 * to be informed of all such data corruptions.
497 			 */
498 			if (vma->vm_mm == t->mm)
499 				add_to_kill(t, page, vma, to_kill, tkc);
500 		}
501 	}
502 	read_unlock(&tasklist_lock);
503 	i_mmap_unlock_read(mapping);
504 }
505 
506 /*
507  * Collect the processes who have the corrupted page mapped to kill.
508  * This is done in two steps for locking reasons.
509  * First preallocate one tokill structure outside the spin locks,
510  * so that we can kill at least one process reasonably reliable.
511  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)512 static void collect_procs(struct page *page, struct list_head *tokill,
513 				int force_early)
514 {
515 	struct to_kill *tk;
516 
517 	if (!page->mapping)
518 		return;
519 
520 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
521 	if (!tk)
522 		return;
523 	if (PageAnon(page))
524 		collect_procs_anon(page, tokill, &tk, force_early);
525 	else
526 		collect_procs_file(page, tokill, &tk, force_early);
527 	kfree(tk);
528 }
529 
530 static const char *action_name[] = {
531 	[MF_IGNORED] = "Ignored",
532 	[MF_FAILED] = "Failed",
533 	[MF_DELAYED] = "Delayed",
534 	[MF_RECOVERED] = "Recovered",
535 };
536 
537 static const char * const action_page_types[] = {
538 	[MF_MSG_KERNEL]			= "reserved kernel page",
539 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
540 	[MF_MSG_SLAB]			= "kernel slab page",
541 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
542 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
543 	[MF_MSG_HUGE]			= "huge page",
544 	[MF_MSG_FREE_HUGE]		= "free huge page",
545 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
546 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
547 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
548 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
549 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
550 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
551 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
552 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
553 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
554 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
555 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
556 	[MF_MSG_BUDDY]			= "free buddy page",
557 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
558 	[MF_MSG_DAX]			= "dax page",
559 	[MF_MSG_UNKNOWN]		= "unknown page",
560 };
561 
562 /*
563  * XXX: It is possible that a page is isolated from LRU cache,
564  * and then kept in swap cache or failed to remove from page cache.
565  * The page count will stop it from being freed by unpoison.
566  * Stress tests should be aware of this memory leak problem.
567  */
delete_from_lru_cache(struct page * p)568 static int delete_from_lru_cache(struct page *p)
569 {
570 	if (!isolate_lru_page(p)) {
571 		/*
572 		 * Clear sensible page flags, so that the buddy system won't
573 		 * complain when the page is unpoison-and-freed.
574 		 */
575 		ClearPageActive(p);
576 		ClearPageUnevictable(p);
577 
578 		/*
579 		 * Poisoned page might never drop its ref count to 0 so we have
580 		 * to uncharge it manually from its memcg.
581 		 */
582 		mem_cgroup_uncharge(p);
583 
584 		/*
585 		 * drop the page count elevated by isolate_lru_page()
586 		 */
587 		put_page(p);
588 		return 0;
589 	}
590 	return -EIO;
591 }
592 
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)593 static int truncate_error_page(struct page *p, unsigned long pfn,
594 				struct address_space *mapping)
595 {
596 	int ret = MF_FAILED;
597 
598 	if (mapping->a_ops->error_remove_page) {
599 		int err = mapping->a_ops->error_remove_page(mapping, p);
600 
601 		if (err != 0) {
602 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
603 				pfn, err);
604 		} else if (page_has_private(p) &&
605 			   !try_to_release_page(p, GFP_NOIO)) {
606 			pr_info("Memory failure: %#lx: failed to release buffers\n",
607 				pfn);
608 		} else {
609 			ret = MF_RECOVERED;
610 		}
611 	} else {
612 		/*
613 		 * If the file system doesn't support it just invalidate
614 		 * This fails on dirty or anything with private pages
615 		 */
616 		if (invalidate_inode_page(p))
617 			ret = MF_RECOVERED;
618 		else
619 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
620 				pfn);
621 	}
622 
623 	return ret;
624 }
625 
626 /*
627  * Error hit kernel page.
628  * Do nothing, try to be lucky and not touch this instead. For a few cases we
629  * could be more sophisticated.
630  */
me_kernel(struct page * p,unsigned long pfn)631 static int me_kernel(struct page *p, unsigned long pfn)
632 {
633 	return MF_IGNORED;
634 }
635 
636 /*
637  * Page in unknown state. Do nothing.
638  */
me_unknown(struct page * p,unsigned long pfn)639 static int me_unknown(struct page *p, unsigned long pfn)
640 {
641 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
642 	return MF_FAILED;
643 }
644 
645 /*
646  * Clean (or cleaned) page cache page.
647  */
me_pagecache_clean(struct page * p,unsigned long pfn)648 static int me_pagecache_clean(struct page *p, unsigned long pfn)
649 {
650 	struct address_space *mapping;
651 
652 	delete_from_lru_cache(p);
653 
654 	/*
655 	 * For anonymous pages we're done the only reference left
656 	 * should be the one m_f() holds.
657 	 */
658 	if (PageAnon(p))
659 		return MF_RECOVERED;
660 
661 	/*
662 	 * Now truncate the page in the page cache. This is really
663 	 * more like a "temporary hole punch"
664 	 * Don't do this for block devices when someone else
665 	 * has a reference, because it could be file system metadata
666 	 * and that's not safe to truncate.
667 	 */
668 	mapping = page_mapping(p);
669 	if (!mapping) {
670 		/*
671 		 * Page has been teared down in the meanwhile
672 		 */
673 		return MF_FAILED;
674 	}
675 
676 	/*
677 	 * Truncation is a bit tricky. Enable it per file system for now.
678 	 *
679 	 * Open: to take i_mutex or not for this? Right now we don't.
680 	 */
681 	return truncate_error_page(p, pfn, mapping);
682 }
683 
684 /*
685  * Dirty pagecache page
686  * Issues: when the error hit a hole page the error is not properly
687  * propagated.
688  */
me_pagecache_dirty(struct page * p,unsigned long pfn)689 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
690 {
691 	struct address_space *mapping = page_mapping(p);
692 
693 	SetPageError(p);
694 	/* TBD: print more information about the file. */
695 	if (mapping) {
696 		/*
697 		 * IO error will be reported by write(), fsync(), etc.
698 		 * who check the mapping.
699 		 * This way the application knows that something went
700 		 * wrong with its dirty file data.
701 		 *
702 		 * There's one open issue:
703 		 *
704 		 * The EIO will be only reported on the next IO
705 		 * operation and then cleared through the IO map.
706 		 * Normally Linux has two mechanisms to pass IO error
707 		 * first through the AS_EIO flag in the address space
708 		 * and then through the PageError flag in the page.
709 		 * Since we drop pages on memory failure handling the
710 		 * only mechanism open to use is through AS_AIO.
711 		 *
712 		 * This has the disadvantage that it gets cleared on
713 		 * the first operation that returns an error, while
714 		 * the PageError bit is more sticky and only cleared
715 		 * when the page is reread or dropped.  If an
716 		 * application assumes it will always get error on
717 		 * fsync, but does other operations on the fd before
718 		 * and the page is dropped between then the error
719 		 * will not be properly reported.
720 		 *
721 		 * This can already happen even without hwpoisoned
722 		 * pages: first on metadata IO errors (which only
723 		 * report through AS_EIO) or when the page is dropped
724 		 * at the wrong time.
725 		 *
726 		 * So right now we assume that the application DTRT on
727 		 * the first EIO, but we're not worse than other parts
728 		 * of the kernel.
729 		 */
730 		mapping_set_error(mapping, -EIO);
731 	}
732 
733 	return me_pagecache_clean(p, pfn);
734 }
735 
736 /*
737  * Clean and dirty swap cache.
738  *
739  * Dirty swap cache page is tricky to handle. The page could live both in page
740  * cache and swap cache(ie. page is freshly swapped in). So it could be
741  * referenced concurrently by 2 types of PTEs:
742  * normal PTEs and swap PTEs. We try to handle them consistently by calling
743  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
744  * and then
745  *      - clear dirty bit to prevent IO
746  *      - remove from LRU
747  *      - but keep in the swap cache, so that when we return to it on
748  *        a later page fault, we know the application is accessing
749  *        corrupted data and shall be killed (we installed simple
750  *        interception code in do_swap_page to catch it).
751  *
752  * Clean swap cache pages can be directly isolated. A later page fault will
753  * bring in the known good data from disk.
754  */
me_swapcache_dirty(struct page * p,unsigned long pfn)755 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
756 {
757 	ClearPageDirty(p);
758 	/* Trigger EIO in shmem: */
759 	ClearPageUptodate(p);
760 
761 	if (!delete_from_lru_cache(p))
762 		return MF_DELAYED;
763 	else
764 		return MF_FAILED;
765 }
766 
me_swapcache_clean(struct page * p,unsigned long pfn)767 static int me_swapcache_clean(struct page *p, unsigned long pfn)
768 {
769 	delete_from_swap_cache(p);
770 
771 	if (!delete_from_lru_cache(p))
772 		return MF_RECOVERED;
773 	else
774 		return MF_FAILED;
775 }
776 
777 /*
778  * Huge pages. Needs work.
779  * Issues:
780  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
781  *   To narrow down kill region to one page, we need to break up pmd.
782  */
me_huge_page(struct page * p,unsigned long pfn)783 static int me_huge_page(struct page *p, unsigned long pfn)
784 {
785 	int res = 0;
786 	struct page *hpage = compound_head(p);
787 	struct address_space *mapping;
788 
789 	if (!PageHuge(hpage))
790 		return MF_DELAYED;
791 
792 	mapping = page_mapping(hpage);
793 	if (mapping) {
794 		res = truncate_error_page(hpage, pfn, mapping);
795 	} else {
796 		unlock_page(hpage);
797 		/*
798 		 * migration entry prevents later access on error anonymous
799 		 * hugepage, so we can free and dissolve it into buddy to
800 		 * save healthy subpages.
801 		 */
802 		if (PageAnon(hpage))
803 			put_page(hpage);
804 		dissolve_free_huge_page(p);
805 		res = MF_RECOVERED;
806 		lock_page(hpage);
807 	}
808 
809 	return res;
810 }
811 
812 /*
813  * Various page states we can handle.
814  *
815  * A page state is defined by its current page->flags bits.
816  * The table matches them in order and calls the right handler.
817  *
818  * This is quite tricky because we can access page at any time
819  * in its live cycle, so all accesses have to be extremely careful.
820  *
821  * This is not complete. More states could be added.
822  * For any missing state don't attempt recovery.
823  */
824 
825 #define dirty		(1UL << PG_dirty)
826 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
827 #define unevict		(1UL << PG_unevictable)
828 #define mlock		(1UL << PG_mlocked)
829 #define writeback	(1UL << PG_writeback)
830 #define lru		(1UL << PG_lru)
831 #define head		(1UL << PG_head)
832 #define slab		(1UL << PG_slab)
833 #define reserved	(1UL << PG_reserved)
834 
835 static struct page_state {
836 	unsigned long mask;
837 	unsigned long res;
838 	enum mf_action_page_type type;
839 	int (*action)(struct page *p, unsigned long pfn);
840 } error_states[] = {
841 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
842 	/*
843 	 * free pages are specially detected outside this table:
844 	 * PG_buddy pages only make a small fraction of all free pages.
845 	 */
846 
847 	/*
848 	 * Could in theory check if slab page is free or if we can drop
849 	 * currently unused objects without touching them. But just
850 	 * treat it as standard kernel for now.
851 	 */
852 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
853 
854 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
855 
856 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
857 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
858 
859 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
860 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
861 
862 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
863 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
864 
865 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
866 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
867 
868 	/*
869 	 * Catchall entry: must be at end.
870 	 */
871 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
872 };
873 
874 #undef dirty
875 #undef sc
876 #undef unevict
877 #undef mlock
878 #undef writeback
879 #undef lru
880 #undef head
881 #undef slab
882 #undef reserved
883 
884 /*
885  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
886  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
887  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)888 static void action_result(unsigned long pfn, enum mf_action_page_type type,
889 			  enum mf_result result)
890 {
891 	trace_memory_failure_event(pfn, type, result);
892 
893 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
894 		pfn, action_page_types[type], action_name[result]);
895 }
896 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)897 static int page_action(struct page_state *ps, struct page *p,
898 			unsigned long pfn)
899 {
900 	int result;
901 	int count;
902 
903 	result = ps->action(p, pfn);
904 
905 	count = page_count(p) - 1;
906 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
907 		count--;
908 	if (count > 0) {
909 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
910 		       pfn, action_page_types[ps->type], count);
911 		result = MF_FAILED;
912 	}
913 	action_result(pfn, ps->type, result);
914 
915 	/* Could do more checks here if page looks ok */
916 	/*
917 	 * Could adjust zone counters here to correct for the missing page.
918 	 */
919 
920 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
921 }
922 
923 /**
924  * get_hwpoison_page() - Get refcount for memory error handling:
925  * @page:	raw error page (hit by memory error)
926  *
927  * Return: return 0 if failed to grab the refcount, otherwise true (some
928  * non-zero value.)
929  */
get_hwpoison_page(struct page * page)930 int get_hwpoison_page(struct page *page)
931 {
932 	struct page *head = compound_head(page);
933 
934 	if (!PageHuge(head) && PageTransHuge(head)) {
935 		/*
936 		 * Non anonymous thp exists only in allocation/free time. We
937 		 * can't handle such a case correctly, so let's give it up.
938 		 * This should be better than triggering BUG_ON when kernel
939 		 * tries to touch the "partially handled" page.
940 		 */
941 		if (!PageAnon(head)) {
942 			pr_err("Memory failure: %#lx: non anonymous thp\n",
943 				page_to_pfn(page));
944 			return 0;
945 		}
946 	}
947 
948 	if (get_page_unless_zero(head)) {
949 		if (head == compound_head(page))
950 			return 1;
951 
952 		pr_info("Memory failure: %#lx cannot catch tail\n",
953 			page_to_pfn(page));
954 		put_page(head);
955 	}
956 
957 	return 0;
958 }
959 EXPORT_SYMBOL_GPL(get_hwpoison_page);
960 
961 /*
962  * Do all that is necessary to remove user space mappings. Unmap
963  * the pages and send SIGBUS to the processes if the data was dirty.
964  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page ** hpagep)965 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
966 				  int flags, struct page **hpagep)
967 {
968 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
969 	struct address_space *mapping;
970 	LIST_HEAD(tokill);
971 	bool unmap_success;
972 	int kill = 1, forcekill;
973 	struct page *hpage = *hpagep;
974 	bool mlocked = PageMlocked(hpage);
975 
976 	/*
977 	 * Here we are interested only in user-mapped pages, so skip any
978 	 * other types of pages.
979 	 */
980 	if (PageReserved(p) || PageSlab(p))
981 		return true;
982 	if (!(PageLRU(hpage) || PageHuge(p)))
983 		return true;
984 
985 	/*
986 	 * This check implies we don't kill processes if their pages
987 	 * are in the swap cache early. Those are always late kills.
988 	 */
989 	if (!page_mapped(hpage))
990 		return true;
991 
992 	if (PageKsm(p)) {
993 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
994 		return false;
995 	}
996 
997 	if (PageSwapCache(p)) {
998 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
999 			pfn);
1000 		ttu |= TTU_IGNORE_HWPOISON;
1001 	}
1002 
1003 	/*
1004 	 * Propagate the dirty bit from PTEs to struct page first, because we
1005 	 * need this to decide if we should kill or just drop the page.
1006 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1007 	 * be called inside page lock (it's recommended but not enforced).
1008 	 */
1009 	mapping = page_mapping(hpage);
1010 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1011 	    mapping_cap_writeback_dirty(mapping)) {
1012 		if (page_mkclean(hpage)) {
1013 			SetPageDirty(hpage);
1014 		} else {
1015 			kill = 0;
1016 			ttu |= TTU_IGNORE_HWPOISON;
1017 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1018 				pfn);
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * First collect all the processes that have the page
1024 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1025 	 * because ttu takes the rmap data structures down.
1026 	 *
1027 	 * Error handling: We ignore errors here because
1028 	 * there's nothing that can be done.
1029 	 */
1030 	if (kill)
1031 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1032 
1033 	unmap_success = try_to_unmap(hpage, ttu);
1034 	if (!unmap_success)
1035 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1036 		       pfn, page_mapcount(hpage));
1037 
1038 	/*
1039 	 * try_to_unmap() might put mlocked page in lru cache, so call
1040 	 * shake_page() again to ensure that it's flushed.
1041 	 */
1042 	if (mlocked)
1043 		shake_page(hpage, 0);
1044 
1045 	/*
1046 	 * Now that the dirty bit has been propagated to the
1047 	 * struct page and all unmaps done we can decide if
1048 	 * killing is needed or not.  Only kill when the page
1049 	 * was dirty or the process is not restartable,
1050 	 * otherwise the tokill list is merely
1051 	 * freed.  When there was a problem unmapping earlier
1052 	 * use a more force-full uncatchable kill to prevent
1053 	 * any accesses to the poisoned memory.
1054 	 */
1055 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1056 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1057 
1058 	return unmap_success;
1059 }
1060 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1061 static int identify_page_state(unsigned long pfn, struct page *p,
1062 				unsigned long page_flags)
1063 {
1064 	struct page_state *ps;
1065 
1066 	/*
1067 	 * The first check uses the current page flags which may not have any
1068 	 * relevant information. The second check with the saved page flags is
1069 	 * carried out only if the first check can't determine the page status.
1070 	 */
1071 	for (ps = error_states;; ps++)
1072 		if ((p->flags & ps->mask) == ps->res)
1073 			break;
1074 
1075 	page_flags |= (p->flags & (1UL << PG_dirty));
1076 
1077 	if (!ps->mask)
1078 		for (ps = error_states;; ps++)
1079 			if ((page_flags & ps->mask) == ps->res)
1080 				break;
1081 	return page_action(ps, p, pfn);
1082 }
1083 
memory_failure_hugetlb(unsigned long pfn,int flags)1084 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1085 {
1086 	struct page *p = pfn_to_page(pfn);
1087 	struct page *head = compound_head(p);
1088 	int res;
1089 	unsigned long page_flags;
1090 
1091 	if (TestSetPageHWPoison(head)) {
1092 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1093 		       pfn);
1094 		return 0;
1095 	}
1096 
1097 	num_poisoned_pages_inc();
1098 
1099 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1100 		/*
1101 		 * Check "filter hit" and "race with other subpage."
1102 		 */
1103 		lock_page(head);
1104 		if (PageHWPoison(head)) {
1105 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1106 			    || (p != head && TestSetPageHWPoison(head))) {
1107 				num_poisoned_pages_dec();
1108 				unlock_page(head);
1109 				return 0;
1110 			}
1111 		}
1112 		unlock_page(head);
1113 		dissolve_free_huge_page(p);
1114 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1115 		return 0;
1116 	}
1117 
1118 	lock_page(head);
1119 	page_flags = head->flags;
1120 
1121 	if (!PageHWPoison(head)) {
1122 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1123 		num_poisoned_pages_dec();
1124 		unlock_page(head);
1125 		put_hwpoison_page(head);
1126 		return 0;
1127 	}
1128 
1129 	/*
1130 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1131 	 * simply disable it. In order to make it work properly, we need
1132 	 * make sure that:
1133 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1134 	 *    entry properly works, and
1135 	 *  - other mm code walking over page table is aware of pud-aligned
1136 	 *    hwpoison entries.
1137 	 */
1138 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1139 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1140 		res = -EBUSY;
1141 		goto out;
1142 	}
1143 
1144 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1145 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1146 		res = -EBUSY;
1147 		goto out;
1148 	}
1149 
1150 	res = identify_page_state(pfn, p, page_flags);
1151 out:
1152 	unlock_page(head);
1153 	return res;
1154 }
1155 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1156 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1157 		struct dev_pagemap *pgmap)
1158 {
1159 	struct page *page = pfn_to_page(pfn);
1160 	const bool unmap_success = true;
1161 	unsigned long size = 0;
1162 	struct to_kill *tk;
1163 	LIST_HEAD(tokill);
1164 	int rc = -EBUSY;
1165 	loff_t start;
1166 	dax_entry_t cookie;
1167 
1168 	/*
1169 	 * Prevent the inode from being freed while we are interrogating
1170 	 * the address_space, typically this would be handled by
1171 	 * lock_page(), but dax pages do not use the page lock. This
1172 	 * also prevents changes to the mapping of this pfn until
1173 	 * poison signaling is complete.
1174 	 */
1175 	cookie = dax_lock_page(page);
1176 	if (!cookie)
1177 		goto out;
1178 
1179 	if (hwpoison_filter(page)) {
1180 		rc = 0;
1181 		goto unlock;
1182 	}
1183 
1184 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1185 		/*
1186 		 * TODO: Handle HMM pages which may need coordination
1187 		 * with device-side memory.
1188 		 */
1189 		goto unlock;
1190 	}
1191 
1192 	/*
1193 	 * Use this flag as an indication that the dax page has been
1194 	 * remapped UC to prevent speculative consumption of poison.
1195 	 */
1196 	SetPageHWPoison(page);
1197 
1198 	/*
1199 	 * Unlike System-RAM there is no possibility to swap in a
1200 	 * different physical page at a given virtual address, so all
1201 	 * userspace consumption of ZONE_DEVICE memory necessitates
1202 	 * SIGBUS (i.e. MF_MUST_KILL)
1203 	 */
1204 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206 
1207 	list_for_each_entry(tk, &tokill, nd)
1208 		if (tk->size_shift)
1209 			size = max(size, 1UL << tk->size_shift);
1210 	if (size) {
1211 		/*
1212 		 * Unmap the largest mapping to avoid breaking up
1213 		 * device-dax mappings which are constant size. The
1214 		 * actual size of the mapping being torn down is
1215 		 * communicated in siginfo, see kill_proc()
1216 		 */
1217 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218 		unmap_mapping_range(page->mapping, start, start + size, 0);
1219 	}
1220 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221 	rc = 0;
1222 unlock:
1223 	dax_unlock_page(page, cookie);
1224 out:
1225 	/* drop pgmap ref acquired in caller */
1226 	put_dev_pagemap(pgmap);
1227 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228 	return rc;
1229 }
1230 
1231 /**
1232  * memory_failure - Handle memory failure of a page.
1233  * @pfn: Page Number of the corrupted page
1234  * @flags: fine tune action taken
1235  *
1236  * This function is called by the low level machine check code
1237  * of an architecture when it detects hardware memory corruption
1238  * of a page. It tries its best to recover, which includes
1239  * dropping pages, killing processes etc.
1240  *
1241  * The function is primarily of use for corruptions that
1242  * happen outside the current execution context (e.g. when
1243  * detected by a background scrubber)
1244  *
1245  * Must run in process context (e.g. a work queue) with interrupts
1246  * enabled and no spinlocks hold.
1247  */
memory_failure(unsigned long pfn,int flags)1248 int memory_failure(unsigned long pfn, int flags)
1249 {
1250 	struct page *p;
1251 	struct page *hpage;
1252 	struct page *orig_head;
1253 	struct dev_pagemap *pgmap;
1254 	int res;
1255 	unsigned long page_flags;
1256 
1257 	if (!sysctl_memory_failure_recovery)
1258 		panic("Memory failure on page %lx", pfn);
1259 
1260 	p = pfn_to_online_page(pfn);
1261 	if (!p) {
1262 		if (pfn_valid(pfn)) {
1263 			pgmap = get_dev_pagemap(pfn, NULL);
1264 			if (pgmap)
1265 				return memory_failure_dev_pagemap(pfn, flags,
1266 								  pgmap);
1267 		}
1268 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1269 			pfn);
1270 		return -ENXIO;
1271 	}
1272 
1273 	if (PageHuge(p))
1274 		return memory_failure_hugetlb(pfn, flags);
1275 	if (TestSetPageHWPoison(p)) {
1276 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1277 			pfn);
1278 		return 0;
1279 	}
1280 
1281 	orig_head = hpage = compound_head(p);
1282 	num_poisoned_pages_inc();
1283 
1284 	/*
1285 	 * We need/can do nothing about count=0 pages.
1286 	 * 1) it's a free page, and therefore in safe hand:
1287 	 *    prep_new_page() will be the gate keeper.
1288 	 * 2) it's part of a non-compound high order page.
1289 	 *    Implies some kernel user: cannot stop them from
1290 	 *    R/W the page; let's pray that the page has been
1291 	 *    used and will be freed some time later.
1292 	 * In fact it's dangerous to directly bump up page count from 0,
1293 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1294 	 */
1295 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1296 		if (is_free_buddy_page(p)) {
1297 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1298 			return 0;
1299 		} else {
1300 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1301 			return -EBUSY;
1302 		}
1303 	}
1304 
1305 	if (PageTransHuge(hpage)) {
1306 		lock_page(p);
1307 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1308 			unlock_page(p);
1309 			if (!PageAnon(p))
1310 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1311 					pfn);
1312 			else
1313 				pr_err("Memory failure: %#lx: thp split failed\n",
1314 					pfn);
1315 			if (TestClearPageHWPoison(p))
1316 				num_poisoned_pages_dec();
1317 			put_hwpoison_page(p);
1318 			return -EBUSY;
1319 		}
1320 		unlock_page(p);
1321 		VM_BUG_ON_PAGE(!page_count(p), p);
1322 		hpage = compound_head(p);
1323 	}
1324 
1325 	/*
1326 	 * We ignore non-LRU pages for good reasons.
1327 	 * - PG_locked is only well defined for LRU pages and a few others
1328 	 * - to avoid races with __SetPageLocked()
1329 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1330 	 * The check (unnecessarily) ignores LRU pages being isolated and
1331 	 * walked by the page reclaim code, however that's not a big loss.
1332 	 */
1333 	shake_page(p, 0);
1334 	/* shake_page could have turned it free. */
1335 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1336 		if (flags & MF_COUNT_INCREASED)
1337 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1338 		else
1339 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1340 		return 0;
1341 	}
1342 
1343 	lock_page(p);
1344 
1345 	/*
1346 	 * The page could have changed compound pages during the locking.
1347 	 * If this happens just bail out.
1348 	 */
1349 	if (PageCompound(p) && compound_head(p) != orig_head) {
1350 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1351 		res = -EBUSY;
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * We use page flags to determine what action should be taken, but
1357 	 * the flags can be modified by the error containment action.  One
1358 	 * example is an mlocked page, where PG_mlocked is cleared by
1359 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1360 	 * correctly, we save a copy of the page flags at this time.
1361 	 */
1362 	if (PageHuge(p))
1363 		page_flags = hpage->flags;
1364 	else
1365 		page_flags = p->flags;
1366 
1367 	/*
1368 	 * unpoison always clear PG_hwpoison inside page lock
1369 	 */
1370 	if (!PageHWPoison(p)) {
1371 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1372 		num_poisoned_pages_dec();
1373 		unlock_page(p);
1374 		put_hwpoison_page(p);
1375 		return 0;
1376 	}
1377 	if (hwpoison_filter(p)) {
1378 		if (TestClearPageHWPoison(p))
1379 			num_poisoned_pages_dec();
1380 		unlock_page(p);
1381 		put_hwpoison_page(p);
1382 		return 0;
1383 	}
1384 
1385 	if (!PageTransTail(p) && !PageLRU(p))
1386 		goto identify_page_state;
1387 
1388 	/*
1389 	 * It's very difficult to mess with pages currently under IO
1390 	 * and in many cases impossible, so we just avoid it here.
1391 	 */
1392 	wait_on_page_writeback(p);
1393 
1394 	/*
1395 	 * Now take care of user space mappings.
1396 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1397 	 *
1398 	 * When the raw error page is thp tail page, hpage points to the raw
1399 	 * page after thp split.
1400 	 */
1401 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1402 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1403 		res = -EBUSY;
1404 		goto out;
1405 	}
1406 
1407 	/*
1408 	 * Torn down by someone else?
1409 	 */
1410 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1411 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1412 		res = -EBUSY;
1413 		goto out;
1414 	}
1415 
1416 identify_page_state:
1417 	res = identify_page_state(pfn, p, page_flags);
1418 out:
1419 	unlock_page(p);
1420 	return res;
1421 }
1422 EXPORT_SYMBOL_GPL(memory_failure);
1423 
1424 #define MEMORY_FAILURE_FIFO_ORDER	4
1425 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1426 
1427 struct memory_failure_entry {
1428 	unsigned long pfn;
1429 	int flags;
1430 };
1431 
1432 struct memory_failure_cpu {
1433 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1434 		      MEMORY_FAILURE_FIFO_SIZE);
1435 	spinlock_t lock;
1436 	struct work_struct work;
1437 };
1438 
1439 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1440 
1441 /**
1442  * memory_failure_queue - Schedule handling memory failure of a page.
1443  * @pfn: Page Number of the corrupted page
1444  * @flags: Flags for memory failure handling
1445  *
1446  * This function is called by the low level hardware error handler
1447  * when it detects hardware memory corruption of a page. It schedules
1448  * the recovering of error page, including dropping pages, killing
1449  * processes etc.
1450  *
1451  * The function is primarily of use for corruptions that
1452  * happen outside the current execution context (e.g. when
1453  * detected by a background scrubber)
1454  *
1455  * Can run in IRQ context.
1456  */
memory_failure_queue(unsigned long pfn,int flags)1457 void memory_failure_queue(unsigned long pfn, int flags)
1458 {
1459 	struct memory_failure_cpu *mf_cpu;
1460 	unsigned long proc_flags;
1461 	struct memory_failure_entry entry = {
1462 		.pfn =		pfn,
1463 		.flags =	flags,
1464 	};
1465 
1466 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1467 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1468 	if (kfifo_put(&mf_cpu->fifo, entry))
1469 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1470 	else
1471 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1472 		       pfn);
1473 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1474 	put_cpu_var(memory_failure_cpu);
1475 }
1476 EXPORT_SYMBOL_GPL(memory_failure_queue);
1477 
memory_failure_work_func(struct work_struct * work)1478 static void memory_failure_work_func(struct work_struct *work)
1479 {
1480 	struct memory_failure_cpu *mf_cpu;
1481 	struct memory_failure_entry entry = { 0, };
1482 	unsigned long proc_flags;
1483 	int gotten;
1484 
1485 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1486 	for (;;) {
1487 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1488 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1489 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1490 		if (!gotten)
1491 			break;
1492 		if (entry.flags & MF_SOFT_OFFLINE)
1493 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1494 		else
1495 			memory_failure(entry.pfn, entry.flags);
1496 	}
1497 }
1498 
memory_failure_init(void)1499 static int __init memory_failure_init(void)
1500 {
1501 	struct memory_failure_cpu *mf_cpu;
1502 	int cpu;
1503 
1504 	for_each_possible_cpu(cpu) {
1505 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1506 		spin_lock_init(&mf_cpu->lock);
1507 		INIT_KFIFO(mf_cpu->fifo);
1508 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1509 	}
1510 
1511 	return 0;
1512 }
1513 core_initcall(memory_failure_init);
1514 
1515 #define unpoison_pr_info(fmt, pfn, rs)			\
1516 ({							\
1517 	if (__ratelimit(rs))				\
1518 		pr_info(fmt, pfn);			\
1519 })
1520 
1521 /**
1522  * unpoison_memory - Unpoison a previously poisoned page
1523  * @pfn: Page number of the to be unpoisoned page
1524  *
1525  * Software-unpoison a page that has been poisoned by
1526  * memory_failure() earlier.
1527  *
1528  * This is only done on the software-level, so it only works
1529  * for linux injected failures, not real hardware failures
1530  *
1531  * Returns 0 for success, otherwise -errno.
1532  */
unpoison_memory(unsigned long pfn)1533 int unpoison_memory(unsigned long pfn)
1534 {
1535 	struct page *page;
1536 	struct page *p;
1537 	int freeit = 0;
1538 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1539 					DEFAULT_RATELIMIT_BURST);
1540 
1541 	if (!pfn_valid(pfn))
1542 		return -ENXIO;
1543 
1544 	p = pfn_to_page(pfn);
1545 	page = compound_head(p);
1546 
1547 	if (!PageHWPoison(p)) {
1548 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1549 				 pfn, &unpoison_rs);
1550 		return 0;
1551 	}
1552 
1553 	if (page_count(page) > 1) {
1554 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1555 				 pfn, &unpoison_rs);
1556 		return 0;
1557 	}
1558 
1559 	if (page_mapped(page)) {
1560 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1561 				 pfn, &unpoison_rs);
1562 		return 0;
1563 	}
1564 
1565 	if (page_mapping(page)) {
1566 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1567 				 pfn, &unpoison_rs);
1568 		return 0;
1569 	}
1570 
1571 	/*
1572 	 * unpoison_memory() can encounter thp only when the thp is being
1573 	 * worked by memory_failure() and the page lock is not held yet.
1574 	 * In such case, we yield to memory_failure() and make unpoison fail.
1575 	 */
1576 	if (!PageHuge(page) && PageTransHuge(page)) {
1577 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1578 				 pfn, &unpoison_rs);
1579 		return 0;
1580 	}
1581 
1582 	if (!get_hwpoison_page(p)) {
1583 		if (TestClearPageHWPoison(p))
1584 			num_poisoned_pages_dec();
1585 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1586 				 pfn, &unpoison_rs);
1587 		return 0;
1588 	}
1589 
1590 	lock_page(page);
1591 	/*
1592 	 * This test is racy because PG_hwpoison is set outside of page lock.
1593 	 * That's acceptable because that won't trigger kernel panic. Instead,
1594 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1595 	 * the free buddy page pool.
1596 	 */
1597 	if (TestClearPageHWPoison(page)) {
1598 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1599 				 pfn, &unpoison_rs);
1600 		num_poisoned_pages_dec();
1601 		freeit = 1;
1602 	}
1603 	unlock_page(page);
1604 
1605 	put_hwpoison_page(page);
1606 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1607 		put_hwpoison_page(page);
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(unpoison_memory);
1612 
new_page(struct page * p,unsigned long private)1613 static struct page *new_page(struct page *p, unsigned long private)
1614 {
1615 	int nid = page_to_nid(p);
1616 
1617 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1618 }
1619 
1620 /*
1621  * Safely get reference count of an arbitrary page.
1622  * Returns 0 for a free page, -EIO for a zero refcount page
1623  * that is not free, and 1 for any other page type.
1624  * For 1 the page is returned with increased page count, otherwise not.
1625  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1626 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1627 {
1628 	int ret;
1629 
1630 	if (flags & MF_COUNT_INCREASED)
1631 		return 1;
1632 
1633 	/*
1634 	 * When the target page is a free hugepage, just remove it
1635 	 * from free hugepage list.
1636 	 */
1637 	if (!get_hwpoison_page(p)) {
1638 		if (PageHuge(p)) {
1639 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1640 			ret = 0;
1641 		} else if (is_free_buddy_page(p)) {
1642 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1643 			ret = 0;
1644 		} else {
1645 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1646 				__func__, pfn, p->flags);
1647 			ret = -EIO;
1648 		}
1649 	} else {
1650 		/* Not a free page */
1651 		ret = 1;
1652 	}
1653 	return ret;
1654 }
1655 
get_any_page(struct page * page,unsigned long pfn,int flags)1656 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1657 {
1658 	int ret = __get_any_page(page, pfn, flags);
1659 
1660 	if (ret == 1 && !PageHuge(page) &&
1661 	    !PageLRU(page) && !__PageMovable(page)) {
1662 		/*
1663 		 * Try to free it.
1664 		 */
1665 		put_hwpoison_page(page);
1666 		shake_page(page, 1);
1667 
1668 		/*
1669 		 * Did it turn free?
1670 		 */
1671 		ret = __get_any_page(page, pfn, 0);
1672 		if (ret == 1 && !PageLRU(page)) {
1673 			/* Drop page reference which is from __get_any_page() */
1674 			put_hwpoison_page(page);
1675 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1676 				pfn, page->flags, &page->flags);
1677 			return -EIO;
1678 		}
1679 	}
1680 	return ret;
1681 }
1682 
soft_offline_huge_page(struct page * page,int flags)1683 static int soft_offline_huge_page(struct page *page, int flags)
1684 {
1685 	int ret;
1686 	unsigned long pfn = page_to_pfn(page);
1687 	struct page *hpage = compound_head(page);
1688 	LIST_HEAD(pagelist);
1689 
1690 	/*
1691 	 * This double-check of PageHWPoison is to avoid the race with
1692 	 * memory_failure(). See also comment in __soft_offline_page().
1693 	 */
1694 	lock_page(hpage);
1695 	if (PageHWPoison(hpage)) {
1696 		unlock_page(hpage);
1697 		put_hwpoison_page(hpage);
1698 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1699 		return -EBUSY;
1700 	}
1701 	unlock_page(hpage);
1702 
1703 	ret = isolate_huge_page(hpage, &pagelist);
1704 	/*
1705 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1706 	 * so need to drop one here.
1707 	 */
1708 	put_hwpoison_page(hpage);
1709 	if (!ret) {
1710 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1711 		return -EBUSY;
1712 	}
1713 
1714 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1715 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1716 	if (ret) {
1717 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1718 			pfn, ret, page->flags, &page->flags);
1719 		if (!list_empty(&pagelist))
1720 			putback_movable_pages(&pagelist);
1721 		if (ret > 0)
1722 			ret = -EIO;
1723 	} else {
1724 		/*
1725 		 * We set PG_hwpoison only when the migration source hugepage
1726 		 * was successfully dissolved, because otherwise hwpoisoned
1727 		 * hugepage remains on free hugepage list, then userspace will
1728 		 * find it as SIGBUS by allocation failure. That's not expected
1729 		 * in soft-offlining.
1730 		 */
1731 		ret = dissolve_free_huge_page(page);
1732 		if (!ret) {
1733 			if (set_hwpoison_free_buddy_page(page))
1734 				num_poisoned_pages_inc();
1735 			else
1736 				ret = -EBUSY;
1737 		}
1738 	}
1739 	return ret;
1740 }
1741 
__soft_offline_page(struct page * page,int flags)1742 static int __soft_offline_page(struct page *page, int flags)
1743 {
1744 	int ret;
1745 	unsigned long pfn = page_to_pfn(page);
1746 
1747 	/*
1748 	 * Check PageHWPoison again inside page lock because PageHWPoison
1749 	 * is set by memory_failure() outside page lock. Note that
1750 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1751 	 * so there's no race between soft_offline_page() and memory_failure().
1752 	 */
1753 	lock_page(page);
1754 	wait_on_page_writeback(page);
1755 	if (PageHWPoison(page)) {
1756 		unlock_page(page);
1757 		put_hwpoison_page(page);
1758 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1759 		return -EBUSY;
1760 	}
1761 	/*
1762 	 * Try to invalidate first. This should work for
1763 	 * non dirty unmapped page cache pages.
1764 	 */
1765 	ret = invalidate_inode_page(page);
1766 	unlock_page(page);
1767 	/*
1768 	 * RED-PEN would be better to keep it isolated here, but we
1769 	 * would need to fix isolation locking first.
1770 	 */
1771 	if (ret == 1) {
1772 		put_hwpoison_page(page);
1773 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1774 		SetPageHWPoison(page);
1775 		num_poisoned_pages_inc();
1776 		return 0;
1777 	}
1778 
1779 	/*
1780 	 * Simple invalidation didn't work.
1781 	 * Try to migrate to a new page instead. migrate.c
1782 	 * handles a large number of cases for us.
1783 	 */
1784 	if (PageLRU(page))
1785 		ret = isolate_lru_page(page);
1786 	else
1787 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1788 	/*
1789 	 * Drop page reference which is came from get_any_page()
1790 	 * successful isolate_lru_page() already took another one.
1791 	 */
1792 	put_hwpoison_page(page);
1793 	if (!ret) {
1794 		LIST_HEAD(pagelist);
1795 		/*
1796 		 * After isolated lru page, the PageLRU will be cleared,
1797 		 * so use !__PageMovable instead for LRU page's mapping
1798 		 * cannot have PAGE_MAPPING_MOVABLE.
1799 		 */
1800 		if (!__PageMovable(page))
1801 			inc_node_page_state(page, NR_ISOLATED_ANON +
1802 						page_is_file_cache(page));
1803 		list_add(&page->lru, &pagelist);
1804 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1805 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1806 		if (ret) {
1807 			if (!list_empty(&pagelist))
1808 				putback_movable_pages(&pagelist);
1809 
1810 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1811 				pfn, ret, page->flags, &page->flags);
1812 			if (ret > 0)
1813 				ret = -EIO;
1814 		}
1815 	} else {
1816 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1817 			pfn, ret, page_count(page), page->flags, &page->flags);
1818 	}
1819 	return ret;
1820 }
1821 
soft_offline_in_use_page(struct page * page,int flags)1822 static int soft_offline_in_use_page(struct page *page, int flags)
1823 {
1824 	int ret;
1825 	int mt;
1826 	struct page *hpage = compound_head(page);
1827 
1828 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1829 		lock_page(page);
1830 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1831 			unlock_page(page);
1832 			if (!PageAnon(page))
1833 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1834 			else
1835 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1836 			put_hwpoison_page(page);
1837 			return -EBUSY;
1838 		}
1839 		unlock_page(page);
1840 	}
1841 
1842 	/*
1843 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1844 	 * to free list immediately (not via pcplist) when released after
1845 	 * successful page migration. Otherwise we can't guarantee that the
1846 	 * page is really free after put_page() returns, so
1847 	 * set_hwpoison_free_buddy_page() highly likely fails.
1848 	 */
1849 	mt = get_pageblock_migratetype(page);
1850 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1851 	if (PageHuge(page))
1852 		ret = soft_offline_huge_page(page, flags);
1853 	else
1854 		ret = __soft_offline_page(page, flags);
1855 	set_pageblock_migratetype(page, mt);
1856 	return ret;
1857 }
1858 
soft_offline_free_page(struct page * page)1859 static int soft_offline_free_page(struct page *page)
1860 {
1861 	int rc = dissolve_free_huge_page(page);
1862 
1863 	if (!rc) {
1864 		if (set_hwpoison_free_buddy_page(page))
1865 			num_poisoned_pages_inc();
1866 		else
1867 			rc = -EBUSY;
1868 	}
1869 	return rc;
1870 }
1871 
1872 /**
1873  * soft_offline_page - Soft offline a page.
1874  * @page: page to offline
1875  * @flags: flags. Same as memory_failure().
1876  *
1877  * Returns 0 on success, otherwise negated errno.
1878  *
1879  * Soft offline a page, by migration or invalidation,
1880  * without killing anything. This is for the case when
1881  * a page is not corrupted yet (so it's still valid to access),
1882  * but has had a number of corrected errors and is better taken
1883  * out.
1884  *
1885  * The actual policy on when to do that is maintained by
1886  * user space.
1887  *
1888  * This should never impact any application or cause data loss,
1889  * however it might take some time.
1890  *
1891  * This is not a 100% solution for all memory, but tries to be
1892  * ``good enough'' for the majority of memory.
1893  */
soft_offline_page(struct page * page,int flags)1894 int soft_offline_page(struct page *page, int flags)
1895 {
1896 	int ret;
1897 	unsigned long pfn = page_to_pfn(page);
1898 
1899 	if (is_zone_device_page(page)) {
1900 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1901 				pfn);
1902 		if (flags & MF_COUNT_INCREASED)
1903 			put_page(page);
1904 		return -EIO;
1905 	}
1906 
1907 	if (PageHWPoison(page)) {
1908 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1909 		if (flags & MF_COUNT_INCREASED)
1910 			put_hwpoison_page(page);
1911 		return -EBUSY;
1912 	}
1913 
1914 	get_online_mems();
1915 	ret = get_any_page(page, pfn, flags);
1916 	put_online_mems();
1917 
1918 	if (ret > 0)
1919 		ret = soft_offline_in_use_page(page, flags);
1920 	else if (ret == 0)
1921 		ret = soft_offline_free_page(page);
1922 
1923 	return ret;
1924 }
1925