1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102
103 /*
104 * Kmemleak configuration and common defines.
105 */
106 #define MAX_TRACE 16 /* stack trace length */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111
112 #define BYTES_PER_POINTER sizeof(void *)
113
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN)
118
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124 };
125
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
128
129 /*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137 struct kmemleak_object {
138 spinlock_t lock;
139 unsigned int flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct rb_node rb_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN (1 << 3)
173
174 #define HEX_PREFIX " "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE 16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE 1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII 1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES 2
183
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* rw_lock protecting the access to object_list and object_tree_root */
195 static DEFINE_RWLOCK(kmemleak_lock);
196
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233
234 static void kmemleak_disable(void);
235
236 /*
237 * Print a warning and dump the stack trace.
238 */
239 #define kmemleak_warn(x...) do { \
240 pr_warn(x); \
241 dump_stack(); \
242 kmemleak_warning = 1; \
243 } while (0)
244
245 /*
246 * Macro invoked when a serious kmemleak condition occurred and cannot be
247 * recovered from. Kmemleak will be disabled and further allocation/freeing
248 * tracing no longer available.
249 */
250 #define kmemleak_stop(x...) do { \
251 kmemleak_warn(x); \
252 kmemleak_disable(); \
253 } while (0)
254
255 #define warn_or_seq_printf(seq, fmt, ...) do { \
256 if (seq) \
257 seq_printf(seq, fmt, ##__VA_ARGS__); \
258 else \
259 pr_warn(fmt, ##__VA_ARGS__); \
260 } while (0)
261
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 int rowsize, int groupsize, const void *buf,
264 size_t len, bool ascii)
265 {
266 if (seq)
267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 buf, len, ascii);
269 else
270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 rowsize, groupsize, buf, len, ascii);
272 }
273
274 /*
275 * Printing of the objects hex dump to the seq file. The number of lines to be
276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 * with the object->lock held.
279 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)280 static void hex_dump_object(struct seq_file *seq,
281 struct kmemleak_object *object)
282 {
283 const u8 *ptr = (const u8 *)object->pointer;
284 size_t len;
285
286 /* limit the number of lines to HEX_MAX_LINES */
287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288
289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
290 kasan_disable_current();
291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 kasan_enable_current();
294 }
295
296 /*
297 * Object colors, encoded with count and min_count:
298 * - white - orphan object, not enough references to it (count < min_count)
299 * - gray - not orphan, not marked as false positive (min_count == 0) or
300 * sufficient references to it (count >= min_count)
301 * - black - ignore, it doesn't contain references (e.g. text section)
302 * (min_count == -1). No function defined for this color.
303 * Newly created objects don't have any color assigned (object->count == -1)
304 * before the next memory scan when they become white.
305 */
color_white(const struct kmemleak_object * object)306 static bool color_white(const struct kmemleak_object *object)
307 {
308 return object->count != KMEMLEAK_BLACK &&
309 object->count < object->min_count;
310 }
311
color_gray(const struct kmemleak_object * object)312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 return object->min_count != KMEMLEAK_BLACK &&
315 object->count >= object->min_count;
316 }
317
318 /*
319 * Objects are considered unreferenced only if their color is white, they have
320 * not be deleted and have a minimum age to avoid false positives caused by
321 * pointers temporarily stored in CPU registers.
322 */
unreferenced_object(struct kmemleak_object * object)323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 time_before_eq(object->jiffies + jiffies_min_age,
327 jiffies_last_scan);
328 }
329
330 /*
331 * Printing of the unreferenced objects information to the seq file. The
332 * print_unreferenced function must be called with the object->lock held.
333 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)334 static void print_unreferenced(struct seq_file *seq,
335 struct kmemleak_object *object)
336 {
337 int i;
338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339
340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 object->pointer, object->size);
342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 object->comm, object->pid, object->jiffies,
344 msecs_age / 1000, msecs_age % 1000);
345 hex_dump_object(seq, object);
346 warn_or_seq_printf(seq, " backtrace:\n");
347
348 for (i = 0; i < object->trace_len; i++) {
349 void *ptr = (void *)object->trace[i];
350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
351 }
352 }
353
354 /*
355 * Print the kmemleak_object information. This function is used mainly for
356 * debugging special cases when kmemleak operations. It must be called with
357 * the object->lock held.
358 */
dump_object_info(struct kmemleak_object * object)359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 pr_notice("Object 0x%08lx (size %zu):\n",
362 object->pointer, object->size);
363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 object->comm, object->pid, object->jiffies);
365 pr_notice(" min_count = %d\n", object->min_count);
366 pr_notice(" count = %d\n", object->count);
367 pr_notice(" flags = 0x%x\n", object->flags);
368 pr_notice(" checksum = %u\n", object->checksum);
369 pr_notice(" backtrace:\n");
370 stack_trace_print(object->trace, object->trace_len, 4);
371 }
372
373 /*
374 * Look-up a memory block metadata (kmemleak_object) in the object search
375 * tree based on a pointer value. If alias is 0, only values pointing to the
376 * beginning of the memory block are allowed. The kmemleak_lock must be held
377 * when calling this function.
378 */
lookup_object(unsigned long ptr,int alias)379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 struct rb_node *rb = object_tree_root.rb_node;
382
383 while (rb) {
384 struct kmemleak_object *object =
385 rb_entry(rb, struct kmemleak_object, rb_node);
386 if (ptr < object->pointer)
387 rb = object->rb_node.rb_left;
388 else if (object->pointer + object->size <= ptr)
389 rb = object->rb_node.rb_right;
390 else if (object->pointer == ptr || alias)
391 return object;
392 else {
393 kmemleak_warn("Found object by alias at 0x%08lx\n",
394 ptr);
395 dump_object_info(object);
396 break;
397 }
398 }
399 return NULL;
400 }
401
402 /*
403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 * that once an object's use_count reached 0, the RCU freeing was already
405 * registered and the object should no longer be used. This function must be
406 * called under the protection of rcu_read_lock().
407 */
get_object(struct kmemleak_object * object)408 static int get_object(struct kmemleak_object *object)
409 {
410 return atomic_inc_not_zero(&object->use_count);
411 }
412
413 /*
414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
415 */
mem_pool_alloc(gfp_t gfp)416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 unsigned long flags;
419 struct kmemleak_object *object;
420
421 /* try the slab allocator first */
422 if (object_cache) {
423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 if (object)
425 return object;
426 }
427
428 /* slab allocation failed, try the memory pool */
429 write_lock_irqsave(&kmemleak_lock, flags);
430 object = list_first_entry_or_null(&mem_pool_free_list,
431 typeof(*object), object_list);
432 if (object)
433 list_del(&object->object_list);
434 else if (mem_pool_free_count)
435 object = &mem_pool[--mem_pool_free_count];
436 else
437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 write_unlock_irqrestore(&kmemleak_lock, flags);
439
440 return object;
441 }
442
443 /*
444 * Return the object to either the slab allocator or the memory pool.
445 */
mem_pool_free(struct kmemleak_object * object)446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 unsigned long flags;
449
450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 kmem_cache_free(object_cache, object);
452 return;
453 }
454
455 /* add the object to the memory pool free list */
456 write_lock_irqsave(&kmemleak_lock, flags);
457 list_add(&object->object_list, &mem_pool_free_list);
458 write_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460
461 /*
462 * RCU callback to free a kmemleak_object.
463 */
free_object_rcu(struct rcu_head * rcu)464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 struct hlist_node *tmp;
467 struct kmemleak_scan_area *area;
468 struct kmemleak_object *object =
469 container_of(rcu, struct kmemleak_object, rcu);
470
471 /*
472 * Once use_count is 0 (guaranteed by put_object), there is no other
473 * code accessing this object, hence no need for locking.
474 */
475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 hlist_del(&area->node);
477 kmem_cache_free(scan_area_cache, area);
478 }
479 mem_pool_free(object);
480 }
481
482 /*
483 * Decrement the object use_count. Once the count is 0, free the object using
484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 * delete_object() path, the delayed RCU freeing ensures that there is no
486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487 * is also possible.
488 */
put_object(struct kmemleak_object * object)489 static void put_object(struct kmemleak_object *object)
490 {
491 if (!atomic_dec_and_test(&object->use_count))
492 return;
493
494 /* should only get here after delete_object was called */
495 WARN_ON(object->flags & OBJECT_ALLOCATED);
496
497 /*
498 * It may be too early for the RCU callbacks, however, there is no
499 * concurrent object_list traversal when !object_cache and all objects
500 * came from the memory pool. Free the object directly.
501 */
502 if (object_cache)
503 call_rcu(&object->rcu, free_object_rcu);
504 else
505 free_object_rcu(&object->rcu);
506 }
507
508 /*
509 * Look up an object in the object search tree and increase its use_count.
510 */
find_and_get_object(unsigned long ptr,int alias)511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 rcu_read_lock();
517 read_lock_irqsave(&kmemleak_lock, flags);
518 object = lookup_object(ptr, alias);
519 read_unlock_irqrestore(&kmemleak_lock, flags);
520
521 /* check whether the object is still available */
522 if (object && !get_object(object))
523 object = NULL;
524 rcu_read_unlock();
525
526 return object;
527 }
528
529 /*
530 * Remove an object from the object_tree_root and object_list. Must be called
531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
532 */
__remove_object(struct kmemleak_object * object)533 static void __remove_object(struct kmemleak_object *object)
534 {
535 rb_erase(&object->rb_node, &object_tree_root);
536 list_del_rcu(&object->object_list);
537 }
538
539 /*
540 * Look up an object in the object search tree and remove it from both
541 * object_tree_root and object_list. The returned object's use_count should be
542 * at least 1, as initially set by create_object().
543 */
find_and_remove_object(unsigned long ptr,int alias)544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 {
546 unsigned long flags;
547 struct kmemleak_object *object;
548
549 write_lock_irqsave(&kmemleak_lock, flags);
550 object = lookup_object(ptr, alias);
551 if (object)
552 __remove_object(object);
553 write_unlock_irqrestore(&kmemleak_lock, flags);
554
555 return object;
556 }
557
558 /*
559 * Save stack trace to the given array of MAX_TRACE size.
560 */
__save_stack_trace(unsigned long * trace)561 static int __save_stack_trace(unsigned long *trace)
562 {
563 return stack_trace_save(trace, MAX_TRACE, 2);
564 }
565
566 /*
567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 * memory block and add it to the object_list and object_tree_root.
569 */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 int min_count, gfp_t gfp)
572 {
573 unsigned long flags;
574 struct kmemleak_object *object, *parent;
575 struct rb_node **link, *rb_parent;
576 unsigned long untagged_ptr;
577
578 object = mem_pool_alloc(gfp);
579 if (!object) {
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
581 kmemleak_disable();
582 return NULL;
583 }
584
585 INIT_LIST_HEAD(&object->object_list);
586 INIT_LIST_HEAD(&object->gray_list);
587 INIT_HLIST_HEAD(&object->area_list);
588 spin_lock_init(&object->lock);
589 atomic_set(&object->use_count, 1);
590 object->flags = OBJECT_ALLOCATED;
591 object->pointer = ptr;
592 object->size = size;
593 object->excess_ref = 0;
594 object->min_count = min_count;
595 object->count = 0; /* white color initially */
596 object->jiffies = jiffies;
597 object->checksum = 0;
598
599 /* task information */
600 if (in_irq()) {
601 object->pid = 0;
602 strncpy(object->comm, "hardirq", sizeof(object->comm));
603 } else if (in_serving_softirq()) {
604 object->pid = 0;
605 strncpy(object->comm, "softirq", sizeof(object->comm));
606 } else {
607 object->pid = current->pid;
608 /*
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
613 */
614 strncpy(object->comm, current->comm, sizeof(object->comm));
615 }
616
617 /* kernel backtrace */
618 object->trace_len = __save_stack_trace(object->trace);
619
620 write_lock_irqsave(&kmemleak_lock, flags);
621
622 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 min_addr = min(min_addr, untagged_ptr);
624 max_addr = max(max_addr, untagged_ptr + size);
625 link = &object_tree_root.rb_node;
626 rb_parent = NULL;
627 while (*link) {
628 rb_parent = *link;
629 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 if (ptr + size <= parent->pointer)
631 link = &parent->rb_node.rb_left;
632 else if (parent->pointer + parent->size <= ptr)
633 link = &parent->rb_node.rb_right;
634 else {
635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 ptr);
637 /*
638 * No need for parent->lock here since "parent" cannot
639 * be freed while the kmemleak_lock is held.
640 */
641 dump_object_info(parent);
642 kmem_cache_free(object_cache, object);
643 object = NULL;
644 goto out;
645 }
646 }
647 rb_link_node(&object->rb_node, rb_parent, link);
648 rb_insert_color(&object->rb_node, &object_tree_root);
649
650 list_add_tail_rcu(&object->object_list, &object_list);
651 out:
652 write_unlock_irqrestore(&kmemleak_lock, flags);
653 return object;
654 }
655
656 /*
657 * Mark the object as not allocated and schedule RCU freeing via put_object().
658 */
__delete_object(struct kmemleak_object * object)659 static void __delete_object(struct kmemleak_object *object)
660 {
661 unsigned long flags;
662
663 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 WARN_ON(atomic_read(&object->use_count) < 1);
665
666 /*
667 * Locking here also ensures that the corresponding memory block
668 * cannot be freed when it is being scanned.
669 */
670 spin_lock_irqsave(&object->lock, flags);
671 object->flags &= ~OBJECT_ALLOCATED;
672 spin_unlock_irqrestore(&object->lock, flags);
673 put_object(object);
674 }
675
676 /*
677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678 * delete it.
679 */
delete_object_full(unsigned long ptr)680 static void delete_object_full(unsigned long ptr)
681 {
682 struct kmemleak_object *object;
683
684 object = find_and_remove_object(ptr, 0);
685 if (!object) {
686 #ifdef DEBUG
687 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 ptr);
689 #endif
690 return;
691 }
692 __delete_object(object);
693 }
694
695 /*
696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 * delete it. If the memory block is partially freed, the function may create
698 * additional metadata for the remaining parts of the block.
699 */
delete_object_part(unsigned long ptr,size_t size)700 static void delete_object_part(unsigned long ptr, size_t size)
701 {
702 struct kmemleak_object *object;
703 unsigned long start, end;
704
705 object = find_and_remove_object(ptr, 1);
706 if (!object) {
707 #ifdef DEBUG
708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 ptr, size);
710 #endif
711 return;
712 }
713
714 /*
715 * Create one or two objects that may result from the memory block
716 * split. Note that partial freeing is only done by free_bootmem() and
717 * this happens before kmemleak_init() is called.
718 */
719 start = object->pointer;
720 end = object->pointer + object->size;
721 if (ptr > start)
722 create_object(start, ptr - start, object->min_count,
723 GFP_KERNEL);
724 if (ptr + size < end)
725 create_object(ptr + size, end - ptr - size, object->min_count,
726 GFP_KERNEL);
727
728 __delete_object(object);
729 }
730
__paint_it(struct kmemleak_object * object,int color)731 static void __paint_it(struct kmemleak_object *object, int color)
732 {
733 object->min_count = color;
734 if (color == KMEMLEAK_BLACK)
735 object->flags |= OBJECT_NO_SCAN;
736 }
737
paint_it(struct kmemleak_object * object,int color)738 static void paint_it(struct kmemleak_object *object, int color)
739 {
740 unsigned long flags;
741
742 spin_lock_irqsave(&object->lock, flags);
743 __paint_it(object, color);
744 spin_unlock_irqrestore(&object->lock, flags);
745 }
746
paint_ptr(unsigned long ptr,int color)747 static void paint_ptr(unsigned long ptr, int color)
748 {
749 struct kmemleak_object *object;
750
751 object = find_and_get_object(ptr, 0);
752 if (!object) {
753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 ptr,
755 (color == KMEMLEAK_GREY) ? "Grey" :
756 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 return;
758 }
759 paint_it(object, color);
760 put_object(object);
761 }
762
763 /*
764 * Mark an object permanently as gray-colored so that it can no longer be
765 * reported as a leak. This is used in general to mark a false positive.
766 */
make_gray_object(unsigned long ptr)767 static void make_gray_object(unsigned long ptr)
768 {
769 paint_ptr(ptr, KMEMLEAK_GREY);
770 }
771
772 /*
773 * Mark the object as black-colored so that it is ignored from scans and
774 * reporting.
775 */
make_black_object(unsigned long ptr)776 static void make_black_object(unsigned long ptr)
777 {
778 paint_ptr(ptr, KMEMLEAK_BLACK);
779 }
780
781 /*
782 * Add a scanning area to the object. If at least one such area is added,
783 * kmemleak will only scan these ranges rather than the whole memory block.
784 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 {
787 unsigned long flags;
788 struct kmemleak_object *object;
789 struct kmemleak_scan_area *area = NULL;
790
791 object = find_and_get_object(ptr, 1);
792 if (!object) {
793 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
794 ptr);
795 return;
796 }
797
798 if (scan_area_cache)
799 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800
801 spin_lock_irqsave(&object->lock, flags);
802 if (!area) {
803 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 /* mark the object for full scan to avoid false positives */
805 object->flags |= OBJECT_FULL_SCAN;
806 goto out_unlock;
807 }
808 if (size == SIZE_MAX) {
809 size = object->pointer + object->size - ptr;
810 } else if (ptr + size > object->pointer + object->size) {
811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 dump_object_info(object);
813 kmem_cache_free(scan_area_cache, area);
814 goto out_unlock;
815 }
816
817 INIT_HLIST_NODE(&area->node);
818 area->start = ptr;
819 area->size = size;
820
821 hlist_add_head(&area->node, &object->area_list);
822 out_unlock:
823 spin_unlock_irqrestore(&object->lock, flags);
824 put_object(object);
825 }
826
827 /*
828 * Any surplus references (object already gray) to 'ptr' are passed to
829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830 * vm_struct may be used as an alternative reference to the vmalloc'ed object
831 * (see free_thread_stack()).
832 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)833 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
834 {
835 unsigned long flags;
836 struct kmemleak_object *object;
837
838 object = find_and_get_object(ptr, 0);
839 if (!object) {
840 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
841 ptr);
842 return;
843 }
844
845 spin_lock_irqsave(&object->lock, flags);
846 object->excess_ref = excess_ref;
847 spin_unlock_irqrestore(&object->lock, flags);
848 put_object(object);
849 }
850
851 /*
852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853 * pointer. Such object will not be scanned by kmemleak but references to it
854 * are searched.
855 */
object_no_scan(unsigned long ptr)856 static void object_no_scan(unsigned long ptr)
857 {
858 unsigned long flags;
859 struct kmemleak_object *object;
860
861 object = find_and_get_object(ptr, 0);
862 if (!object) {
863 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
864 return;
865 }
866
867 spin_lock_irqsave(&object->lock, flags);
868 object->flags |= OBJECT_NO_SCAN;
869 spin_unlock_irqrestore(&object->lock, flags);
870 put_object(object);
871 }
872
873 /**
874 * kmemleak_alloc - register a newly allocated object
875 * @ptr: pointer to beginning of the object
876 * @size: size of the object
877 * @min_count: minimum number of references to this object. If during memory
878 * scanning a number of references less than @min_count is found,
879 * the object is reported as a memory leak. If @min_count is 0,
880 * the object is never reported as a leak. If @min_count is -1,
881 * the object is ignored (not scanned and not reported as a leak)
882 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
883 *
884 * This function is called from the kernel allocators when a new object
885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
886 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)887 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
888 gfp_t gfp)
889 {
890 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
891
892 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
893 create_object((unsigned long)ptr, size, min_count, gfp);
894 }
895 EXPORT_SYMBOL_GPL(kmemleak_alloc);
896
897 /**
898 * kmemleak_alloc_percpu - register a newly allocated __percpu object
899 * @ptr: __percpu pointer to beginning of the object
900 * @size: size of the object
901 * @gfp: flags used for kmemleak internal memory allocations
902 *
903 * This function is called from the kernel percpu allocator when a new object
904 * (memory block) is allocated (alloc_percpu).
905 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)906 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
907 gfp_t gfp)
908 {
909 unsigned int cpu;
910
911 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912
913 /*
914 * Percpu allocations are only scanned and not reported as leaks
915 * (min_count is set to 0).
916 */
917 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918 for_each_possible_cpu(cpu)
919 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 size, 0, gfp);
921 }
922 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
923
924 /**
925 * kmemleak_vmalloc - register a newly vmalloc'ed object
926 * @area: pointer to vm_struct
927 * @size: size of the object
928 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
929 *
930 * This function is called from the vmalloc() kernel allocator when a new
931 * object (memory block) is allocated.
932 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)933 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
934 {
935 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
936
937 /*
938 * A min_count = 2 is needed because vm_struct contains a reference to
939 * the virtual address of the vmalloc'ed block.
940 */
941 if (kmemleak_enabled) {
942 create_object((unsigned long)area->addr, size, 2, gfp);
943 object_set_excess_ref((unsigned long)area,
944 (unsigned long)area->addr);
945 }
946 }
947 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
948
949 /**
950 * kmemleak_free - unregister a previously registered object
951 * @ptr: pointer to beginning of the object
952 *
953 * This function is called from the kernel allocators when an object (memory
954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
955 */
kmemleak_free(const void * ptr)956 void __ref kmemleak_free(const void *ptr)
957 {
958 pr_debug("%s(0x%p)\n", __func__, ptr);
959
960 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 delete_object_full((unsigned long)ptr);
962 }
963 EXPORT_SYMBOL_GPL(kmemleak_free);
964
965 /**
966 * kmemleak_free_part - partially unregister a previously registered object
967 * @ptr: pointer to the beginning or inside the object. This also
968 * represents the start of the range to be freed
969 * @size: size to be unregistered
970 *
971 * This function is called when only a part of a memory block is freed
972 * (usually from the bootmem allocator).
973 */
kmemleak_free_part(const void * ptr,size_t size)974 void __ref kmemleak_free_part(const void *ptr, size_t size)
975 {
976 pr_debug("%s(0x%p)\n", __func__, ptr);
977
978 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
979 delete_object_part((unsigned long)ptr, size);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_free_part);
982
983 /**
984 * kmemleak_free_percpu - unregister a previously registered __percpu object
985 * @ptr: __percpu pointer to beginning of the object
986 *
987 * This function is called from the kernel percpu allocator when an object
988 * (memory block) is freed (free_percpu).
989 */
kmemleak_free_percpu(const void __percpu * ptr)990 void __ref kmemleak_free_percpu(const void __percpu *ptr)
991 {
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p)\n", __func__, ptr);
995
996 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
997 for_each_possible_cpu(cpu)
998 delete_object_full((unsigned long)per_cpu_ptr(ptr,
999 cpu));
1000 }
1001 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002
1003 /**
1004 * kmemleak_update_trace - update object allocation stack trace
1005 * @ptr: pointer to beginning of the object
1006 *
1007 * Override the object allocation stack trace for cases where the actual
1008 * allocation place is not always useful.
1009 */
kmemleak_update_trace(const void * ptr)1010 void __ref kmemleak_update_trace(const void *ptr)
1011 {
1012 struct kmemleak_object *object;
1013 unsigned long flags;
1014
1015 pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018 return;
1019
1020 object = find_and_get_object((unsigned long)ptr, 1);
1021 if (!object) {
1022 #ifdef DEBUG
1023 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024 ptr);
1025 #endif
1026 return;
1027 }
1028
1029 spin_lock_irqsave(&object->lock, flags);
1030 object->trace_len = __save_stack_trace(object->trace);
1031 spin_unlock_irqrestore(&object->lock, flags);
1032
1033 put_object(object);
1034 }
1035 EXPORT_SYMBOL(kmemleak_update_trace);
1036
1037 /**
1038 * kmemleak_not_leak - mark an allocated object as false positive
1039 * @ptr: pointer to beginning of the object
1040 *
1041 * Calling this function on an object will cause the memory block to no longer
1042 * be reported as leak and always be scanned.
1043 */
kmemleak_not_leak(const void * ptr)1044 void __ref kmemleak_not_leak(const void *ptr)
1045 {
1046 pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049 make_gray_object((unsigned long)ptr);
1050 }
1051 EXPORT_SYMBOL(kmemleak_not_leak);
1052
1053 /**
1054 * kmemleak_ignore - ignore an allocated object
1055 * @ptr: pointer to beginning of the object
1056 *
1057 * Calling this function on an object will cause the memory block to be
1058 * ignored (not scanned and not reported as a leak). This is usually done when
1059 * it is known that the corresponding block is not a leak and does not contain
1060 * any references to other allocated memory blocks.
1061 */
kmemleak_ignore(const void * ptr)1062 void __ref kmemleak_ignore(const void *ptr)
1063 {
1064 pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 make_black_object((unsigned long)ptr);
1068 }
1069 EXPORT_SYMBOL(kmemleak_ignore);
1070
1071 /**
1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 * @ptr: pointer to beginning or inside the object. This also
1074 * represents the start of the scan area
1075 * @size: size of the scan area
1076 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1077 *
1078 * This function is used when it is known that only certain parts of an object
1079 * contain references to other objects. Kmemleak will only scan these areas
1080 * reducing the number false negatives.
1081 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1082 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083 {
1084 pr_debug("%s(0x%p)\n", __func__, ptr);
1085
1086 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087 add_scan_area((unsigned long)ptr, size, gfp);
1088 }
1089 EXPORT_SYMBOL(kmemleak_scan_area);
1090
1091 /**
1092 * kmemleak_no_scan - do not scan an allocated object
1093 * @ptr: pointer to beginning of the object
1094 *
1095 * This function notifies kmemleak not to scan the given memory block. Useful
1096 * in situations where it is known that the given object does not contain any
1097 * references to other objects. Kmemleak will not scan such objects reducing
1098 * the number of false negatives.
1099 */
kmemleak_no_scan(const void * ptr)1100 void __ref kmemleak_no_scan(const void *ptr)
1101 {
1102 pr_debug("%s(0x%p)\n", __func__, ptr);
1103
1104 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105 object_no_scan((unsigned long)ptr);
1106 }
1107 EXPORT_SYMBOL(kmemleak_no_scan);
1108
1109 /**
1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111 * address argument
1112 * @phys: physical address of the object
1113 * @size: size of the object
1114 * @min_count: minimum number of references to this object.
1115 * See kmemleak_alloc()
1116 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1117 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1118 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119 gfp_t gfp)
1120 {
1121 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122 kmemleak_alloc(__va(phys), size, min_count, gfp);
1123 }
1124 EXPORT_SYMBOL(kmemleak_alloc_phys);
1125
1126 /**
1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 * physical address argument
1129 * @phys: physical address if the beginning or inside an object. This
1130 * also represents the start of the range to be freed
1131 * @size: size to be unregistered
1132 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1133 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134 {
1135 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 kmemleak_free_part(__va(phys), size);
1137 }
1138 EXPORT_SYMBOL(kmemleak_free_part_phys);
1139
1140 /**
1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142 * address argument
1143 * @phys: physical address of the object
1144 */
kmemleak_not_leak_phys(phys_addr_t phys)1145 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146 {
1147 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148 kmemleak_not_leak(__va(phys));
1149 }
1150 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151
1152 /**
1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154 * address argument
1155 * @phys: physical address of the object
1156 */
kmemleak_ignore_phys(phys_addr_t phys)1157 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158 {
1159 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160 kmemleak_ignore(__va(phys));
1161 }
1162 EXPORT_SYMBOL(kmemleak_ignore_phys);
1163
1164 /*
1165 * Update an object's checksum and return true if it was modified.
1166 */
update_checksum(struct kmemleak_object * object)1167 static bool update_checksum(struct kmemleak_object *object)
1168 {
1169 u32 old_csum = object->checksum;
1170
1171 kasan_disable_current();
1172 object->checksum = crc32(0, (void *)object->pointer, object->size);
1173 kasan_enable_current();
1174
1175 return object->checksum != old_csum;
1176 }
1177
1178 /*
1179 * Update an object's references. object->lock must be held by the caller.
1180 */
update_refs(struct kmemleak_object * object)1181 static void update_refs(struct kmemleak_object *object)
1182 {
1183 if (!color_white(object)) {
1184 /* non-orphan, ignored or new */
1185 return;
1186 }
1187
1188 /*
1189 * Increase the object's reference count (number of pointers to the
1190 * memory block). If this count reaches the required minimum, the
1191 * object's color will become gray and it will be added to the
1192 * gray_list.
1193 */
1194 object->count++;
1195 if (color_gray(object)) {
1196 /* put_object() called when removing from gray_list */
1197 WARN_ON(!get_object(object));
1198 list_add_tail(&object->gray_list, &gray_list);
1199 }
1200 }
1201
1202 /*
1203 * Memory scanning is a long process and it needs to be interruptable. This
1204 * function checks whether such interrupt condition occurred.
1205 */
scan_should_stop(void)1206 static int scan_should_stop(void)
1207 {
1208 if (!kmemleak_enabled)
1209 return 1;
1210
1211 /*
1212 * This function may be called from either process or kthread context,
1213 * hence the need to check for both stop conditions.
1214 */
1215 if (current->mm)
1216 return signal_pending(current);
1217 else
1218 return kthread_should_stop();
1219
1220 return 0;
1221 }
1222
1223 /*
1224 * Scan a memory block (exclusive range) for valid pointers and add those
1225 * found to the gray list.
1226 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1227 static void scan_block(void *_start, void *_end,
1228 struct kmemleak_object *scanned)
1229 {
1230 unsigned long *ptr;
1231 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1232 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1233 unsigned long flags;
1234 unsigned long untagged_ptr;
1235
1236 read_lock_irqsave(&kmemleak_lock, flags);
1237 for (ptr = start; ptr < end; ptr++) {
1238 struct kmemleak_object *object;
1239 unsigned long pointer;
1240 unsigned long excess_ref;
1241
1242 if (scan_should_stop())
1243 break;
1244
1245 kasan_disable_current();
1246 pointer = *ptr;
1247 kasan_enable_current();
1248
1249 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1250 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1251 continue;
1252
1253 /*
1254 * No need for get_object() here since we hold kmemleak_lock.
1255 * object->use_count cannot be dropped to 0 while the object
1256 * is still present in object_tree_root and object_list
1257 * (with updates protected by kmemleak_lock).
1258 */
1259 object = lookup_object(pointer, 1);
1260 if (!object)
1261 continue;
1262 if (object == scanned)
1263 /* self referenced, ignore */
1264 continue;
1265
1266 /*
1267 * Avoid the lockdep recursive warning on object->lock being
1268 * previously acquired in scan_object(). These locks are
1269 * enclosed by scan_mutex.
1270 */
1271 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1272 /* only pass surplus references (object already gray) */
1273 if (color_gray(object)) {
1274 excess_ref = object->excess_ref;
1275 /* no need for update_refs() if object already gray */
1276 } else {
1277 excess_ref = 0;
1278 update_refs(object);
1279 }
1280 spin_unlock(&object->lock);
1281
1282 if (excess_ref) {
1283 object = lookup_object(excess_ref, 0);
1284 if (!object)
1285 continue;
1286 if (object == scanned)
1287 /* circular reference, ignore */
1288 continue;
1289 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1290 update_refs(object);
1291 spin_unlock(&object->lock);
1292 }
1293 }
1294 read_unlock_irqrestore(&kmemleak_lock, flags);
1295 }
1296
1297 /*
1298 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1299 */
1300 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1301 static void scan_large_block(void *start, void *end)
1302 {
1303 void *next;
1304
1305 while (start < end) {
1306 next = min(start + MAX_SCAN_SIZE, end);
1307 scan_block(start, next, NULL);
1308 start = next;
1309 cond_resched();
1310 }
1311 }
1312 #endif
1313
1314 /*
1315 * Scan a memory block corresponding to a kmemleak_object. A condition is
1316 * that object->use_count >= 1.
1317 */
scan_object(struct kmemleak_object * object)1318 static void scan_object(struct kmemleak_object *object)
1319 {
1320 struct kmemleak_scan_area *area;
1321 unsigned long flags;
1322
1323 /*
1324 * Once the object->lock is acquired, the corresponding memory block
1325 * cannot be freed (the same lock is acquired in delete_object).
1326 */
1327 spin_lock_irqsave(&object->lock, flags);
1328 if (object->flags & OBJECT_NO_SCAN)
1329 goto out;
1330 if (!(object->flags & OBJECT_ALLOCATED))
1331 /* already freed object */
1332 goto out;
1333 if (hlist_empty(&object->area_list) ||
1334 object->flags & OBJECT_FULL_SCAN) {
1335 void *start = (void *)object->pointer;
1336 void *end = (void *)(object->pointer + object->size);
1337 void *next;
1338
1339 do {
1340 next = min(start + MAX_SCAN_SIZE, end);
1341 scan_block(start, next, object);
1342
1343 start = next;
1344 if (start >= end)
1345 break;
1346
1347 spin_unlock_irqrestore(&object->lock, flags);
1348 cond_resched();
1349 spin_lock_irqsave(&object->lock, flags);
1350 } while (object->flags & OBJECT_ALLOCATED);
1351 } else
1352 hlist_for_each_entry(area, &object->area_list, node)
1353 scan_block((void *)area->start,
1354 (void *)(area->start + area->size),
1355 object);
1356 out:
1357 spin_unlock_irqrestore(&object->lock, flags);
1358 }
1359
1360 /*
1361 * Scan the objects already referenced (gray objects). More objects will be
1362 * referenced and, if there are no memory leaks, all the objects are scanned.
1363 */
scan_gray_list(void)1364 static void scan_gray_list(void)
1365 {
1366 struct kmemleak_object *object, *tmp;
1367
1368 /*
1369 * The list traversal is safe for both tail additions and removals
1370 * from inside the loop. The kmemleak objects cannot be freed from
1371 * outside the loop because their use_count was incremented.
1372 */
1373 object = list_entry(gray_list.next, typeof(*object), gray_list);
1374 while (&object->gray_list != &gray_list) {
1375 cond_resched();
1376
1377 /* may add new objects to the list */
1378 if (!scan_should_stop())
1379 scan_object(object);
1380
1381 tmp = list_entry(object->gray_list.next, typeof(*object),
1382 gray_list);
1383
1384 /* remove the object from the list and release it */
1385 list_del(&object->gray_list);
1386 put_object(object);
1387
1388 object = tmp;
1389 }
1390 WARN_ON(!list_empty(&gray_list));
1391 }
1392
1393 /*
1394 * Scan data sections and all the referenced memory blocks allocated via the
1395 * kernel's standard allocators. This function must be called with the
1396 * scan_mutex held.
1397 */
kmemleak_scan(void)1398 static void kmemleak_scan(void)
1399 {
1400 unsigned long flags;
1401 struct kmemleak_object *object;
1402 int i;
1403 int new_leaks = 0;
1404
1405 jiffies_last_scan = jiffies;
1406
1407 /* prepare the kmemleak_object's */
1408 rcu_read_lock();
1409 list_for_each_entry_rcu(object, &object_list, object_list) {
1410 spin_lock_irqsave(&object->lock, flags);
1411 #ifdef DEBUG
1412 /*
1413 * With a few exceptions there should be a maximum of
1414 * 1 reference to any object at this point.
1415 */
1416 if (atomic_read(&object->use_count) > 1) {
1417 pr_debug("object->use_count = %d\n",
1418 atomic_read(&object->use_count));
1419 dump_object_info(object);
1420 }
1421 #endif
1422 /* reset the reference count (whiten the object) */
1423 object->count = 0;
1424 if (color_gray(object) && get_object(object))
1425 list_add_tail(&object->gray_list, &gray_list);
1426
1427 spin_unlock_irqrestore(&object->lock, flags);
1428 }
1429 rcu_read_unlock();
1430
1431 #ifdef CONFIG_SMP
1432 /* per-cpu sections scanning */
1433 for_each_possible_cpu(i)
1434 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1435 __per_cpu_end + per_cpu_offset(i));
1436 #endif
1437
1438 /*
1439 * Struct page scanning for each node.
1440 */
1441 get_online_mems();
1442 for_each_online_node(i) {
1443 unsigned long start_pfn = node_start_pfn(i);
1444 unsigned long end_pfn = node_end_pfn(i);
1445 unsigned long pfn;
1446
1447 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1448 struct page *page = pfn_to_online_page(pfn);
1449
1450 if (!page)
1451 continue;
1452
1453 /* only scan pages belonging to this node */
1454 if (page_to_nid(page) != i)
1455 continue;
1456 /* only scan if page is in use */
1457 if (page_count(page) == 0)
1458 continue;
1459 scan_block(page, page + 1, NULL);
1460 if (!(pfn & 63))
1461 cond_resched();
1462 }
1463 }
1464 put_online_mems();
1465
1466 /*
1467 * Scanning the task stacks (may introduce false negatives).
1468 */
1469 if (kmemleak_stack_scan) {
1470 struct task_struct *p, *g;
1471
1472 read_lock(&tasklist_lock);
1473 do_each_thread(g, p) {
1474 void *stack = try_get_task_stack(p);
1475 if (stack) {
1476 scan_block(stack, stack + THREAD_SIZE, NULL);
1477 put_task_stack(p);
1478 }
1479 } while_each_thread(g, p);
1480 read_unlock(&tasklist_lock);
1481 }
1482
1483 /*
1484 * Scan the objects already referenced from the sections scanned
1485 * above.
1486 */
1487 scan_gray_list();
1488
1489 /*
1490 * Check for new or unreferenced objects modified since the previous
1491 * scan and color them gray until the next scan.
1492 */
1493 rcu_read_lock();
1494 list_for_each_entry_rcu(object, &object_list, object_list) {
1495 spin_lock_irqsave(&object->lock, flags);
1496 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1497 && update_checksum(object) && get_object(object)) {
1498 /* color it gray temporarily */
1499 object->count = object->min_count;
1500 list_add_tail(&object->gray_list, &gray_list);
1501 }
1502 spin_unlock_irqrestore(&object->lock, flags);
1503 }
1504 rcu_read_unlock();
1505
1506 /*
1507 * Re-scan the gray list for modified unreferenced objects.
1508 */
1509 scan_gray_list();
1510
1511 /*
1512 * If scanning was stopped do not report any new unreferenced objects.
1513 */
1514 if (scan_should_stop())
1515 return;
1516
1517 /*
1518 * Scanning result reporting.
1519 */
1520 rcu_read_lock();
1521 list_for_each_entry_rcu(object, &object_list, object_list) {
1522 spin_lock_irqsave(&object->lock, flags);
1523 if (unreferenced_object(object) &&
1524 !(object->flags & OBJECT_REPORTED)) {
1525 object->flags |= OBJECT_REPORTED;
1526
1527 if (kmemleak_verbose)
1528 print_unreferenced(NULL, object);
1529
1530 new_leaks++;
1531 }
1532 spin_unlock_irqrestore(&object->lock, flags);
1533 }
1534 rcu_read_unlock();
1535
1536 if (new_leaks) {
1537 kmemleak_found_leaks = true;
1538
1539 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1540 new_leaks);
1541 }
1542
1543 }
1544
1545 /*
1546 * Thread function performing automatic memory scanning. Unreferenced objects
1547 * at the end of a memory scan are reported but only the first time.
1548 */
kmemleak_scan_thread(void * arg)1549 static int kmemleak_scan_thread(void *arg)
1550 {
1551 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1552
1553 pr_info("Automatic memory scanning thread started\n");
1554 set_user_nice(current, 10);
1555
1556 /*
1557 * Wait before the first scan to allow the system to fully initialize.
1558 */
1559 if (first_run) {
1560 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1561 first_run = 0;
1562 while (timeout && !kthread_should_stop())
1563 timeout = schedule_timeout_interruptible(timeout);
1564 }
1565
1566 while (!kthread_should_stop()) {
1567 signed long timeout = jiffies_scan_wait;
1568
1569 mutex_lock(&scan_mutex);
1570 kmemleak_scan();
1571 mutex_unlock(&scan_mutex);
1572
1573 /* wait before the next scan */
1574 while (timeout && !kthread_should_stop())
1575 timeout = schedule_timeout_interruptible(timeout);
1576 }
1577
1578 pr_info("Automatic memory scanning thread ended\n");
1579
1580 return 0;
1581 }
1582
1583 /*
1584 * Start the automatic memory scanning thread. This function must be called
1585 * with the scan_mutex held.
1586 */
start_scan_thread(void)1587 static void start_scan_thread(void)
1588 {
1589 if (scan_thread)
1590 return;
1591 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1592 if (IS_ERR(scan_thread)) {
1593 pr_warn("Failed to create the scan thread\n");
1594 scan_thread = NULL;
1595 }
1596 }
1597
1598 /*
1599 * Stop the automatic memory scanning thread.
1600 */
stop_scan_thread(void)1601 static void stop_scan_thread(void)
1602 {
1603 if (scan_thread) {
1604 kthread_stop(scan_thread);
1605 scan_thread = NULL;
1606 }
1607 }
1608
1609 /*
1610 * Iterate over the object_list and return the first valid object at or after
1611 * the required position with its use_count incremented. The function triggers
1612 * a memory scanning when the pos argument points to the first position.
1613 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1614 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1615 {
1616 struct kmemleak_object *object;
1617 loff_t n = *pos;
1618 int err;
1619
1620 err = mutex_lock_interruptible(&scan_mutex);
1621 if (err < 0)
1622 return ERR_PTR(err);
1623
1624 rcu_read_lock();
1625 list_for_each_entry_rcu(object, &object_list, object_list) {
1626 if (n-- > 0)
1627 continue;
1628 if (get_object(object))
1629 goto out;
1630 }
1631 object = NULL;
1632 out:
1633 return object;
1634 }
1635
1636 /*
1637 * Return the next object in the object_list. The function decrements the
1638 * use_count of the previous object and increases that of the next one.
1639 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1640 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1641 {
1642 struct kmemleak_object *prev_obj = v;
1643 struct kmemleak_object *next_obj = NULL;
1644 struct kmemleak_object *obj = prev_obj;
1645
1646 ++(*pos);
1647
1648 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1649 if (get_object(obj)) {
1650 next_obj = obj;
1651 break;
1652 }
1653 }
1654
1655 put_object(prev_obj);
1656 return next_obj;
1657 }
1658
1659 /*
1660 * Decrement the use_count of the last object required, if any.
1661 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1662 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1663 {
1664 if (!IS_ERR(v)) {
1665 /*
1666 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1667 * waiting was interrupted, so only release it if !IS_ERR.
1668 */
1669 rcu_read_unlock();
1670 mutex_unlock(&scan_mutex);
1671 if (v)
1672 put_object(v);
1673 }
1674 }
1675
1676 /*
1677 * Print the information for an unreferenced object to the seq file.
1678 */
kmemleak_seq_show(struct seq_file * seq,void * v)1679 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1680 {
1681 struct kmemleak_object *object = v;
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&object->lock, flags);
1685 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1686 print_unreferenced(seq, object);
1687 spin_unlock_irqrestore(&object->lock, flags);
1688 return 0;
1689 }
1690
1691 static const struct seq_operations kmemleak_seq_ops = {
1692 .start = kmemleak_seq_start,
1693 .next = kmemleak_seq_next,
1694 .stop = kmemleak_seq_stop,
1695 .show = kmemleak_seq_show,
1696 };
1697
kmemleak_open(struct inode * inode,struct file * file)1698 static int kmemleak_open(struct inode *inode, struct file *file)
1699 {
1700 return seq_open(file, &kmemleak_seq_ops);
1701 }
1702
dump_str_object_info(const char * str)1703 static int dump_str_object_info(const char *str)
1704 {
1705 unsigned long flags;
1706 struct kmemleak_object *object;
1707 unsigned long addr;
1708
1709 if (kstrtoul(str, 0, &addr))
1710 return -EINVAL;
1711 object = find_and_get_object(addr, 0);
1712 if (!object) {
1713 pr_info("Unknown object at 0x%08lx\n", addr);
1714 return -EINVAL;
1715 }
1716
1717 spin_lock_irqsave(&object->lock, flags);
1718 dump_object_info(object);
1719 spin_unlock_irqrestore(&object->lock, flags);
1720
1721 put_object(object);
1722 return 0;
1723 }
1724
1725 /*
1726 * We use grey instead of black to ensure we can do future scans on the same
1727 * objects. If we did not do future scans these black objects could
1728 * potentially contain references to newly allocated objects in the future and
1729 * we'd end up with false positives.
1730 */
kmemleak_clear(void)1731 static void kmemleak_clear(void)
1732 {
1733 struct kmemleak_object *object;
1734 unsigned long flags;
1735
1736 rcu_read_lock();
1737 list_for_each_entry_rcu(object, &object_list, object_list) {
1738 spin_lock_irqsave(&object->lock, flags);
1739 if ((object->flags & OBJECT_REPORTED) &&
1740 unreferenced_object(object))
1741 __paint_it(object, KMEMLEAK_GREY);
1742 spin_unlock_irqrestore(&object->lock, flags);
1743 }
1744 rcu_read_unlock();
1745
1746 kmemleak_found_leaks = false;
1747 }
1748
1749 static void __kmemleak_do_cleanup(void);
1750
1751 /*
1752 * File write operation to configure kmemleak at run-time. The following
1753 * commands can be written to the /sys/kernel/debug/kmemleak file:
1754 * off - disable kmemleak (irreversible)
1755 * stack=on - enable the task stacks scanning
1756 * stack=off - disable the tasks stacks scanning
1757 * scan=on - start the automatic memory scanning thread
1758 * scan=off - stop the automatic memory scanning thread
1759 * scan=... - set the automatic memory scanning period in seconds (0 to
1760 * disable it)
1761 * scan - trigger a memory scan
1762 * clear - mark all current reported unreferenced kmemleak objects as
1763 * grey to ignore printing them, or free all kmemleak objects
1764 * if kmemleak has been disabled.
1765 * dump=... - dump information about the object found at the given address
1766 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1767 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1768 size_t size, loff_t *ppos)
1769 {
1770 char buf[64];
1771 int buf_size;
1772 int ret;
1773
1774 buf_size = min(size, (sizeof(buf) - 1));
1775 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1776 return -EFAULT;
1777 buf[buf_size] = 0;
1778
1779 ret = mutex_lock_interruptible(&scan_mutex);
1780 if (ret < 0)
1781 return ret;
1782
1783 if (strncmp(buf, "clear", 5) == 0) {
1784 if (kmemleak_enabled)
1785 kmemleak_clear();
1786 else
1787 __kmemleak_do_cleanup();
1788 goto out;
1789 }
1790
1791 if (!kmemleak_enabled) {
1792 ret = -EPERM;
1793 goto out;
1794 }
1795
1796 if (strncmp(buf, "off", 3) == 0)
1797 kmemleak_disable();
1798 else if (strncmp(buf, "stack=on", 8) == 0)
1799 kmemleak_stack_scan = 1;
1800 else if (strncmp(buf, "stack=off", 9) == 0)
1801 kmemleak_stack_scan = 0;
1802 else if (strncmp(buf, "scan=on", 7) == 0)
1803 start_scan_thread();
1804 else if (strncmp(buf, "scan=off", 8) == 0)
1805 stop_scan_thread();
1806 else if (strncmp(buf, "scan=", 5) == 0) {
1807 unsigned long secs;
1808
1809 ret = kstrtoul(buf + 5, 0, &secs);
1810 if (ret < 0)
1811 goto out;
1812 stop_scan_thread();
1813 if (secs) {
1814 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1815 start_scan_thread();
1816 }
1817 } else if (strncmp(buf, "scan", 4) == 0)
1818 kmemleak_scan();
1819 else if (strncmp(buf, "dump=", 5) == 0)
1820 ret = dump_str_object_info(buf + 5);
1821 else
1822 ret = -EINVAL;
1823
1824 out:
1825 mutex_unlock(&scan_mutex);
1826 if (ret < 0)
1827 return ret;
1828
1829 /* ignore the rest of the buffer, only one command at a time */
1830 *ppos += size;
1831 return size;
1832 }
1833
1834 static const struct file_operations kmemleak_fops = {
1835 .owner = THIS_MODULE,
1836 .open = kmemleak_open,
1837 .read = seq_read,
1838 .write = kmemleak_write,
1839 .llseek = seq_lseek,
1840 .release = seq_release,
1841 };
1842
__kmemleak_do_cleanup(void)1843 static void __kmemleak_do_cleanup(void)
1844 {
1845 struct kmemleak_object *object, *tmp;
1846
1847 /*
1848 * Kmemleak has already been disabled, no need for RCU list traversal
1849 * or kmemleak_lock held.
1850 */
1851 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1852 __remove_object(object);
1853 __delete_object(object);
1854 }
1855 }
1856
1857 /*
1858 * Stop the memory scanning thread and free the kmemleak internal objects if
1859 * no previous scan thread (otherwise, kmemleak may still have some useful
1860 * information on memory leaks).
1861 */
kmemleak_do_cleanup(struct work_struct * work)1862 static void kmemleak_do_cleanup(struct work_struct *work)
1863 {
1864 stop_scan_thread();
1865
1866 mutex_lock(&scan_mutex);
1867 /*
1868 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1869 * longer track object freeing. Ordering of the scan thread stopping and
1870 * the memory accesses below is guaranteed by the kthread_stop()
1871 * function.
1872 */
1873 kmemleak_free_enabled = 0;
1874 mutex_unlock(&scan_mutex);
1875
1876 if (!kmemleak_found_leaks)
1877 __kmemleak_do_cleanup();
1878 else
1879 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1880 }
1881
1882 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1883
1884 /*
1885 * Disable kmemleak. No memory allocation/freeing will be traced once this
1886 * function is called. Disabling kmemleak is an irreversible operation.
1887 */
kmemleak_disable(void)1888 static void kmemleak_disable(void)
1889 {
1890 /* atomically check whether it was already invoked */
1891 if (cmpxchg(&kmemleak_error, 0, 1))
1892 return;
1893
1894 /* stop any memory operation tracing */
1895 kmemleak_enabled = 0;
1896
1897 /* check whether it is too early for a kernel thread */
1898 if (kmemleak_initialized)
1899 schedule_work(&cleanup_work);
1900 else
1901 kmemleak_free_enabled = 0;
1902
1903 pr_info("Kernel memory leak detector disabled\n");
1904 }
1905
1906 /*
1907 * Allow boot-time kmemleak disabling (enabled by default).
1908 */
kmemleak_boot_config(char * str)1909 static int __init kmemleak_boot_config(char *str)
1910 {
1911 if (!str)
1912 return -EINVAL;
1913 if (strcmp(str, "off") == 0)
1914 kmemleak_disable();
1915 else if (strcmp(str, "on") == 0)
1916 kmemleak_skip_disable = 1;
1917 else
1918 return -EINVAL;
1919 return 0;
1920 }
1921 early_param("kmemleak", kmemleak_boot_config);
1922
1923 /*
1924 * Kmemleak initialization.
1925 */
kmemleak_init(void)1926 void __init kmemleak_init(void)
1927 {
1928 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1929 if (!kmemleak_skip_disable) {
1930 kmemleak_disable();
1931 return;
1932 }
1933 #endif
1934
1935 if (kmemleak_error)
1936 return;
1937
1938 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1939 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1940
1941 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1942 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1943
1944 /* register the data/bss sections */
1945 create_object((unsigned long)_sdata, _edata - _sdata,
1946 KMEMLEAK_GREY, GFP_ATOMIC);
1947 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1948 KMEMLEAK_GREY, GFP_ATOMIC);
1949 /* only register .data..ro_after_init if not within .data */
1950 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
1951 create_object((unsigned long)__start_ro_after_init,
1952 __end_ro_after_init - __start_ro_after_init,
1953 KMEMLEAK_GREY, GFP_ATOMIC);
1954 }
1955
1956 /*
1957 * Late initialization function.
1958 */
kmemleak_late_init(void)1959 static int __init kmemleak_late_init(void)
1960 {
1961 kmemleak_initialized = 1;
1962
1963 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1964
1965 if (kmemleak_error) {
1966 /*
1967 * Some error occurred and kmemleak was disabled. There is a
1968 * small chance that kmemleak_disable() was called immediately
1969 * after setting kmemleak_initialized and we may end up with
1970 * two clean-up threads but serialized by scan_mutex.
1971 */
1972 schedule_work(&cleanup_work);
1973 return -ENOMEM;
1974 }
1975
1976 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1977 mutex_lock(&scan_mutex);
1978 start_scan_thread();
1979 mutex_unlock(&scan_mutex);
1980 }
1981
1982 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1983 mem_pool_free_count);
1984
1985 return 0;
1986 }
1987 late_initcall(kmemleak_late_init);
1988