1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Frontswap frontend
4  *
5  * This code provides the generic "frontend" layer to call a matching
6  * "backend" driver implementation of frontswap.  See
7  * Documentation/vm/frontswap.rst for more information.
8  *
9  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
10  * Author: Dan Magenheimer
11  */
12 
13 #include <linux/mman.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/security.h>
17 #include <linux/module.h>
18 #include <linux/debugfs.h>
19 #include <linux/frontswap.h>
20 #include <linux/swapfile.h>
21 
22 DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
23 
24 /*
25  * frontswap_ops are added by frontswap_register_ops, and provide the
26  * frontswap "backend" implementation functions.  Multiple implementations
27  * may be registered, but implementations can never deregister.  This
28  * is a simple singly-linked list of all registered implementations.
29  */
30 static struct frontswap_ops *frontswap_ops __read_mostly;
31 
32 #define for_each_frontswap_ops(ops)		\
33 	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
34 
35 /*
36  * If enabled, frontswap_store will return failure even on success.  As
37  * a result, the swap subsystem will always write the page to swap, in
38  * effect converting frontswap into a writethrough cache.  In this mode,
39  * there is no direct reduction in swap writes, but a frontswap backend
40  * can unilaterally "reclaim" any pages in use with no data loss, thus
41  * providing increases control over maximum memory usage due to frontswap.
42  */
43 static bool frontswap_writethrough_enabled __read_mostly;
44 
45 /*
46  * If enabled, the underlying tmem implementation is capable of doing
47  * exclusive gets, so frontswap_load, on a successful tmem_get must
48  * mark the page as no longer in frontswap AND mark it dirty.
49  */
50 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
51 
52 #ifdef CONFIG_DEBUG_FS
53 /*
54  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
55  * properly configured).  These are for information only so are not protected
56  * against increment races.
57  */
58 static u64 frontswap_loads;
59 static u64 frontswap_succ_stores;
60 static u64 frontswap_failed_stores;
61 static u64 frontswap_invalidates;
62 
inc_frontswap_loads(void)63 static inline void inc_frontswap_loads(void) {
64 	frontswap_loads++;
65 }
inc_frontswap_succ_stores(void)66 static inline void inc_frontswap_succ_stores(void) {
67 	frontswap_succ_stores++;
68 }
inc_frontswap_failed_stores(void)69 static inline void inc_frontswap_failed_stores(void) {
70 	frontswap_failed_stores++;
71 }
inc_frontswap_invalidates(void)72 static inline void inc_frontswap_invalidates(void) {
73 	frontswap_invalidates++;
74 }
75 #else
inc_frontswap_loads(void)76 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)77 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)78 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)79 static inline void inc_frontswap_invalidates(void) { }
80 #endif
81 
82 /*
83  * Due to the asynchronous nature of the backends loading potentially
84  * _after_ the swap system has been activated, we have chokepoints
85  * on all frontswap functions to not call the backend until the backend
86  * has registered.
87  *
88  * This would not guards us against the user deciding to call swapoff right as
89  * we are calling the backend to initialize (so swapon is in action).
90  * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
91  * OK. The other scenario where calls to frontswap_store (called via
92  * swap_writepage) is racing with frontswap_invalidate_area (called via
93  * swapoff) is again guarded by the swap subsystem.
94  *
95  * While no backend is registered all calls to frontswap_[store|load|
96  * invalidate_area|invalidate_page] are ignored or fail.
97  *
98  * The time between the backend being registered and the swap file system
99  * calling the backend (via the frontswap_* functions) is indeterminate as
100  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
101  * That is OK as we are comfortable missing some of these calls to the newly
102  * registered backend.
103  *
104  * Obviously the opposite (unloading the backend) must be done after all
105  * the frontswap_[store|load|invalidate_area|invalidate_page] start
106  * ignoring or failing the requests.  However, there is currently no way
107  * to unload a backend once it is registered.
108  */
109 
110 /*
111  * Register operations for frontswap
112  */
frontswap_register_ops(struct frontswap_ops * ops)113 void frontswap_register_ops(struct frontswap_ops *ops)
114 {
115 	DECLARE_BITMAP(a, MAX_SWAPFILES);
116 	DECLARE_BITMAP(b, MAX_SWAPFILES);
117 	struct swap_info_struct *si;
118 	unsigned int i;
119 
120 	bitmap_zero(a, MAX_SWAPFILES);
121 	bitmap_zero(b, MAX_SWAPFILES);
122 
123 	spin_lock(&swap_lock);
124 	plist_for_each_entry(si, &swap_active_head, list) {
125 		if (!WARN_ON(!si->frontswap_map))
126 			set_bit(si->type, a);
127 	}
128 	spin_unlock(&swap_lock);
129 
130 	/* the new ops needs to know the currently active swap devices */
131 	for_each_set_bit(i, a, MAX_SWAPFILES)
132 		ops->init(i);
133 
134 	/*
135 	 * Setting frontswap_ops must happen after the ops->init() calls
136 	 * above; cmpxchg implies smp_mb() which will ensure the init is
137 	 * complete at this point.
138 	 */
139 	do {
140 		ops->next = frontswap_ops;
141 	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
142 
143 	static_branch_inc(&frontswap_enabled_key);
144 
145 	spin_lock(&swap_lock);
146 	plist_for_each_entry(si, &swap_active_head, list) {
147 		if (si->frontswap_map)
148 			set_bit(si->type, b);
149 	}
150 	spin_unlock(&swap_lock);
151 
152 	/*
153 	 * On the very unlikely chance that a swap device was added or
154 	 * removed between setting the "a" list bits and the ops init
155 	 * calls, we re-check and do init or invalidate for any changed
156 	 * bits.
157 	 */
158 	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
159 		for (i = 0; i < MAX_SWAPFILES; i++) {
160 			if (!test_bit(i, a) && test_bit(i, b))
161 				ops->init(i);
162 			else if (test_bit(i, a) && !test_bit(i, b))
163 				ops->invalidate_area(i);
164 		}
165 	}
166 }
167 EXPORT_SYMBOL(frontswap_register_ops);
168 
169 /*
170  * Enable/disable frontswap writethrough (see above).
171  */
frontswap_writethrough(bool enable)172 void frontswap_writethrough(bool enable)
173 {
174 	frontswap_writethrough_enabled = enable;
175 }
176 EXPORT_SYMBOL(frontswap_writethrough);
177 
178 /*
179  * Enable/disable frontswap exclusive gets (see above).
180  */
frontswap_tmem_exclusive_gets(bool enable)181 void frontswap_tmem_exclusive_gets(bool enable)
182 {
183 	frontswap_tmem_exclusive_gets_enabled = enable;
184 }
185 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
186 
187 /*
188  * Called when a swap device is swapon'd.
189  */
__frontswap_init(unsigned type,unsigned long * map)190 void __frontswap_init(unsigned type, unsigned long *map)
191 {
192 	struct swap_info_struct *sis = swap_info[type];
193 	struct frontswap_ops *ops;
194 
195 	VM_BUG_ON(sis == NULL);
196 
197 	/*
198 	 * p->frontswap is a bitmap that we MUST have to figure out which page
199 	 * has gone in frontswap. Without it there is no point of continuing.
200 	 */
201 	if (WARN_ON(!map))
202 		return;
203 	/*
204 	 * Irregardless of whether the frontswap backend has been loaded
205 	 * before this function or it will be later, we _MUST_ have the
206 	 * p->frontswap set to something valid to work properly.
207 	 */
208 	frontswap_map_set(sis, map);
209 
210 	for_each_frontswap_ops(ops)
211 		ops->init(type);
212 }
213 EXPORT_SYMBOL(__frontswap_init);
214 
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)215 bool __frontswap_test(struct swap_info_struct *sis,
216 				pgoff_t offset)
217 {
218 	if (sis->frontswap_map)
219 		return test_bit(offset, sis->frontswap_map);
220 	return false;
221 }
222 EXPORT_SYMBOL(__frontswap_test);
223 
__frontswap_set(struct swap_info_struct * sis,pgoff_t offset)224 static inline void __frontswap_set(struct swap_info_struct *sis,
225 				   pgoff_t offset)
226 {
227 	set_bit(offset, sis->frontswap_map);
228 	atomic_inc(&sis->frontswap_pages);
229 }
230 
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)231 static inline void __frontswap_clear(struct swap_info_struct *sis,
232 				     pgoff_t offset)
233 {
234 	clear_bit(offset, sis->frontswap_map);
235 	atomic_dec(&sis->frontswap_pages);
236 }
237 
238 /*
239  * "Store" data from a page to frontswap and associate it with the page's
240  * swaptype and offset.  Page must be locked and in the swap cache.
241  * If frontswap already contains a page with matching swaptype and
242  * offset, the frontswap implementation may either overwrite the data and
243  * return success or invalidate the page from frontswap and return failure.
244  */
__frontswap_store(struct page * page)245 int __frontswap_store(struct page *page)
246 {
247 	int ret = -1;
248 	swp_entry_t entry = { .val = page_private(page), };
249 	int type = swp_type(entry);
250 	struct swap_info_struct *sis = swap_info[type];
251 	pgoff_t offset = swp_offset(entry);
252 	struct frontswap_ops *ops;
253 
254 	VM_BUG_ON(!frontswap_ops);
255 	VM_BUG_ON(!PageLocked(page));
256 	VM_BUG_ON(sis == NULL);
257 
258 	/*
259 	 * If a dup, we must remove the old page first; we can't leave the
260 	 * old page no matter if the store of the new page succeeds or fails,
261 	 * and we can't rely on the new page replacing the old page as we may
262 	 * not store to the same implementation that contains the old page.
263 	 */
264 	if (__frontswap_test(sis, offset)) {
265 		__frontswap_clear(sis, offset);
266 		for_each_frontswap_ops(ops)
267 			ops->invalidate_page(type, offset);
268 	}
269 
270 	/* Try to store in each implementation, until one succeeds. */
271 	for_each_frontswap_ops(ops) {
272 		ret = ops->store(type, offset, page);
273 		if (!ret) /* successful store */
274 			break;
275 	}
276 	if (ret == 0) {
277 		__frontswap_set(sis, offset);
278 		inc_frontswap_succ_stores();
279 	} else {
280 		inc_frontswap_failed_stores();
281 	}
282 	if (frontswap_writethrough_enabled)
283 		/* report failure so swap also writes to swap device */
284 		ret = -1;
285 	return ret;
286 }
287 EXPORT_SYMBOL(__frontswap_store);
288 
289 /*
290  * "Get" data from frontswap associated with swaptype and offset that were
291  * specified when the data was put to frontswap and use it to fill the
292  * specified page with data. Page must be locked and in the swap cache.
293  */
__frontswap_load(struct page * page)294 int __frontswap_load(struct page *page)
295 {
296 	int ret = -1;
297 	swp_entry_t entry = { .val = page_private(page), };
298 	int type = swp_type(entry);
299 	struct swap_info_struct *sis = swap_info[type];
300 	pgoff_t offset = swp_offset(entry);
301 	struct frontswap_ops *ops;
302 
303 	VM_BUG_ON(!frontswap_ops);
304 	VM_BUG_ON(!PageLocked(page));
305 	VM_BUG_ON(sis == NULL);
306 
307 	if (!__frontswap_test(sis, offset))
308 		return -1;
309 
310 	/* Try loading from each implementation, until one succeeds. */
311 	for_each_frontswap_ops(ops) {
312 		ret = ops->load(type, offset, page);
313 		if (!ret) /* successful load */
314 			break;
315 	}
316 	if (ret == 0) {
317 		inc_frontswap_loads();
318 		if (frontswap_tmem_exclusive_gets_enabled) {
319 			SetPageDirty(page);
320 			__frontswap_clear(sis, offset);
321 		}
322 	}
323 	return ret;
324 }
325 EXPORT_SYMBOL(__frontswap_load);
326 
327 /*
328  * Invalidate any data from frontswap associated with the specified swaptype
329  * and offset so that a subsequent "get" will fail.
330  */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)331 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
332 {
333 	struct swap_info_struct *sis = swap_info[type];
334 	struct frontswap_ops *ops;
335 
336 	VM_BUG_ON(!frontswap_ops);
337 	VM_BUG_ON(sis == NULL);
338 
339 	if (!__frontswap_test(sis, offset))
340 		return;
341 
342 	for_each_frontswap_ops(ops)
343 		ops->invalidate_page(type, offset);
344 	__frontswap_clear(sis, offset);
345 	inc_frontswap_invalidates();
346 }
347 EXPORT_SYMBOL(__frontswap_invalidate_page);
348 
349 /*
350  * Invalidate all data from frontswap associated with all offsets for the
351  * specified swaptype.
352  */
__frontswap_invalidate_area(unsigned type)353 void __frontswap_invalidate_area(unsigned type)
354 {
355 	struct swap_info_struct *sis = swap_info[type];
356 	struct frontswap_ops *ops;
357 
358 	VM_BUG_ON(!frontswap_ops);
359 	VM_BUG_ON(sis == NULL);
360 
361 	if (sis->frontswap_map == NULL)
362 		return;
363 
364 	for_each_frontswap_ops(ops)
365 		ops->invalidate_area(type);
366 	atomic_set(&sis->frontswap_pages, 0);
367 	bitmap_zero(sis->frontswap_map, sis->max);
368 }
369 EXPORT_SYMBOL(__frontswap_invalidate_area);
370 
__frontswap_curr_pages(void)371 static unsigned long __frontswap_curr_pages(void)
372 {
373 	unsigned long totalpages = 0;
374 	struct swap_info_struct *si = NULL;
375 
376 	assert_spin_locked(&swap_lock);
377 	plist_for_each_entry(si, &swap_active_head, list)
378 		totalpages += atomic_read(&si->frontswap_pages);
379 	return totalpages;
380 }
381 
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)382 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
383 					int *swapid)
384 {
385 	int ret = -EINVAL;
386 	struct swap_info_struct *si = NULL;
387 	int si_frontswap_pages;
388 	unsigned long total_pages_to_unuse = total;
389 	unsigned long pages = 0, pages_to_unuse = 0;
390 
391 	assert_spin_locked(&swap_lock);
392 	plist_for_each_entry(si, &swap_active_head, list) {
393 		si_frontswap_pages = atomic_read(&si->frontswap_pages);
394 		if (total_pages_to_unuse < si_frontswap_pages) {
395 			pages = pages_to_unuse = total_pages_to_unuse;
396 		} else {
397 			pages = si_frontswap_pages;
398 			pages_to_unuse = 0; /* unuse all */
399 		}
400 		/* ensure there is enough RAM to fetch pages from frontswap */
401 		if (security_vm_enough_memory_mm(current->mm, pages)) {
402 			ret = -ENOMEM;
403 			continue;
404 		}
405 		vm_unacct_memory(pages);
406 		*unused = pages_to_unuse;
407 		*swapid = si->type;
408 		ret = 0;
409 		break;
410 	}
411 
412 	return ret;
413 }
414 
415 /*
416  * Used to check if it's necessory and feasible to unuse pages.
417  * Return 1 when nothing to do, 0 when need to shink pages,
418  * error code when there is an error.
419  */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)420 static int __frontswap_shrink(unsigned long target_pages,
421 				unsigned long *pages_to_unuse,
422 				int *type)
423 {
424 	unsigned long total_pages = 0, total_pages_to_unuse;
425 
426 	assert_spin_locked(&swap_lock);
427 
428 	total_pages = __frontswap_curr_pages();
429 	if (total_pages <= target_pages) {
430 		/* Nothing to do */
431 		*pages_to_unuse = 0;
432 		return 1;
433 	}
434 	total_pages_to_unuse = total_pages - target_pages;
435 	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
436 }
437 
438 /*
439  * Frontswap, like a true swap device, may unnecessarily retain pages
440  * under certain circumstances; "shrink" frontswap is essentially a
441  * "partial swapoff" and works by calling try_to_unuse to attempt to
442  * unuse enough frontswap pages to attempt to -- subject to memory
443  * constraints -- reduce the number of pages in frontswap to the
444  * number given in the parameter target_pages.
445  */
frontswap_shrink(unsigned long target_pages)446 void frontswap_shrink(unsigned long target_pages)
447 {
448 	unsigned long pages_to_unuse = 0;
449 	int uninitialized_var(type), ret;
450 
451 	/*
452 	 * we don't want to hold swap_lock while doing a very
453 	 * lengthy try_to_unuse, but swap_list may change
454 	 * so restart scan from swap_active_head each time
455 	 */
456 	spin_lock(&swap_lock);
457 	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
458 	spin_unlock(&swap_lock);
459 	if (ret == 0)
460 		try_to_unuse(type, true, pages_to_unuse);
461 	return;
462 }
463 EXPORT_SYMBOL(frontswap_shrink);
464 
465 /*
466  * Count and return the number of frontswap pages across all
467  * swap devices.  This is exported so that backend drivers can
468  * determine current usage without reading debugfs.
469  */
frontswap_curr_pages(void)470 unsigned long frontswap_curr_pages(void)
471 {
472 	unsigned long totalpages = 0;
473 
474 	spin_lock(&swap_lock);
475 	totalpages = __frontswap_curr_pages();
476 	spin_unlock(&swap_lock);
477 
478 	return totalpages;
479 }
480 EXPORT_SYMBOL(frontswap_curr_pages);
481 
init_frontswap(void)482 static int __init init_frontswap(void)
483 {
484 #ifdef CONFIG_DEBUG_FS
485 	struct dentry *root = debugfs_create_dir("frontswap", NULL);
486 	if (root == NULL)
487 		return -ENXIO;
488 	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
489 	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
490 	debugfs_create_u64("failed_stores", 0444, root,
491 			   &frontswap_failed_stores);
492 	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
493 #endif
494 	return 0;
495 }
496 
497 module_init(init_frontswap);
498