1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SHA1 routine optimized to do word accesses rather than byte accesses,
4  * and to avoid unnecessary copies into the context array.
5  *
6  * This was based on the git SHA1 implementation.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/cryptohash.h>
13 #include <asm/unaligned.h>
14 
15 /*
16  * If you have 32 registers or more, the compiler can (and should)
17  * try to change the array[] accesses into registers. However, on
18  * machines with less than ~25 registers, that won't really work,
19  * and at least gcc will make an unholy mess of it.
20  *
21  * So to avoid that mess which just slows things down, we force
22  * the stores to memory to actually happen (we might be better off
23  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
24  * suggested by Artur Skawina - that will also make gcc unable to
25  * try to do the silly "optimize away loads" part because it won't
26  * see what the value will be).
27  *
28  * Ben Herrenschmidt reports that on PPC, the C version comes close
29  * to the optimized asm with this (ie on PPC you don't want that
30  * 'volatile', since there are lots of registers).
31  *
32  * On ARM we get the best code generation by forcing a full memory barrier
33  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
34  * the stack frame size simply explode and performance goes down the drain.
35  */
36 
37 #ifdef CONFIG_X86
38   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
39 #elif defined(CONFIG_ARM)
40   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
41 #else
42   #define setW(x, val) (W(x) = (val))
43 #endif
44 
45 /* This "rolls" over the 512-bit array */
46 #define W(x) (array[(x)&15])
47 
48 /*
49  * Where do we get the source from? The first 16 iterations get it from
50  * the input data, the next mix it from the 512-bit array.
51  */
52 #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
53 #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
54 
55 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
56 	__u32 TEMP = input(t); setW(t, TEMP); \
57 	E += TEMP + rol32(A,5) + (fn) + (constant); \
58 	B = ror32(B, 2); } while (0)
59 
60 #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
61 #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
62 #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
63 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
64 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
65 
66 /**
67  * sha_transform - single block SHA1 transform
68  *
69  * @digest: 160 bit digest to update
70  * @data:   512 bits of data to hash
71  * @array:  16 words of workspace (see note)
72  *
73  * This function generates a SHA1 digest for a single 512-bit block.
74  * Be warned, it does not handle padding and message digest, do not
75  * confuse it with the full FIPS 180-1 digest algorithm for variable
76  * length messages.
77  *
78  * Note: If the hash is security sensitive, the caller should be sure
79  * to clear the workspace. This is left to the caller to avoid
80  * unnecessary clears between chained hashing operations.
81  */
sha_transform(__u32 * digest,const char * data,__u32 * array)82 void sha_transform(__u32 *digest, const char *data, __u32 *array)
83 {
84 	__u32 A, B, C, D, E;
85 
86 	A = digest[0];
87 	B = digest[1];
88 	C = digest[2];
89 	D = digest[3];
90 	E = digest[4];
91 
92 	/* Round 1 - iterations 0-16 take their input from 'data' */
93 	T_0_15( 0, A, B, C, D, E);
94 	T_0_15( 1, E, A, B, C, D);
95 	T_0_15( 2, D, E, A, B, C);
96 	T_0_15( 3, C, D, E, A, B);
97 	T_0_15( 4, B, C, D, E, A);
98 	T_0_15( 5, A, B, C, D, E);
99 	T_0_15( 6, E, A, B, C, D);
100 	T_0_15( 7, D, E, A, B, C);
101 	T_0_15( 8, C, D, E, A, B);
102 	T_0_15( 9, B, C, D, E, A);
103 	T_0_15(10, A, B, C, D, E);
104 	T_0_15(11, E, A, B, C, D);
105 	T_0_15(12, D, E, A, B, C);
106 	T_0_15(13, C, D, E, A, B);
107 	T_0_15(14, B, C, D, E, A);
108 	T_0_15(15, A, B, C, D, E);
109 
110 	/* Round 1 - tail. Input from 512-bit mixing array */
111 	T_16_19(16, E, A, B, C, D);
112 	T_16_19(17, D, E, A, B, C);
113 	T_16_19(18, C, D, E, A, B);
114 	T_16_19(19, B, C, D, E, A);
115 
116 	/* Round 2 */
117 	T_20_39(20, A, B, C, D, E);
118 	T_20_39(21, E, A, B, C, D);
119 	T_20_39(22, D, E, A, B, C);
120 	T_20_39(23, C, D, E, A, B);
121 	T_20_39(24, B, C, D, E, A);
122 	T_20_39(25, A, B, C, D, E);
123 	T_20_39(26, E, A, B, C, D);
124 	T_20_39(27, D, E, A, B, C);
125 	T_20_39(28, C, D, E, A, B);
126 	T_20_39(29, B, C, D, E, A);
127 	T_20_39(30, A, B, C, D, E);
128 	T_20_39(31, E, A, B, C, D);
129 	T_20_39(32, D, E, A, B, C);
130 	T_20_39(33, C, D, E, A, B);
131 	T_20_39(34, B, C, D, E, A);
132 	T_20_39(35, A, B, C, D, E);
133 	T_20_39(36, E, A, B, C, D);
134 	T_20_39(37, D, E, A, B, C);
135 	T_20_39(38, C, D, E, A, B);
136 	T_20_39(39, B, C, D, E, A);
137 
138 	/* Round 3 */
139 	T_40_59(40, A, B, C, D, E);
140 	T_40_59(41, E, A, B, C, D);
141 	T_40_59(42, D, E, A, B, C);
142 	T_40_59(43, C, D, E, A, B);
143 	T_40_59(44, B, C, D, E, A);
144 	T_40_59(45, A, B, C, D, E);
145 	T_40_59(46, E, A, B, C, D);
146 	T_40_59(47, D, E, A, B, C);
147 	T_40_59(48, C, D, E, A, B);
148 	T_40_59(49, B, C, D, E, A);
149 	T_40_59(50, A, B, C, D, E);
150 	T_40_59(51, E, A, B, C, D);
151 	T_40_59(52, D, E, A, B, C);
152 	T_40_59(53, C, D, E, A, B);
153 	T_40_59(54, B, C, D, E, A);
154 	T_40_59(55, A, B, C, D, E);
155 	T_40_59(56, E, A, B, C, D);
156 	T_40_59(57, D, E, A, B, C);
157 	T_40_59(58, C, D, E, A, B);
158 	T_40_59(59, B, C, D, E, A);
159 
160 	/* Round 4 */
161 	T_60_79(60, A, B, C, D, E);
162 	T_60_79(61, E, A, B, C, D);
163 	T_60_79(62, D, E, A, B, C);
164 	T_60_79(63, C, D, E, A, B);
165 	T_60_79(64, B, C, D, E, A);
166 	T_60_79(65, A, B, C, D, E);
167 	T_60_79(66, E, A, B, C, D);
168 	T_60_79(67, D, E, A, B, C);
169 	T_60_79(68, C, D, E, A, B);
170 	T_60_79(69, B, C, D, E, A);
171 	T_60_79(70, A, B, C, D, E);
172 	T_60_79(71, E, A, B, C, D);
173 	T_60_79(72, D, E, A, B, C);
174 	T_60_79(73, C, D, E, A, B);
175 	T_60_79(74, B, C, D, E, A);
176 	T_60_79(75, A, B, C, D, E);
177 	T_60_79(76, E, A, B, C, D);
178 	T_60_79(77, D, E, A, B, C);
179 	T_60_79(78, C, D, E, A, B);
180 	T_60_79(79, B, C, D, E, A);
181 
182 	digest[0] += A;
183 	digest[1] += B;
184 	digest[2] += C;
185 	digest[3] += D;
186 	digest[4] += E;
187 }
188 EXPORT_SYMBOL(sha_transform);
189 
190 /**
191  * sha_init - initialize the vectors for a SHA1 digest
192  * @buf: vector to initialize
193  */
sha_init(__u32 * buf)194 void sha_init(__u32 *buf)
195 {
196 	buf[0] = 0x67452301;
197 	buf[1] = 0xefcdab89;
198 	buf[2] = 0x98badcfe;
199 	buf[3] = 0x10325476;
200 	buf[4] = 0xc3d2e1f0;
201 }
202 EXPORT_SYMBOL(sha_init);
203