1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81 
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87 
88 
cpuhp_lock_acquire(bool bringup)89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 
cpuhp_lock_release(bool bringup)94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99 
cpuhp_lock_acquire(bool bringup)100 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)101 static inline void cpuhp_lock_release(bool bringup) { }
102 
103 #endif
104 
105 /**
106  * cpuhp_step - Hotplug state machine step
107  * @name:	Name of the step
108  * @startup:	Startup function of the step
109  * @teardown:	Teardown function of the step
110  * @cant_stop:	Bringup/teardown can't be stopped at this step
111  */
112 struct cpuhp_step {
113 	const char		*name;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} startup;
119 	union {
120 		int		(*single)(unsigned int cpu);
121 		int		(*multi)(unsigned int cpu,
122 					 struct hlist_node *node);
123 	} teardown;
124 	struct hlist_head	list;
125 	bool			cant_stop;
126 	bool			multi_instance;
127 };
128 
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131 
cpuhp_get_step(enum cpuhp_state state)132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 	return cpuhp_hp_states + state;
135 }
136 
137 /**
138  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139  * @cpu:	The cpu for which the callback should be invoked
140  * @state:	The state to do callbacks for
141  * @bringup:	True if the bringup callback should be invoked
142  * @node:	For multi-instance, do a single entry callback for install/remove
143  * @lastp:	For multi-instance rollback, remember how far we got
144  *
145  * Called from cpu hotplug and from the state register machinery.
146  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 				 bool bringup, struct hlist_node *node,
149 				 struct hlist_node **lastp)
150 {
151 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 	struct cpuhp_step *step = cpuhp_get_step(state);
153 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 	int (*cb)(unsigned int cpu);
155 	int ret, cnt;
156 
157 	if (st->fail == state) {
158 		st->fail = CPUHP_INVALID;
159 
160 		if (!(bringup ? step->startup.single : step->teardown.single))
161 			return 0;
162 
163 		return -EAGAIN;
164 	}
165 
166 	if (!step->multi_instance) {
167 		WARN_ON_ONCE(lastp && *lastp);
168 		cb = bringup ? step->startup.single : step->teardown.single;
169 		if (!cb)
170 			return 0;
171 		trace_cpuhp_enter(cpu, st->target, state, cb);
172 		ret = cb(cpu);
173 		trace_cpuhp_exit(cpu, st->state, state, ret);
174 		return ret;
175 	}
176 	cbm = bringup ? step->startup.multi : step->teardown.multi;
177 	if (!cbm)
178 		return 0;
179 
180 	/* Single invocation for instance add/remove */
181 	if (node) {
182 		WARN_ON_ONCE(lastp && *lastp);
183 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 		ret = cbm(cpu, node);
185 		trace_cpuhp_exit(cpu, st->state, state, ret);
186 		return ret;
187 	}
188 
189 	/* State transition. Invoke on all instances */
190 	cnt = 0;
191 	hlist_for_each(node, &step->list) {
192 		if (lastp && node == *lastp)
193 			break;
194 
195 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 		ret = cbm(cpu, node);
197 		trace_cpuhp_exit(cpu, st->state, state, ret);
198 		if (ret) {
199 			if (!lastp)
200 				goto err;
201 
202 			*lastp = node;
203 			return ret;
204 		}
205 		cnt++;
206 	}
207 	if (lastp)
208 		*lastp = NULL;
209 	return 0;
210 err:
211 	/* Rollback the instances if one failed */
212 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 	if (!cbm)
214 		return ret;
215 
216 	hlist_for_each(node, &step->list) {
217 		if (!cnt--)
218 			break;
219 
220 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 		ret = cbm(cpu, node);
222 		trace_cpuhp_exit(cpu, st->state, state, ret);
223 		/*
224 		 * Rollback must not fail,
225 		 */
226 		WARN_ON_ONCE(ret);
227 	}
228 	return ret;
229 }
230 
231 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 	/*
235 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 	 * purposes as that state is handled explicitly in cpu_down.
237 	 */
238 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 	struct completion *done = bringup ? &st->done_up : &st->done_down;
244 	wait_for_completion(done);
245 }
246 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	complete(done);
251 }
252 
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
cpuhp_is_atomic_state(enum cpuhp_state state)256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260 
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
cpu_maps_update_begin(void)270 void cpu_maps_update_begin(void)
271 {
272 	mutex_lock(&cpu_add_remove_lock);
273 }
274 
cpu_maps_update_done(void)275 void cpu_maps_update_done(void)
276 {
277 	mutex_unlock(&cpu_add_remove_lock);
278 }
279 
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289 
cpus_read_lock(void)290 void cpus_read_lock(void)
291 {
292 	percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295 
cpus_read_trylock(void)296 int cpus_read_trylock(void)
297 {
298 	return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301 
cpus_read_unlock(void)302 void cpus_read_unlock(void)
303 {
304 	percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307 
cpus_write_lock(void)308 void cpus_write_lock(void)
309 {
310 	percpu_down_write(&cpu_hotplug_lock);
311 }
312 
cpus_write_unlock(void)313 void cpus_write_unlock(void)
314 {
315 	percpu_up_write(&cpu_hotplug_lock);
316 }
317 
lockdep_assert_cpus_held(void)318 void lockdep_assert_cpus_held(void)
319 {
320 	/*
321 	 * We can't have hotplug operations before userspace starts running,
322 	 * and some init codepaths will knowingly not take the hotplug lock.
323 	 * This is all valid, so mute lockdep until it makes sense to report
324 	 * unheld locks.
325 	 */
326 	if (system_state < SYSTEM_RUNNING)
327 		return;
328 
329 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331 
lockdep_acquire_cpus_lock(void)332 static void lockdep_acquire_cpus_lock(void)
333 {
334 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335 }
336 
lockdep_release_cpus_lock(void)337 static void lockdep_release_cpus_lock(void)
338 {
339 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
340 }
341 
342 /*
343  * Wait for currently running CPU hotplug operations to complete (if any) and
344  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346  * hotplug path before performing hotplug operations. So acquiring that lock
347  * guarantees mutual exclusion from any currently running hotplug operations.
348  */
cpu_hotplug_disable(void)349 void cpu_hotplug_disable(void)
350 {
351 	cpu_maps_update_begin();
352 	cpu_hotplug_disabled++;
353 	cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356 
__cpu_hotplug_enable(void)357 static void __cpu_hotplug_enable(void)
358 {
359 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 		return;
361 	cpu_hotplug_disabled--;
362 }
363 
cpu_hotplug_enable(void)364 void cpu_hotplug_enable(void)
365 {
366 	cpu_maps_update_begin();
367 	__cpu_hotplug_enable();
368 	cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371 
372 #else
373 
lockdep_acquire_cpus_lock(void)374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377 
lockdep_release_cpus_lock(void)378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381 
382 #endif	/* CONFIG_HOTPLUG_CPU */
383 
384 /*
385  * Architectures that need SMT-specific errata handling during SMT hotplug
386  * should override this.
387  */
arch_smt_update(void)388 void __weak arch_smt_update(void) { }
389 
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392 
cpu_smt_disable(bool force)393 void __init cpu_smt_disable(bool force)
394 {
395 	if (!cpu_smt_possible())
396 		return;
397 
398 	if (force) {
399 		pr_info("SMT: Force disabled\n");
400 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 	} else {
402 		pr_info("SMT: disabled\n");
403 		cpu_smt_control = CPU_SMT_DISABLED;
404 	}
405 }
406 
407 /*
408  * The decision whether SMT is supported can only be done after the full
409  * CPU identification. Called from architecture code.
410  */
cpu_smt_check_topology(void)411 void __init cpu_smt_check_topology(void)
412 {
413 	if (!topology_smt_supported())
414 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415 }
416 
smt_cmdline_disable(char * str)417 static int __init smt_cmdline_disable(char *str)
418 {
419 	cpu_smt_disable(str && !strcmp(str, "force"));
420 	return 0;
421 }
422 early_param("nosmt", smt_cmdline_disable);
423 
cpu_smt_allowed(unsigned int cpu)424 static inline bool cpu_smt_allowed(unsigned int cpu)
425 {
426 	if (cpu_smt_control == CPU_SMT_ENABLED)
427 		return true;
428 
429 	if (topology_is_primary_thread(cpu))
430 		return true;
431 
432 	/*
433 	 * On x86 it's required to boot all logical CPUs at least once so
434 	 * that the init code can get a chance to set CR4.MCE on each
435 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
436 	 * core will shutdown the machine.
437 	 */
438 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439 }
440 
441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)442 bool cpu_smt_possible(void)
443 {
444 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446 }
447 EXPORT_SYMBOL_GPL(cpu_smt_possible);
448 #else
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450 #endif
451 
452 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454 {
455 	enum cpuhp_state prev_state = st->state;
456 
457 	st->rollback = false;
458 	st->last = NULL;
459 
460 	st->target = target;
461 	st->single = false;
462 	st->bringup = st->state < target;
463 
464 	return prev_state;
465 }
466 
467 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469 {
470 	st->rollback = true;
471 
472 	/*
473 	 * If we have st->last we need to undo partial multi_instance of this
474 	 * state first. Otherwise start undo at the previous state.
475 	 */
476 	if (!st->last) {
477 		if (st->bringup)
478 			st->state--;
479 		else
480 			st->state++;
481 	}
482 
483 	st->target = prev_state;
484 	st->bringup = !st->bringup;
485 }
486 
487 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489 {
490 	if (!st->single && st->state == st->target)
491 		return;
492 
493 	st->result = 0;
494 	/*
495 	 * Make sure the above stores are visible before should_run becomes
496 	 * true. Paired with the mb() above in cpuhp_thread_fun()
497 	 */
498 	smp_mb();
499 	st->should_run = true;
500 	wake_up_process(st->thread);
501 	wait_for_ap_thread(st, st->bringup);
502 }
503 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505 {
506 	enum cpuhp_state prev_state;
507 	int ret;
508 
509 	prev_state = cpuhp_set_state(st, target);
510 	__cpuhp_kick_ap(st);
511 	if ((ret = st->result)) {
512 		cpuhp_reset_state(st, prev_state);
513 		__cpuhp_kick_ap(st);
514 	}
515 
516 	return ret;
517 }
518 
bringup_wait_for_ap(unsigned int cpu)519 static int bringup_wait_for_ap(unsigned int cpu)
520 {
521 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522 
523 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 	wait_for_ap_thread(st, true);
525 	if (WARN_ON_ONCE((!cpu_online(cpu))))
526 		return -ECANCELED;
527 
528 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
529 	stop_machine_unpark(cpu);
530 	kthread_unpark(st->thread);
531 
532 	/*
533 	 * SMT soft disabling on X86 requires to bring the CPU out of the
534 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
535 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 	 * cpu_smt_allowed() check will now return false if this is not the
537 	 * primary sibling.
538 	 */
539 	if (!cpu_smt_allowed(cpu))
540 		return -ECANCELED;
541 
542 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 		return 0;
544 
545 	return cpuhp_kick_ap(st, st->target);
546 }
547 
bringup_cpu(unsigned int cpu)548 static int bringup_cpu(unsigned int cpu)
549 {
550 	struct task_struct *idle = idle_thread_get(cpu);
551 	int ret;
552 
553 	/*
554 	 * Some architectures have to walk the irq descriptors to
555 	 * setup the vector space for the cpu which comes online.
556 	 * Prevent irq alloc/free across the bringup.
557 	 */
558 	irq_lock_sparse();
559 
560 	/* Arch-specific enabling code. */
561 	ret = __cpu_up(cpu, idle);
562 	irq_unlock_sparse();
563 	if (ret)
564 		return ret;
565 	return bringup_wait_for_ap(cpu);
566 }
567 
568 /*
569  * Hotplug state machine related functions
570  */
571 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)572 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
573 {
574 	for (st->state--; st->state > st->target; st->state--)
575 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
576 }
577 
can_rollback_cpu(struct cpuhp_cpu_state * st)578 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
579 {
580 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
581 		return true;
582 	/*
583 	 * When CPU hotplug is disabled, then taking the CPU down is not
584 	 * possible because takedown_cpu() and the architecture and
585 	 * subsystem specific mechanisms are not available. So the CPU
586 	 * which would be completely unplugged again needs to stay around
587 	 * in the current state.
588 	 */
589 	return st->state <= CPUHP_BRINGUP_CPU;
590 }
591 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)592 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
593 			      enum cpuhp_state target)
594 {
595 	enum cpuhp_state prev_state = st->state;
596 	int ret = 0;
597 
598 	while (st->state < target) {
599 		st->state++;
600 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
601 		if (ret) {
602 			if (can_rollback_cpu(st)) {
603 				st->target = prev_state;
604 				undo_cpu_up(cpu, st);
605 			}
606 			break;
607 		}
608 	}
609 	return ret;
610 }
611 
612 /*
613  * The cpu hotplug threads manage the bringup and teardown of the cpus
614  */
cpuhp_create(unsigned int cpu)615 static void cpuhp_create(unsigned int cpu)
616 {
617 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
618 
619 	init_completion(&st->done_up);
620 	init_completion(&st->done_down);
621 }
622 
cpuhp_should_run(unsigned int cpu)623 static int cpuhp_should_run(unsigned int cpu)
624 {
625 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
626 
627 	return st->should_run;
628 }
629 
630 /*
631  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
632  * callbacks when a state gets [un]installed at runtime.
633  *
634  * Each invocation of this function by the smpboot thread does a single AP
635  * state callback.
636  *
637  * It has 3 modes of operation:
638  *  - single: runs st->cb_state
639  *  - up:     runs ++st->state, while st->state < st->target
640  *  - down:   runs st->state--, while st->state > st->target
641  *
642  * When complete or on error, should_run is cleared and the completion is fired.
643  */
cpuhp_thread_fun(unsigned int cpu)644 static void cpuhp_thread_fun(unsigned int cpu)
645 {
646 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
647 	bool bringup = st->bringup;
648 	enum cpuhp_state state;
649 
650 	if (WARN_ON_ONCE(!st->should_run))
651 		return;
652 
653 	/*
654 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
655 	 * that if we see ->should_run we also see the rest of the state.
656 	 */
657 	smp_mb();
658 
659 	/*
660 	 * The BP holds the hotplug lock, but we're now running on the AP,
661 	 * ensure that anybody asserting the lock is held, will actually find
662 	 * it so.
663 	 */
664 	lockdep_acquire_cpus_lock();
665 	cpuhp_lock_acquire(bringup);
666 
667 	if (st->single) {
668 		state = st->cb_state;
669 		st->should_run = false;
670 	} else {
671 		if (bringup) {
672 			st->state++;
673 			state = st->state;
674 			st->should_run = (st->state < st->target);
675 			WARN_ON_ONCE(st->state > st->target);
676 		} else {
677 			state = st->state;
678 			st->state--;
679 			st->should_run = (st->state > st->target);
680 			WARN_ON_ONCE(st->state < st->target);
681 		}
682 	}
683 
684 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
685 
686 	if (cpuhp_is_atomic_state(state)) {
687 		local_irq_disable();
688 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
689 		local_irq_enable();
690 
691 		/*
692 		 * STARTING/DYING must not fail!
693 		 */
694 		WARN_ON_ONCE(st->result);
695 	} else {
696 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
697 	}
698 
699 	if (st->result) {
700 		/*
701 		 * If we fail on a rollback, we're up a creek without no
702 		 * paddle, no way forward, no way back. We loose, thanks for
703 		 * playing.
704 		 */
705 		WARN_ON_ONCE(st->rollback);
706 		st->should_run = false;
707 	}
708 
709 	cpuhp_lock_release(bringup);
710 	lockdep_release_cpus_lock();
711 
712 	if (!st->should_run)
713 		complete_ap_thread(st, bringup);
714 }
715 
716 /* Invoke a single callback on a remote cpu */
717 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)718 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
719 			 struct hlist_node *node)
720 {
721 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
722 	int ret;
723 
724 	if (!cpu_online(cpu))
725 		return 0;
726 
727 	cpuhp_lock_acquire(false);
728 	cpuhp_lock_release(false);
729 
730 	cpuhp_lock_acquire(true);
731 	cpuhp_lock_release(true);
732 
733 	/*
734 	 * If we are up and running, use the hotplug thread. For early calls
735 	 * we invoke the thread function directly.
736 	 */
737 	if (!st->thread)
738 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
739 
740 	st->rollback = false;
741 	st->last = NULL;
742 
743 	st->node = node;
744 	st->bringup = bringup;
745 	st->cb_state = state;
746 	st->single = true;
747 
748 	__cpuhp_kick_ap(st);
749 
750 	/*
751 	 * If we failed and did a partial, do a rollback.
752 	 */
753 	if ((ret = st->result) && st->last) {
754 		st->rollback = true;
755 		st->bringup = !bringup;
756 
757 		__cpuhp_kick_ap(st);
758 	}
759 
760 	/*
761 	 * Clean up the leftovers so the next hotplug operation wont use stale
762 	 * data.
763 	 */
764 	st->node = st->last = NULL;
765 	return ret;
766 }
767 
cpuhp_kick_ap_work(unsigned int cpu)768 static int cpuhp_kick_ap_work(unsigned int cpu)
769 {
770 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
771 	enum cpuhp_state prev_state = st->state;
772 	int ret;
773 
774 	cpuhp_lock_acquire(false);
775 	cpuhp_lock_release(false);
776 
777 	cpuhp_lock_acquire(true);
778 	cpuhp_lock_release(true);
779 
780 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
781 	ret = cpuhp_kick_ap(st, st->target);
782 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
783 
784 	return ret;
785 }
786 
787 static struct smp_hotplug_thread cpuhp_threads = {
788 	.store			= &cpuhp_state.thread,
789 	.create			= &cpuhp_create,
790 	.thread_should_run	= cpuhp_should_run,
791 	.thread_fn		= cpuhp_thread_fun,
792 	.thread_comm		= "cpuhp/%u",
793 	.selfparking		= true,
794 };
795 
cpuhp_threads_init(void)796 void __init cpuhp_threads_init(void)
797 {
798 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
799 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
800 }
801 
802 #ifdef CONFIG_HOTPLUG_CPU
803 /**
804  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
805  * @cpu: a CPU id
806  *
807  * This function walks all processes, finds a valid mm struct for each one and
808  * then clears a corresponding bit in mm's cpumask.  While this all sounds
809  * trivial, there are various non-obvious corner cases, which this function
810  * tries to solve in a safe manner.
811  *
812  * Also note that the function uses a somewhat relaxed locking scheme, so it may
813  * be called only for an already offlined CPU.
814  */
clear_tasks_mm_cpumask(int cpu)815 void clear_tasks_mm_cpumask(int cpu)
816 {
817 	struct task_struct *p;
818 
819 	/*
820 	 * This function is called after the cpu is taken down and marked
821 	 * offline, so its not like new tasks will ever get this cpu set in
822 	 * their mm mask. -- Peter Zijlstra
823 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
824 	 * full-fledged tasklist_lock.
825 	 */
826 	WARN_ON(cpu_online(cpu));
827 	rcu_read_lock();
828 	for_each_process(p) {
829 		struct task_struct *t;
830 
831 		/*
832 		 * Main thread might exit, but other threads may still have
833 		 * a valid mm. Find one.
834 		 */
835 		t = find_lock_task_mm(p);
836 		if (!t)
837 			continue;
838 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
839 		task_unlock(t);
840 	}
841 	rcu_read_unlock();
842 }
843 
844 /* Take this CPU down. */
take_cpu_down(void * _param)845 static int take_cpu_down(void *_param)
846 {
847 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
848 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
849 	int err, cpu = smp_processor_id();
850 	int ret;
851 
852 	/* Ensure this CPU doesn't handle any more interrupts. */
853 	err = __cpu_disable();
854 	if (err < 0)
855 		return err;
856 
857 	/*
858 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
859 	 * do this step again.
860 	 */
861 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
862 	st->state--;
863 	/* Invoke the former CPU_DYING callbacks */
864 	for (; st->state > target; st->state--) {
865 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
866 		/*
867 		 * DYING must not fail!
868 		 */
869 		WARN_ON_ONCE(ret);
870 	}
871 
872 	/* Give up timekeeping duties */
873 	tick_handover_do_timer();
874 	/* Remove CPU from timer broadcasting */
875 	tick_offline_cpu(cpu);
876 	/* Park the stopper thread */
877 	stop_machine_park(cpu);
878 	return 0;
879 }
880 
takedown_cpu(unsigned int cpu)881 static int takedown_cpu(unsigned int cpu)
882 {
883 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
884 	int err;
885 
886 	/* Park the smpboot threads */
887 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
888 
889 	/*
890 	 * Prevent irq alloc/free while the dying cpu reorganizes the
891 	 * interrupt affinities.
892 	 */
893 	irq_lock_sparse();
894 
895 	/*
896 	 * So now all preempt/rcu users must observe !cpu_active().
897 	 */
898 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
899 	if (err) {
900 		/* CPU refused to die */
901 		irq_unlock_sparse();
902 		/* Unpark the hotplug thread so we can rollback there */
903 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
904 		return err;
905 	}
906 	BUG_ON(cpu_online(cpu));
907 
908 	/*
909 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
910 	 * all runnable tasks from the CPU, there's only the idle task left now
911 	 * that the migration thread is done doing the stop_machine thing.
912 	 *
913 	 * Wait for the stop thread to go away.
914 	 */
915 	wait_for_ap_thread(st, false);
916 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
917 
918 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
919 	irq_unlock_sparse();
920 
921 	hotplug_cpu__broadcast_tick_pull(cpu);
922 	/* This actually kills the CPU. */
923 	__cpu_die(cpu);
924 
925 	tick_cleanup_dead_cpu(cpu);
926 	rcutree_migrate_callbacks(cpu);
927 	return 0;
928 }
929 
cpuhp_complete_idle_dead(void * arg)930 static void cpuhp_complete_idle_dead(void *arg)
931 {
932 	struct cpuhp_cpu_state *st = arg;
933 
934 	complete_ap_thread(st, false);
935 }
936 
cpuhp_report_idle_dead(void)937 void cpuhp_report_idle_dead(void)
938 {
939 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
940 
941 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
942 	rcu_report_dead(smp_processor_id());
943 	st->state = CPUHP_AP_IDLE_DEAD;
944 	/*
945 	 * We cannot call complete after rcu_report_dead() so we delegate it
946 	 * to an online cpu.
947 	 */
948 	smp_call_function_single(cpumask_first(cpu_online_mask),
949 				 cpuhp_complete_idle_dead, st, 0);
950 }
951 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)952 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
953 {
954 	for (st->state++; st->state < st->target; st->state++)
955 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
956 }
957 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)958 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
959 				enum cpuhp_state target)
960 {
961 	enum cpuhp_state prev_state = st->state;
962 	int ret = 0;
963 
964 	for (; st->state > target; st->state--) {
965 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
966 		if (ret) {
967 			st->target = prev_state;
968 			if (st->state < prev_state)
969 				undo_cpu_down(cpu, st);
970 			break;
971 		}
972 	}
973 	return ret;
974 }
975 
976 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)977 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
978 			   enum cpuhp_state target)
979 {
980 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
981 	int prev_state, ret = 0;
982 
983 	if (num_online_cpus() == 1)
984 		return -EBUSY;
985 
986 	if (!cpu_present(cpu))
987 		return -EINVAL;
988 
989 	cpus_write_lock();
990 
991 	cpuhp_tasks_frozen = tasks_frozen;
992 
993 	prev_state = cpuhp_set_state(st, target);
994 	/*
995 	 * If the current CPU state is in the range of the AP hotplug thread,
996 	 * then we need to kick the thread.
997 	 */
998 	if (st->state > CPUHP_TEARDOWN_CPU) {
999 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1000 		ret = cpuhp_kick_ap_work(cpu);
1001 		/*
1002 		 * The AP side has done the error rollback already. Just
1003 		 * return the error code..
1004 		 */
1005 		if (ret)
1006 			goto out;
1007 
1008 		/*
1009 		 * We might have stopped still in the range of the AP hotplug
1010 		 * thread. Nothing to do anymore.
1011 		 */
1012 		if (st->state > CPUHP_TEARDOWN_CPU)
1013 			goto out;
1014 
1015 		st->target = target;
1016 	}
1017 	/*
1018 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1019 	 * to do the further cleanups.
1020 	 */
1021 	ret = cpuhp_down_callbacks(cpu, st, target);
1022 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1023 		cpuhp_reset_state(st, prev_state);
1024 		__cpuhp_kick_ap(st);
1025 	}
1026 
1027 out:
1028 	cpus_write_unlock();
1029 	/*
1030 	 * Do post unplug cleanup. This is still protected against
1031 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1032 	 */
1033 	lockup_detector_cleanup();
1034 	arch_smt_update();
1035 	return ret;
1036 }
1037 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1038 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1039 {
1040 	if (cpu_hotplug_disabled)
1041 		return -EBUSY;
1042 	return _cpu_down(cpu, 0, target);
1043 }
1044 
do_cpu_down(unsigned int cpu,enum cpuhp_state target)1045 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1046 {
1047 	int err;
1048 
1049 	cpu_maps_update_begin();
1050 	err = cpu_down_maps_locked(cpu, target);
1051 	cpu_maps_update_done();
1052 	return err;
1053 }
1054 
cpu_down(unsigned int cpu)1055 int cpu_down(unsigned int cpu)
1056 {
1057 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1058 }
1059 EXPORT_SYMBOL(cpu_down);
1060 
1061 #else
1062 #define takedown_cpu		NULL
1063 #endif /*CONFIG_HOTPLUG_CPU*/
1064 
1065 /**
1066  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1067  * @cpu: cpu that just started
1068  *
1069  * It must be called by the arch code on the new cpu, before the new cpu
1070  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1071  */
notify_cpu_starting(unsigned int cpu)1072 void notify_cpu_starting(unsigned int cpu)
1073 {
1074 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1075 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1076 	int ret;
1077 
1078 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1079 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1080 	while (st->state < target) {
1081 		st->state++;
1082 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1083 		/*
1084 		 * STARTING must not fail!
1085 		 */
1086 		WARN_ON_ONCE(ret);
1087 	}
1088 }
1089 
1090 /*
1091  * Called from the idle task. Wake up the controlling task which brings the
1092  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1093  * the rest of the online bringup to the hotplug thread.
1094  */
cpuhp_online_idle(enum cpuhp_state state)1095 void cpuhp_online_idle(enum cpuhp_state state)
1096 {
1097 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1098 
1099 	/* Happens for the boot cpu */
1100 	if (state != CPUHP_AP_ONLINE_IDLE)
1101 		return;
1102 
1103 	st->state = CPUHP_AP_ONLINE_IDLE;
1104 	complete_ap_thread(st, true);
1105 }
1106 
1107 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1108 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1109 {
1110 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1111 	struct task_struct *idle;
1112 	int ret = 0;
1113 
1114 	cpus_write_lock();
1115 
1116 	if (!cpu_present(cpu)) {
1117 		ret = -EINVAL;
1118 		goto out;
1119 	}
1120 
1121 	/*
1122 	 * The caller of do_cpu_up might have raced with another
1123 	 * caller. Ignore it for now.
1124 	 */
1125 	if (st->state >= target)
1126 		goto out;
1127 
1128 	if (st->state == CPUHP_OFFLINE) {
1129 		/* Let it fail before we try to bring the cpu up */
1130 		idle = idle_thread_get(cpu);
1131 		if (IS_ERR(idle)) {
1132 			ret = PTR_ERR(idle);
1133 			goto out;
1134 		}
1135 	}
1136 
1137 	cpuhp_tasks_frozen = tasks_frozen;
1138 
1139 	cpuhp_set_state(st, target);
1140 	/*
1141 	 * If the current CPU state is in the range of the AP hotplug thread,
1142 	 * then we need to kick the thread once more.
1143 	 */
1144 	if (st->state > CPUHP_BRINGUP_CPU) {
1145 		ret = cpuhp_kick_ap_work(cpu);
1146 		/*
1147 		 * The AP side has done the error rollback already. Just
1148 		 * return the error code..
1149 		 */
1150 		if (ret)
1151 			goto out;
1152 	}
1153 
1154 	/*
1155 	 * Try to reach the target state. We max out on the BP at
1156 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1157 	 * responsible for bringing it up to the target state.
1158 	 */
1159 	target = min((int)target, CPUHP_BRINGUP_CPU);
1160 	ret = cpuhp_up_callbacks(cpu, st, target);
1161 out:
1162 	cpus_write_unlock();
1163 	arch_smt_update();
1164 	return ret;
1165 }
1166 
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1167 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1168 {
1169 	int err = 0;
1170 
1171 	if (!cpu_possible(cpu)) {
1172 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1173 		       cpu);
1174 #if defined(CONFIG_IA64)
1175 		pr_err("please check additional_cpus= boot parameter\n");
1176 #endif
1177 		return -EINVAL;
1178 	}
1179 
1180 	err = try_online_node(cpu_to_node(cpu));
1181 	if (err)
1182 		return err;
1183 
1184 	cpu_maps_update_begin();
1185 
1186 	if (cpu_hotplug_disabled) {
1187 		err = -EBUSY;
1188 		goto out;
1189 	}
1190 	if (!cpu_smt_allowed(cpu)) {
1191 		err = -EPERM;
1192 		goto out;
1193 	}
1194 
1195 	err = _cpu_up(cpu, 0, target);
1196 out:
1197 	cpu_maps_update_done();
1198 	return err;
1199 }
1200 
cpu_up(unsigned int cpu)1201 int cpu_up(unsigned int cpu)
1202 {
1203 	return do_cpu_up(cpu, CPUHP_ONLINE);
1204 }
1205 EXPORT_SYMBOL_GPL(cpu_up);
1206 
1207 #ifdef CONFIG_PM_SLEEP_SMP
1208 static cpumask_var_t frozen_cpus;
1209 
freeze_secondary_cpus(int primary)1210 int freeze_secondary_cpus(int primary)
1211 {
1212 	int cpu, error = 0;
1213 
1214 	cpu_maps_update_begin();
1215 	if (primary == -1) {
1216 		primary = cpumask_first(cpu_online_mask);
1217 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1218 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1219 	} else {
1220 		if (!cpu_online(primary))
1221 			primary = cpumask_first(cpu_online_mask);
1222 	}
1223 
1224 	/*
1225 	 * We take down all of the non-boot CPUs in one shot to avoid races
1226 	 * with the userspace trying to use the CPU hotplug at the same time
1227 	 */
1228 	cpumask_clear(frozen_cpus);
1229 
1230 	pr_info("Disabling non-boot CPUs ...\n");
1231 	for_each_online_cpu(cpu) {
1232 		if (cpu == primary)
1233 			continue;
1234 
1235 		if (pm_wakeup_pending()) {
1236 			pr_info("Wakeup pending. Abort CPU freeze\n");
1237 			error = -EBUSY;
1238 			break;
1239 		}
1240 
1241 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1242 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1243 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1244 		if (!error)
1245 			cpumask_set_cpu(cpu, frozen_cpus);
1246 		else {
1247 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1248 			break;
1249 		}
1250 	}
1251 
1252 	if (!error)
1253 		BUG_ON(num_online_cpus() > 1);
1254 	else
1255 		pr_err("Non-boot CPUs are not disabled\n");
1256 
1257 	/*
1258 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1259 	 * this even in case of failure as all disable_nonboot_cpus() users are
1260 	 * supposed to do enable_nonboot_cpus() on the failure path.
1261 	 */
1262 	cpu_hotplug_disabled++;
1263 
1264 	cpu_maps_update_done();
1265 	return error;
1266 }
1267 
arch_enable_nonboot_cpus_begin(void)1268 void __weak arch_enable_nonboot_cpus_begin(void)
1269 {
1270 }
1271 
arch_enable_nonboot_cpus_end(void)1272 void __weak arch_enable_nonboot_cpus_end(void)
1273 {
1274 }
1275 
enable_nonboot_cpus(void)1276 void enable_nonboot_cpus(void)
1277 {
1278 	int cpu, error;
1279 
1280 	/* Allow everyone to use the CPU hotplug again */
1281 	cpu_maps_update_begin();
1282 	__cpu_hotplug_enable();
1283 	if (cpumask_empty(frozen_cpus))
1284 		goto out;
1285 
1286 	pr_info("Enabling non-boot CPUs ...\n");
1287 
1288 	arch_enable_nonboot_cpus_begin();
1289 
1290 	for_each_cpu(cpu, frozen_cpus) {
1291 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1292 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1293 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1294 		if (!error) {
1295 			pr_info("CPU%d is up\n", cpu);
1296 			continue;
1297 		}
1298 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1299 	}
1300 
1301 	arch_enable_nonboot_cpus_end();
1302 
1303 	cpumask_clear(frozen_cpus);
1304 out:
1305 	cpu_maps_update_done();
1306 }
1307 
alloc_frozen_cpus(void)1308 static int __init alloc_frozen_cpus(void)
1309 {
1310 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1311 		return -ENOMEM;
1312 	return 0;
1313 }
1314 core_initcall(alloc_frozen_cpus);
1315 
1316 /*
1317  * When callbacks for CPU hotplug notifications are being executed, we must
1318  * ensure that the state of the system with respect to the tasks being frozen
1319  * or not, as reported by the notification, remains unchanged *throughout the
1320  * duration* of the execution of the callbacks.
1321  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1322  *
1323  * This synchronization is implemented by mutually excluding regular CPU
1324  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1325  * Hibernate notifications.
1326  */
1327 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1328 cpu_hotplug_pm_callback(struct notifier_block *nb,
1329 			unsigned long action, void *ptr)
1330 {
1331 	switch (action) {
1332 
1333 	case PM_SUSPEND_PREPARE:
1334 	case PM_HIBERNATION_PREPARE:
1335 		cpu_hotplug_disable();
1336 		break;
1337 
1338 	case PM_POST_SUSPEND:
1339 	case PM_POST_HIBERNATION:
1340 		cpu_hotplug_enable();
1341 		break;
1342 
1343 	default:
1344 		return NOTIFY_DONE;
1345 	}
1346 
1347 	return NOTIFY_OK;
1348 }
1349 
1350 
cpu_hotplug_pm_sync_init(void)1351 static int __init cpu_hotplug_pm_sync_init(void)
1352 {
1353 	/*
1354 	 * cpu_hotplug_pm_callback has higher priority than x86
1355 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1356 	 * to disable cpu hotplug to avoid cpu hotplug race.
1357 	 */
1358 	pm_notifier(cpu_hotplug_pm_callback, 0);
1359 	return 0;
1360 }
1361 core_initcall(cpu_hotplug_pm_sync_init);
1362 
1363 #endif /* CONFIG_PM_SLEEP_SMP */
1364 
1365 int __boot_cpu_id;
1366 
1367 #endif /* CONFIG_SMP */
1368 
1369 /* Boot processor state steps */
1370 static struct cpuhp_step cpuhp_hp_states[] = {
1371 	[CPUHP_OFFLINE] = {
1372 		.name			= "offline",
1373 		.startup.single		= NULL,
1374 		.teardown.single	= NULL,
1375 	},
1376 #ifdef CONFIG_SMP
1377 	[CPUHP_CREATE_THREADS]= {
1378 		.name			= "threads:prepare",
1379 		.startup.single		= smpboot_create_threads,
1380 		.teardown.single	= NULL,
1381 		.cant_stop		= true,
1382 	},
1383 	[CPUHP_PERF_PREPARE] = {
1384 		.name			= "perf:prepare",
1385 		.startup.single		= perf_event_init_cpu,
1386 		.teardown.single	= perf_event_exit_cpu,
1387 	},
1388 	[CPUHP_WORKQUEUE_PREP] = {
1389 		.name			= "workqueue:prepare",
1390 		.startup.single		= workqueue_prepare_cpu,
1391 		.teardown.single	= NULL,
1392 	},
1393 	[CPUHP_HRTIMERS_PREPARE] = {
1394 		.name			= "hrtimers:prepare",
1395 		.startup.single		= hrtimers_prepare_cpu,
1396 		.teardown.single	= hrtimers_dead_cpu,
1397 	},
1398 	[CPUHP_SMPCFD_PREPARE] = {
1399 		.name			= "smpcfd:prepare",
1400 		.startup.single		= smpcfd_prepare_cpu,
1401 		.teardown.single	= smpcfd_dead_cpu,
1402 	},
1403 	[CPUHP_RELAY_PREPARE] = {
1404 		.name			= "relay:prepare",
1405 		.startup.single		= relay_prepare_cpu,
1406 		.teardown.single	= NULL,
1407 	},
1408 	[CPUHP_SLAB_PREPARE] = {
1409 		.name			= "slab:prepare",
1410 		.startup.single		= slab_prepare_cpu,
1411 		.teardown.single	= slab_dead_cpu,
1412 	},
1413 	[CPUHP_RCUTREE_PREP] = {
1414 		.name			= "RCU/tree:prepare",
1415 		.startup.single		= rcutree_prepare_cpu,
1416 		.teardown.single	= rcutree_dead_cpu,
1417 	},
1418 	/*
1419 	 * On the tear-down path, timers_dead_cpu() must be invoked
1420 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1421 	 * otherwise a RCU stall occurs.
1422 	 */
1423 	[CPUHP_TIMERS_PREPARE] = {
1424 		.name			= "timers:prepare",
1425 		.startup.single		= timers_prepare_cpu,
1426 		.teardown.single	= timers_dead_cpu,
1427 	},
1428 	/* Kicks the plugged cpu into life */
1429 	[CPUHP_BRINGUP_CPU] = {
1430 		.name			= "cpu:bringup",
1431 		.startup.single		= bringup_cpu,
1432 		.teardown.single	= NULL,
1433 		.cant_stop		= true,
1434 	},
1435 	/* Final state before CPU kills itself */
1436 	[CPUHP_AP_IDLE_DEAD] = {
1437 		.name			= "idle:dead",
1438 	},
1439 	/*
1440 	 * Last state before CPU enters the idle loop to die. Transient state
1441 	 * for synchronization.
1442 	 */
1443 	[CPUHP_AP_OFFLINE] = {
1444 		.name			= "ap:offline",
1445 		.cant_stop		= true,
1446 	},
1447 	/* First state is scheduler control. Interrupts are disabled */
1448 	[CPUHP_AP_SCHED_STARTING] = {
1449 		.name			= "sched:starting",
1450 		.startup.single		= sched_cpu_starting,
1451 		.teardown.single	= sched_cpu_dying,
1452 	},
1453 	[CPUHP_AP_RCUTREE_DYING] = {
1454 		.name			= "RCU/tree:dying",
1455 		.startup.single		= NULL,
1456 		.teardown.single	= rcutree_dying_cpu,
1457 	},
1458 	[CPUHP_AP_SMPCFD_DYING] = {
1459 		.name			= "smpcfd:dying",
1460 		.startup.single		= NULL,
1461 		.teardown.single	= smpcfd_dying_cpu,
1462 	},
1463 	/* Entry state on starting. Interrupts enabled from here on. Transient
1464 	 * state for synchronsization */
1465 	[CPUHP_AP_ONLINE] = {
1466 		.name			= "ap:online",
1467 	},
1468 	/*
1469 	 * Handled on controll processor until the plugged processor manages
1470 	 * this itself.
1471 	 */
1472 	[CPUHP_TEARDOWN_CPU] = {
1473 		.name			= "cpu:teardown",
1474 		.startup.single		= NULL,
1475 		.teardown.single	= takedown_cpu,
1476 		.cant_stop		= true,
1477 	},
1478 	/* Handle smpboot threads park/unpark */
1479 	[CPUHP_AP_SMPBOOT_THREADS] = {
1480 		.name			= "smpboot/threads:online",
1481 		.startup.single		= smpboot_unpark_threads,
1482 		.teardown.single	= smpboot_park_threads,
1483 	},
1484 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1485 		.name			= "irq/affinity:online",
1486 		.startup.single		= irq_affinity_online_cpu,
1487 		.teardown.single	= NULL,
1488 	},
1489 	[CPUHP_AP_PERF_ONLINE] = {
1490 		.name			= "perf:online",
1491 		.startup.single		= perf_event_init_cpu,
1492 		.teardown.single	= perf_event_exit_cpu,
1493 	},
1494 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1495 		.name			= "lockup_detector:online",
1496 		.startup.single		= lockup_detector_online_cpu,
1497 		.teardown.single	= lockup_detector_offline_cpu,
1498 	},
1499 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1500 		.name			= "workqueue:online",
1501 		.startup.single		= workqueue_online_cpu,
1502 		.teardown.single	= workqueue_offline_cpu,
1503 	},
1504 	[CPUHP_AP_RCUTREE_ONLINE] = {
1505 		.name			= "RCU/tree:online",
1506 		.startup.single		= rcutree_online_cpu,
1507 		.teardown.single	= rcutree_offline_cpu,
1508 	},
1509 #endif
1510 	/*
1511 	 * The dynamically registered state space is here
1512 	 */
1513 
1514 #ifdef CONFIG_SMP
1515 	/* Last state is scheduler control setting the cpu active */
1516 	[CPUHP_AP_ACTIVE] = {
1517 		.name			= "sched:active",
1518 		.startup.single		= sched_cpu_activate,
1519 		.teardown.single	= sched_cpu_deactivate,
1520 	},
1521 #endif
1522 
1523 	/* CPU is fully up and running. */
1524 	[CPUHP_ONLINE] = {
1525 		.name			= "online",
1526 		.startup.single		= NULL,
1527 		.teardown.single	= NULL,
1528 	},
1529 };
1530 
1531 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1532 static int cpuhp_cb_check(enum cpuhp_state state)
1533 {
1534 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1535 		return -EINVAL;
1536 	return 0;
1537 }
1538 
1539 /*
1540  * Returns a free for dynamic slot assignment of the Online state. The states
1541  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1542  * by having no name assigned.
1543  */
cpuhp_reserve_state(enum cpuhp_state state)1544 static int cpuhp_reserve_state(enum cpuhp_state state)
1545 {
1546 	enum cpuhp_state i, end;
1547 	struct cpuhp_step *step;
1548 
1549 	switch (state) {
1550 	case CPUHP_AP_ONLINE_DYN:
1551 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1552 		end = CPUHP_AP_ONLINE_DYN_END;
1553 		break;
1554 	case CPUHP_BP_PREPARE_DYN:
1555 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1556 		end = CPUHP_BP_PREPARE_DYN_END;
1557 		break;
1558 	default:
1559 		return -EINVAL;
1560 	}
1561 
1562 	for (i = state; i <= end; i++, step++) {
1563 		if (!step->name)
1564 			return i;
1565 	}
1566 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1567 	return -ENOSPC;
1568 }
1569 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1570 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1571 				 int (*startup)(unsigned int cpu),
1572 				 int (*teardown)(unsigned int cpu),
1573 				 bool multi_instance)
1574 {
1575 	/* (Un)Install the callbacks for further cpu hotplug operations */
1576 	struct cpuhp_step *sp;
1577 	int ret = 0;
1578 
1579 	/*
1580 	 * If name is NULL, then the state gets removed.
1581 	 *
1582 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1583 	 * the first allocation from these dynamic ranges, so the removal
1584 	 * would trigger a new allocation and clear the wrong (already
1585 	 * empty) state, leaving the callbacks of the to be cleared state
1586 	 * dangling, which causes wreckage on the next hotplug operation.
1587 	 */
1588 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1589 		     state == CPUHP_BP_PREPARE_DYN)) {
1590 		ret = cpuhp_reserve_state(state);
1591 		if (ret < 0)
1592 			return ret;
1593 		state = ret;
1594 	}
1595 	sp = cpuhp_get_step(state);
1596 	if (name && sp->name)
1597 		return -EBUSY;
1598 
1599 	sp->startup.single = startup;
1600 	sp->teardown.single = teardown;
1601 	sp->name = name;
1602 	sp->multi_instance = multi_instance;
1603 	INIT_HLIST_HEAD(&sp->list);
1604 	return ret;
1605 }
1606 
cpuhp_get_teardown_cb(enum cpuhp_state state)1607 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1608 {
1609 	return cpuhp_get_step(state)->teardown.single;
1610 }
1611 
1612 /*
1613  * Call the startup/teardown function for a step either on the AP or
1614  * on the current CPU.
1615  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1616 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1617 			    struct hlist_node *node)
1618 {
1619 	struct cpuhp_step *sp = cpuhp_get_step(state);
1620 	int ret;
1621 
1622 	/*
1623 	 * If there's nothing to do, we done.
1624 	 * Relies on the union for multi_instance.
1625 	 */
1626 	if ((bringup && !sp->startup.single) ||
1627 	    (!bringup && !sp->teardown.single))
1628 		return 0;
1629 	/*
1630 	 * The non AP bound callbacks can fail on bringup. On teardown
1631 	 * e.g. module removal we crash for now.
1632 	 */
1633 #ifdef CONFIG_SMP
1634 	if (cpuhp_is_ap_state(state))
1635 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1636 	else
1637 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1638 #else
1639 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1640 #endif
1641 	BUG_ON(ret && !bringup);
1642 	return ret;
1643 }
1644 
1645 /*
1646  * Called from __cpuhp_setup_state on a recoverable failure.
1647  *
1648  * Note: The teardown callbacks for rollback are not allowed to fail!
1649  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1650 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1651 				   struct hlist_node *node)
1652 {
1653 	int cpu;
1654 
1655 	/* Roll back the already executed steps on the other cpus */
1656 	for_each_present_cpu(cpu) {
1657 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 		int cpustate = st->state;
1659 
1660 		if (cpu >= failedcpu)
1661 			break;
1662 
1663 		/* Did we invoke the startup call on that cpu ? */
1664 		if (cpustate >= state)
1665 			cpuhp_issue_call(cpu, state, false, node);
1666 	}
1667 }
1668 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1669 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1670 					  struct hlist_node *node,
1671 					  bool invoke)
1672 {
1673 	struct cpuhp_step *sp;
1674 	int cpu;
1675 	int ret;
1676 
1677 	lockdep_assert_cpus_held();
1678 
1679 	sp = cpuhp_get_step(state);
1680 	if (sp->multi_instance == false)
1681 		return -EINVAL;
1682 
1683 	mutex_lock(&cpuhp_state_mutex);
1684 
1685 	if (!invoke || !sp->startup.multi)
1686 		goto add_node;
1687 
1688 	/*
1689 	 * Try to call the startup callback for each present cpu
1690 	 * depending on the hotplug state of the cpu.
1691 	 */
1692 	for_each_present_cpu(cpu) {
1693 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1694 		int cpustate = st->state;
1695 
1696 		if (cpustate < state)
1697 			continue;
1698 
1699 		ret = cpuhp_issue_call(cpu, state, true, node);
1700 		if (ret) {
1701 			if (sp->teardown.multi)
1702 				cpuhp_rollback_install(cpu, state, node);
1703 			goto unlock;
1704 		}
1705 	}
1706 add_node:
1707 	ret = 0;
1708 	hlist_add_head(node, &sp->list);
1709 unlock:
1710 	mutex_unlock(&cpuhp_state_mutex);
1711 	return ret;
1712 }
1713 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1714 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1715 			       bool invoke)
1716 {
1717 	int ret;
1718 
1719 	cpus_read_lock();
1720 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1721 	cpus_read_unlock();
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1725 
1726 /**
1727  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1728  * @state:		The state to setup
1729  * @invoke:		If true, the startup function is invoked for cpus where
1730  *			cpu state >= @state
1731  * @startup:		startup callback function
1732  * @teardown:		teardown callback function
1733  * @multi_instance:	State is set up for multiple instances which get
1734  *			added afterwards.
1735  *
1736  * The caller needs to hold cpus read locked while calling this function.
1737  * Returns:
1738  *   On success:
1739  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1740  *      0 for all other states
1741  *   On failure: proper (negative) error code
1742  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1743 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1744 				   const char *name, bool invoke,
1745 				   int (*startup)(unsigned int cpu),
1746 				   int (*teardown)(unsigned int cpu),
1747 				   bool multi_instance)
1748 {
1749 	int cpu, ret = 0;
1750 	bool dynstate;
1751 
1752 	lockdep_assert_cpus_held();
1753 
1754 	if (cpuhp_cb_check(state) || !name)
1755 		return -EINVAL;
1756 
1757 	mutex_lock(&cpuhp_state_mutex);
1758 
1759 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1760 				    multi_instance);
1761 
1762 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1763 	if (ret > 0 && dynstate) {
1764 		state = ret;
1765 		ret = 0;
1766 	}
1767 
1768 	if (ret || !invoke || !startup)
1769 		goto out;
1770 
1771 	/*
1772 	 * Try to call the startup callback for each present cpu
1773 	 * depending on the hotplug state of the cpu.
1774 	 */
1775 	for_each_present_cpu(cpu) {
1776 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1777 		int cpustate = st->state;
1778 
1779 		if (cpustate < state)
1780 			continue;
1781 
1782 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1783 		if (ret) {
1784 			if (teardown)
1785 				cpuhp_rollback_install(cpu, state, NULL);
1786 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1787 			goto out;
1788 		}
1789 	}
1790 out:
1791 	mutex_unlock(&cpuhp_state_mutex);
1792 	/*
1793 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1794 	 * dynamically allocated state in case of success.
1795 	 */
1796 	if (!ret && dynstate)
1797 		return state;
1798 	return ret;
1799 }
1800 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1801 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1802 int __cpuhp_setup_state(enum cpuhp_state state,
1803 			const char *name, bool invoke,
1804 			int (*startup)(unsigned int cpu),
1805 			int (*teardown)(unsigned int cpu),
1806 			bool multi_instance)
1807 {
1808 	int ret;
1809 
1810 	cpus_read_lock();
1811 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1812 					     teardown, multi_instance);
1813 	cpus_read_unlock();
1814 	return ret;
1815 }
1816 EXPORT_SYMBOL(__cpuhp_setup_state);
1817 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1818 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1819 				  struct hlist_node *node, bool invoke)
1820 {
1821 	struct cpuhp_step *sp = cpuhp_get_step(state);
1822 	int cpu;
1823 
1824 	BUG_ON(cpuhp_cb_check(state));
1825 
1826 	if (!sp->multi_instance)
1827 		return -EINVAL;
1828 
1829 	cpus_read_lock();
1830 	mutex_lock(&cpuhp_state_mutex);
1831 
1832 	if (!invoke || !cpuhp_get_teardown_cb(state))
1833 		goto remove;
1834 	/*
1835 	 * Call the teardown callback for each present cpu depending
1836 	 * on the hotplug state of the cpu. This function is not
1837 	 * allowed to fail currently!
1838 	 */
1839 	for_each_present_cpu(cpu) {
1840 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841 		int cpustate = st->state;
1842 
1843 		if (cpustate >= state)
1844 			cpuhp_issue_call(cpu, state, false, node);
1845 	}
1846 
1847 remove:
1848 	hlist_del(node);
1849 	mutex_unlock(&cpuhp_state_mutex);
1850 	cpus_read_unlock();
1851 
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1855 
1856 /**
1857  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1858  * @state:	The state to remove
1859  * @invoke:	If true, the teardown function is invoked for cpus where
1860  *		cpu state >= @state
1861  *
1862  * The caller needs to hold cpus read locked while calling this function.
1863  * The teardown callback is currently not allowed to fail. Think
1864  * about module removal!
1865  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1866 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1867 {
1868 	struct cpuhp_step *sp = cpuhp_get_step(state);
1869 	int cpu;
1870 
1871 	BUG_ON(cpuhp_cb_check(state));
1872 
1873 	lockdep_assert_cpus_held();
1874 
1875 	mutex_lock(&cpuhp_state_mutex);
1876 	if (sp->multi_instance) {
1877 		WARN(!hlist_empty(&sp->list),
1878 		     "Error: Removing state %d which has instances left.\n",
1879 		     state);
1880 		goto remove;
1881 	}
1882 
1883 	if (!invoke || !cpuhp_get_teardown_cb(state))
1884 		goto remove;
1885 
1886 	/*
1887 	 * Call the teardown callback for each present cpu depending
1888 	 * on the hotplug state of the cpu. This function is not
1889 	 * allowed to fail currently!
1890 	 */
1891 	for_each_present_cpu(cpu) {
1892 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1893 		int cpustate = st->state;
1894 
1895 		if (cpustate >= state)
1896 			cpuhp_issue_call(cpu, state, false, NULL);
1897 	}
1898 remove:
1899 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1900 	mutex_unlock(&cpuhp_state_mutex);
1901 }
1902 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1903 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1904 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1905 {
1906 	cpus_read_lock();
1907 	__cpuhp_remove_state_cpuslocked(state, invoke);
1908 	cpus_read_unlock();
1909 }
1910 EXPORT_SYMBOL(__cpuhp_remove_state);
1911 
1912 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1913 static ssize_t show_cpuhp_state(struct device *dev,
1914 				struct device_attribute *attr, char *buf)
1915 {
1916 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1917 
1918 	return sprintf(buf, "%d\n", st->state);
1919 }
1920 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1921 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1922 static ssize_t write_cpuhp_target(struct device *dev,
1923 				  struct device_attribute *attr,
1924 				  const char *buf, size_t count)
1925 {
1926 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1927 	struct cpuhp_step *sp;
1928 	int target, ret;
1929 
1930 	ret = kstrtoint(buf, 10, &target);
1931 	if (ret)
1932 		return ret;
1933 
1934 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1935 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1936 		return -EINVAL;
1937 #else
1938 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1939 		return -EINVAL;
1940 #endif
1941 
1942 	ret = lock_device_hotplug_sysfs();
1943 	if (ret)
1944 		return ret;
1945 
1946 	mutex_lock(&cpuhp_state_mutex);
1947 	sp = cpuhp_get_step(target);
1948 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1949 	mutex_unlock(&cpuhp_state_mutex);
1950 	if (ret)
1951 		goto out;
1952 
1953 	if (st->state < target)
1954 		ret = do_cpu_up(dev->id, target);
1955 	else
1956 		ret = do_cpu_down(dev->id, target);
1957 out:
1958 	unlock_device_hotplug();
1959 	return ret ? ret : count;
1960 }
1961 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)1962 static ssize_t show_cpuhp_target(struct device *dev,
1963 				 struct device_attribute *attr, char *buf)
1964 {
1965 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1966 
1967 	return sprintf(buf, "%d\n", st->target);
1968 }
1969 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1970 
1971 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1972 static ssize_t write_cpuhp_fail(struct device *dev,
1973 				struct device_attribute *attr,
1974 				const char *buf, size_t count)
1975 {
1976 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1977 	struct cpuhp_step *sp;
1978 	int fail, ret;
1979 
1980 	ret = kstrtoint(buf, 10, &fail);
1981 	if (ret)
1982 		return ret;
1983 
1984 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1985 		return -EINVAL;
1986 
1987 	/*
1988 	 * Cannot fail STARTING/DYING callbacks.
1989 	 */
1990 	if (cpuhp_is_atomic_state(fail))
1991 		return -EINVAL;
1992 
1993 	/*
1994 	 * Cannot fail anything that doesn't have callbacks.
1995 	 */
1996 	mutex_lock(&cpuhp_state_mutex);
1997 	sp = cpuhp_get_step(fail);
1998 	if (!sp->startup.single && !sp->teardown.single)
1999 		ret = -EINVAL;
2000 	mutex_unlock(&cpuhp_state_mutex);
2001 	if (ret)
2002 		return ret;
2003 
2004 	st->fail = fail;
2005 
2006 	return count;
2007 }
2008 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2009 static ssize_t show_cpuhp_fail(struct device *dev,
2010 			       struct device_attribute *attr, char *buf)
2011 {
2012 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2013 
2014 	return sprintf(buf, "%d\n", st->fail);
2015 }
2016 
2017 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2018 
2019 static struct attribute *cpuhp_cpu_attrs[] = {
2020 	&dev_attr_state.attr,
2021 	&dev_attr_target.attr,
2022 	&dev_attr_fail.attr,
2023 	NULL
2024 };
2025 
2026 static const struct attribute_group cpuhp_cpu_attr_group = {
2027 	.attrs = cpuhp_cpu_attrs,
2028 	.name = "hotplug",
2029 	NULL
2030 };
2031 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2032 static ssize_t show_cpuhp_states(struct device *dev,
2033 				 struct device_attribute *attr, char *buf)
2034 {
2035 	ssize_t cur, res = 0;
2036 	int i;
2037 
2038 	mutex_lock(&cpuhp_state_mutex);
2039 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2040 		struct cpuhp_step *sp = cpuhp_get_step(i);
2041 
2042 		if (sp->name) {
2043 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2044 			buf += cur;
2045 			res += cur;
2046 		}
2047 	}
2048 	mutex_unlock(&cpuhp_state_mutex);
2049 	return res;
2050 }
2051 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2052 
2053 static struct attribute *cpuhp_cpu_root_attrs[] = {
2054 	&dev_attr_states.attr,
2055 	NULL
2056 };
2057 
2058 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2059 	.attrs = cpuhp_cpu_root_attrs,
2060 	.name = "hotplug",
2061 	NULL
2062 };
2063 
2064 #ifdef CONFIG_HOTPLUG_SMT
2065 
cpuhp_offline_cpu_device(unsigned int cpu)2066 static void cpuhp_offline_cpu_device(unsigned int cpu)
2067 {
2068 	struct device *dev = get_cpu_device(cpu);
2069 
2070 	dev->offline = true;
2071 	/* Tell user space about the state change */
2072 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2073 }
2074 
cpuhp_online_cpu_device(unsigned int cpu)2075 static void cpuhp_online_cpu_device(unsigned int cpu)
2076 {
2077 	struct device *dev = get_cpu_device(cpu);
2078 
2079 	dev->offline = false;
2080 	/* Tell user space about the state change */
2081 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2082 }
2083 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2084 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2085 {
2086 	int cpu, ret = 0;
2087 
2088 	cpu_maps_update_begin();
2089 	for_each_online_cpu(cpu) {
2090 		if (topology_is_primary_thread(cpu))
2091 			continue;
2092 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2093 		if (ret)
2094 			break;
2095 		/*
2096 		 * As this needs to hold the cpu maps lock it's impossible
2097 		 * to call device_offline() because that ends up calling
2098 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2099 		 * needs to be held as this might race against in kernel
2100 		 * abusers of the hotplug machinery (thermal management).
2101 		 *
2102 		 * So nothing would update device:offline state. That would
2103 		 * leave the sysfs entry stale and prevent onlining after
2104 		 * smt control has been changed to 'off' again. This is
2105 		 * called under the sysfs hotplug lock, so it is properly
2106 		 * serialized against the regular offline usage.
2107 		 */
2108 		cpuhp_offline_cpu_device(cpu);
2109 	}
2110 	if (!ret)
2111 		cpu_smt_control = ctrlval;
2112 	cpu_maps_update_done();
2113 	return ret;
2114 }
2115 
cpuhp_smt_enable(void)2116 int cpuhp_smt_enable(void)
2117 {
2118 	int cpu, ret = 0;
2119 
2120 	cpu_maps_update_begin();
2121 	cpu_smt_control = CPU_SMT_ENABLED;
2122 	for_each_present_cpu(cpu) {
2123 		/* Skip online CPUs and CPUs on offline nodes */
2124 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2125 			continue;
2126 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2127 		if (ret)
2128 			break;
2129 		/* See comment in cpuhp_smt_disable() */
2130 		cpuhp_online_cpu_device(cpu);
2131 	}
2132 	cpu_maps_update_done();
2133 	return ret;
2134 }
2135 
2136 
2137 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2138 __store_smt_control(struct device *dev, struct device_attribute *attr,
2139 		    const char *buf, size_t count)
2140 {
2141 	int ctrlval, ret;
2142 
2143 	if (sysfs_streq(buf, "on"))
2144 		ctrlval = CPU_SMT_ENABLED;
2145 	else if (sysfs_streq(buf, "off"))
2146 		ctrlval = CPU_SMT_DISABLED;
2147 	else if (sysfs_streq(buf, "forceoff"))
2148 		ctrlval = CPU_SMT_FORCE_DISABLED;
2149 	else
2150 		return -EINVAL;
2151 
2152 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2153 		return -EPERM;
2154 
2155 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2156 		return -ENODEV;
2157 
2158 	ret = lock_device_hotplug_sysfs();
2159 	if (ret)
2160 		return ret;
2161 
2162 	if (ctrlval != cpu_smt_control) {
2163 		switch (ctrlval) {
2164 		case CPU_SMT_ENABLED:
2165 			ret = cpuhp_smt_enable();
2166 			break;
2167 		case CPU_SMT_DISABLED:
2168 		case CPU_SMT_FORCE_DISABLED:
2169 			ret = cpuhp_smt_disable(ctrlval);
2170 			break;
2171 		}
2172 	}
2173 
2174 	unlock_device_hotplug();
2175 	return ret ? ret : count;
2176 }
2177 
2178 #else /* !CONFIG_HOTPLUG_SMT */
2179 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2180 __store_smt_control(struct device *dev, struct device_attribute *attr,
2181 		    const char *buf, size_t count)
2182 {
2183 	return -ENODEV;
2184 }
2185 #endif /* CONFIG_HOTPLUG_SMT */
2186 
2187 static const char *smt_states[] = {
2188 	[CPU_SMT_ENABLED]		= "on",
2189 	[CPU_SMT_DISABLED]		= "off",
2190 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2191 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2192 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2193 };
2194 
2195 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2196 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2197 {
2198 	const char *state = smt_states[cpu_smt_control];
2199 
2200 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2201 }
2202 
2203 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2204 store_smt_control(struct device *dev, struct device_attribute *attr,
2205 		  const char *buf, size_t count)
2206 {
2207 	return __store_smt_control(dev, attr, buf, count);
2208 }
2209 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2210 
2211 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2212 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2213 {
2214 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2215 }
2216 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2217 
2218 static struct attribute *cpuhp_smt_attrs[] = {
2219 	&dev_attr_control.attr,
2220 	&dev_attr_active.attr,
2221 	NULL
2222 };
2223 
2224 static const struct attribute_group cpuhp_smt_attr_group = {
2225 	.attrs = cpuhp_smt_attrs,
2226 	.name = "smt",
2227 	NULL
2228 };
2229 
cpu_smt_sysfs_init(void)2230 static int __init cpu_smt_sysfs_init(void)
2231 {
2232 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2233 				  &cpuhp_smt_attr_group);
2234 }
2235 
cpuhp_sysfs_init(void)2236 static int __init cpuhp_sysfs_init(void)
2237 {
2238 	int cpu, ret;
2239 
2240 	ret = cpu_smt_sysfs_init();
2241 	if (ret)
2242 		return ret;
2243 
2244 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2245 				 &cpuhp_cpu_root_attr_group);
2246 	if (ret)
2247 		return ret;
2248 
2249 	for_each_possible_cpu(cpu) {
2250 		struct device *dev = get_cpu_device(cpu);
2251 
2252 		if (!dev)
2253 			continue;
2254 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2255 		if (ret)
2256 			return ret;
2257 	}
2258 	return 0;
2259 }
2260 device_initcall(cpuhp_sysfs_init);
2261 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2262 
2263 /*
2264  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2265  * represents all NR_CPUS bits binary values of 1<<nr.
2266  *
2267  * It is used by cpumask_of() to get a constant address to a CPU
2268  * mask value that has a single bit set only.
2269  */
2270 
2271 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2272 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2273 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2274 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2275 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2276 
2277 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2278 
2279 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2280 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2281 #if BITS_PER_LONG > 32
2282 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2283 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2284 #endif
2285 };
2286 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2287 
2288 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2289 EXPORT_SYMBOL(cpu_all_bits);
2290 
2291 #ifdef CONFIG_INIT_ALL_POSSIBLE
2292 struct cpumask __cpu_possible_mask __read_mostly
2293 	= {CPU_BITS_ALL};
2294 #else
2295 struct cpumask __cpu_possible_mask __read_mostly;
2296 #endif
2297 EXPORT_SYMBOL(__cpu_possible_mask);
2298 
2299 struct cpumask __cpu_online_mask __read_mostly;
2300 EXPORT_SYMBOL(__cpu_online_mask);
2301 
2302 struct cpumask __cpu_present_mask __read_mostly;
2303 EXPORT_SYMBOL(__cpu_present_mask);
2304 
2305 struct cpumask __cpu_active_mask __read_mostly;
2306 EXPORT_SYMBOL(__cpu_active_mask);
2307 
2308 atomic_t __num_online_cpus __read_mostly;
2309 EXPORT_SYMBOL(__num_online_cpus);
2310 
init_cpu_present(const struct cpumask * src)2311 void init_cpu_present(const struct cpumask *src)
2312 {
2313 	cpumask_copy(&__cpu_present_mask, src);
2314 }
2315 
init_cpu_possible(const struct cpumask * src)2316 void init_cpu_possible(const struct cpumask *src)
2317 {
2318 	cpumask_copy(&__cpu_possible_mask, src);
2319 }
2320 
init_cpu_online(const struct cpumask * src)2321 void init_cpu_online(const struct cpumask *src)
2322 {
2323 	cpumask_copy(&__cpu_online_mask, src);
2324 }
2325 
set_cpu_online(unsigned int cpu,bool online)2326 void set_cpu_online(unsigned int cpu, bool online)
2327 {
2328 	/*
2329 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2330 	 * function by the reboot and kexec code which invoke it from
2331 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2332 	 * regular CPU hotplug is properly serialized.
2333 	 *
2334 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2335 	 * does not protect readers which are not serialized against
2336 	 * concurrent hotplug operations.
2337 	 */
2338 	if (online) {
2339 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2340 			atomic_inc(&__num_online_cpus);
2341 	} else {
2342 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2343 			atomic_dec(&__num_online_cpus);
2344 	}
2345 }
2346 
2347 /*
2348  * Activate the first processor.
2349  */
boot_cpu_init(void)2350 void __init boot_cpu_init(void)
2351 {
2352 	int cpu = smp_processor_id();
2353 
2354 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2355 	set_cpu_online(cpu, true);
2356 	set_cpu_active(cpu, true);
2357 	set_cpu_present(cpu, true);
2358 	set_cpu_possible(cpu, true);
2359 
2360 #ifdef CONFIG_SMP
2361 	__boot_cpu_id = cpu;
2362 #endif
2363 }
2364 
2365 /*
2366  * Must be called _AFTER_ setting up the per_cpu areas
2367  */
boot_cpu_hotplug_init(void)2368 void __init boot_cpu_hotplug_init(void)
2369 {
2370 #ifdef CONFIG_SMP
2371 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2372 #endif
2373 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2374 }
2375 
2376 /*
2377  * These are used for a global "mitigations=" cmdline option for toggling
2378  * optional CPU mitigations.
2379  */
2380 enum cpu_mitigations {
2381 	CPU_MITIGATIONS_OFF,
2382 	CPU_MITIGATIONS_AUTO,
2383 	CPU_MITIGATIONS_AUTO_NOSMT,
2384 };
2385 
2386 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2387 	CPU_MITIGATIONS_AUTO;
2388 
mitigations_parse_cmdline(char * arg)2389 static int __init mitigations_parse_cmdline(char *arg)
2390 {
2391 	if (!strcmp(arg, "off"))
2392 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2393 	else if (!strcmp(arg, "auto"))
2394 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2395 	else if (!strcmp(arg, "auto,nosmt"))
2396 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2397 	else
2398 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2399 			arg);
2400 
2401 	return 0;
2402 }
2403 early_param("mitigations", mitigations_parse_cmdline);
2404 
2405 /* mitigations=off */
cpu_mitigations_off(void)2406 bool cpu_mitigations_off(void)
2407 {
2408 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2409 }
2410 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2411 
2412 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2413 bool cpu_mitigations_auto_nosmt(void)
2414 {
2415 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2416 }
2417 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2418