1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_ialloc.h"
16 #include "xfs_ialloc_btree.h"
17 #include "xfs_alloc.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_trans.h"
21 #include "xfs_rmap.h"
22
23
24 STATIC int
xfs_inobt_get_minrecs(struct xfs_btree_cur * cur,int level)25 xfs_inobt_get_minrecs(
26 struct xfs_btree_cur *cur,
27 int level)
28 {
29 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
30 }
31
32 STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(struct xfs_btree_cur * cur)33 xfs_inobt_dup_cursor(
34 struct xfs_btree_cur *cur)
35 {
36 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
37 cur->bc_private.a.agbp, cur->bc_private.a.agno,
38 cur->bc_btnum);
39 }
40
41 STATIC void
xfs_inobt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * nptr,int inc)42 xfs_inobt_set_root(
43 struct xfs_btree_cur *cur,
44 union xfs_btree_ptr *nptr,
45 int inc) /* level change */
46 {
47 struct xfs_buf *agbp = cur->bc_private.a.agbp;
48 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
49
50 agi->agi_root = nptr->s;
51 be32_add_cpu(&agi->agi_level, inc);
52 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
53 }
54
55 STATIC void
xfs_finobt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * nptr,int inc)56 xfs_finobt_set_root(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *nptr,
59 int inc) /* level change */
60 {
61 struct xfs_buf *agbp = cur->bc_private.a.agbp;
62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
63
64 agi->agi_free_root = nptr->s;
65 be32_add_cpu(&agi->agi_free_level, inc);
66 xfs_ialloc_log_agi(cur->bc_tp, agbp,
67 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
68 }
69
70 STATIC int
__xfs_inobt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat,enum xfs_ag_resv_type resv)71 __xfs_inobt_alloc_block(
72 struct xfs_btree_cur *cur,
73 union xfs_btree_ptr *start,
74 union xfs_btree_ptr *new,
75 int *stat,
76 enum xfs_ag_resv_type resv)
77 {
78 xfs_alloc_arg_t args; /* block allocation args */
79 int error; /* error return value */
80 xfs_agblock_t sbno = be32_to_cpu(start->s);
81
82 memset(&args, 0, sizeof(args));
83 args.tp = cur->bc_tp;
84 args.mp = cur->bc_mp;
85 args.oinfo = XFS_RMAP_OINFO_INOBT;
86 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
87 args.minlen = 1;
88 args.maxlen = 1;
89 args.prod = 1;
90 args.type = XFS_ALLOCTYPE_NEAR_BNO;
91 args.resv = resv;
92
93 error = xfs_alloc_vextent(&args);
94 if (error)
95 return error;
96
97 if (args.fsbno == NULLFSBLOCK) {
98 *stat = 0;
99 return 0;
100 }
101 ASSERT(args.len == 1);
102
103 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
104 *stat = 1;
105 return 0;
106 }
107
108 STATIC int
xfs_inobt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)109 xfs_inobt_alloc_block(
110 struct xfs_btree_cur *cur,
111 union xfs_btree_ptr *start,
112 union xfs_btree_ptr *new,
113 int *stat)
114 {
115 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
116 }
117
118 STATIC int
xfs_finobt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)119 xfs_finobt_alloc_block(
120 struct xfs_btree_cur *cur,
121 union xfs_btree_ptr *start,
122 union xfs_btree_ptr *new,
123 int *stat)
124 {
125 if (cur->bc_mp->m_finobt_nores)
126 return xfs_inobt_alloc_block(cur, start, new, stat);
127 return __xfs_inobt_alloc_block(cur, start, new, stat,
128 XFS_AG_RESV_METADATA);
129 }
130
131 STATIC int
__xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,enum xfs_ag_resv_type resv)132 __xfs_inobt_free_block(
133 struct xfs_btree_cur *cur,
134 struct xfs_buf *bp,
135 enum xfs_ag_resv_type resv)
136 {
137 return xfs_free_extent(cur->bc_tp,
138 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
139 &XFS_RMAP_OINFO_INOBT, resv);
140 }
141
142 STATIC int
xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)143 xfs_inobt_free_block(
144 struct xfs_btree_cur *cur,
145 struct xfs_buf *bp)
146 {
147 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
148 }
149
150 STATIC int
xfs_finobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)151 xfs_finobt_free_block(
152 struct xfs_btree_cur *cur,
153 struct xfs_buf *bp)
154 {
155 if (cur->bc_mp->m_finobt_nores)
156 return xfs_inobt_free_block(cur, bp);
157 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
158 }
159
160 STATIC int
xfs_inobt_get_maxrecs(struct xfs_btree_cur * cur,int level)161 xfs_inobt_get_maxrecs(
162 struct xfs_btree_cur *cur,
163 int level)
164 {
165 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
166 }
167
168 STATIC void
xfs_inobt_init_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)169 xfs_inobt_init_key_from_rec(
170 union xfs_btree_key *key,
171 union xfs_btree_rec *rec)
172 {
173 key->inobt.ir_startino = rec->inobt.ir_startino;
174 }
175
176 STATIC void
xfs_inobt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)177 xfs_inobt_init_high_key_from_rec(
178 union xfs_btree_key *key,
179 union xfs_btree_rec *rec)
180 {
181 __u32 x;
182
183 x = be32_to_cpu(rec->inobt.ir_startino);
184 x += XFS_INODES_PER_CHUNK - 1;
185 key->inobt.ir_startino = cpu_to_be32(x);
186 }
187
188 STATIC void
xfs_inobt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)189 xfs_inobt_init_rec_from_cur(
190 struct xfs_btree_cur *cur,
191 union xfs_btree_rec *rec)
192 {
193 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
194 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
195 rec->inobt.ir_u.sp.ir_holemask =
196 cpu_to_be16(cur->bc_rec.i.ir_holemask);
197 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
198 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
199 } else {
200 /* ir_holemask/ir_count not supported on-disk */
201 rec->inobt.ir_u.f.ir_freecount =
202 cpu_to_be32(cur->bc_rec.i.ir_freecount);
203 }
204 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
205 }
206
207 /*
208 * initial value of ptr for lookup
209 */
210 STATIC void
xfs_inobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)211 xfs_inobt_init_ptr_from_cur(
212 struct xfs_btree_cur *cur,
213 union xfs_btree_ptr *ptr)
214 {
215 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
216
217 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
218
219 ptr->s = agi->agi_root;
220 }
221
222 STATIC void
xfs_finobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)223 xfs_finobt_init_ptr_from_cur(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_ptr *ptr)
226 {
227 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
228
229 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
230 ptr->s = agi->agi_free_root;
231 }
232
233 STATIC int64_t
xfs_inobt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)234 xfs_inobt_key_diff(
235 struct xfs_btree_cur *cur,
236 union xfs_btree_key *key)
237 {
238 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
239 cur->bc_rec.i.ir_startino;
240 }
241
242 STATIC int64_t
xfs_inobt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)243 xfs_inobt_diff_two_keys(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_key *k1,
246 union xfs_btree_key *k2)
247 {
248 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
249 be32_to_cpu(k2->inobt.ir_startino);
250 }
251
252 static xfs_failaddr_t
xfs_inobt_verify(struct xfs_buf * bp)253 xfs_inobt_verify(
254 struct xfs_buf *bp)
255 {
256 struct xfs_mount *mp = bp->b_mount;
257 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
258 xfs_failaddr_t fa;
259 unsigned int level;
260
261 if (!xfs_verify_magic(bp, block->bb_magic))
262 return __this_address;
263
264 /*
265 * During growfs operations, we can't verify the exact owner as the
266 * perag is not fully initialised and hence not attached to the buffer.
267 *
268 * Similarly, during log recovery we will have a perag structure
269 * attached, but the agi information will not yet have been initialised
270 * from the on disk AGI. We don't currently use any of this information,
271 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
272 * ever do.
273 */
274 if (xfs_sb_version_hascrc(&mp->m_sb)) {
275 fa = xfs_btree_sblock_v5hdr_verify(bp);
276 if (fa)
277 return fa;
278 }
279
280 /* level verification */
281 level = be16_to_cpu(block->bb_level);
282 if (level >= M_IGEO(mp)->inobt_maxlevels)
283 return __this_address;
284
285 return xfs_btree_sblock_verify(bp,
286 M_IGEO(mp)->inobt_mxr[level != 0]);
287 }
288
289 static void
xfs_inobt_read_verify(struct xfs_buf * bp)290 xfs_inobt_read_verify(
291 struct xfs_buf *bp)
292 {
293 xfs_failaddr_t fa;
294
295 if (!xfs_btree_sblock_verify_crc(bp))
296 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
297 else {
298 fa = xfs_inobt_verify(bp);
299 if (fa)
300 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
301 }
302
303 if (bp->b_error)
304 trace_xfs_btree_corrupt(bp, _RET_IP_);
305 }
306
307 static void
xfs_inobt_write_verify(struct xfs_buf * bp)308 xfs_inobt_write_verify(
309 struct xfs_buf *bp)
310 {
311 xfs_failaddr_t fa;
312
313 fa = xfs_inobt_verify(bp);
314 if (fa) {
315 trace_xfs_btree_corrupt(bp, _RET_IP_);
316 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
317 return;
318 }
319 xfs_btree_sblock_calc_crc(bp);
320
321 }
322
323 const struct xfs_buf_ops xfs_inobt_buf_ops = {
324 .name = "xfs_inobt",
325 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
326 .verify_read = xfs_inobt_read_verify,
327 .verify_write = xfs_inobt_write_verify,
328 .verify_struct = xfs_inobt_verify,
329 };
330
331 const struct xfs_buf_ops xfs_finobt_buf_ops = {
332 .name = "xfs_finobt",
333 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
334 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
335 .verify_read = xfs_inobt_read_verify,
336 .verify_write = xfs_inobt_write_verify,
337 .verify_struct = xfs_inobt_verify,
338 };
339
340 STATIC int
xfs_inobt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)341 xfs_inobt_keys_inorder(
342 struct xfs_btree_cur *cur,
343 union xfs_btree_key *k1,
344 union xfs_btree_key *k2)
345 {
346 return be32_to_cpu(k1->inobt.ir_startino) <
347 be32_to_cpu(k2->inobt.ir_startino);
348 }
349
350 STATIC int
xfs_inobt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)351 xfs_inobt_recs_inorder(
352 struct xfs_btree_cur *cur,
353 union xfs_btree_rec *r1,
354 union xfs_btree_rec *r2)
355 {
356 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
357 be32_to_cpu(r2->inobt.ir_startino);
358 }
359
360 static const struct xfs_btree_ops xfs_inobt_ops = {
361 .rec_len = sizeof(xfs_inobt_rec_t),
362 .key_len = sizeof(xfs_inobt_key_t),
363
364 .dup_cursor = xfs_inobt_dup_cursor,
365 .set_root = xfs_inobt_set_root,
366 .alloc_block = xfs_inobt_alloc_block,
367 .free_block = xfs_inobt_free_block,
368 .get_minrecs = xfs_inobt_get_minrecs,
369 .get_maxrecs = xfs_inobt_get_maxrecs,
370 .init_key_from_rec = xfs_inobt_init_key_from_rec,
371 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
372 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
373 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
374 .key_diff = xfs_inobt_key_diff,
375 .buf_ops = &xfs_inobt_buf_ops,
376 .diff_two_keys = xfs_inobt_diff_two_keys,
377 .keys_inorder = xfs_inobt_keys_inorder,
378 .recs_inorder = xfs_inobt_recs_inorder,
379 };
380
381 static const struct xfs_btree_ops xfs_finobt_ops = {
382 .rec_len = sizeof(xfs_inobt_rec_t),
383 .key_len = sizeof(xfs_inobt_key_t),
384
385 .dup_cursor = xfs_inobt_dup_cursor,
386 .set_root = xfs_finobt_set_root,
387 .alloc_block = xfs_finobt_alloc_block,
388 .free_block = xfs_finobt_free_block,
389 .get_minrecs = xfs_inobt_get_minrecs,
390 .get_maxrecs = xfs_inobt_get_maxrecs,
391 .init_key_from_rec = xfs_inobt_init_key_from_rec,
392 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
393 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
394 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
395 .key_diff = xfs_inobt_key_diff,
396 .buf_ops = &xfs_finobt_buf_ops,
397 .diff_two_keys = xfs_inobt_diff_two_keys,
398 .keys_inorder = xfs_inobt_keys_inorder,
399 .recs_inorder = xfs_inobt_recs_inorder,
400 };
401
402 /*
403 * Allocate a new inode btree cursor.
404 */
405 struct xfs_btree_cur * /* new inode btree cursor */
xfs_inobt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_btnum_t btnum)406 xfs_inobt_init_cursor(
407 struct xfs_mount *mp, /* file system mount point */
408 struct xfs_trans *tp, /* transaction pointer */
409 struct xfs_buf *agbp, /* buffer for agi structure */
410 xfs_agnumber_t agno, /* allocation group number */
411 xfs_btnum_t btnum) /* ialloc or free ino btree */
412 {
413 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
414 struct xfs_btree_cur *cur;
415
416 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
417
418 cur->bc_tp = tp;
419 cur->bc_mp = mp;
420 cur->bc_btnum = btnum;
421 if (btnum == XFS_BTNUM_INO) {
422 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
423 cur->bc_ops = &xfs_inobt_ops;
424 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
425 } else {
426 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
427 cur->bc_ops = &xfs_finobt_ops;
428 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
429 }
430
431 cur->bc_blocklog = mp->m_sb.sb_blocklog;
432
433 if (xfs_sb_version_hascrc(&mp->m_sb))
434 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
435
436 cur->bc_private.a.agbp = agbp;
437 cur->bc_private.a.agno = agno;
438
439 return cur;
440 }
441
442 /*
443 * Calculate number of records in an inobt btree block.
444 */
445 int
xfs_inobt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)446 xfs_inobt_maxrecs(
447 struct xfs_mount *mp,
448 int blocklen,
449 int leaf)
450 {
451 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
452
453 if (leaf)
454 return blocklen / sizeof(xfs_inobt_rec_t);
455 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
456 }
457
458 /*
459 * Convert the inode record holemask to an inode allocation bitmap. The inode
460 * allocation bitmap is inode granularity and specifies whether an inode is
461 * physically allocated on disk (not whether the inode is considered allocated
462 * or free by the fs).
463 *
464 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
465 */
466 uint64_t
xfs_inobt_irec_to_allocmask(struct xfs_inobt_rec_incore * rec)467 xfs_inobt_irec_to_allocmask(
468 struct xfs_inobt_rec_incore *rec)
469 {
470 uint64_t bitmap = 0;
471 uint64_t inodespbit;
472 int nextbit;
473 uint allocbitmap;
474
475 /*
476 * The holemask has 16-bits for a 64 inode record. Therefore each
477 * holemask bit represents multiple inodes. Create a mask of bits to set
478 * in the allocmask for each holemask bit.
479 */
480 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
481
482 /*
483 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
484 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
485 * anything beyond the 16 holemask bits since this casts to a larger
486 * type.
487 */
488 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
489
490 /*
491 * allocbitmap is the inverted holemask so every set bit represents
492 * allocated inodes. To expand from 16-bit holemask granularity to
493 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
494 * bitmap for every holemask bit.
495 */
496 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
497 while (nextbit != -1) {
498 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
499
500 bitmap |= (inodespbit <<
501 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
502
503 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
504 }
505
506 return bitmap;
507 }
508
509 #if defined(DEBUG) || defined(XFS_WARN)
510 /*
511 * Verify that an in-core inode record has a valid inode count.
512 */
513 int
xfs_inobt_rec_check_count(struct xfs_mount * mp,struct xfs_inobt_rec_incore * rec)514 xfs_inobt_rec_check_count(
515 struct xfs_mount *mp,
516 struct xfs_inobt_rec_incore *rec)
517 {
518 int inocount = 0;
519 int nextbit = 0;
520 uint64_t allocbmap;
521 int wordsz;
522
523 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
524 allocbmap = xfs_inobt_irec_to_allocmask(rec);
525
526 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
527 while (nextbit != -1) {
528 inocount++;
529 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
530 nextbit + 1);
531 }
532
533 if (inocount != rec->ir_count)
534 return -EFSCORRUPTED;
535
536 return 0;
537 }
538 #endif /* DEBUG */
539
540 static xfs_extlen_t
xfs_inobt_max_size(struct xfs_mount * mp,xfs_agnumber_t agno)541 xfs_inobt_max_size(
542 struct xfs_mount *mp,
543 xfs_agnumber_t agno)
544 {
545 xfs_agblock_t agblocks = xfs_ag_block_count(mp, agno);
546
547 /* Bail out if we're uninitialized, which can happen in mkfs. */
548 if (M_IGEO(mp)->inobt_mxr[0] == 0)
549 return 0;
550
551 /*
552 * The log is permanently allocated, so the space it occupies will
553 * never be available for the kinds of things that would require btree
554 * expansion. We therefore can pretend the space isn't there.
555 */
556 if (mp->m_sb.sb_logstart &&
557 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
558 agblocks -= mp->m_sb.sb_logblocks;
559
560 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
561 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
562 XFS_INODES_PER_CHUNK);
563 }
564
565 /* Read AGI and create inobt cursor. */
566 int
xfs_inobt_cur(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_btnum_t which,struct xfs_btree_cur ** curpp,struct xfs_buf ** agi_bpp)567 xfs_inobt_cur(
568 struct xfs_mount *mp,
569 struct xfs_trans *tp,
570 xfs_agnumber_t agno,
571 xfs_btnum_t which,
572 struct xfs_btree_cur **curpp,
573 struct xfs_buf **agi_bpp)
574 {
575 struct xfs_btree_cur *cur;
576 int error;
577
578 ASSERT(*agi_bpp == NULL);
579 ASSERT(*curpp == NULL);
580
581 error = xfs_ialloc_read_agi(mp, tp, agno, agi_bpp);
582 if (error)
583 return error;
584
585 cur = xfs_inobt_init_cursor(mp, tp, *agi_bpp, agno, which);
586 if (!cur) {
587 xfs_trans_brelse(tp, *agi_bpp);
588 *agi_bpp = NULL;
589 return -ENOMEM;
590 }
591 *curpp = cur;
592 return 0;
593 }
594
595 static int
xfs_inobt_count_blocks(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_btnum_t btnum,xfs_extlen_t * tree_blocks)596 xfs_inobt_count_blocks(
597 struct xfs_mount *mp,
598 struct xfs_trans *tp,
599 xfs_agnumber_t agno,
600 xfs_btnum_t btnum,
601 xfs_extlen_t *tree_blocks)
602 {
603 struct xfs_buf *agbp = NULL;
604 struct xfs_btree_cur *cur = NULL;
605 int error;
606
607 error = xfs_inobt_cur(mp, tp, agno, btnum, &cur, &agbp);
608 if (error)
609 return error;
610
611 error = xfs_btree_count_blocks(cur, tree_blocks);
612 xfs_btree_del_cursor(cur, error);
613 xfs_trans_brelse(tp, agbp);
614
615 return error;
616 }
617
618 /*
619 * Figure out how many blocks to reserve and how many are used by this btree.
620 */
621 int
xfs_finobt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_extlen_t * ask,xfs_extlen_t * used)622 xfs_finobt_calc_reserves(
623 struct xfs_mount *mp,
624 struct xfs_trans *tp,
625 xfs_agnumber_t agno,
626 xfs_extlen_t *ask,
627 xfs_extlen_t *used)
628 {
629 xfs_extlen_t tree_len = 0;
630 int error;
631
632 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
633 return 0;
634
635 error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO, &tree_len);
636 if (error)
637 return error;
638
639 *ask += xfs_inobt_max_size(mp, agno);
640 *used += tree_len;
641 return 0;
642 }
643
644 /* Calculate the inobt btree size for some records. */
645 xfs_extlen_t
xfs_iallocbt_calc_size(struct xfs_mount * mp,unsigned long long len)646 xfs_iallocbt_calc_size(
647 struct xfs_mount *mp,
648 unsigned long long len)
649 {
650 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
651 }
652