1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqring (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 
74 #include <uapi/linux/io_uring.h>
75 
76 #include "internal.h"
77 
78 #define IORING_MAX_ENTRIES	32768
79 #define IORING_MAX_FIXED_FILES	1024
80 
81 struct io_uring {
82 	u32 head ____cacheline_aligned_in_smp;
83 	u32 tail ____cacheline_aligned_in_smp;
84 };
85 
86 /*
87  * This data is shared with the application through the mmap at offsets
88  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
89  *
90  * The offsets to the member fields are published through struct
91  * io_sqring_offsets when calling io_uring_setup.
92  */
93 struct io_rings {
94 	/*
95 	 * Head and tail offsets into the ring; the offsets need to be
96 	 * masked to get valid indices.
97 	 *
98 	 * The kernel controls head of the sq ring and the tail of the cq ring,
99 	 * and the application controls tail of the sq ring and the head of the
100 	 * cq ring.
101 	 */
102 	struct io_uring		sq, cq;
103 	/*
104 	 * Bitmasks to apply to head and tail offsets (constant, equals
105 	 * ring_entries - 1)
106 	 */
107 	u32			sq_ring_mask, cq_ring_mask;
108 	/* Ring sizes (constant, power of 2) */
109 	u32			sq_ring_entries, cq_ring_entries;
110 	/*
111 	 * Number of invalid entries dropped by the kernel due to
112 	 * invalid index stored in array
113 	 *
114 	 * Written by the kernel, shouldn't be modified by the
115 	 * application (i.e. get number of "new events" by comparing to
116 	 * cached value).
117 	 *
118 	 * After a new SQ head value was read by the application this
119 	 * counter includes all submissions that were dropped reaching
120 	 * the new SQ head (and possibly more).
121 	 */
122 	u32			sq_dropped;
123 	/*
124 	 * Runtime flags
125 	 *
126 	 * Written by the kernel, shouldn't be modified by the
127 	 * application.
128 	 *
129 	 * The application needs a full memory barrier before checking
130 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
131 	 */
132 	u32			sq_flags;
133 	/*
134 	 * Number of completion events lost because the queue was full;
135 	 * this should be avoided by the application by making sure
136 	 * there are not more requests pending thatn there is space in
137 	 * the completion queue.
138 	 *
139 	 * Written by the kernel, shouldn't be modified by the
140 	 * application (i.e. get number of "new events" by comparing to
141 	 * cached value).
142 	 *
143 	 * As completion events come in out of order this counter is not
144 	 * ordered with any other data.
145 	 */
146 	u32			cq_overflow;
147 	/*
148 	 * Ring buffer of completion events.
149 	 *
150 	 * The kernel writes completion events fresh every time they are
151 	 * produced, so the application is allowed to modify pending
152 	 * entries.
153 	 */
154 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
155 };
156 
157 struct io_mapped_ubuf {
158 	u64		ubuf;
159 	size_t		len;
160 	struct		bio_vec *bvec;
161 	unsigned int	nr_bvecs;
162 };
163 
164 struct async_list {
165 	spinlock_t		lock;
166 	atomic_t		cnt;
167 	struct list_head	list;
168 
169 	struct file		*file;
170 	off_t			io_start;
171 	size_t			io_len;
172 };
173 
174 struct io_ring_ctx {
175 	struct {
176 		struct percpu_ref	refs;
177 	} ____cacheline_aligned_in_smp;
178 
179 	struct {
180 		unsigned int		flags;
181 		bool			compat;
182 		bool			account_mem;
183 
184 		/*
185 		 * Ring buffer of indices into array of io_uring_sqe, which is
186 		 * mmapped by the application using the IORING_OFF_SQES offset.
187 		 *
188 		 * This indirection could e.g. be used to assign fixed
189 		 * io_uring_sqe entries to operations and only submit them to
190 		 * the queue when needed.
191 		 *
192 		 * The kernel modifies neither the indices array nor the entries
193 		 * array.
194 		 */
195 		u32			*sq_array;
196 		unsigned		cached_sq_head;
197 		unsigned		sq_entries;
198 		unsigned		sq_mask;
199 		unsigned		sq_thread_idle;
200 		unsigned		cached_sq_dropped;
201 		struct io_uring_sqe	*sq_sqes;
202 
203 		struct list_head	defer_list;
204 		struct list_head	timeout_list;
205 	} ____cacheline_aligned_in_smp;
206 
207 	/* IO offload */
208 	struct workqueue_struct	*sqo_wq[2];
209 	struct task_struct	*sqo_thread;	/* if using sq thread polling */
210 	struct mm_struct	*sqo_mm;
211 	wait_queue_head_t	sqo_wait;
212 	struct completion	sqo_thread_started;
213 
214 	struct {
215 		unsigned		cached_cq_tail;
216 		atomic_t		cached_cq_overflow;
217 		unsigned		cq_entries;
218 		unsigned		cq_mask;
219 		struct wait_queue_head	cq_wait;
220 		struct fasync_struct	*cq_fasync;
221 		struct eventfd_ctx	*cq_ev_fd;
222 		atomic_t		cq_timeouts;
223 	} ____cacheline_aligned_in_smp;
224 
225 	struct io_rings	*rings;
226 
227 	/*
228 	 * If used, fixed file set. Writers must ensure that ->refs is dead,
229 	 * readers must ensure that ->refs is alive as long as the file* is
230 	 * used. Only updated through io_uring_register(2).
231 	 */
232 	struct file		**user_files;
233 	unsigned		nr_user_files;
234 
235 	/* if used, fixed mapped user buffers */
236 	unsigned		nr_user_bufs;
237 	struct io_mapped_ubuf	*user_bufs;
238 
239 	struct user_struct	*user;
240 
241 	struct completion	ctx_done;
242 
243 	struct {
244 		struct mutex		uring_lock;
245 		wait_queue_head_t	wait;
246 	} ____cacheline_aligned_in_smp;
247 
248 	struct {
249 		spinlock_t		completion_lock;
250 		bool			poll_multi_file;
251 		/*
252 		 * ->poll_list is protected by the ctx->uring_lock for
253 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
254 		 * For SQPOLL, only the single threaded io_sq_thread() will
255 		 * manipulate the list, hence no extra locking is needed there.
256 		 */
257 		struct list_head	poll_list;
258 		struct list_head	cancel_list;
259 	} ____cacheline_aligned_in_smp;
260 
261 	struct async_list	pending_async[2];
262 
263 #if defined(CONFIG_UNIX)
264 	struct socket		*ring_sock;
265 #endif
266 };
267 
268 struct sqe_submit {
269 	const struct io_uring_sqe	*sqe;
270 	unsigned short			index;
271 	u32				sequence;
272 	bool				has_user;
273 	bool				needs_lock;
274 	bool				needs_fixed_file;
275 };
276 
277 /*
278  * First field must be the file pointer in all the
279  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
280  */
281 struct io_poll_iocb {
282 	struct file			*file;
283 	struct wait_queue_head		*head;
284 	__poll_t			events;
285 	bool				done;
286 	bool				canceled;
287 	struct wait_queue_entry		wait;
288 };
289 
290 struct io_timeout {
291 	struct file			*file;
292 	struct hrtimer			timer;
293 };
294 
295 /*
296  * NOTE! Each of the iocb union members has the file pointer
297  * as the first entry in their struct definition. So you can
298  * access the file pointer through any of the sub-structs,
299  * or directly as just 'ki_filp' in this struct.
300  */
301 struct io_kiocb {
302 	union {
303 		struct file		*file;
304 		struct kiocb		rw;
305 		struct io_poll_iocb	poll;
306 		struct io_timeout	timeout;
307 	};
308 
309 	struct sqe_submit	submit;
310 
311 	struct io_ring_ctx	*ctx;
312 	struct list_head	list;
313 	struct list_head	link_list;
314 	unsigned int		flags;
315 	refcount_t		refs;
316 #define REQ_F_NOWAIT		1	/* must not punt to workers */
317 #define REQ_F_IOPOLL_COMPLETED	2	/* polled IO has completed */
318 #define REQ_F_FIXED_FILE	4	/* ctx owns file */
319 #define REQ_F_SEQ_PREV		8	/* sequential with previous */
320 #define REQ_F_IO_DRAIN		16	/* drain existing IO first */
321 #define REQ_F_IO_DRAINED	32	/* drain done */
322 #define REQ_F_LINK		64	/* linked sqes */
323 #define REQ_F_LINK_DONE		128	/* linked sqes done */
324 #define REQ_F_FAIL_LINK		256	/* fail rest of links */
325 #define REQ_F_SHADOW_DRAIN	512	/* link-drain shadow req */
326 #define REQ_F_TIMEOUT		1024	/* timeout request */
327 #define REQ_F_ISREG		2048	/* regular file */
328 #define REQ_F_MUST_PUNT		4096	/* must be punted even for NONBLOCK */
329 #define REQ_F_TIMEOUT_NOSEQ	8192	/* no timeout sequence */
330 	u64			user_data;
331 	u32			result;
332 	u32			sequence;
333 
334 	struct work_struct	work;
335 };
336 
337 #define IO_PLUG_THRESHOLD		2
338 #define IO_IOPOLL_BATCH			8
339 
340 struct io_submit_state {
341 	struct blk_plug		plug;
342 
343 	/*
344 	 * io_kiocb alloc cache
345 	 */
346 	void			*reqs[IO_IOPOLL_BATCH];
347 	unsigned		int free_reqs;
348 	unsigned		int cur_req;
349 
350 	/*
351 	 * File reference cache
352 	 */
353 	struct file		*file;
354 	unsigned int		fd;
355 	unsigned int		has_refs;
356 	unsigned int		used_refs;
357 	unsigned int		ios_left;
358 };
359 
360 static void io_sq_wq_submit_work(struct work_struct *work);
361 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
362 				 long res);
363 static void __io_free_req(struct io_kiocb *req);
364 
365 static struct kmem_cache *req_cachep;
366 
367 static const struct file_operations io_uring_fops;
368 
io_uring_get_socket(struct file * file)369 struct sock *io_uring_get_socket(struct file *file)
370 {
371 #if defined(CONFIG_UNIX)
372 	if (file->f_op == &io_uring_fops) {
373 		struct io_ring_ctx *ctx = file->private_data;
374 
375 		return ctx->ring_sock->sk;
376 	}
377 #endif
378 	return NULL;
379 }
380 EXPORT_SYMBOL(io_uring_get_socket);
381 
io_ring_ctx_ref_free(struct percpu_ref * ref)382 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
383 {
384 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
385 
386 	complete(&ctx->ctx_done);
387 }
388 
io_ring_ctx_alloc(struct io_uring_params * p)389 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
390 {
391 	struct io_ring_ctx *ctx;
392 	int i;
393 
394 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
395 	if (!ctx)
396 		return NULL;
397 
398 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
399 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
400 		kfree(ctx);
401 		return NULL;
402 	}
403 
404 	ctx->flags = p->flags;
405 	init_waitqueue_head(&ctx->cq_wait);
406 	init_completion(&ctx->ctx_done);
407 	init_completion(&ctx->sqo_thread_started);
408 	mutex_init(&ctx->uring_lock);
409 	init_waitqueue_head(&ctx->wait);
410 	for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
411 		spin_lock_init(&ctx->pending_async[i].lock);
412 		INIT_LIST_HEAD(&ctx->pending_async[i].list);
413 		atomic_set(&ctx->pending_async[i].cnt, 0);
414 	}
415 	spin_lock_init(&ctx->completion_lock);
416 	INIT_LIST_HEAD(&ctx->poll_list);
417 	INIT_LIST_HEAD(&ctx->cancel_list);
418 	INIT_LIST_HEAD(&ctx->defer_list);
419 	INIT_LIST_HEAD(&ctx->timeout_list);
420 	return ctx;
421 }
422 
__io_sequence_defer(struct io_ring_ctx * ctx,struct io_kiocb * req)423 static inline bool __io_sequence_defer(struct io_ring_ctx *ctx,
424 				       struct io_kiocb *req)
425 {
426 	return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
427 					+ atomic_read(&ctx->cached_cq_overflow);
428 }
429 
io_sequence_defer(struct io_ring_ctx * ctx,struct io_kiocb * req)430 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
431 				     struct io_kiocb *req)
432 {
433 	if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
434 		return false;
435 
436 	return __io_sequence_defer(ctx, req);
437 }
438 
io_get_deferred_req(struct io_ring_ctx * ctx)439 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
440 {
441 	struct io_kiocb *req;
442 
443 	req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
444 	if (req && !io_sequence_defer(ctx, req)) {
445 		list_del_init(&req->list);
446 		return req;
447 	}
448 
449 	return NULL;
450 }
451 
io_get_timeout_req(struct io_ring_ctx * ctx)452 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
453 {
454 	struct io_kiocb *req;
455 
456 	req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
457 	if (req) {
458 		if (req->flags & REQ_F_TIMEOUT_NOSEQ)
459 			return NULL;
460 		if (!__io_sequence_defer(ctx, req)) {
461 			list_del_init(&req->list);
462 			return req;
463 		}
464 	}
465 
466 	return NULL;
467 }
468 
__io_commit_cqring(struct io_ring_ctx * ctx)469 static void __io_commit_cqring(struct io_ring_ctx *ctx)
470 {
471 	struct io_rings *rings = ctx->rings;
472 
473 	if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
474 		/* order cqe stores with ring update */
475 		smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
476 
477 		if (wq_has_sleeper(&ctx->cq_wait)) {
478 			wake_up_interruptible(&ctx->cq_wait);
479 			kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
480 		}
481 	}
482 }
483 
io_queue_async_work(struct io_ring_ctx * ctx,struct io_kiocb * req)484 static inline void io_queue_async_work(struct io_ring_ctx *ctx,
485 				       struct io_kiocb *req)
486 {
487 	int rw = 0;
488 
489 	if (req->submit.sqe) {
490 		switch (req->submit.sqe->opcode) {
491 		case IORING_OP_WRITEV:
492 		case IORING_OP_WRITE_FIXED:
493 			rw = !(req->rw.ki_flags & IOCB_DIRECT);
494 			break;
495 		}
496 	}
497 
498 	queue_work(ctx->sqo_wq[rw], &req->work);
499 }
500 
io_kill_timeout(struct io_kiocb * req)501 static void io_kill_timeout(struct io_kiocb *req)
502 {
503 	int ret;
504 
505 	ret = hrtimer_try_to_cancel(&req->timeout.timer);
506 	if (ret != -1) {
507 		atomic_inc(&req->ctx->cq_timeouts);
508 		list_del(&req->list);
509 		io_cqring_fill_event(req->ctx, req->user_data, 0);
510 		__io_free_req(req);
511 	}
512 }
513 
io_kill_timeouts(struct io_ring_ctx * ctx)514 static void io_kill_timeouts(struct io_ring_ctx *ctx)
515 {
516 	struct io_kiocb *req, *tmp;
517 
518 	spin_lock_irq(&ctx->completion_lock);
519 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
520 		io_kill_timeout(req);
521 	spin_unlock_irq(&ctx->completion_lock);
522 }
523 
io_commit_cqring(struct io_ring_ctx * ctx)524 static void io_commit_cqring(struct io_ring_ctx *ctx)
525 {
526 	struct io_kiocb *req;
527 
528 	while ((req = io_get_timeout_req(ctx)) != NULL)
529 		io_kill_timeout(req);
530 
531 	__io_commit_cqring(ctx);
532 
533 	while ((req = io_get_deferred_req(ctx)) != NULL) {
534 		if (req->flags & REQ_F_SHADOW_DRAIN) {
535 			/* Just for drain, free it. */
536 			__io_free_req(req);
537 			continue;
538 		}
539 		req->flags |= REQ_F_IO_DRAINED;
540 		io_queue_async_work(ctx, req);
541 	}
542 }
543 
io_get_cqring(struct io_ring_ctx * ctx)544 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
545 {
546 	struct io_rings *rings = ctx->rings;
547 	unsigned tail;
548 
549 	tail = ctx->cached_cq_tail;
550 	/*
551 	 * writes to the cq entry need to come after reading head; the
552 	 * control dependency is enough as we're using WRITE_ONCE to
553 	 * fill the cq entry
554 	 */
555 	if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
556 		return NULL;
557 
558 	ctx->cached_cq_tail++;
559 	return &rings->cqes[tail & ctx->cq_mask];
560 }
561 
io_cqring_fill_event(struct io_ring_ctx * ctx,u64 ki_user_data,long res)562 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
563 				 long res)
564 {
565 	struct io_uring_cqe *cqe;
566 
567 	/*
568 	 * If we can't get a cq entry, userspace overflowed the
569 	 * submission (by quite a lot). Increment the overflow count in
570 	 * the ring.
571 	 */
572 	cqe = io_get_cqring(ctx);
573 	if (cqe) {
574 		WRITE_ONCE(cqe->user_data, ki_user_data);
575 		WRITE_ONCE(cqe->res, res);
576 		WRITE_ONCE(cqe->flags, 0);
577 	} else {
578 		WRITE_ONCE(ctx->rings->cq_overflow,
579 				atomic_inc_return(&ctx->cached_cq_overflow));
580 	}
581 }
582 
io_cqring_ev_posted(struct io_ring_ctx * ctx)583 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
584 {
585 	if (waitqueue_active(&ctx->wait))
586 		wake_up(&ctx->wait);
587 	if (waitqueue_active(&ctx->sqo_wait))
588 		wake_up(&ctx->sqo_wait);
589 	if (ctx->cq_ev_fd)
590 		eventfd_signal(ctx->cq_ev_fd, 1);
591 }
592 
io_cqring_add_event(struct io_ring_ctx * ctx,u64 user_data,long res)593 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
594 				long res)
595 {
596 	unsigned long flags;
597 
598 	spin_lock_irqsave(&ctx->completion_lock, flags);
599 	io_cqring_fill_event(ctx, user_data, res);
600 	io_commit_cqring(ctx);
601 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
602 
603 	io_cqring_ev_posted(ctx);
604 }
605 
io_get_req(struct io_ring_ctx * ctx,struct io_submit_state * state)606 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
607 				   struct io_submit_state *state)
608 {
609 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
610 	struct io_kiocb *req;
611 
612 	if (!percpu_ref_tryget(&ctx->refs))
613 		return NULL;
614 
615 	if (!state) {
616 		req = kmem_cache_alloc(req_cachep, gfp);
617 		if (unlikely(!req))
618 			goto out;
619 	} else if (!state->free_reqs) {
620 		size_t sz;
621 		int ret;
622 
623 		sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
624 		ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
625 
626 		/*
627 		 * Bulk alloc is all-or-nothing. If we fail to get a batch,
628 		 * retry single alloc to be on the safe side.
629 		 */
630 		if (unlikely(ret <= 0)) {
631 			state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
632 			if (!state->reqs[0])
633 				goto out;
634 			ret = 1;
635 		}
636 		state->free_reqs = ret - 1;
637 		state->cur_req = 1;
638 		req = state->reqs[0];
639 	} else {
640 		req = state->reqs[state->cur_req];
641 		state->free_reqs--;
642 		state->cur_req++;
643 	}
644 
645 	req->file = NULL;
646 	req->ctx = ctx;
647 	req->flags = 0;
648 	/* one is dropped after submission, the other at completion */
649 	refcount_set(&req->refs, 2);
650 	req->result = 0;
651 	return req;
652 out:
653 	percpu_ref_put(&ctx->refs);
654 	return NULL;
655 }
656 
io_free_req_many(struct io_ring_ctx * ctx,void ** reqs,int * nr)657 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
658 {
659 	if (*nr) {
660 		kmem_cache_free_bulk(req_cachep, *nr, reqs);
661 		percpu_ref_put_many(&ctx->refs, *nr);
662 		*nr = 0;
663 	}
664 }
665 
__io_free_req(struct io_kiocb * req)666 static void __io_free_req(struct io_kiocb *req)
667 {
668 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
669 		fput(req->file);
670 	percpu_ref_put(&req->ctx->refs);
671 	kmem_cache_free(req_cachep, req);
672 }
673 
io_req_link_next(struct io_kiocb * req)674 static void io_req_link_next(struct io_kiocb *req)
675 {
676 	struct io_kiocb *nxt;
677 
678 	/*
679 	 * The list should never be empty when we are called here. But could
680 	 * potentially happen if the chain is messed up, check to be on the
681 	 * safe side.
682 	 */
683 	nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
684 	if (nxt) {
685 		list_del(&nxt->list);
686 		if (!list_empty(&req->link_list)) {
687 			INIT_LIST_HEAD(&nxt->link_list);
688 			list_splice(&req->link_list, &nxt->link_list);
689 			nxt->flags |= REQ_F_LINK;
690 		}
691 
692 		nxt->flags |= REQ_F_LINK_DONE;
693 		INIT_WORK(&nxt->work, io_sq_wq_submit_work);
694 		io_queue_async_work(req->ctx, nxt);
695 	}
696 }
697 
698 /*
699  * Called if REQ_F_LINK is set, and we fail the head request
700  */
io_fail_links(struct io_kiocb * req)701 static void io_fail_links(struct io_kiocb *req)
702 {
703 	struct io_kiocb *link;
704 
705 	while (!list_empty(&req->link_list)) {
706 		link = list_first_entry(&req->link_list, struct io_kiocb, list);
707 		list_del(&link->list);
708 
709 		io_cqring_add_event(req->ctx, link->user_data, -ECANCELED);
710 		__io_free_req(link);
711 	}
712 }
713 
io_free_req(struct io_kiocb * req)714 static void io_free_req(struct io_kiocb *req)
715 {
716 	/*
717 	 * If LINK is set, we have dependent requests in this chain. If we
718 	 * didn't fail this request, queue the first one up, moving any other
719 	 * dependencies to the next request. In case of failure, fail the rest
720 	 * of the chain.
721 	 */
722 	if (req->flags & REQ_F_LINK) {
723 		if (req->flags & REQ_F_FAIL_LINK)
724 			io_fail_links(req);
725 		else
726 			io_req_link_next(req);
727 	}
728 
729 	__io_free_req(req);
730 }
731 
io_put_req(struct io_kiocb * req)732 static void io_put_req(struct io_kiocb *req)
733 {
734 	if (refcount_dec_and_test(&req->refs))
735 		io_free_req(req);
736 }
737 
io_cqring_events(struct io_rings * rings)738 static unsigned io_cqring_events(struct io_rings *rings)
739 {
740 	/* See comment at the top of this file */
741 	smp_rmb();
742 	return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
743 }
744 
io_sqring_entries(struct io_ring_ctx * ctx)745 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
746 {
747 	struct io_rings *rings = ctx->rings;
748 
749 	/* make sure SQ entry isn't read before tail */
750 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
751 }
752 
753 /*
754  * Find and free completed poll iocbs
755  */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)756 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
757 			       struct list_head *done)
758 {
759 	void *reqs[IO_IOPOLL_BATCH];
760 	struct io_kiocb *req;
761 	int to_free;
762 
763 	to_free = 0;
764 	while (!list_empty(done)) {
765 		req = list_first_entry(done, struct io_kiocb, list);
766 		list_del(&req->list);
767 
768 		io_cqring_fill_event(ctx, req->user_data, req->result);
769 		(*nr_events)++;
770 
771 		if (refcount_dec_and_test(&req->refs)) {
772 			/* If we're not using fixed files, we have to pair the
773 			 * completion part with the file put. Use regular
774 			 * completions for those, only batch free for fixed
775 			 * file and non-linked commands.
776 			 */
777 			if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
778 			    REQ_F_FIXED_FILE) {
779 				reqs[to_free++] = req;
780 				if (to_free == ARRAY_SIZE(reqs))
781 					io_free_req_many(ctx, reqs, &to_free);
782 			} else {
783 				io_free_req(req);
784 			}
785 		}
786 	}
787 
788 	io_commit_cqring(ctx);
789 	io_free_req_many(ctx, reqs, &to_free);
790 }
791 
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)792 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
793 			long min)
794 {
795 	struct io_kiocb *req, *tmp;
796 	LIST_HEAD(done);
797 	bool spin;
798 	int ret;
799 
800 	/*
801 	 * Only spin for completions if we don't have multiple devices hanging
802 	 * off our complete list, and we're under the requested amount.
803 	 */
804 	spin = !ctx->poll_multi_file && *nr_events < min;
805 
806 	ret = 0;
807 	list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
808 		struct kiocb *kiocb = &req->rw;
809 
810 		/*
811 		 * Move completed entries to our local list. If we find a
812 		 * request that requires polling, break out and complete
813 		 * the done list first, if we have entries there.
814 		 */
815 		if (req->flags & REQ_F_IOPOLL_COMPLETED) {
816 			list_move_tail(&req->list, &done);
817 			continue;
818 		}
819 		if (!list_empty(&done))
820 			break;
821 
822 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
823 		if (ret < 0)
824 			break;
825 
826 		if (ret && spin)
827 			spin = false;
828 		ret = 0;
829 	}
830 
831 	if (!list_empty(&done))
832 		io_iopoll_complete(ctx, nr_events, &done);
833 
834 	return ret;
835 }
836 
837 /*
838  * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
839  * non-spinning poll check - we'll still enter the driver poll loop, but only
840  * as a non-spinning completion check.
841  */
io_iopoll_getevents(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)842 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
843 				long min)
844 {
845 	while (!list_empty(&ctx->poll_list) && !need_resched()) {
846 		int ret;
847 
848 		ret = io_do_iopoll(ctx, nr_events, min);
849 		if (ret < 0)
850 			return ret;
851 		if (!min || *nr_events >= min)
852 			return 0;
853 	}
854 
855 	return 1;
856 }
857 
858 /*
859  * We can't just wait for polled events to come to us, we have to actively
860  * find and complete them.
861  */
io_iopoll_reap_events(struct io_ring_ctx * ctx)862 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
863 {
864 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
865 		return;
866 
867 	mutex_lock(&ctx->uring_lock);
868 	while (!list_empty(&ctx->poll_list)) {
869 		unsigned int nr_events = 0;
870 
871 		io_iopoll_getevents(ctx, &nr_events, 1);
872 
873 		/*
874 		 * Ensure we allow local-to-the-cpu processing to take place,
875 		 * in this case we need to ensure that we reap all events.
876 		 */
877 		cond_resched();
878 	}
879 	mutex_unlock(&ctx->uring_lock);
880 }
881 
__io_iopoll_check(struct io_ring_ctx * ctx,unsigned * nr_events,long min)882 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
883 			    long min)
884 {
885 	int iters = 0, ret = 0;
886 
887 	do {
888 		int tmin = 0;
889 
890 		/*
891 		 * Don't enter poll loop if we already have events pending.
892 		 * If we do, we can potentially be spinning for commands that
893 		 * already triggered a CQE (eg in error).
894 		 */
895 		if (io_cqring_events(ctx->rings))
896 			break;
897 
898 		/*
899 		 * If a submit got punted to a workqueue, we can have the
900 		 * application entering polling for a command before it gets
901 		 * issued. That app will hold the uring_lock for the duration
902 		 * of the poll right here, so we need to take a breather every
903 		 * now and then to ensure that the issue has a chance to add
904 		 * the poll to the issued list. Otherwise we can spin here
905 		 * forever, while the workqueue is stuck trying to acquire the
906 		 * very same mutex.
907 		 */
908 		if (!(++iters & 7)) {
909 			mutex_unlock(&ctx->uring_lock);
910 			mutex_lock(&ctx->uring_lock);
911 		}
912 
913 		if (*nr_events < min)
914 			tmin = min - *nr_events;
915 
916 		ret = io_iopoll_getevents(ctx, nr_events, tmin);
917 		if (ret <= 0)
918 			break;
919 		ret = 0;
920 	} while (min && !*nr_events && !need_resched());
921 
922 	return ret;
923 }
924 
io_iopoll_check(struct io_ring_ctx * ctx,unsigned * nr_events,long min)925 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
926 			   long min)
927 {
928 	int ret;
929 
930 	/*
931 	 * We disallow the app entering submit/complete with polling, but we
932 	 * still need to lock the ring to prevent racing with polled issue
933 	 * that got punted to a workqueue.
934 	 */
935 	mutex_lock(&ctx->uring_lock);
936 	ret = __io_iopoll_check(ctx, nr_events, min);
937 	mutex_unlock(&ctx->uring_lock);
938 	return ret;
939 }
940 
kiocb_end_write(struct io_kiocb * req)941 static void kiocb_end_write(struct io_kiocb *req)
942 {
943 	/*
944 	 * Tell lockdep we inherited freeze protection from submission
945 	 * thread.
946 	 */
947 	if (req->flags & REQ_F_ISREG) {
948 		struct inode *inode = file_inode(req->file);
949 
950 		__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
951 	}
952 	file_end_write(req->file);
953 }
954 
io_complete_rw(struct kiocb * kiocb,long res,long res2)955 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
956 {
957 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
958 
959 	if (kiocb->ki_flags & IOCB_WRITE)
960 		kiocb_end_write(req);
961 
962 	if ((req->flags & REQ_F_LINK) && res != req->result)
963 		req->flags |= REQ_F_FAIL_LINK;
964 	io_cqring_add_event(req->ctx, req->user_data, res);
965 	io_put_req(req);
966 }
967 
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)968 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
969 {
970 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
971 
972 	if (kiocb->ki_flags & IOCB_WRITE)
973 		kiocb_end_write(req);
974 
975 	if ((req->flags & REQ_F_LINK) && res != req->result)
976 		req->flags |= REQ_F_FAIL_LINK;
977 	req->result = res;
978 	if (res != -EAGAIN)
979 		req->flags |= REQ_F_IOPOLL_COMPLETED;
980 }
981 
982 /*
983  * After the iocb has been issued, it's safe to be found on the poll list.
984  * Adding the kiocb to the list AFTER submission ensures that we don't
985  * find it from a io_iopoll_getevents() thread before the issuer is done
986  * accessing the kiocb cookie.
987  */
io_iopoll_req_issued(struct io_kiocb * req)988 static void io_iopoll_req_issued(struct io_kiocb *req)
989 {
990 	struct io_ring_ctx *ctx = req->ctx;
991 
992 	/*
993 	 * Track whether we have multiple files in our lists. This will impact
994 	 * how we do polling eventually, not spinning if we're on potentially
995 	 * different devices.
996 	 */
997 	if (list_empty(&ctx->poll_list)) {
998 		ctx->poll_multi_file = false;
999 	} else if (!ctx->poll_multi_file) {
1000 		struct io_kiocb *list_req;
1001 
1002 		list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1003 						list);
1004 		if (list_req->rw.ki_filp != req->rw.ki_filp)
1005 			ctx->poll_multi_file = true;
1006 	}
1007 
1008 	/*
1009 	 * For fast devices, IO may have already completed. If it has, add
1010 	 * it to the front so we find it first.
1011 	 */
1012 	if (req->flags & REQ_F_IOPOLL_COMPLETED)
1013 		list_add(&req->list, &ctx->poll_list);
1014 	else
1015 		list_add_tail(&req->list, &ctx->poll_list);
1016 }
1017 
io_file_put(struct io_submit_state * state)1018 static void io_file_put(struct io_submit_state *state)
1019 {
1020 	if (state->file) {
1021 		int diff = state->has_refs - state->used_refs;
1022 
1023 		if (diff)
1024 			fput_many(state->file, diff);
1025 		state->file = NULL;
1026 	}
1027 }
1028 
1029 /*
1030  * Get as many references to a file as we have IOs left in this submission,
1031  * assuming most submissions are for one file, or at least that each file
1032  * has more than one submission.
1033  */
io_file_get(struct io_submit_state * state,int fd)1034 static struct file *io_file_get(struct io_submit_state *state, int fd)
1035 {
1036 	if (!state)
1037 		return fget(fd);
1038 
1039 	if (state->file) {
1040 		if (state->fd == fd) {
1041 			state->used_refs++;
1042 			state->ios_left--;
1043 			return state->file;
1044 		}
1045 		io_file_put(state);
1046 	}
1047 	state->file = fget_many(fd, state->ios_left);
1048 	if (!state->file)
1049 		return NULL;
1050 
1051 	state->fd = fd;
1052 	state->has_refs = state->ios_left;
1053 	state->used_refs = 1;
1054 	state->ios_left--;
1055 	return state->file;
1056 }
1057 
1058 /*
1059  * If we tracked the file through the SCM inflight mechanism, we could support
1060  * any file. For now, just ensure that anything potentially problematic is done
1061  * inline.
1062  */
io_file_supports_async(struct file * file)1063 static bool io_file_supports_async(struct file *file)
1064 {
1065 	umode_t mode = file_inode(file)->i_mode;
1066 
1067 	if (S_ISBLK(mode) || S_ISCHR(mode))
1068 		return true;
1069 	if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1070 		return true;
1071 
1072 	return false;
1073 }
1074 
io_prep_rw(struct io_kiocb * req,const struct sqe_submit * s,bool force_nonblock)1075 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
1076 		      bool force_nonblock)
1077 {
1078 	const struct io_uring_sqe *sqe = s->sqe;
1079 	struct io_ring_ctx *ctx = req->ctx;
1080 	struct kiocb *kiocb = &req->rw;
1081 	unsigned ioprio;
1082 	int ret;
1083 
1084 	if (!req->file)
1085 		return -EBADF;
1086 
1087 	if (S_ISREG(file_inode(req->file)->i_mode))
1088 		req->flags |= REQ_F_ISREG;
1089 
1090 	/*
1091 	 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1092 	 * we know to async punt it even if it was opened O_NONBLOCK
1093 	 */
1094 	if (force_nonblock && !io_file_supports_async(req->file)) {
1095 		req->flags |= REQ_F_MUST_PUNT;
1096 		return -EAGAIN;
1097 	}
1098 
1099 	kiocb->ki_pos = READ_ONCE(sqe->off);
1100 	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1101 	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1102 
1103 	ioprio = READ_ONCE(sqe->ioprio);
1104 	if (ioprio) {
1105 		ret = ioprio_check_cap(ioprio);
1106 		if (ret)
1107 			return ret;
1108 
1109 		kiocb->ki_ioprio = ioprio;
1110 	} else
1111 		kiocb->ki_ioprio = get_current_ioprio();
1112 
1113 	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1114 	if (unlikely(ret))
1115 		return ret;
1116 
1117 	/* don't allow async punt if RWF_NOWAIT was requested */
1118 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1119 	    (req->file->f_flags & O_NONBLOCK))
1120 		req->flags |= REQ_F_NOWAIT;
1121 
1122 	if (force_nonblock)
1123 		kiocb->ki_flags |= IOCB_NOWAIT;
1124 
1125 	if (ctx->flags & IORING_SETUP_IOPOLL) {
1126 		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1127 		    !kiocb->ki_filp->f_op->iopoll)
1128 			return -EOPNOTSUPP;
1129 
1130 		kiocb->ki_flags |= IOCB_HIPRI;
1131 		kiocb->ki_complete = io_complete_rw_iopoll;
1132 		req->result = 0;
1133 	} else {
1134 		if (kiocb->ki_flags & IOCB_HIPRI)
1135 			return -EINVAL;
1136 		kiocb->ki_complete = io_complete_rw;
1137 	}
1138 	return 0;
1139 }
1140 
io_rw_done(struct kiocb * kiocb,ssize_t ret)1141 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1142 {
1143 	switch (ret) {
1144 	case -EIOCBQUEUED:
1145 		break;
1146 	case -ERESTARTSYS:
1147 	case -ERESTARTNOINTR:
1148 	case -ERESTARTNOHAND:
1149 	case -ERESTART_RESTARTBLOCK:
1150 		/*
1151 		 * We can't just restart the syscall, since previously
1152 		 * submitted sqes may already be in progress. Just fail this
1153 		 * IO with EINTR.
1154 		 */
1155 		ret = -EINTR;
1156 		/* fall through */
1157 	default:
1158 		kiocb->ki_complete(kiocb, ret, 0);
1159 	}
1160 }
1161 
io_import_fixed(struct io_ring_ctx * ctx,int rw,const struct io_uring_sqe * sqe,struct iov_iter * iter)1162 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1163 			   const struct io_uring_sqe *sqe,
1164 			   struct iov_iter *iter)
1165 {
1166 	size_t len = READ_ONCE(sqe->len);
1167 	struct io_mapped_ubuf *imu;
1168 	unsigned index, buf_index;
1169 	size_t offset;
1170 	u64 buf_addr;
1171 
1172 	/* attempt to use fixed buffers without having provided iovecs */
1173 	if (unlikely(!ctx->user_bufs))
1174 		return -EFAULT;
1175 
1176 	buf_index = READ_ONCE(sqe->buf_index);
1177 	if (unlikely(buf_index >= ctx->nr_user_bufs))
1178 		return -EFAULT;
1179 
1180 	index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1181 	imu = &ctx->user_bufs[index];
1182 	buf_addr = READ_ONCE(sqe->addr);
1183 
1184 	/* overflow */
1185 	if (buf_addr + len < buf_addr)
1186 		return -EFAULT;
1187 	/* not inside the mapped region */
1188 	if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1189 		return -EFAULT;
1190 
1191 	/*
1192 	 * May not be a start of buffer, set size appropriately
1193 	 * and advance us to the beginning.
1194 	 */
1195 	offset = buf_addr - imu->ubuf;
1196 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1197 
1198 	if (offset) {
1199 		/*
1200 		 * Don't use iov_iter_advance() here, as it's really slow for
1201 		 * using the latter parts of a big fixed buffer - it iterates
1202 		 * over each segment manually. We can cheat a bit here, because
1203 		 * we know that:
1204 		 *
1205 		 * 1) it's a BVEC iter, we set it up
1206 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1207 		 *    first and last bvec
1208 		 *
1209 		 * So just find our index, and adjust the iterator afterwards.
1210 		 * If the offset is within the first bvec (or the whole first
1211 		 * bvec, just use iov_iter_advance(). This makes it easier
1212 		 * since we can just skip the first segment, which may not
1213 		 * be PAGE_SIZE aligned.
1214 		 */
1215 		const struct bio_vec *bvec = imu->bvec;
1216 
1217 		if (offset <= bvec->bv_len) {
1218 			iov_iter_advance(iter, offset);
1219 		} else {
1220 			unsigned long seg_skip;
1221 
1222 			/* skip first vec */
1223 			offset -= bvec->bv_len;
1224 			seg_skip = 1 + (offset >> PAGE_SHIFT);
1225 
1226 			iter->bvec = bvec + seg_skip;
1227 			iter->nr_segs -= seg_skip;
1228 			iter->count -= bvec->bv_len + offset;
1229 			iter->iov_offset = offset & ~PAGE_MASK;
1230 		}
1231 	}
1232 
1233 	return len;
1234 }
1235 
io_import_iovec(struct io_ring_ctx * ctx,int rw,const struct sqe_submit * s,struct iovec ** iovec,struct iov_iter * iter)1236 static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1237 			       const struct sqe_submit *s, struct iovec **iovec,
1238 			       struct iov_iter *iter)
1239 {
1240 	const struct io_uring_sqe *sqe = s->sqe;
1241 	void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1242 	size_t sqe_len = READ_ONCE(sqe->len);
1243 	u8 opcode;
1244 
1245 	/*
1246 	 * We're reading ->opcode for the second time, but the first read
1247 	 * doesn't care whether it's _FIXED or not, so it doesn't matter
1248 	 * whether ->opcode changes concurrently. The first read does care
1249 	 * about whether it is a READ or a WRITE, so we don't trust this read
1250 	 * for that purpose and instead let the caller pass in the read/write
1251 	 * flag.
1252 	 */
1253 	opcode = READ_ONCE(sqe->opcode);
1254 	if (opcode == IORING_OP_READ_FIXED ||
1255 	    opcode == IORING_OP_WRITE_FIXED) {
1256 		ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1257 		*iovec = NULL;
1258 		return ret;
1259 	}
1260 
1261 	if (!s->has_user)
1262 		return -EFAULT;
1263 
1264 #ifdef CONFIG_COMPAT
1265 	if (ctx->compat)
1266 		return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1267 						iovec, iter);
1268 #endif
1269 
1270 	return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1271 }
1272 
io_should_merge(struct async_list * al,struct kiocb * kiocb)1273 static inline bool io_should_merge(struct async_list *al, struct kiocb *kiocb)
1274 {
1275 	if (al->file == kiocb->ki_filp) {
1276 		off_t start, end;
1277 
1278 		/*
1279 		 * Allow merging if we're anywhere in the range of the same
1280 		 * page. Generally this happens for sub-page reads or writes,
1281 		 * and it's beneficial to allow the first worker to bring the
1282 		 * page in and the piggy backed work can then work on the
1283 		 * cached page.
1284 		 */
1285 		start = al->io_start & PAGE_MASK;
1286 		end = (al->io_start + al->io_len + PAGE_SIZE - 1) & PAGE_MASK;
1287 		if (kiocb->ki_pos >= start && kiocb->ki_pos <= end)
1288 			return true;
1289 	}
1290 
1291 	al->file = NULL;
1292 	return false;
1293 }
1294 
1295 /*
1296  * Make a note of the last file/offset/direction we punted to async
1297  * context. We'll use this information to see if we can piggy back a
1298  * sequential request onto the previous one, if it's still hasn't been
1299  * completed by the async worker.
1300  */
io_async_list_note(int rw,struct io_kiocb * req,size_t len)1301 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1302 {
1303 	struct async_list *async_list = &req->ctx->pending_async[rw];
1304 	struct kiocb *kiocb = &req->rw;
1305 	struct file *filp = kiocb->ki_filp;
1306 
1307 	if (io_should_merge(async_list, kiocb)) {
1308 		unsigned long max_bytes;
1309 
1310 		/* Use 8x RA size as a decent limiter for both reads/writes */
1311 		max_bytes = filp->f_ra.ra_pages << (PAGE_SHIFT + 3);
1312 		if (!max_bytes)
1313 			max_bytes = VM_READAHEAD_PAGES << (PAGE_SHIFT + 3);
1314 
1315 		/* If max len are exceeded, reset the state */
1316 		if (async_list->io_len + len <= max_bytes) {
1317 			req->flags |= REQ_F_SEQ_PREV;
1318 			async_list->io_len += len;
1319 		} else {
1320 			async_list->file = NULL;
1321 		}
1322 	}
1323 
1324 	/* New file? Reset state. */
1325 	if (async_list->file != filp) {
1326 		async_list->io_start = kiocb->ki_pos;
1327 		async_list->io_len = len;
1328 		async_list->file = filp;
1329 	}
1330 }
1331 
1332 /*
1333  * For files that don't have ->read_iter() and ->write_iter(), handle them
1334  * by looping over ->read() or ->write() manually.
1335  */
loop_rw_iter(int rw,struct file * file,struct kiocb * kiocb,struct iov_iter * iter)1336 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1337 			   struct iov_iter *iter)
1338 {
1339 	ssize_t ret = 0;
1340 
1341 	/*
1342 	 * Don't support polled IO through this interface, and we can't
1343 	 * support non-blocking either. For the latter, this just causes
1344 	 * the kiocb to be handled from an async context.
1345 	 */
1346 	if (kiocb->ki_flags & IOCB_HIPRI)
1347 		return -EOPNOTSUPP;
1348 	if (kiocb->ki_flags & IOCB_NOWAIT)
1349 		return -EAGAIN;
1350 
1351 	while (iov_iter_count(iter)) {
1352 		struct iovec iovec = iov_iter_iovec(iter);
1353 		ssize_t nr;
1354 
1355 		if (rw == READ) {
1356 			nr = file->f_op->read(file, iovec.iov_base,
1357 					      iovec.iov_len, &kiocb->ki_pos);
1358 		} else {
1359 			nr = file->f_op->write(file, iovec.iov_base,
1360 					       iovec.iov_len, &kiocb->ki_pos);
1361 		}
1362 
1363 		if (nr < 0) {
1364 			if (!ret)
1365 				ret = nr;
1366 			break;
1367 		}
1368 		ret += nr;
1369 		if (nr != iovec.iov_len)
1370 			break;
1371 		iov_iter_advance(iter, nr);
1372 	}
1373 
1374 	return ret;
1375 }
1376 
io_read(struct io_kiocb * req,const struct sqe_submit * s,bool force_nonblock)1377 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1378 		   bool force_nonblock)
1379 {
1380 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1381 	struct kiocb *kiocb = &req->rw;
1382 	struct iov_iter iter;
1383 	struct file *file;
1384 	size_t iov_count;
1385 	ssize_t read_size, ret;
1386 
1387 	ret = io_prep_rw(req, s, force_nonblock);
1388 	if (ret)
1389 		return ret;
1390 	file = kiocb->ki_filp;
1391 
1392 	if (unlikely(!(file->f_mode & FMODE_READ)))
1393 		return -EBADF;
1394 
1395 	ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1396 	if (ret < 0)
1397 		return ret;
1398 
1399 	read_size = ret;
1400 	if (req->flags & REQ_F_LINK)
1401 		req->result = read_size;
1402 
1403 	iov_count = iov_iter_count(&iter);
1404 	ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1405 	if (!ret) {
1406 		ssize_t ret2;
1407 
1408 		if (file->f_op->read_iter)
1409 			ret2 = call_read_iter(file, kiocb, &iter);
1410 		else
1411 			ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1412 
1413 		/*
1414 		 * In case of a short read, punt to async. This can happen
1415 		 * if we have data partially cached. Alternatively we can
1416 		 * return the short read, in which case the application will
1417 		 * need to issue another SQE and wait for it. That SQE will
1418 		 * need async punt anyway, so it's more efficient to do it
1419 		 * here.
1420 		 */
1421 		if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1422 		    (req->flags & REQ_F_ISREG) &&
1423 		    ret2 > 0 && ret2 < read_size)
1424 			ret2 = -EAGAIN;
1425 		/* Catch -EAGAIN return for forced non-blocking submission */
1426 		if (!force_nonblock || ret2 != -EAGAIN) {
1427 			io_rw_done(kiocb, ret2);
1428 		} else {
1429 			/*
1430 			 * If ->needs_lock is true, we're already in async
1431 			 * context.
1432 			 */
1433 			if (!s->needs_lock)
1434 				io_async_list_note(READ, req, iov_count);
1435 			ret = -EAGAIN;
1436 		}
1437 	}
1438 	kfree(iovec);
1439 	return ret;
1440 }
1441 
io_write(struct io_kiocb * req,const struct sqe_submit * s,bool force_nonblock)1442 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1443 		    bool force_nonblock)
1444 {
1445 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1446 	struct kiocb *kiocb = &req->rw;
1447 	struct iov_iter iter;
1448 	struct file *file;
1449 	size_t iov_count;
1450 	ssize_t ret;
1451 
1452 	ret = io_prep_rw(req, s, force_nonblock);
1453 	if (ret)
1454 		return ret;
1455 
1456 	file = kiocb->ki_filp;
1457 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1458 		return -EBADF;
1459 
1460 	ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	if (req->flags & REQ_F_LINK)
1465 		req->result = ret;
1466 
1467 	iov_count = iov_iter_count(&iter);
1468 
1469 	ret = -EAGAIN;
1470 	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1471 		/* If ->needs_lock is true, we're already in async context. */
1472 		if (!s->needs_lock)
1473 			io_async_list_note(WRITE, req, iov_count);
1474 		goto out_free;
1475 	}
1476 
1477 	ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1478 	if (!ret) {
1479 		ssize_t ret2;
1480 
1481 		/*
1482 		 * Open-code file_start_write here to grab freeze protection,
1483 		 * which will be released by another thread in
1484 		 * io_complete_rw().  Fool lockdep by telling it the lock got
1485 		 * released so that it doesn't complain about the held lock when
1486 		 * we return to userspace.
1487 		 */
1488 		if (req->flags & REQ_F_ISREG) {
1489 			__sb_start_write(file_inode(file)->i_sb,
1490 						SB_FREEZE_WRITE, true);
1491 			__sb_writers_release(file_inode(file)->i_sb,
1492 						SB_FREEZE_WRITE);
1493 		}
1494 		kiocb->ki_flags |= IOCB_WRITE;
1495 
1496 		if (file->f_op->write_iter)
1497 			ret2 = call_write_iter(file, kiocb, &iter);
1498 		else
1499 			ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1500 		if (!force_nonblock || ret2 != -EAGAIN) {
1501 			io_rw_done(kiocb, ret2);
1502 		} else {
1503 			/*
1504 			 * If ->needs_lock is true, we're already in async
1505 			 * context.
1506 			 */
1507 			if (!s->needs_lock)
1508 				io_async_list_note(WRITE, req, iov_count);
1509 			ret = -EAGAIN;
1510 		}
1511 	}
1512 out_free:
1513 	kfree(iovec);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * IORING_OP_NOP just posts a completion event, nothing else.
1519  */
io_nop(struct io_kiocb * req,u64 user_data)1520 static int io_nop(struct io_kiocb *req, u64 user_data)
1521 {
1522 	struct io_ring_ctx *ctx = req->ctx;
1523 	long err = 0;
1524 
1525 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1526 		return -EINVAL;
1527 
1528 	io_cqring_add_event(ctx, user_data, err);
1529 	io_put_req(req);
1530 	return 0;
1531 }
1532 
io_prep_fsync(struct io_kiocb * req,const struct io_uring_sqe * sqe)1533 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1534 {
1535 	struct io_ring_ctx *ctx = req->ctx;
1536 
1537 	if (!req->file)
1538 		return -EBADF;
1539 
1540 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1541 		return -EINVAL;
1542 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1543 		return -EINVAL;
1544 
1545 	return 0;
1546 }
1547 
io_fsync(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool force_nonblock)1548 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1549 		    bool force_nonblock)
1550 {
1551 	loff_t sqe_off = READ_ONCE(sqe->off);
1552 	loff_t sqe_len = READ_ONCE(sqe->len);
1553 	loff_t end = sqe_off + sqe_len;
1554 	unsigned fsync_flags;
1555 	int ret;
1556 
1557 	fsync_flags = READ_ONCE(sqe->fsync_flags);
1558 	if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1559 		return -EINVAL;
1560 
1561 	ret = io_prep_fsync(req, sqe);
1562 	if (ret)
1563 		return ret;
1564 
1565 	/* fsync always requires a blocking context */
1566 	if (force_nonblock)
1567 		return -EAGAIN;
1568 
1569 	ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1570 				end > 0 ? end : LLONG_MAX,
1571 				fsync_flags & IORING_FSYNC_DATASYNC);
1572 
1573 	if (ret < 0 && (req->flags & REQ_F_LINK))
1574 		req->flags |= REQ_F_FAIL_LINK;
1575 	io_cqring_add_event(req->ctx, sqe->user_data, ret);
1576 	io_put_req(req);
1577 	return 0;
1578 }
1579 
io_prep_sfr(struct io_kiocb * req,const struct io_uring_sqe * sqe)1580 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1581 {
1582 	struct io_ring_ctx *ctx = req->ctx;
1583 	int ret = 0;
1584 
1585 	if (!req->file)
1586 		return -EBADF;
1587 
1588 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1589 		return -EINVAL;
1590 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1591 		return -EINVAL;
1592 
1593 	return ret;
1594 }
1595 
io_sync_file_range(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool force_nonblock)1596 static int io_sync_file_range(struct io_kiocb *req,
1597 			      const struct io_uring_sqe *sqe,
1598 			      bool force_nonblock)
1599 {
1600 	loff_t sqe_off;
1601 	loff_t sqe_len;
1602 	unsigned flags;
1603 	int ret;
1604 
1605 	ret = io_prep_sfr(req, sqe);
1606 	if (ret)
1607 		return ret;
1608 
1609 	/* sync_file_range always requires a blocking context */
1610 	if (force_nonblock)
1611 		return -EAGAIN;
1612 
1613 	sqe_off = READ_ONCE(sqe->off);
1614 	sqe_len = READ_ONCE(sqe->len);
1615 	flags = READ_ONCE(sqe->sync_range_flags);
1616 
1617 	ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1618 
1619 	if (ret < 0 && (req->flags & REQ_F_LINK))
1620 		req->flags |= REQ_F_FAIL_LINK;
1621 	io_cqring_add_event(req->ctx, sqe->user_data, ret);
1622 	io_put_req(req);
1623 	return 0;
1624 }
1625 
1626 #if defined(CONFIG_NET)
io_send_recvmsg(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool force_nonblock,long (* fn)(struct socket *,struct user_msghdr __user *,unsigned int))1627 static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1628 			   bool force_nonblock,
1629 		   long (*fn)(struct socket *, struct user_msghdr __user *,
1630 				unsigned int))
1631 {
1632 	struct socket *sock;
1633 	int ret;
1634 
1635 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1636 		return -EINVAL;
1637 
1638 	sock = sock_from_file(req->file, &ret);
1639 	if (sock) {
1640 		struct user_msghdr __user *msg;
1641 		unsigned flags;
1642 
1643 		flags = READ_ONCE(sqe->msg_flags);
1644 		if (flags & MSG_DONTWAIT)
1645 			req->flags |= REQ_F_NOWAIT;
1646 		else if (force_nonblock)
1647 			flags |= MSG_DONTWAIT;
1648 
1649 		msg = (struct user_msghdr __user *) (unsigned long)
1650 			READ_ONCE(sqe->addr);
1651 
1652 		ret = fn(sock, msg, flags);
1653 		if (force_nonblock && ret == -EAGAIN)
1654 			return ret;
1655 	}
1656 
1657 	io_cqring_add_event(req->ctx, sqe->user_data, ret);
1658 	io_put_req(req);
1659 	return 0;
1660 }
1661 #endif
1662 
io_sendmsg(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool force_nonblock)1663 static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1664 		      bool force_nonblock)
1665 {
1666 #if defined(CONFIG_NET)
1667 	return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock);
1668 #else
1669 	return -EOPNOTSUPP;
1670 #endif
1671 }
1672 
io_recvmsg(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool force_nonblock)1673 static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1674 		      bool force_nonblock)
1675 {
1676 #if defined(CONFIG_NET)
1677 	return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock);
1678 #else
1679 	return -EOPNOTSUPP;
1680 #endif
1681 }
1682 
io_poll_remove_one(struct io_kiocb * req)1683 static void io_poll_remove_one(struct io_kiocb *req)
1684 {
1685 	struct io_poll_iocb *poll = &req->poll;
1686 
1687 	spin_lock(&poll->head->lock);
1688 	WRITE_ONCE(poll->canceled, true);
1689 	if (!list_empty(&poll->wait.entry)) {
1690 		list_del_init(&poll->wait.entry);
1691 		io_queue_async_work(req->ctx, req);
1692 	}
1693 	spin_unlock(&poll->head->lock);
1694 
1695 	list_del_init(&req->list);
1696 }
1697 
io_poll_remove_all(struct io_ring_ctx * ctx)1698 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1699 {
1700 	struct io_kiocb *req;
1701 
1702 	spin_lock_irq(&ctx->completion_lock);
1703 	while (!list_empty(&ctx->cancel_list)) {
1704 		req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1705 		io_poll_remove_one(req);
1706 	}
1707 	spin_unlock_irq(&ctx->completion_lock);
1708 }
1709 
1710 /*
1711  * Find a running poll command that matches one specified in sqe->addr,
1712  * and remove it if found.
1713  */
io_poll_remove(struct io_kiocb * req,const struct io_uring_sqe * sqe)1714 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1715 {
1716 	struct io_ring_ctx *ctx = req->ctx;
1717 	struct io_kiocb *poll_req, *next;
1718 	int ret = -ENOENT;
1719 
1720 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1721 		return -EINVAL;
1722 	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1723 	    sqe->poll_events)
1724 		return -EINVAL;
1725 
1726 	spin_lock_irq(&ctx->completion_lock);
1727 	list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1728 		if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1729 			io_poll_remove_one(poll_req);
1730 			ret = 0;
1731 			break;
1732 		}
1733 	}
1734 	spin_unlock_irq(&ctx->completion_lock);
1735 
1736 	io_cqring_add_event(req->ctx, sqe->user_data, ret);
1737 	io_put_req(req);
1738 	return 0;
1739 }
1740 
io_poll_complete(struct io_ring_ctx * ctx,struct io_kiocb * req,__poll_t mask)1741 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1742 			     __poll_t mask)
1743 {
1744 	req->poll.done = true;
1745 	io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1746 	io_commit_cqring(ctx);
1747 }
1748 
io_poll_complete_work(struct work_struct * work)1749 static void io_poll_complete_work(struct work_struct *work)
1750 {
1751 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1752 	struct io_poll_iocb *poll = &req->poll;
1753 	struct poll_table_struct pt = { ._key = poll->events };
1754 	struct io_ring_ctx *ctx = req->ctx;
1755 	__poll_t mask = 0;
1756 
1757 	if (!READ_ONCE(poll->canceled))
1758 		mask = vfs_poll(poll->file, &pt) & poll->events;
1759 
1760 	/*
1761 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1762 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1763 	 * synchronize with them.  In the cancellation case the list_del_init
1764 	 * itself is not actually needed, but harmless so we keep it in to
1765 	 * avoid further branches in the fast path.
1766 	 */
1767 	spin_lock_irq(&ctx->completion_lock);
1768 	if (!mask && !READ_ONCE(poll->canceled)) {
1769 		add_wait_queue(poll->head, &poll->wait);
1770 		spin_unlock_irq(&ctx->completion_lock);
1771 		return;
1772 	}
1773 	list_del_init(&req->list);
1774 	io_poll_complete(ctx, req, mask);
1775 	spin_unlock_irq(&ctx->completion_lock);
1776 
1777 	io_cqring_ev_posted(ctx);
1778 	io_put_req(req);
1779 }
1780 
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1781 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1782 			void *key)
1783 {
1784 	struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1785 							wait);
1786 	struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1787 	struct io_ring_ctx *ctx = req->ctx;
1788 	__poll_t mask = key_to_poll(key);
1789 	unsigned long flags;
1790 
1791 	/* for instances that support it check for an event match first: */
1792 	if (mask && !(mask & poll->events))
1793 		return 0;
1794 
1795 	list_del_init(&poll->wait.entry);
1796 
1797 	if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1798 		list_del(&req->list);
1799 		io_poll_complete(ctx, req, mask);
1800 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
1801 
1802 		io_cqring_ev_posted(ctx);
1803 		io_put_req(req);
1804 	} else {
1805 		io_queue_async_work(ctx, req);
1806 	}
1807 
1808 	return 1;
1809 }
1810 
1811 struct io_poll_table {
1812 	struct poll_table_struct pt;
1813 	struct io_kiocb *req;
1814 	int error;
1815 };
1816 
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1817 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1818 			       struct poll_table_struct *p)
1819 {
1820 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1821 
1822 	if (unlikely(pt->req->poll.head)) {
1823 		pt->error = -EINVAL;
1824 		return;
1825 	}
1826 
1827 	pt->error = 0;
1828 	pt->req->poll.head = head;
1829 	add_wait_queue(head, &pt->req->poll.wait);
1830 }
1831 
io_poll_add(struct io_kiocb * req,const struct io_uring_sqe * sqe)1832 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1833 {
1834 	struct io_poll_iocb *poll = &req->poll;
1835 	struct io_ring_ctx *ctx = req->ctx;
1836 	struct io_poll_table ipt;
1837 	bool cancel = false;
1838 	__poll_t mask;
1839 	u16 events;
1840 
1841 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1842 		return -EINVAL;
1843 	if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1844 		return -EINVAL;
1845 	if (!poll->file)
1846 		return -EBADF;
1847 
1848 	req->submit.sqe = NULL;
1849 	INIT_WORK(&req->work, io_poll_complete_work);
1850 	events = READ_ONCE(sqe->poll_events);
1851 	poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1852 
1853 	poll->head = NULL;
1854 	poll->done = false;
1855 	poll->canceled = false;
1856 
1857 	ipt.pt._qproc = io_poll_queue_proc;
1858 	ipt.pt._key = poll->events;
1859 	ipt.req = req;
1860 	ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1861 
1862 	/* initialized the list so that we can do list_empty checks */
1863 	INIT_LIST_HEAD(&poll->wait.entry);
1864 	init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1865 
1866 	INIT_LIST_HEAD(&req->list);
1867 
1868 	mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1869 
1870 	spin_lock_irq(&ctx->completion_lock);
1871 	if (likely(poll->head)) {
1872 		spin_lock(&poll->head->lock);
1873 		if (unlikely(list_empty(&poll->wait.entry))) {
1874 			if (ipt.error)
1875 				cancel = true;
1876 			ipt.error = 0;
1877 			mask = 0;
1878 		}
1879 		if (mask || ipt.error)
1880 			list_del_init(&poll->wait.entry);
1881 		else if (cancel)
1882 			WRITE_ONCE(poll->canceled, true);
1883 		else if (!poll->done) /* actually waiting for an event */
1884 			list_add_tail(&req->list, &ctx->cancel_list);
1885 		spin_unlock(&poll->head->lock);
1886 	}
1887 	if (mask) { /* no async, we'd stolen it */
1888 		ipt.error = 0;
1889 		io_poll_complete(ctx, req, mask);
1890 	}
1891 	spin_unlock_irq(&ctx->completion_lock);
1892 
1893 	if (mask) {
1894 		io_cqring_ev_posted(ctx);
1895 		io_put_req(req);
1896 	}
1897 	return ipt.error;
1898 }
1899 
io_timeout_fn(struct hrtimer * timer)1900 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
1901 {
1902 	struct io_ring_ctx *ctx;
1903 	struct io_kiocb *req, *prev;
1904 	unsigned long flags;
1905 
1906 	req = container_of(timer, struct io_kiocb, timeout.timer);
1907 	ctx = req->ctx;
1908 	atomic_inc(&ctx->cq_timeouts);
1909 
1910 	spin_lock_irqsave(&ctx->completion_lock, flags);
1911 	/*
1912 	 * Adjust the reqs sequence before the current one because it
1913 	 * will consume a slot in the cq_ring and the the cq_tail pointer
1914 	 * will be increased, otherwise other timeout reqs may return in
1915 	 * advance without waiting for enough wait_nr.
1916 	 */
1917 	prev = req;
1918 	list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
1919 		prev->sequence++;
1920 	list_del(&req->list);
1921 
1922 	io_cqring_fill_event(ctx, req->user_data, -ETIME);
1923 	io_commit_cqring(ctx);
1924 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1925 
1926 	io_cqring_ev_posted(ctx);
1927 
1928 	io_put_req(req);
1929 	return HRTIMER_NORESTART;
1930 }
1931 
io_timeout(struct io_kiocb * req,const struct io_uring_sqe * sqe)1932 static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1933 {
1934 	unsigned count;
1935 	struct io_ring_ctx *ctx = req->ctx;
1936 	struct list_head *entry;
1937 	struct timespec64 ts;
1938 	unsigned span = 0;
1939 
1940 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1941 		return -EINVAL;
1942 	if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->timeout_flags ||
1943 	    sqe->len != 1)
1944 		return -EINVAL;
1945 
1946 	if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr)))
1947 		return -EFAULT;
1948 
1949 	req->flags |= REQ_F_TIMEOUT;
1950 
1951 	/*
1952 	 * sqe->off holds how many events that need to occur for this
1953 	 * timeout event to be satisfied. If it isn't set, then this is
1954 	 * a pure timeout request, sequence isn't used.
1955 	 */
1956 	count = READ_ONCE(sqe->off);
1957 	if (!count) {
1958 		req->flags |= REQ_F_TIMEOUT_NOSEQ;
1959 		spin_lock_irq(&ctx->completion_lock);
1960 		entry = ctx->timeout_list.prev;
1961 		goto add;
1962 	}
1963 
1964 	req->sequence = ctx->cached_sq_head + count - 1;
1965 	/* reuse it to store the count */
1966 	req->submit.sequence = count;
1967 
1968 	/*
1969 	 * Insertion sort, ensuring the first entry in the list is always
1970 	 * the one we need first.
1971 	 */
1972 	spin_lock_irq(&ctx->completion_lock);
1973 	list_for_each_prev(entry, &ctx->timeout_list) {
1974 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
1975 		unsigned nxt_sq_head;
1976 		long long tmp, tmp_nxt;
1977 
1978 		if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
1979 			continue;
1980 
1981 		/*
1982 		 * Since cached_sq_head + count - 1 can overflow, use type long
1983 		 * long to store it.
1984 		 */
1985 		tmp = (long long)ctx->cached_sq_head + count - 1;
1986 		nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1;
1987 		tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1;
1988 
1989 		/*
1990 		 * cached_sq_head may overflow, and it will never overflow twice
1991 		 * once there is some timeout req still be valid.
1992 		 */
1993 		if (ctx->cached_sq_head < nxt_sq_head)
1994 			tmp += UINT_MAX;
1995 
1996 		if (tmp > tmp_nxt)
1997 			break;
1998 
1999 		/*
2000 		 * Sequence of reqs after the insert one and itself should
2001 		 * be adjusted because each timeout req consumes a slot.
2002 		 */
2003 		span++;
2004 		nxt->sequence++;
2005 	}
2006 	req->sequence -= span;
2007 add:
2008 	list_add(&req->list, entry);
2009 	spin_unlock_irq(&ctx->completion_lock);
2010 
2011 	hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2012 	req->timeout.timer.function = io_timeout_fn;
2013 	hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts),
2014 			HRTIMER_MODE_REL);
2015 	return 0;
2016 }
2017 
io_req_defer(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2018 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
2019 			const struct io_uring_sqe *sqe)
2020 {
2021 	struct io_uring_sqe *sqe_copy;
2022 
2023 	if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
2024 		return 0;
2025 
2026 	sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
2027 	if (!sqe_copy)
2028 		return -EAGAIN;
2029 
2030 	spin_lock_irq(&ctx->completion_lock);
2031 	if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
2032 		spin_unlock_irq(&ctx->completion_lock);
2033 		kfree(sqe_copy);
2034 		return 0;
2035 	}
2036 
2037 	memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
2038 	req->submit.sqe = sqe_copy;
2039 
2040 	INIT_WORK(&req->work, io_sq_wq_submit_work);
2041 	list_add_tail(&req->list, &ctx->defer_list);
2042 	spin_unlock_irq(&ctx->completion_lock);
2043 	return -EIOCBQUEUED;
2044 }
2045 
__io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct sqe_submit * s,bool force_nonblock)2046 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2047 			   const struct sqe_submit *s, bool force_nonblock)
2048 {
2049 	int ret, opcode;
2050 
2051 	req->user_data = READ_ONCE(s->sqe->user_data);
2052 
2053 	if (unlikely(s->index >= ctx->sq_entries))
2054 		return -EINVAL;
2055 
2056 	opcode = READ_ONCE(s->sqe->opcode);
2057 	switch (opcode) {
2058 	case IORING_OP_NOP:
2059 		ret = io_nop(req, req->user_data);
2060 		break;
2061 	case IORING_OP_READV:
2062 		if (unlikely(s->sqe->buf_index))
2063 			return -EINVAL;
2064 		ret = io_read(req, s, force_nonblock);
2065 		break;
2066 	case IORING_OP_WRITEV:
2067 		if (unlikely(s->sqe->buf_index))
2068 			return -EINVAL;
2069 		ret = io_write(req, s, force_nonblock);
2070 		break;
2071 	case IORING_OP_READ_FIXED:
2072 		ret = io_read(req, s, force_nonblock);
2073 		break;
2074 	case IORING_OP_WRITE_FIXED:
2075 		ret = io_write(req, s, force_nonblock);
2076 		break;
2077 	case IORING_OP_FSYNC:
2078 		ret = io_fsync(req, s->sqe, force_nonblock);
2079 		break;
2080 	case IORING_OP_POLL_ADD:
2081 		ret = io_poll_add(req, s->sqe);
2082 		break;
2083 	case IORING_OP_POLL_REMOVE:
2084 		ret = io_poll_remove(req, s->sqe);
2085 		break;
2086 	case IORING_OP_SYNC_FILE_RANGE:
2087 		ret = io_sync_file_range(req, s->sqe, force_nonblock);
2088 		break;
2089 	case IORING_OP_SENDMSG:
2090 		ret = io_sendmsg(req, s->sqe, force_nonblock);
2091 		break;
2092 	case IORING_OP_RECVMSG:
2093 		ret = io_recvmsg(req, s->sqe, force_nonblock);
2094 		break;
2095 	case IORING_OP_TIMEOUT:
2096 		ret = io_timeout(req, s->sqe);
2097 		break;
2098 	default:
2099 		ret = -EINVAL;
2100 		break;
2101 	}
2102 
2103 	if (ret)
2104 		return ret;
2105 
2106 	if (ctx->flags & IORING_SETUP_IOPOLL) {
2107 		if (req->result == -EAGAIN)
2108 			return -EAGAIN;
2109 
2110 		/* workqueue context doesn't hold uring_lock, grab it now */
2111 		if (s->needs_lock)
2112 			mutex_lock(&ctx->uring_lock);
2113 		io_iopoll_req_issued(req);
2114 		if (s->needs_lock)
2115 			mutex_unlock(&ctx->uring_lock);
2116 	}
2117 
2118 	return 0;
2119 }
2120 
io_async_list_from_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe * sqe)2121 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
2122 						 const struct io_uring_sqe *sqe)
2123 {
2124 	switch (sqe->opcode) {
2125 	case IORING_OP_READV:
2126 	case IORING_OP_READ_FIXED:
2127 		return &ctx->pending_async[READ];
2128 	case IORING_OP_WRITEV:
2129 	case IORING_OP_WRITE_FIXED:
2130 		return &ctx->pending_async[WRITE];
2131 	default:
2132 		return NULL;
2133 	}
2134 }
2135 
io_sqe_needs_user(const struct io_uring_sqe * sqe)2136 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
2137 {
2138 	u8 opcode = READ_ONCE(sqe->opcode);
2139 
2140 	return !(opcode == IORING_OP_READ_FIXED ||
2141 		 opcode == IORING_OP_WRITE_FIXED);
2142 }
2143 
io_sq_wq_submit_work(struct work_struct * work)2144 static void io_sq_wq_submit_work(struct work_struct *work)
2145 {
2146 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2147 	struct io_ring_ctx *ctx = req->ctx;
2148 	struct mm_struct *cur_mm = NULL;
2149 	struct async_list *async_list;
2150 	LIST_HEAD(req_list);
2151 	mm_segment_t old_fs;
2152 	int ret;
2153 
2154 	async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
2155 restart:
2156 	do {
2157 		struct sqe_submit *s = &req->submit;
2158 		const struct io_uring_sqe *sqe = s->sqe;
2159 		unsigned int flags = req->flags;
2160 
2161 		/* Ensure we clear previously set non-block flag */
2162 		req->rw.ki_flags &= ~IOCB_NOWAIT;
2163 
2164 		ret = 0;
2165 		if (io_sqe_needs_user(sqe) && !cur_mm) {
2166 			if (!mmget_not_zero(ctx->sqo_mm)) {
2167 				ret = -EFAULT;
2168 			} else {
2169 				cur_mm = ctx->sqo_mm;
2170 				use_mm(cur_mm);
2171 				old_fs = get_fs();
2172 				set_fs(USER_DS);
2173 			}
2174 		}
2175 
2176 		if (!ret) {
2177 			s->has_user = cur_mm != NULL;
2178 			s->needs_lock = true;
2179 			do {
2180 				ret = __io_submit_sqe(ctx, req, s, false);
2181 				/*
2182 				 * We can get EAGAIN for polled IO even though
2183 				 * we're forcing a sync submission from here,
2184 				 * since we can't wait for request slots on the
2185 				 * block side.
2186 				 */
2187 				if (ret != -EAGAIN)
2188 					break;
2189 				cond_resched();
2190 			} while (1);
2191 		}
2192 
2193 		/* drop submission reference */
2194 		io_put_req(req);
2195 
2196 		if (ret) {
2197 			io_cqring_add_event(ctx, sqe->user_data, ret);
2198 			io_put_req(req);
2199 		}
2200 
2201 		/* async context always use a copy of the sqe */
2202 		kfree(sqe);
2203 
2204 		/* req from defer and link list needn't decrease async cnt */
2205 		if (flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE))
2206 			goto out;
2207 
2208 		if (!async_list)
2209 			break;
2210 		if (!list_empty(&req_list)) {
2211 			req = list_first_entry(&req_list, struct io_kiocb,
2212 						list);
2213 			list_del(&req->list);
2214 			continue;
2215 		}
2216 		if (list_empty(&async_list->list))
2217 			break;
2218 
2219 		req = NULL;
2220 		spin_lock(&async_list->lock);
2221 		if (list_empty(&async_list->list)) {
2222 			spin_unlock(&async_list->lock);
2223 			break;
2224 		}
2225 		list_splice_init(&async_list->list, &req_list);
2226 		spin_unlock(&async_list->lock);
2227 
2228 		req = list_first_entry(&req_list, struct io_kiocb, list);
2229 		list_del(&req->list);
2230 	} while (req);
2231 
2232 	/*
2233 	 * Rare case of racing with a submitter. If we find the count has
2234 	 * dropped to zero AND we have pending work items, then restart
2235 	 * the processing. This is a tiny race window.
2236 	 */
2237 	if (async_list) {
2238 		ret = atomic_dec_return(&async_list->cnt);
2239 		while (!ret && !list_empty(&async_list->list)) {
2240 			spin_lock(&async_list->lock);
2241 			atomic_inc(&async_list->cnt);
2242 			list_splice_init(&async_list->list, &req_list);
2243 			spin_unlock(&async_list->lock);
2244 
2245 			if (!list_empty(&req_list)) {
2246 				req = list_first_entry(&req_list,
2247 							struct io_kiocb, list);
2248 				list_del(&req->list);
2249 				goto restart;
2250 			}
2251 			ret = atomic_dec_return(&async_list->cnt);
2252 		}
2253 	}
2254 
2255 out:
2256 	if (cur_mm) {
2257 		set_fs(old_fs);
2258 		unuse_mm(cur_mm);
2259 		mmput(cur_mm);
2260 	}
2261 }
2262 
2263 /*
2264  * See if we can piggy back onto previously submitted work, that is still
2265  * running. We currently only allow this if the new request is sequential
2266  * to the previous one we punted.
2267  */
io_add_to_prev_work(struct async_list * list,struct io_kiocb * req)2268 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
2269 {
2270 	bool ret;
2271 
2272 	if (!list)
2273 		return false;
2274 	if (!(req->flags & REQ_F_SEQ_PREV))
2275 		return false;
2276 	if (!atomic_read(&list->cnt))
2277 		return false;
2278 
2279 	ret = true;
2280 	spin_lock(&list->lock);
2281 	list_add_tail(&req->list, &list->list);
2282 	/*
2283 	 * Ensure we see a simultaneous modification from io_sq_wq_submit_work()
2284 	 */
2285 	smp_mb();
2286 	if (!atomic_read(&list->cnt)) {
2287 		list_del_init(&req->list);
2288 		ret = false;
2289 	}
2290 	spin_unlock(&list->lock);
2291 	return ret;
2292 }
2293 
io_op_needs_file(const struct io_uring_sqe * sqe)2294 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
2295 {
2296 	int op = READ_ONCE(sqe->opcode);
2297 
2298 	switch (op) {
2299 	case IORING_OP_NOP:
2300 	case IORING_OP_POLL_REMOVE:
2301 	case IORING_OP_TIMEOUT:
2302 		return false;
2303 	default:
2304 		return true;
2305 	}
2306 }
2307 
io_req_set_file(struct io_ring_ctx * ctx,const struct sqe_submit * s,struct io_submit_state * state,struct io_kiocb * req)2308 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
2309 			   struct io_submit_state *state, struct io_kiocb *req)
2310 {
2311 	unsigned flags;
2312 	int fd;
2313 
2314 	flags = READ_ONCE(s->sqe->flags);
2315 	fd = READ_ONCE(s->sqe->fd);
2316 
2317 	if (flags & IOSQE_IO_DRAIN)
2318 		req->flags |= REQ_F_IO_DRAIN;
2319 	/*
2320 	 * All io need record the previous position, if LINK vs DARIN,
2321 	 * it can be used to mark the position of the first IO in the
2322 	 * link list.
2323 	 */
2324 	req->sequence = s->sequence;
2325 
2326 	if (!io_op_needs_file(s->sqe))
2327 		return 0;
2328 
2329 	if (flags & IOSQE_FIXED_FILE) {
2330 		if (unlikely(!ctx->user_files ||
2331 		    (unsigned) fd >= ctx->nr_user_files))
2332 			return -EBADF;
2333 		req->file = ctx->user_files[fd];
2334 		req->flags |= REQ_F_FIXED_FILE;
2335 	} else {
2336 		if (s->needs_fixed_file)
2337 			return -EBADF;
2338 		req->file = io_file_get(state, fd);
2339 		if (unlikely(!req->file))
2340 			return -EBADF;
2341 	}
2342 
2343 	return 0;
2344 }
2345 
__io_queue_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,struct sqe_submit * s)2346 static int __io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2347 			struct sqe_submit *s)
2348 {
2349 	int ret;
2350 
2351 	ret = __io_submit_sqe(ctx, req, s, true);
2352 
2353 	/*
2354 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2355 	 * doesn't support non-blocking read/write attempts
2356 	 */
2357 	if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
2358 	    (req->flags & REQ_F_MUST_PUNT))) {
2359 		struct io_uring_sqe *sqe_copy;
2360 
2361 		sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2362 		if (sqe_copy) {
2363 			struct async_list *list;
2364 
2365 			s->sqe = sqe_copy;
2366 			memcpy(&req->submit, s, sizeof(*s));
2367 			list = io_async_list_from_sqe(ctx, s->sqe);
2368 			if (!io_add_to_prev_work(list, req)) {
2369 				if (list)
2370 					atomic_inc(&list->cnt);
2371 				INIT_WORK(&req->work, io_sq_wq_submit_work);
2372 				io_queue_async_work(ctx, req);
2373 			}
2374 
2375 			/*
2376 			 * Queued up for async execution, worker will release
2377 			 * submit reference when the iocb is actually submitted.
2378 			 */
2379 			return 0;
2380 		}
2381 	}
2382 
2383 	/* drop submission reference */
2384 	io_put_req(req);
2385 
2386 	/* and drop final reference, if we failed */
2387 	if (ret) {
2388 		io_cqring_add_event(ctx, req->user_data, ret);
2389 		if (req->flags & REQ_F_LINK)
2390 			req->flags |= REQ_F_FAIL_LINK;
2391 		io_put_req(req);
2392 	}
2393 
2394 	return ret;
2395 }
2396 
io_queue_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,struct sqe_submit * s)2397 static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2398 			struct sqe_submit *s)
2399 {
2400 	int ret;
2401 
2402 	ret = io_req_defer(ctx, req, s->sqe);
2403 	if (ret) {
2404 		if (ret != -EIOCBQUEUED) {
2405 			io_free_req(req);
2406 			io_cqring_add_event(ctx, s->sqe->user_data, ret);
2407 		}
2408 		return 0;
2409 	}
2410 
2411 	return __io_queue_sqe(ctx, req, s);
2412 }
2413 
io_queue_link_head(struct io_ring_ctx * ctx,struct io_kiocb * req,struct sqe_submit * s,struct io_kiocb * shadow)2414 static int io_queue_link_head(struct io_ring_ctx *ctx, struct io_kiocb *req,
2415 			      struct sqe_submit *s, struct io_kiocb *shadow)
2416 {
2417 	int ret;
2418 	int need_submit = false;
2419 
2420 	if (!shadow)
2421 		return io_queue_sqe(ctx, req, s);
2422 
2423 	/*
2424 	 * Mark the first IO in link list as DRAIN, let all the following
2425 	 * IOs enter the defer list. all IO needs to be completed before link
2426 	 * list.
2427 	 */
2428 	req->flags |= REQ_F_IO_DRAIN;
2429 	ret = io_req_defer(ctx, req, s->sqe);
2430 	if (ret) {
2431 		if (ret != -EIOCBQUEUED) {
2432 			io_free_req(req);
2433 			__io_free_req(shadow);
2434 			io_cqring_add_event(ctx, s->sqe->user_data, ret);
2435 			return 0;
2436 		}
2437 	} else {
2438 		/*
2439 		 * If ret == 0 means that all IOs in front of link io are
2440 		 * running done. let's queue link head.
2441 		 */
2442 		need_submit = true;
2443 	}
2444 
2445 	/* Insert shadow req to defer_list, blocking next IOs */
2446 	spin_lock_irq(&ctx->completion_lock);
2447 	list_add_tail(&shadow->list, &ctx->defer_list);
2448 	spin_unlock_irq(&ctx->completion_lock);
2449 
2450 	if (need_submit)
2451 		return __io_queue_sqe(ctx, req, s);
2452 
2453 	return 0;
2454 }
2455 
2456 #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2457 
io_submit_sqe(struct io_ring_ctx * ctx,struct sqe_submit * s,struct io_submit_state * state,struct io_kiocb ** link)2458 static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
2459 			  struct io_submit_state *state, struct io_kiocb **link)
2460 {
2461 	struct io_uring_sqe *sqe_copy;
2462 	struct io_kiocb *req;
2463 	int ret;
2464 
2465 	/* enforce forwards compatibility on users */
2466 	if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2467 		ret = -EINVAL;
2468 		goto err;
2469 	}
2470 
2471 	req = io_get_req(ctx, state);
2472 	if (unlikely(!req)) {
2473 		ret = -EAGAIN;
2474 		goto err;
2475 	}
2476 
2477 	ret = io_req_set_file(ctx, s, state, req);
2478 	if (unlikely(ret)) {
2479 err_req:
2480 		io_free_req(req);
2481 err:
2482 		io_cqring_add_event(ctx, s->sqe->user_data, ret);
2483 		return;
2484 	}
2485 
2486 	req->user_data = s->sqe->user_data;
2487 
2488 	/*
2489 	 * If we already have a head request, queue this one for async
2490 	 * submittal once the head completes. If we don't have a head but
2491 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2492 	 * submitted sync once the chain is complete. If none of those
2493 	 * conditions are true (normal request), then just queue it.
2494 	 */
2495 	if (*link) {
2496 		struct io_kiocb *prev = *link;
2497 
2498 		sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2499 		if (!sqe_copy) {
2500 			ret = -EAGAIN;
2501 			goto err_req;
2502 		}
2503 
2504 		s->sqe = sqe_copy;
2505 		memcpy(&req->submit, s, sizeof(*s));
2506 		list_add_tail(&req->list, &prev->link_list);
2507 	} else if (s->sqe->flags & IOSQE_IO_LINK) {
2508 		req->flags |= REQ_F_LINK;
2509 
2510 		memcpy(&req->submit, s, sizeof(*s));
2511 		INIT_LIST_HEAD(&req->link_list);
2512 		*link = req;
2513 	} else {
2514 		io_queue_sqe(ctx, req, s);
2515 	}
2516 }
2517 
2518 /*
2519  * Batched submission is done, ensure local IO is flushed out.
2520  */
io_submit_state_end(struct io_submit_state * state)2521 static void io_submit_state_end(struct io_submit_state *state)
2522 {
2523 	blk_finish_plug(&state->plug);
2524 	io_file_put(state);
2525 	if (state->free_reqs)
2526 		kmem_cache_free_bulk(req_cachep, state->free_reqs,
2527 					&state->reqs[state->cur_req]);
2528 }
2529 
2530 /*
2531  * Start submission side cache.
2532  */
io_submit_state_start(struct io_submit_state * state,struct io_ring_ctx * ctx,unsigned max_ios)2533 static void io_submit_state_start(struct io_submit_state *state,
2534 				  struct io_ring_ctx *ctx, unsigned max_ios)
2535 {
2536 	blk_start_plug(&state->plug);
2537 	state->free_reqs = 0;
2538 	state->file = NULL;
2539 	state->ios_left = max_ios;
2540 }
2541 
io_commit_sqring(struct io_ring_ctx * ctx)2542 static void io_commit_sqring(struct io_ring_ctx *ctx)
2543 {
2544 	struct io_rings *rings = ctx->rings;
2545 
2546 	if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
2547 		/*
2548 		 * Ensure any loads from the SQEs are done at this point,
2549 		 * since once we write the new head, the application could
2550 		 * write new data to them.
2551 		 */
2552 		smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2553 	}
2554 }
2555 
2556 /*
2557  * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2558  * that is mapped by userspace. This means that care needs to be taken to
2559  * ensure that reads are stable, as we cannot rely on userspace always
2560  * being a good citizen. If members of the sqe are validated and then later
2561  * used, it's important that those reads are done through READ_ONCE() to
2562  * prevent a re-load down the line.
2563  */
io_get_sqring(struct io_ring_ctx * ctx,struct sqe_submit * s)2564 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
2565 {
2566 	struct io_rings *rings = ctx->rings;
2567 	u32 *sq_array = ctx->sq_array;
2568 	unsigned head;
2569 
2570 	/*
2571 	 * The cached sq head (or cq tail) serves two purposes:
2572 	 *
2573 	 * 1) allows us to batch the cost of updating the user visible
2574 	 *    head updates.
2575 	 * 2) allows the kernel side to track the head on its own, even
2576 	 *    though the application is the one updating it.
2577 	 */
2578 	head = ctx->cached_sq_head;
2579 	/* make sure SQ entry isn't read before tail */
2580 	if (head == smp_load_acquire(&rings->sq.tail))
2581 		return false;
2582 
2583 	head = READ_ONCE(sq_array[head & ctx->sq_mask]);
2584 	if (head < ctx->sq_entries) {
2585 		s->index = head;
2586 		s->sqe = &ctx->sq_sqes[head];
2587 		s->sequence = ctx->cached_sq_head;
2588 		ctx->cached_sq_head++;
2589 		return true;
2590 	}
2591 
2592 	/* drop invalid entries */
2593 	ctx->cached_sq_head++;
2594 	ctx->cached_sq_dropped++;
2595 	WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
2596 	return false;
2597 }
2598 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr,bool has_user,bool mm_fault)2599 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
2600 			  bool has_user, bool mm_fault)
2601 {
2602 	struct io_submit_state state, *statep = NULL;
2603 	struct io_kiocb *link = NULL;
2604 	struct io_kiocb *shadow_req = NULL;
2605 	bool prev_was_link = false;
2606 	int i, submitted = 0;
2607 
2608 	if (nr > IO_PLUG_THRESHOLD) {
2609 		io_submit_state_start(&state, ctx, nr);
2610 		statep = &state;
2611 	}
2612 
2613 	for (i = 0; i < nr; i++) {
2614 		struct sqe_submit s;
2615 
2616 		if (!io_get_sqring(ctx, &s))
2617 			break;
2618 
2619 		/*
2620 		 * If previous wasn't linked and we have a linked command,
2621 		 * that's the end of the chain. Submit the previous link.
2622 		 */
2623 		if (!prev_was_link && link) {
2624 			io_queue_link_head(ctx, link, &link->submit, shadow_req);
2625 			link = NULL;
2626 			shadow_req = NULL;
2627 		}
2628 		prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2629 
2630 		if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2631 			if (!shadow_req) {
2632 				shadow_req = io_get_req(ctx, NULL);
2633 				if (unlikely(!shadow_req))
2634 					goto out;
2635 				shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2636 				refcount_dec(&shadow_req->refs);
2637 			}
2638 			shadow_req->sequence = s.sequence;
2639 		}
2640 
2641 out:
2642 		if (unlikely(mm_fault)) {
2643 			io_cqring_add_event(ctx, s.sqe->user_data,
2644 						-EFAULT);
2645 		} else {
2646 			s.has_user = has_user;
2647 			s.needs_lock = true;
2648 			s.needs_fixed_file = true;
2649 			io_submit_sqe(ctx, &s, statep, &link);
2650 			submitted++;
2651 		}
2652 	}
2653 
2654 	if (link)
2655 		io_queue_link_head(ctx, link, &link->submit, shadow_req);
2656 	if (statep)
2657 		io_submit_state_end(&state);
2658 
2659 	return submitted;
2660 }
2661 
io_sq_thread(void * data)2662 static int io_sq_thread(void *data)
2663 {
2664 	struct io_ring_ctx *ctx = data;
2665 	struct mm_struct *cur_mm = NULL;
2666 	mm_segment_t old_fs;
2667 	DEFINE_WAIT(wait);
2668 	unsigned inflight;
2669 	unsigned long timeout;
2670 
2671 	complete(&ctx->sqo_thread_started);
2672 
2673 	old_fs = get_fs();
2674 	set_fs(USER_DS);
2675 
2676 	timeout = inflight = 0;
2677 	while (!kthread_should_park()) {
2678 		bool mm_fault = false;
2679 		unsigned int to_submit;
2680 
2681 		if (inflight) {
2682 			unsigned nr_events = 0;
2683 
2684 			if (ctx->flags & IORING_SETUP_IOPOLL) {
2685 				/*
2686 				 * inflight is the count of the maximum possible
2687 				 * entries we submitted, but it can be smaller
2688 				 * if we dropped some of them. If we don't have
2689 				 * poll entries available, then we know that we
2690 				 * have nothing left to poll for. Reset the
2691 				 * inflight count to zero in that case.
2692 				 */
2693 				mutex_lock(&ctx->uring_lock);
2694 				if (!list_empty(&ctx->poll_list))
2695 					__io_iopoll_check(ctx, &nr_events, 0);
2696 				else
2697 					inflight = 0;
2698 				mutex_unlock(&ctx->uring_lock);
2699 			} else {
2700 				/*
2701 				 * Normal IO, just pretend everything completed.
2702 				 * We don't have to poll completions for that.
2703 				 */
2704 				nr_events = inflight;
2705 			}
2706 
2707 			inflight -= nr_events;
2708 			if (!inflight)
2709 				timeout = jiffies + ctx->sq_thread_idle;
2710 		}
2711 
2712 		to_submit = io_sqring_entries(ctx);
2713 		if (!to_submit) {
2714 			/*
2715 			 * We're polling. If we're within the defined idle
2716 			 * period, then let us spin without work before going
2717 			 * to sleep.
2718 			 */
2719 			if (inflight || !time_after(jiffies, timeout)) {
2720 				cond_resched();
2721 				continue;
2722 			}
2723 
2724 			/*
2725 			 * Drop cur_mm before scheduling, we can't hold it for
2726 			 * long periods (or over schedule()). Do this before
2727 			 * adding ourselves to the waitqueue, as the unuse/drop
2728 			 * may sleep.
2729 			 */
2730 			if (cur_mm) {
2731 				unuse_mm(cur_mm);
2732 				mmput(cur_mm);
2733 				cur_mm = NULL;
2734 			}
2735 
2736 			prepare_to_wait(&ctx->sqo_wait, &wait,
2737 						TASK_INTERRUPTIBLE);
2738 
2739 			/* Tell userspace we may need a wakeup call */
2740 			ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
2741 			/* make sure to read SQ tail after writing flags */
2742 			smp_mb();
2743 
2744 			to_submit = io_sqring_entries(ctx);
2745 			if (!to_submit) {
2746 				if (kthread_should_park()) {
2747 					finish_wait(&ctx->sqo_wait, &wait);
2748 					break;
2749 				}
2750 				if (signal_pending(current))
2751 					flush_signals(current);
2752 				schedule();
2753 				finish_wait(&ctx->sqo_wait, &wait);
2754 
2755 				ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2756 				continue;
2757 			}
2758 			finish_wait(&ctx->sqo_wait, &wait);
2759 
2760 			ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2761 		}
2762 
2763 		/* Unless all new commands are FIXED regions, grab mm */
2764 		if (!cur_mm) {
2765 			mm_fault = !mmget_not_zero(ctx->sqo_mm);
2766 			if (!mm_fault) {
2767 				use_mm(ctx->sqo_mm);
2768 				cur_mm = ctx->sqo_mm;
2769 			}
2770 		}
2771 
2772 		to_submit = min(to_submit, ctx->sq_entries);
2773 		inflight += io_submit_sqes(ctx, to_submit, cur_mm != NULL,
2774 					   mm_fault);
2775 
2776 		/* Commit SQ ring head once we've consumed all SQEs */
2777 		io_commit_sqring(ctx);
2778 	}
2779 
2780 	set_fs(old_fs);
2781 	if (cur_mm) {
2782 		unuse_mm(cur_mm);
2783 		mmput(cur_mm);
2784 	}
2785 
2786 	kthread_parkme();
2787 
2788 	return 0;
2789 }
2790 
io_ring_submit(struct io_ring_ctx * ctx,unsigned int to_submit)2791 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2792 {
2793 	struct io_submit_state state, *statep = NULL;
2794 	struct io_kiocb *link = NULL;
2795 	struct io_kiocb *shadow_req = NULL;
2796 	bool prev_was_link = false;
2797 	int i, submit = 0;
2798 
2799 	if (to_submit > IO_PLUG_THRESHOLD) {
2800 		io_submit_state_start(&state, ctx, to_submit);
2801 		statep = &state;
2802 	}
2803 
2804 	for (i = 0; i < to_submit; i++) {
2805 		struct sqe_submit s;
2806 
2807 		if (!io_get_sqring(ctx, &s))
2808 			break;
2809 
2810 		/*
2811 		 * If previous wasn't linked and we have a linked command,
2812 		 * that's the end of the chain. Submit the previous link.
2813 		 */
2814 		if (!prev_was_link && link) {
2815 			io_queue_link_head(ctx, link, &link->submit, shadow_req);
2816 			link = NULL;
2817 			shadow_req = NULL;
2818 		}
2819 		prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2820 
2821 		if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2822 			if (!shadow_req) {
2823 				shadow_req = io_get_req(ctx, NULL);
2824 				if (unlikely(!shadow_req))
2825 					goto out;
2826 				shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2827 				refcount_dec(&shadow_req->refs);
2828 			}
2829 			shadow_req->sequence = s.sequence;
2830 		}
2831 
2832 out:
2833 		s.has_user = true;
2834 		s.needs_lock = false;
2835 		s.needs_fixed_file = false;
2836 		submit++;
2837 		io_submit_sqe(ctx, &s, statep, &link);
2838 	}
2839 
2840 	if (link)
2841 		io_queue_link_head(ctx, link, &link->submit, shadow_req);
2842 	if (statep)
2843 		io_submit_state_end(statep);
2844 
2845 	io_commit_sqring(ctx);
2846 
2847 	return submit;
2848 }
2849 
2850 struct io_wait_queue {
2851 	struct wait_queue_entry wq;
2852 	struct io_ring_ctx *ctx;
2853 	unsigned to_wait;
2854 	unsigned nr_timeouts;
2855 };
2856 
io_should_wake(struct io_wait_queue * iowq)2857 static inline bool io_should_wake(struct io_wait_queue *iowq)
2858 {
2859 	struct io_ring_ctx *ctx = iowq->ctx;
2860 
2861 	/*
2862 	 * Wake up if we have enough events, or if a timeout occured since we
2863 	 * started waiting. For timeouts, we always want to return to userspace,
2864 	 * regardless of event count.
2865 	 */
2866 	return io_cqring_events(ctx->rings) >= iowq->to_wait ||
2867 			atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2868 }
2869 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2870 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2871 			    int wake_flags, void *key)
2872 {
2873 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2874 							wq);
2875 
2876 	if (!io_should_wake(iowq))
2877 		return -1;
2878 
2879 	return autoremove_wake_function(curr, mode, wake_flags, key);
2880 }
2881 
2882 /*
2883  * Wait until events become available, if we don't already have some. The
2884  * application must reap them itself, as they reside on the shared cq ring.
2885  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz)2886 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2887 			  const sigset_t __user *sig, size_t sigsz)
2888 {
2889 	struct io_wait_queue iowq = {
2890 		.wq = {
2891 			.private	= current,
2892 			.func		= io_wake_function,
2893 			.entry		= LIST_HEAD_INIT(iowq.wq.entry),
2894 		},
2895 		.ctx		= ctx,
2896 		.to_wait	= min_events,
2897 	};
2898 	struct io_rings *rings = ctx->rings;
2899 	int ret;
2900 
2901 	if (io_cqring_events(rings) >= min_events)
2902 		return 0;
2903 
2904 	if (sig) {
2905 #ifdef CONFIG_COMPAT
2906 		if (in_compat_syscall())
2907 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2908 						      sigsz);
2909 		else
2910 #endif
2911 			ret = set_user_sigmask(sig, sigsz);
2912 
2913 		if (ret)
2914 			return ret;
2915 	}
2916 
2917 	ret = 0;
2918 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2919 	do {
2920 		prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
2921 						TASK_INTERRUPTIBLE);
2922 		if (io_should_wake(&iowq))
2923 			break;
2924 		schedule();
2925 		if (signal_pending(current)) {
2926 			ret = -ERESTARTSYS;
2927 			break;
2928 		}
2929 	} while (1);
2930 	finish_wait(&ctx->wait, &iowq.wq);
2931 
2932 	restore_saved_sigmask_unless(ret == -ERESTARTSYS);
2933 	if (ret == -ERESTARTSYS)
2934 		ret = -EINTR;
2935 
2936 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2937 }
2938 
__io_sqe_files_unregister(struct io_ring_ctx * ctx)2939 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2940 {
2941 #if defined(CONFIG_UNIX)
2942 	if (ctx->ring_sock) {
2943 		struct sock *sock = ctx->ring_sock->sk;
2944 		struct sk_buff *skb;
2945 
2946 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2947 			kfree_skb(skb);
2948 	}
2949 #else
2950 	int i;
2951 
2952 	for (i = 0; i < ctx->nr_user_files; i++)
2953 		fput(ctx->user_files[i]);
2954 #endif
2955 }
2956 
io_sqe_files_unregister(struct io_ring_ctx * ctx)2957 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2958 {
2959 	if (!ctx->user_files)
2960 		return -ENXIO;
2961 
2962 	__io_sqe_files_unregister(ctx);
2963 	kfree(ctx->user_files);
2964 	ctx->user_files = NULL;
2965 	ctx->nr_user_files = 0;
2966 	return 0;
2967 }
2968 
io_sq_thread_stop(struct io_ring_ctx * ctx)2969 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2970 {
2971 	if (ctx->sqo_thread) {
2972 		wait_for_completion(&ctx->sqo_thread_started);
2973 		/*
2974 		 * The park is a bit of a work-around, without it we get
2975 		 * warning spews on shutdown with SQPOLL set and affinity
2976 		 * set to a single CPU.
2977 		 */
2978 		kthread_park(ctx->sqo_thread);
2979 		kthread_stop(ctx->sqo_thread);
2980 		ctx->sqo_thread = NULL;
2981 	}
2982 }
2983 
io_finish_async(struct io_ring_ctx * ctx)2984 static void io_finish_async(struct io_ring_ctx *ctx)
2985 {
2986 	int i;
2987 
2988 	io_sq_thread_stop(ctx);
2989 
2990 	for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) {
2991 		if (ctx->sqo_wq[i]) {
2992 			destroy_workqueue(ctx->sqo_wq[i]);
2993 			ctx->sqo_wq[i] = NULL;
2994 		}
2995 	}
2996 }
2997 
2998 #if defined(CONFIG_UNIX)
io_destruct_skb(struct sk_buff * skb)2999 static void io_destruct_skb(struct sk_buff *skb)
3000 {
3001 	struct io_ring_ctx *ctx = skb->sk->sk_user_data;
3002 	int i;
3003 
3004 	for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++)
3005 		if (ctx->sqo_wq[i])
3006 			flush_workqueue(ctx->sqo_wq[i]);
3007 
3008 	unix_destruct_scm(skb);
3009 }
3010 
3011 /*
3012  * Ensure the UNIX gc is aware of our file set, so we are certain that
3013  * the io_uring can be safely unregistered on process exit, even if we have
3014  * loops in the file referencing.
3015  */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)3016 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3017 {
3018 	struct sock *sk = ctx->ring_sock->sk;
3019 	struct scm_fp_list *fpl;
3020 	struct sk_buff *skb;
3021 	int i;
3022 
3023 	if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3024 		unsigned long inflight = ctx->user->unix_inflight + nr;
3025 
3026 		if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3027 			return -EMFILE;
3028 	}
3029 
3030 	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3031 	if (!fpl)
3032 		return -ENOMEM;
3033 
3034 	skb = alloc_skb(0, GFP_KERNEL);
3035 	if (!skb) {
3036 		kfree(fpl);
3037 		return -ENOMEM;
3038 	}
3039 
3040 	skb->sk = sk;
3041 	skb->destructor = io_destruct_skb;
3042 
3043 	fpl->user = get_uid(ctx->user);
3044 	for (i = 0; i < nr; i++) {
3045 		fpl->fp[i] = get_file(ctx->user_files[i + offset]);
3046 		unix_inflight(fpl->user, fpl->fp[i]);
3047 	}
3048 
3049 	fpl->max = fpl->count = nr;
3050 	UNIXCB(skb).fp = fpl;
3051 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3052 	skb_queue_head(&sk->sk_receive_queue, skb);
3053 
3054 	for (i = 0; i < nr; i++)
3055 		fput(fpl->fp[i]);
3056 
3057 	return 0;
3058 }
3059 
3060 /*
3061  * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3062  * causes regular reference counting to break down. We rely on the UNIX
3063  * garbage collection to take care of this problem for us.
3064  */
io_sqe_files_scm(struct io_ring_ctx * ctx)3065 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3066 {
3067 	unsigned left, total;
3068 	int ret = 0;
3069 
3070 	total = 0;
3071 	left = ctx->nr_user_files;
3072 	while (left) {
3073 		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3074 
3075 		ret = __io_sqe_files_scm(ctx, this_files, total);
3076 		if (ret)
3077 			break;
3078 		left -= this_files;
3079 		total += this_files;
3080 	}
3081 
3082 	if (!ret)
3083 		return 0;
3084 
3085 	while (total < ctx->nr_user_files) {
3086 		fput(ctx->user_files[total]);
3087 		total++;
3088 	}
3089 
3090 	return ret;
3091 }
3092 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)3093 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3094 {
3095 	return 0;
3096 }
3097 #endif
3098 
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)3099 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3100 				 unsigned nr_args)
3101 {
3102 	__s32 __user *fds = (__s32 __user *) arg;
3103 	int fd, ret = 0;
3104 	unsigned i;
3105 
3106 	if (ctx->user_files)
3107 		return -EBUSY;
3108 	if (!nr_args)
3109 		return -EINVAL;
3110 	if (nr_args > IORING_MAX_FIXED_FILES)
3111 		return -EMFILE;
3112 
3113 	ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
3114 	if (!ctx->user_files)
3115 		return -ENOMEM;
3116 
3117 	for (i = 0; i < nr_args; i++) {
3118 		ret = -EFAULT;
3119 		if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3120 			break;
3121 
3122 		ctx->user_files[i] = fget(fd);
3123 
3124 		ret = -EBADF;
3125 		if (!ctx->user_files[i])
3126 			break;
3127 		/*
3128 		 * Don't allow io_uring instances to be registered. If UNIX
3129 		 * isn't enabled, then this causes a reference cycle and this
3130 		 * instance can never get freed. If UNIX is enabled we'll
3131 		 * handle it just fine, but there's still no point in allowing
3132 		 * a ring fd as it doesn't support regular read/write anyway.
3133 		 */
3134 		if (ctx->user_files[i]->f_op == &io_uring_fops) {
3135 			fput(ctx->user_files[i]);
3136 			break;
3137 		}
3138 		ctx->nr_user_files++;
3139 		ret = 0;
3140 	}
3141 
3142 	if (ret) {
3143 		for (i = 0; i < ctx->nr_user_files; i++)
3144 			fput(ctx->user_files[i]);
3145 
3146 		kfree(ctx->user_files);
3147 		ctx->user_files = NULL;
3148 		ctx->nr_user_files = 0;
3149 		return ret;
3150 	}
3151 
3152 	ret = io_sqe_files_scm(ctx);
3153 	if (ret)
3154 		io_sqe_files_unregister(ctx);
3155 
3156 	return ret;
3157 }
3158 
io_sq_offload_start(struct io_ring_ctx * ctx,struct io_uring_params * p)3159 static int io_sq_offload_start(struct io_ring_ctx *ctx,
3160 			       struct io_uring_params *p)
3161 {
3162 	int ret;
3163 
3164 	init_waitqueue_head(&ctx->sqo_wait);
3165 	mmgrab(current->mm);
3166 	ctx->sqo_mm = current->mm;
3167 
3168 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3169 		ret = -EPERM;
3170 		if (!capable(CAP_SYS_ADMIN))
3171 			goto err;
3172 
3173 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
3174 		if (!ctx->sq_thread_idle)
3175 			ctx->sq_thread_idle = HZ;
3176 
3177 		if (p->flags & IORING_SETUP_SQ_AFF) {
3178 			int cpu = p->sq_thread_cpu;
3179 
3180 			ret = -EINVAL;
3181 			if (cpu >= nr_cpu_ids)
3182 				goto err;
3183 			if (!cpu_online(cpu))
3184 				goto err;
3185 
3186 			ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
3187 							ctx, cpu,
3188 							"io_uring-sq");
3189 		} else {
3190 			ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
3191 							"io_uring-sq");
3192 		}
3193 		if (IS_ERR(ctx->sqo_thread)) {
3194 			ret = PTR_ERR(ctx->sqo_thread);
3195 			ctx->sqo_thread = NULL;
3196 			goto err;
3197 		}
3198 		wake_up_process(ctx->sqo_thread);
3199 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
3200 		/* Can't have SQ_AFF without SQPOLL */
3201 		ret = -EINVAL;
3202 		goto err;
3203 	}
3204 
3205 	/* Do QD, or 2 * CPUS, whatever is smallest */
3206 	ctx->sqo_wq[0] = alloc_workqueue("io_ring-wq",
3207 			WQ_UNBOUND | WQ_FREEZABLE,
3208 			min(ctx->sq_entries - 1, 2 * num_online_cpus()));
3209 	if (!ctx->sqo_wq[0]) {
3210 		ret = -ENOMEM;
3211 		goto err;
3212 	}
3213 
3214 	/*
3215 	 * This is for buffered writes, where we want to limit the parallelism
3216 	 * due to file locking in file systems. As "normal" buffered writes
3217 	 * should parellelize on writeout quite nicely, limit us to having 2
3218 	 * pending. This avoids massive contention on the inode when doing
3219 	 * buffered async writes.
3220 	 */
3221 	ctx->sqo_wq[1] = alloc_workqueue("io_ring-write-wq",
3222 						WQ_UNBOUND | WQ_FREEZABLE, 2);
3223 	if (!ctx->sqo_wq[1]) {
3224 		ret = -ENOMEM;
3225 		goto err;
3226 	}
3227 
3228 	return 0;
3229 err:
3230 	io_finish_async(ctx);
3231 	mmdrop(ctx->sqo_mm);
3232 	ctx->sqo_mm = NULL;
3233 	return ret;
3234 }
3235 
io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)3236 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
3237 {
3238 	atomic_long_sub(nr_pages, &user->locked_vm);
3239 }
3240 
io_account_mem(struct user_struct * user,unsigned long nr_pages)3241 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
3242 {
3243 	unsigned long page_limit, cur_pages, new_pages;
3244 
3245 	/* Don't allow more pages than we can safely lock */
3246 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
3247 
3248 	do {
3249 		cur_pages = atomic_long_read(&user->locked_vm);
3250 		new_pages = cur_pages + nr_pages;
3251 		if (new_pages > page_limit)
3252 			return -ENOMEM;
3253 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
3254 					new_pages) != cur_pages);
3255 
3256 	return 0;
3257 }
3258 
io_mem_free(void * ptr)3259 static void io_mem_free(void *ptr)
3260 {
3261 	struct page *page;
3262 
3263 	if (!ptr)
3264 		return;
3265 
3266 	page = virt_to_head_page(ptr);
3267 	if (put_page_testzero(page))
3268 		free_compound_page(page);
3269 }
3270 
io_mem_alloc(size_t size)3271 static void *io_mem_alloc(size_t size)
3272 {
3273 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
3274 				__GFP_NORETRY;
3275 
3276 	return (void *) __get_free_pages(gfp_flags, get_order(size));
3277 }
3278 
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)3279 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
3280 				size_t *sq_offset)
3281 {
3282 	struct io_rings *rings;
3283 	size_t off, sq_array_size;
3284 
3285 	off = struct_size(rings, cqes, cq_entries);
3286 	if (off == SIZE_MAX)
3287 		return SIZE_MAX;
3288 
3289 #ifdef CONFIG_SMP
3290 	off = ALIGN(off, SMP_CACHE_BYTES);
3291 	if (off == 0)
3292 		return SIZE_MAX;
3293 #endif
3294 
3295 	sq_array_size = array_size(sizeof(u32), sq_entries);
3296 	if (sq_array_size == SIZE_MAX)
3297 		return SIZE_MAX;
3298 
3299 	if (check_add_overflow(off, sq_array_size, &off))
3300 		return SIZE_MAX;
3301 
3302 	if (sq_offset)
3303 		*sq_offset = off;
3304 
3305 	return off;
3306 }
3307 
ring_pages(unsigned sq_entries,unsigned cq_entries)3308 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
3309 {
3310 	size_t pages;
3311 
3312 	pages = (size_t)1 << get_order(
3313 		rings_size(sq_entries, cq_entries, NULL));
3314 	pages += (size_t)1 << get_order(
3315 		array_size(sizeof(struct io_uring_sqe), sq_entries));
3316 
3317 	return pages;
3318 }
3319 
io_sqe_buffer_unregister(struct io_ring_ctx * ctx)3320 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
3321 {
3322 	int i, j;
3323 
3324 	if (!ctx->user_bufs)
3325 		return -ENXIO;
3326 
3327 	for (i = 0; i < ctx->nr_user_bufs; i++) {
3328 		struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3329 
3330 		for (j = 0; j < imu->nr_bvecs; j++)
3331 			put_user_page(imu->bvec[j].bv_page);
3332 
3333 		if (ctx->account_mem)
3334 			io_unaccount_mem(ctx->user, imu->nr_bvecs);
3335 		kvfree(imu->bvec);
3336 		imu->nr_bvecs = 0;
3337 	}
3338 
3339 	kfree(ctx->user_bufs);
3340 	ctx->user_bufs = NULL;
3341 	ctx->nr_user_bufs = 0;
3342 	return 0;
3343 }
3344 
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)3345 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
3346 		       void __user *arg, unsigned index)
3347 {
3348 	struct iovec __user *src;
3349 
3350 #ifdef CONFIG_COMPAT
3351 	if (ctx->compat) {
3352 		struct compat_iovec __user *ciovs;
3353 		struct compat_iovec ciov;
3354 
3355 		ciovs = (struct compat_iovec __user *) arg;
3356 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
3357 			return -EFAULT;
3358 
3359 		dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
3360 		dst->iov_len = ciov.iov_len;
3361 		return 0;
3362 	}
3363 #endif
3364 	src = (struct iovec __user *) arg;
3365 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
3366 		return -EFAULT;
3367 	return 0;
3368 }
3369 
io_sqe_buffer_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)3370 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
3371 				  unsigned nr_args)
3372 {
3373 	struct vm_area_struct **vmas = NULL;
3374 	struct page **pages = NULL;
3375 	int i, j, got_pages = 0;
3376 	int ret = -EINVAL;
3377 
3378 	if (ctx->user_bufs)
3379 		return -EBUSY;
3380 	if (!nr_args || nr_args > UIO_MAXIOV)
3381 		return -EINVAL;
3382 
3383 	ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
3384 					GFP_KERNEL);
3385 	if (!ctx->user_bufs)
3386 		return -ENOMEM;
3387 
3388 	for (i = 0; i < nr_args; i++) {
3389 		struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3390 		unsigned long off, start, end, ubuf;
3391 		int pret, nr_pages;
3392 		struct iovec iov;
3393 		size_t size;
3394 
3395 		ret = io_copy_iov(ctx, &iov, arg, i);
3396 		if (ret)
3397 			goto err;
3398 
3399 		/*
3400 		 * Don't impose further limits on the size and buffer
3401 		 * constraints here, we'll -EINVAL later when IO is
3402 		 * submitted if they are wrong.
3403 		 */
3404 		ret = -EFAULT;
3405 		if (!iov.iov_base || !iov.iov_len)
3406 			goto err;
3407 
3408 		/* arbitrary limit, but we need something */
3409 		if (iov.iov_len > SZ_1G)
3410 			goto err;
3411 
3412 		ubuf = (unsigned long) iov.iov_base;
3413 		end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3414 		start = ubuf >> PAGE_SHIFT;
3415 		nr_pages = end - start;
3416 
3417 		if (ctx->account_mem) {
3418 			ret = io_account_mem(ctx->user, nr_pages);
3419 			if (ret)
3420 				goto err;
3421 		}
3422 
3423 		ret = 0;
3424 		if (!pages || nr_pages > got_pages) {
3425 			kfree(vmas);
3426 			kfree(pages);
3427 			pages = kvmalloc_array(nr_pages, sizeof(struct page *),
3428 						GFP_KERNEL);
3429 			vmas = kvmalloc_array(nr_pages,
3430 					sizeof(struct vm_area_struct *),
3431 					GFP_KERNEL);
3432 			if (!pages || !vmas) {
3433 				ret = -ENOMEM;
3434 				if (ctx->account_mem)
3435 					io_unaccount_mem(ctx->user, nr_pages);
3436 				goto err;
3437 			}
3438 			got_pages = nr_pages;
3439 		}
3440 
3441 		imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
3442 						GFP_KERNEL);
3443 		ret = -ENOMEM;
3444 		if (!imu->bvec) {
3445 			if (ctx->account_mem)
3446 				io_unaccount_mem(ctx->user, nr_pages);
3447 			goto err;
3448 		}
3449 
3450 		ret = 0;
3451 		down_read(&current->mm->mmap_sem);
3452 		pret = get_user_pages(ubuf, nr_pages,
3453 				      FOLL_WRITE | FOLL_LONGTERM,
3454 				      pages, vmas);
3455 		if (pret == nr_pages) {
3456 			/* don't support file backed memory */
3457 			for (j = 0; j < nr_pages; j++) {
3458 				struct vm_area_struct *vma = vmas[j];
3459 
3460 				if (vma->vm_file &&
3461 				    !is_file_hugepages(vma->vm_file)) {
3462 					ret = -EOPNOTSUPP;
3463 					break;
3464 				}
3465 			}
3466 		} else {
3467 			ret = pret < 0 ? pret : -EFAULT;
3468 		}
3469 		up_read(&current->mm->mmap_sem);
3470 		if (ret) {
3471 			/*
3472 			 * if we did partial map, or found file backed vmas,
3473 			 * release any pages we did get
3474 			 */
3475 			if (pret > 0)
3476 				put_user_pages(pages, pret);
3477 			if (ctx->account_mem)
3478 				io_unaccount_mem(ctx->user, nr_pages);
3479 			kvfree(imu->bvec);
3480 			goto err;
3481 		}
3482 
3483 		off = ubuf & ~PAGE_MASK;
3484 		size = iov.iov_len;
3485 		for (j = 0; j < nr_pages; j++) {
3486 			size_t vec_len;
3487 
3488 			vec_len = min_t(size_t, size, PAGE_SIZE - off);
3489 			imu->bvec[j].bv_page = pages[j];
3490 			imu->bvec[j].bv_len = vec_len;
3491 			imu->bvec[j].bv_offset = off;
3492 			off = 0;
3493 			size -= vec_len;
3494 		}
3495 		/* store original address for later verification */
3496 		imu->ubuf = ubuf;
3497 		imu->len = iov.iov_len;
3498 		imu->nr_bvecs = nr_pages;
3499 
3500 		ctx->nr_user_bufs++;
3501 	}
3502 	kvfree(pages);
3503 	kvfree(vmas);
3504 	return 0;
3505 err:
3506 	kvfree(pages);
3507 	kvfree(vmas);
3508 	io_sqe_buffer_unregister(ctx);
3509 	return ret;
3510 }
3511 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)3512 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
3513 {
3514 	__s32 __user *fds = arg;
3515 	int fd;
3516 
3517 	if (ctx->cq_ev_fd)
3518 		return -EBUSY;
3519 
3520 	if (copy_from_user(&fd, fds, sizeof(*fds)))
3521 		return -EFAULT;
3522 
3523 	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
3524 	if (IS_ERR(ctx->cq_ev_fd)) {
3525 		int ret = PTR_ERR(ctx->cq_ev_fd);
3526 		ctx->cq_ev_fd = NULL;
3527 		return ret;
3528 	}
3529 
3530 	return 0;
3531 }
3532 
io_eventfd_unregister(struct io_ring_ctx * ctx)3533 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
3534 {
3535 	if (ctx->cq_ev_fd) {
3536 		eventfd_ctx_put(ctx->cq_ev_fd);
3537 		ctx->cq_ev_fd = NULL;
3538 		return 0;
3539 	}
3540 
3541 	return -ENXIO;
3542 }
3543 
io_ring_ctx_free(struct io_ring_ctx * ctx)3544 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
3545 {
3546 	io_finish_async(ctx);
3547 	if (ctx->sqo_mm)
3548 		mmdrop(ctx->sqo_mm);
3549 
3550 	io_iopoll_reap_events(ctx);
3551 	io_sqe_buffer_unregister(ctx);
3552 	io_sqe_files_unregister(ctx);
3553 	io_eventfd_unregister(ctx);
3554 
3555 #if defined(CONFIG_UNIX)
3556 	if (ctx->ring_sock) {
3557 		ctx->ring_sock->file = NULL; /* so that iput() is called */
3558 		sock_release(ctx->ring_sock);
3559 	}
3560 #endif
3561 
3562 	io_mem_free(ctx->rings);
3563 	io_mem_free(ctx->sq_sqes);
3564 
3565 	percpu_ref_exit(&ctx->refs);
3566 	if (ctx->account_mem)
3567 		io_unaccount_mem(ctx->user,
3568 				ring_pages(ctx->sq_entries, ctx->cq_entries));
3569 	free_uid(ctx->user);
3570 	kfree(ctx);
3571 }
3572 
io_uring_poll(struct file * file,poll_table * wait)3573 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3574 {
3575 	struct io_ring_ctx *ctx = file->private_data;
3576 	__poll_t mask = 0;
3577 
3578 	poll_wait(file, &ctx->cq_wait, wait);
3579 	/*
3580 	 * synchronizes with barrier from wq_has_sleeper call in
3581 	 * io_commit_cqring
3582 	 */
3583 	smp_rmb();
3584 	if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
3585 	    ctx->rings->sq_ring_entries)
3586 		mask |= EPOLLOUT | EPOLLWRNORM;
3587 	if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
3588 		mask |= EPOLLIN | EPOLLRDNORM;
3589 
3590 	return mask;
3591 }
3592 
io_uring_fasync(int fd,struct file * file,int on)3593 static int io_uring_fasync(int fd, struct file *file, int on)
3594 {
3595 	struct io_ring_ctx *ctx = file->private_data;
3596 
3597 	return fasync_helper(fd, file, on, &ctx->cq_fasync);
3598 }
3599 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3600 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3601 {
3602 	mutex_lock(&ctx->uring_lock);
3603 	percpu_ref_kill(&ctx->refs);
3604 	mutex_unlock(&ctx->uring_lock);
3605 
3606 	io_kill_timeouts(ctx);
3607 	io_poll_remove_all(ctx);
3608 	io_iopoll_reap_events(ctx);
3609 	wait_for_completion(&ctx->ctx_done);
3610 	io_ring_ctx_free(ctx);
3611 }
3612 
io_uring_release(struct inode * inode,struct file * file)3613 static int io_uring_release(struct inode *inode, struct file *file)
3614 {
3615 	struct io_ring_ctx *ctx = file->private_data;
3616 
3617 	file->private_data = NULL;
3618 	io_ring_ctx_wait_and_kill(ctx);
3619 	return 0;
3620 }
3621 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3622 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3623 {
3624 	loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
3625 	unsigned long sz = vma->vm_end - vma->vm_start;
3626 	struct io_ring_ctx *ctx = file->private_data;
3627 	unsigned long pfn;
3628 	struct page *page;
3629 	void *ptr;
3630 
3631 	switch (offset) {
3632 	case IORING_OFF_SQ_RING:
3633 	case IORING_OFF_CQ_RING:
3634 		ptr = ctx->rings;
3635 		break;
3636 	case IORING_OFF_SQES:
3637 		ptr = ctx->sq_sqes;
3638 		break;
3639 	default:
3640 		return -EINVAL;
3641 	}
3642 
3643 	page = virt_to_head_page(ptr);
3644 	if (sz > page_size(page))
3645 		return -EINVAL;
3646 
3647 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3648 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3649 }
3650 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const sigset_t __user *,sig,size_t,sigsz)3651 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3652 		u32, min_complete, u32, flags, const sigset_t __user *, sig,
3653 		size_t, sigsz)
3654 {
3655 	struct io_ring_ctx *ctx;
3656 	long ret = -EBADF;
3657 	int submitted = 0;
3658 	struct fd f;
3659 
3660 	if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
3661 		return -EINVAL;
3662 
3663 	f = fdget(fd);
3664 	if (!f.file)
3665 		return -EBADF;
3666 
3667 	ret = -EOPNOTSUPP;
3668 	if (f.file->f_op != &io_uring_fops)
3669 		goto out_fput;
3670 
3671 	ret = -ENXIO;
3672 	ctx = f.file->private_data;
3673 	if (!percpu_ref_tryget(&ctx->refs))
3674 		goto out_fput;
3675 
3676 	/*
3677 	 * For SQ polling, the thread will do all submissions and completions.
3678 	 * Just return the requested submit count, and wake the thread if
3679 	 * we were asked to.
3680 	 */
3681 	ret = 0;
3682 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3683 		if (flags & IORING_ENTER_SQ_WAKEUP)
3684 			wake_up(&ctx->sqo_wait);
3685 		submitted = to_submit;
3686 	} else if (to_submit) {
3687 		to_submit = min(to_submit, ctx->sq_entries);
3688 
3689 		mutex_lock(&ctx->uring_lock);
3690 		submitted = io_ring_submit(ctx, to_submit);
3691 		mutex_unlock(&ctx->uring_lock);
3692 	}
3693 	if (flags & IORING_ENTER_GETEVENTS) {
3694 		unsigned nr_events = 0;
3695 
3696 		min_complete = min(min_complete, ctx->cq_entries);
3697 
3698 		if (ctx->flags & IORING_SETUP_IOPOLL) {
3699 			ret = io_iopoll_check(ctx, &nr_events, min_complete);
3700 		} else {
3701 			ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
3702 		}
3703 	}
3704 
3705 	percpu_ref_put(&ctx->refs);
3706 out_fput:
3707 	fdput(f);
3708 	return submitted ? submitted : ret;
3709 }
3710 
3711 static const struct file_operations io_uring_fops = {
3712 	.release	= io_uring_release,
3713 	.mmap		= io_uring_mmap,
3714 	.poll		= io_uring_poll,
3715 	.fasync		= io_uring_fasync,
3716 };
3717 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3718 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3719 				  struct io_uring_params *p)
3720 {
3721 	struct io_rings *rings;
3722 	size_t size, sq_array_offset;
3723 
3724 	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
3725 	if (size == SIZE_MAX)
3726 		return -EOVERFLOW;
3727 
3728 	rings = io_mem_alloc(size);
3729 	if (!rings)
3730 		return -ENOMEM;
3731 
3732 	ctx->rings = rings;
3733 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3734 	rings->sq_ring_mask = p->sq_entries - 1;
3735 	rings->cq_ring_mask = p->cq_entries - 1;
3736 	rings->sq_ring_entries = p->sq_entries;
3737 	rings->cq_ring_entries = p->cq_entries;
3738 	ctx->sq_mask = rings->sq_ring_mask;
3739 	ctx->cq_mask = rings->cq_ring_mask;
3740 	ctx->sq_entries = rings->sq_ring_entries;
3741 	ctx->cq_entries = rings->cq_ring_entries;
3742 
3743 	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3744 	if (size == SIZE_MAX)
3745 		return -EOVERFLOW;
3746 
3747 	ctx->sq_sqes = io_mem_alloc(size);
3748 	if (!ctx->sq_sqes)
3749 		return -ENOMEM;
3750 
3751 	return 0;
3752 }
3753 
3754 /*
3755  * Allocate an anonymous fd, this is what constitutes the application
3756  * visible backing of an io_uring instance. The application mmaps this
3757  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3758  * we have to tie this fd to a socket for file garbage collection purposes.
3759  */
io_uring_get_fd(struct io_ring_ctx * ctx)3760 static int io_uring_get_fd(struct io_ring_ctx *ctx)
3761 {
3762 	struct file *file;
3763 	int ret;
3764 
3765 #if defined(CONFIG_UNIX)
3766 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3767 				&ctx->ring_sock);
3768 	if (ret)
3769 		return ret;
3770 #endif
3771 
3772 	ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3773 	if (ret < 0)
3774 		goto err;
3775 
3776 	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3777 					O_RDWR | O_CLOEXEC);
3778 	if (IS_ERR(file)) {
3779 		put_unused_fd(ret);
3780 		ret = PTR_ERR(file);
3781 		goto err;
3782 	}
3783 
3784 #if defined(CONFIG_UNIX)
3785 	ctx->ring_sock->file = file;
3786 	ctx->ring_sock->sk->sk_user_data = ctx;
3787 #endif
3788 	fd_install(ret, file);
3789 	return ret;
3790 err:
3791 #if defined(CONFIG_UNIX)
3792 	sock_release(ctx->ring_sock);
3793 	ctx->ring_sock = NULL;
3794 #endif
3795 	return ret;
3796 }
3797 
io_uring_create(unsigned entries,struct io_uring_params * p)3798 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3799 {
3800 	struct user_struct *user = NULL;
3801 	struct io_ring_ctx *ctx;
3802 	bool account_mem;
3803 	int ret;
3804 
3805 	if (!entries || entries > IORING_MAX_ENTRIES)
3806 		return -EINVAL;
3807 
3808 	/*
3809 	 * Use twice as many entries for the CQ ring. It's possible for the
3810 	 * application to drive a higher depth than the size of the SQ ring,
3811 	 * since the sqes are only used at submission time. This allows for
3812 	 * some flexibility in overcommitting a bit.
3813 	 */
3814 	p->sq_entries = roundup_pow_of_two(entries);
3815 	p->cq_entries = 2 * p->sq_entries;
3816 
3817 	user = get_uid(current_user());
3818 	account_mem = !capable(CAP_IPC_LOCK);
3819 
3820 	if (account_mem) {
3821 		ret = io_account_mem(user,
3822 				ring_pages(p->sq_entries, p->cq_entries));
3823 		if (ret) {
3824 			free_uid(user);
3825 			return ret;
3826 		}
3827 	}
3828 
3829 	ctx = io_ring_ctx_alloc(p);
3830 	if (!ctx) {
3831 		if (account_mem)
3832 			io_unaccount_mem(user, ring_pages(p->sq_entries,
3833 								p->cq_entries));
3834 		free_uid(user);
3835 		return -ENOMEM;
3836 	}
3837 	ctx->compat = in_compat_syscall();
3838 	ctx->account_mem = account_mem;
3839 	ctx->user = user;
3840 
3841 	ret = io_allocate_scq_urings(ctx, p);
3842 	if (ret)
3843 		goto err;
3844 
3845 	ret = io_sq_offload_start(ctx, p);
3846 	if (ret)
3847 		goto err;
3848 
3849 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3850 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3851 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3852 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3853 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3854 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3855 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3856 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3857 
3858 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3859 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3860 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3861 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3862 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3863 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3864 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3865 
3866 	/*
3867 	 * Install ring fd as the very last thing, so we don't risk someone
3868 	 * having closed it before we finish setup
3869 	 */
3870 	ret = io_uring_get_fd(ctx);
3871 	if (ret < 0)
3872 		goto err;
3873 
3874 	p->features = IORING_FEAT_SINGLE_MMAP;
3875 	return ret;
3876 err:
3877 	io_ring_ctx_wait_and_kill(ctx);
3878 	return ret;
3879 }
3880 
3881 /*
3882  * Sets up an aio uring context, and returns the fd. Applications asks for a
3883  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3884  * params structure passed in.
3885  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3886 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3887 {
3888 	struct io_uring_params p;
3889 	long ret;
3890 	int i;
3891 
3892 	if (copy_from_user(&p, params, sizeof(p)))
3893 		return -EFAULT;
3894 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3895 		if (p.resv[i])
3896 			return -EINVAL;
3897 	}
3898 
3899 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3900 			IORING_SETUP_SQ_AFF))
3901 		return -EINVAL;
3902 
3903 	ret = io_uring_create(entries, &p);
3904 	if (ret < 0)
3905 		return ret;
3906 
3907 	if (copy_to_user(params, &p, sizeof(p)))
3908 		return -EFAULT;
3909 
3910 	return ret;
3911 }
3912 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3913 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3914 		struct io_uring_params __user *, params)
3915 {
3916 	return io_uring_setup(entries, params);
3917 }
3918 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)3919 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3920 			       void __user *arg, unsigned nr_args)
3921 	__releases(ctx->uring_lock)
3922 	__acquires(ctx->uring_lock)
3923 {
3924 	int ret;
3925 
3926 	/*
3927 	 * We're inside the ring mutex, if the ref is already dying, then
3928 	 * someone else killed the ctx or is already going through
3929 	 * io_uring_register().
3930 	 */
3931 	if (percpu_ref_is_dying(&ctx->refs))
3932 		return -ENXIO;
3933 
3934 	percpu_ref_kill(&ctx->refs);
3935 
3936 	/*
3937 	 * Drop uring mutex before waiting for references to exit. If another
3938 	 * thread is currently inside io_uring_enter() it might need to grab
3939 	 * the uring_lock to make progress. If we hold it here across the drain
3940 	 * wait, then we can deadlock. It's safe to drop the mutex here, since
3941 	 * no new references will come in after we've killed the percpu ref.
3942 	 */
3943 	mutex_unlock(&ctx->uring_lock);
3944 	wait_for_completion(&ctx->ctx_done);
3945 	mutex_lock(&ctx->uring_lock);
3946 
3947 	switch (opcode) {
3948 	case IORING_REGISTER_BUFFERS:
3949 		ret = io_sqe_buffer_register(ctx, arg, nr_args);
3950 		break;
3951 	case IORING_UNREGISTER_BUFFERS:
3952 		ret = -EINVAL;
3953 		if (arg || nr_args)
3954 			break;
3955 		ret = io_sqe_buffer_unregister(ctx);
3956 		break;
3957 	case IORING_REGISTER_FILES:
3958 		ret = io_sqe_files_register(ctx, arg, nr_args);
3959 		break;
3960 	case IORING_UNREGISTER_FILES:
3961 		ret = -EINVAL;
3962 		if (arg || nr_args)
3963 			break;
3964 		ret = io_sqe_files_unregister(ctx);
3965 		break;
3966 	case IORING_REGISTER_EVENTFD:
3967 		ret = -EINVAL;
3968 		if (nr_args != 1)
3969 			break;
3970 		ret = io_eventfd_register(ctx, arg);
3971 		break;
3972 	case IORING_UNREGISTER_EVENTFD:
3973 		ret = -EINVAL;
3974 		if (arg || nr_args)
3975 			break;
3976 		ret = io_eventfd_unregister(ctx);
3977 		break;
3978 	default:
3979 		ret = -EINVAL;
3980 		break;
3981 	}
3982 
3983 	/* bring the ctx back to life */
3984 	reinit_completion(&ctx->ctx_done);
3985 	percpu_ref_reinit(&ctx->refs);
3986 	return ret;
3987 }
3988 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)3989 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3990 		void __user *, arg, unsigned int, nr_args)
3991 {
3992 	struct io_ring_ctx *ctx;
3993 	long ret = -EBADF;
3994 	struct fd f;
3995 
3996 	f = fdget(fd);
3997 	if (!f.file)
3998 		return -EBADF;
3999 
4000 	ret = -EOPNOTSUPP;
4001 	if (f.file->f_op != &io_uring_fops)
4002 		goto out_fput;
4003 
4004 	ctx = f.file->private_data;
4005 
4006 	mutex_lock(&ctx->uring_lock);
4007 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4008 	mutex_unlock(&ctx->uring_lock);
4009 out_fput:
4010 	fdput(f);
4011 	return ret;
4012 }
4013 
io_uring_init(void)4014 static int __init io_uring_init(void)
4015 {
4016 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
4017 	return 0;
4018 };
4019 __initcall(io_uring_init);
4020