1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
no_open(struct inode * inode,struct file * file)118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
inode_init_always(struct super_block * sb,struct inode * inode)131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 if (sb->s_xattr)
146 inode->i_opflags |= IOP_XATTR;
147 i_uid_write(inode, 0);
148 i_gid_write(inode, 0);
149 atomic_set(&inode->i_writecount, 0);
150 inode->i_size = 0;
151 inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 inode->i_pipe = NULL;
156 inode->i_bdev = NULL;
157 inode->i_cdev = NULL;
158 inode->i_link = NULL;
159 inode->i_dir_seq = 0;
160 inode->i_rdev = 0;
161 inode->dirtied_when = 0;
162
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 inode->i_wb_frn_winner = 0;
165 inode->i_wb_frn_avg_time = 0;
166 inode->i_wb_frn_history = 0;
167 #endif
168
169 if (security_inode_alloc(inode))
170 goto out;
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 atomic_set(&mapping->nr_thps, 0);
186 #endif
187 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 mapping->private_data = NULL;
189 mapping->writeback_index = 0;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200 inode->i_flctx = NULL;
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204 out:
205 return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208
free_inode_nonrcu(struct inode * inode)209 void free_inode_nonrcu(struct inode *inode)
210 {
211 kmem_cache_free(inode_cachep, inode);
212 }
213 EXPORT_SYMBOL(free_inode_nonrcu);
214
i_callback(struct rcu_head * head)215 static void i_callback(struct rcu_head *head)
216 {
217 struct inode *inode = container_of(head, struct inode, i_rcu);
218 if (inode->free_inode)
219 inode->free_inode(inode);
220 else
221 free_inode_nonrcu(inode);
222 }
223
alloc_inode(struct super_block * sb)224 static struct inode *alloc_inode(struct super_block *sb)
225 {
226 const struct super_operations *ops = sb->s_op;
227 struct inode *inode;
228
229 if (ops->alloc_inode)
230 inode = ops->alloc_inode(sb);
231 else
232 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233
234 if (!inode)
235 return NULL;
236
237 if (unlikely(inode_init_always(sb, inode))) {
238 if (ops->destroy_inode) {
239 ops->destroy_inode(inode);
240 if (!ops->free_inode)
241 return NULL;
242 }
243 inode->free_inode = ops->free_inode;
244 i_callback(&inode->i_rcu);
245 return NULL;
246 }
247
248 return inode;
249 }
250
__destroy_inode(struct inode * inode)251 void __destroy_inode(struct inode *inode)
252 {
253 BUG_ON(inode_has_buffers(inode));
254 inode_detach_wb(inode);
255 security_inode_free(inode);
256 fsnotify_inode_delete(inode);
257 locks_free_lock_context(inode);
258 if (!inode->i_nlink) {
259 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
260 atomic_long_dec(&inode->i_sb->s_remove_count);
261 }
262
263 #ifdef CONFIG_FS_POSIX_ACL
264 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
265 posix_acl_release(inode->i_acl);
266 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
267 posix_acl_release(inode->i_default_acl);
268 #endif
269 this_cpu_dec(nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272
destroy_inode(struct inode * inode)273 static void destroy_inode(struct inode *inode)
274 {
275 const struct super_operations *ops = inode->i_sb->s_op;
276
277 BUG_ON(!list_empty(&inode->i_lru));
278 __destroy_inode(inode);
279 if (ops->destroy_inode) {
280 ops->destroy_inode(inode);
281 if (!ops->free_inode)
282 return;
283 }
284 inode->free_inode = ops->free_inode;
285 call_rcu(&inode->i_rcu, i_callback);
286 }
287
288 /**
289 * drop_nlink - directly drop an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. In cases
294 * where we are attempting to track writes to the
295 * filesystem, a decrement to zero means an imminent
296 * write when the file is truncated and actually unlinked
297 * on the filesystem.
298 */
drop_nlink(struct inode * inode)299 void drop_nlink(struct inode *inode)
300 {
301 WARN_ON(inode->i_nlink == 0);
302 inode->__i_nlink--;
303 if (!inode->i_nlink)
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 EXPORT_SYMBOL(drop_nlink);
307
308 /**
309 * clear_nlink - directly zero an inode's link count
310 * @inode: inode
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink. See
314 * drop_nlink() for why we care about i_nlink hitting zero.
315 */
clear_nlink(struct inode * inode)316 void clear_nlink(struct inode *inode)
317 {
318 if (inode->i_nlink) {
319 inode->__i_nlink = 0;
320 atomic_long_inc(&inode->i_sb->s_remove_count);
321 }
322 }
323 EXPORT_SYMBOL(clear_nlink);
324
325 /**
326 * set_nlink - directly set an inode's link count
327 * @inode: inode
328 * @nlink: new nlink (should be non-zero)
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink.
332 */
set_nlink(struct inode * inode,unsigned int nlink)333 void set_nlink(struct inode *inode, unsigned int nlink)
334 {
335 if (!nlink) {
336 clear_nlink(inode);
337 } else {
338 /* Yes, some filesystems do change nlink from zero to one */
339 if (inode->i_nlink == 0)
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341
342 inode->__i_nlink = nlink;
343 }
344 }
345 EXPORT_SYMBOL(set_nlink);
346
347 /**
348 * inc_nlink - directly increment an inode's link count
349 * @inode: inode
350 *
351 * This is a low-level filesystem helper to replace any
352 * direct filesystem manipulation of i_nlink. Currently,
353 * it is only here for parity with dec_nlink().
354 */
inc_nlink(struct inode * inode)355 void inc_nlink(struct inode *inode)
356 {
357 if (unlikely(inode->i_nlink == 0)) {
358 WARN_ON(!(inode->i_state & I_LINKABLE));
359 atomic_long_dec(&inode->i_sb->s_remove_count);
360 }
361
362 inode->__i_nlink++;
363 }
364 EXPORT_SYMBOL(inc_nlink);
365
__address_space_init_once(struct address_space * mapping)366 static void __address_space_init_once(struct address_space *mapping)
367 {
368 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
369 init_rwsem(&mapping->i_mmap_rwsem);
370 INIT_LIST_HEAD(&mapping->private_list);
371 spin_lock_init(&mapping->private_lock);
372 mapping->i_mmap = RB_ROOT_CACHED;
373 }
374
address_space_init_once(struct address_space * mapping)375 void address_space_init_once(struct address_space *mapping)
376 {
377 memset(mapping, 0, sizeof(*mapping));
378 __address_space_init_once(mapping);
379 }
380 EXPORT_SYMBOL(address_space_init_once);
381
382 /*
383 * These are initializations that only need to be done
384 * once, because the fields are idempotent across use
385 * of the inode, so let the slab aware of that.
386 */
inode_init_once(struct inode * inode)387 void inode_init_once(struct inode *inode)
388 {
389 memset(inode, 0, sizeof(*inode));
390 INIT_HLIST_NODE(&inode->i_hash);
391 INIT_LIST_HEAD(&inode->i_devices);
392 INIT_LIST_HEAD(&inode->i_io_list);
393 INIT_LIST_HEAD(&inode->i_wb_list);
394 INIT_LIST_HEAD(&inode->i_lru);
395 __address_space_init_once(&inode->i_data);
396 i_size_ordered_init(inode);
397 }
398 EXPORT_SYMBOL(inode_init_once);
399
init_once(void * foo)400 static void init_once(void *foo)
401 {
402 struct inode *inode = (struct inode *) foo;
403
404 inode_init_once(inode);
405 }
406
407 /*
408 * inode->i_lock must be held
409 */
__iget(struct inode * inode)410 void __iget(struct inode *inode)
411 {
412 atomic_inc(&inode->i_count);
413 }
414
415 /*
416 * get additional reference to inode; caller must already hold one.
417 */
ihold(struct inode * inode)418 void ihold(struct inode *inode)
419 {
420 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
421 }
422 EXPORT_SYMBOL(ihold);
423
inode_lru_list_add(struct inode * inode)424 static void inode_lru_list_add(struct inode *inode)
425 {
426 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 this_cpu_inc(nr_unused);
428 else
429 inode->i_state |= I_REFERENCED;
430 }
431
432 /*
433 * Add inode to LRU if needed (inode is unused and clean).
434 *
435 * Needs inode->i_lock held.
436 */
inode_add_lru(struct inode * inode)437 void inode_add_lru(struct inode *inode)
438 {
439 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
440 I_FREEING | I_WILL_FREE)) &&
441 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
442 inode_lru_list_add(inode);
443 }
444
445
inode_lru_list_del(struct inode * inode)446 static void inode_lru_list_del(struct inode *inode)
447 {
448
449 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
450 this_cpu_dec(nr_unused);
451 }
452
453 /**
454 * inode_sb_list_add - add inode to the superblock list of inodes
455 * @inode: inode to add
456 */
inode_sb_list_add(struct inode * inode)457 void inode_sb_list_add(struct inode *inode)
458 {
459 spin_lock(&inode->i_sb->s_inode_list_lock);
460 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
461 spin_unlock(&inode->i_sb->s_inode_list_lock);
462 }
463 EXPORT_SYMBOL_GPL(inode_sb_list_add);
464
inode_sb_list_del(struct inode * inode)465 static inline void inode_sb_list_del(struct inode *inode)
466 {
467 if (!list_empty(&inode->i_sb_list)) {
468 spin_lock(&inode->i_sb->s_inode_list_lock);
469 list_del_init(&inode->i_sb_list);
470 spin_unlock(&inode->i_sb->s_inode_list_lock);
471 }
472 }
473
hash(struct super_block * sb,unsigned long hashval)474 static unsigned long hash(struct super_block *sb, unsigned long hashval)
475 {
476 unsigned long tmp;
477
478 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
479 L1_CACHE_BYTES;
480 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
481 return tmp & i_hash_mask;
482 }
483
484 /**
485 * __insert_inode_hash - hash an inode
486 * @inode: unhashed inode
487 * @hashval: unsigned long value used to locate this object in the
488 * inode_hashtable.
489 *
490 * Add an inode to the inode hash for this superblock.
491 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)492 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
493 {
494 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
495
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_add_head(&inode->i_hash, b);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__insert_inode_hash);
503
504 /**
505 * __remove_inode_hash - remove an inode from the hash
506 * @inode: inode to unhash
507 *
508 * Remove an inode from the superblock.
509 */
__remove_inode_hash(struct inode * inode)510 void __remove_inode_hash(struct inode *inode)
511 {
512 spin_lock(&inode_hash_lock);
513 spin_lock(&inode->i_lock);
514 hlist_del_init(&inode->i_hash);
515 spin_unlock(&inode->i_lock);
516 spin_unlock(&inode_hash_lock);
517 }
518 EXPORT_SYMBOL(__remove_inode_hash);
519
clear_inode(struct inode * inode)520 void clear_inode(struct inode *inode)
521 {
522 /*
523 * We have to cycle the i_pages lock here because reclaim can be in the
524 * process of removing the last page (in __delete_from_page_cache())
525 * and we must not free the mapping under it.
526 */
527 xa_lock_irq(&inode->i_data.i_pages);
528 BUG_ON(inode->i_data.nrpages);
529 BUG_ON(inode->i_data.nrexceptional);
530 xa_unlock_irq(&inode->i_data.i_pages);
531 BUG_ON(!list_empty(&inode->i_data.private_list));
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(inode->i_state & I_CLEAR);
534 BUG_ON(!list_empty(&inode->i_wb_list));
535 /* don't need i_lock here, no concurrent mods to i_state */
536 inode->i_state = I_FREEING | I_CLEAR;
537 }
538 EXPORT_SYMBOL(clear_inode);
539
540 /*
541 * Free the inode passed in, removing it from the lists it is still connected
542 * to. We remove any pages still attached to the inode and wait for any IO that
543 * is still in progress before finally destroying the inode.
544 *
545 * An inode must already be marked I_FREEING so that we avoid the inode being
546 * moved back onto lists if we race with other code that manipulates the lists
547 * (e.g. writeback_single_inode). The caller is responsible for setting this.
548 *
549 * An inode must already be removed from the LRU list before being evicted from
550 * the cache. This should occur atomically with setting the I_FREEING state
551 * flag, so no inodes here should ever be on the LRU when being evicted.
552 */
evict(struct inode * inode)553 static void evict(struct inode *inode)
554 {
555 const struct super_operations *op = inode->i_sb->s_op;
556
557 BUG_ON(!(inode->i_state & I_FREEING));
558 BUG_ON(!list_empty(&inode->i_lru));
559
560 if (!list_empty(&inode->i_io_list))
561 inode_io_list_del(inode);
562
563 inode_sb_list_del(inode);
564
565 /*
566 * Wait for flusher thread to be done with the inode so that filesystem
567 * does not start destroying it while writeback is still running. Since
568 * the inode has I_FREEING set, flusher thread won't start new work on
569 * the inode. We just have to wait for running writeback to finish.
570 */
571 inode_wait_for_writeback(inode);
572
573 if (op->evict_inode) {
574 op->evict_inode(inode);
575 } else {
576 truncate_inode_pages_final(&inode->i_data);
577 clear_inode(inode);
578 }
579 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
580 bd_forget(inode);
581 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
582 cd_forget(inode);
583
584 remove_inode_hash(inode);
585
586 spin_lock(&inode->i_lock);
587 wake_up_bit(&inode->i_state, __I_NEW);
588 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
589 spin_unlock(&inode->i_lock);
590
591 destroy_inode(inode);
592 }
593
594 /*
595 * dispose_list - dispose of the contents of a local list
596 * @head: the head of the list to free
597 *
598 * Dispose-list gets a local list with local inodes in it, so it doesn't
599 * need to worry about list corruption and SMP locks.
600 */
dispose_list(struct list_head * head)601 static void dispose_list(struct list_head *head)
602 {
603 while (!list_empty(head)) {
604 struct inode *inode;
605
606 inode = list_first_entry(head, struct inode, i_lru);
607 list_del_init(&inode->i_lru);
608
609 evict(inode);
610 cond_resched();
611 }
612 }
613
614 /**
615 * evict_inodes - evict all evictable inodes for a superblock
616 * @sb: superblock to operate on
617 *
618 * Make sure that no inodes with zero refcount are retained. This is
619 * called by superblock shutdown after having SB_ACTIVE flag removed,
620 * so any inode reaching zero refcount during or after that call will
621 * be immediately evicted.
622 */
evict_inodes(struct super_block * sb)623 void evict_inodes(struct super_block *sb)
624 {
625 struct inode *inode, *next;
626 LIST_HEAD(dispose);
627
628 again:
629 spin_lock(&sb->s_inode_list_lock);
630 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
631 if (atomic_read(&inode->i_count))
632 continue;
633
634 spin_lock(&inode->i_lock);
635 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 spin_unlock(&inode->i_lock);
637 continue;
638 }
639
640 inode->i_state |= I_FREEING;
641 inode_lru_list_del(inode);
642 spin_unlock(&inode->i_lock);
643 list_add(&inode->i_lru, &dispose);
644
645 /*
646 * We can have a ton of inodes to evict at unmount time given
647 * enough memory, check to see if we need to go to sleep for a
648 * bit so we don't livelock.
649 */
650 if (need_resched()) {
651 spin_unlock(&sb->s_inode_list_lock);
652 cond_resched();
653 dispose_list(&dispose);
654 goto again;
655 }
656 }
657 spin_unlock(&sb->s_inode_list_lock);
658
659 dispose_list(&dispose);
660 }
661 EXPORT_SYMBOL_GPL(evict_inodes);
662
663 /**
664 * invalidate_inodes - attempt to free all inodes on a superblock
665 * @sb: superblock to operate on
666 * @kill_dirty: flag to guide handling of dirty inodes
667 *
668 * Attempts to free all inodes for a given superblock. If there were any
669 * busy inodes return a non-zero value, else zero.
670 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
671 * them as busy.
672 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)673 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
674 {
675 int busy = 0;
676 struct inode *inode, *next;
677 LIST_HEAD(dispose);
678
679 spin_lock(&sb->s_inode_list_lock);
680 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
681 spin_lock(&inode->i_lock);
682 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
683 spin_unlock(&inode->i_lock);
684 continue;
685 }
686 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
687 spin_unlock(&inode->i_lock);
688 busy = 1;
689 continue;
690 }
691 if (atomic_read(&inode->i_count)) {
692 spin_unlock(&inode->i_lock);
693 busy = 1;
694 continue;
695 }
696
697 inode->i_state |= I_FREEING;
698 inode_lru_list_del(inode);
699 spin_unlock(&inode->i_lock);
700 list_add(&inode->i_lru, &dispose);
701 }
702 spin_unlock(&sb->s_inode_list_lock);
703
704 dispose_list(&dispose);
705
706 return busy;
707 }
708
709 /*
710 * Isolate the inode from the LRU in preparation for freeing it.
711 *
712 * Any inodes which are pinned purely because of attached pagecache have their
713 * pagecache removed. If the inode has metadata buffers attached to
714 * mapping->private_list then try to remove them.
715 *
716 * If the inode has the I_REFERENCED flag set, then it means that it has been
717 * used recently - the flag is set in iput_final(). When we encounter such an
718 * inode, clear the flag and move it to the back of the LRU so it gets another
719 * pass through the LRU before it gets reclaimed. This is necessary because of
720 * the fact we are doing lazy LRU updates to minimise lock contention so the
721 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
722 * with this flag set because they are the inodes that are out of order.
723 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)724 static enum lru_status inode_lru_isolate(struct list_head *item,
725 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
726 {
727 struct list_head *freeable = arg;
728 struct inode *inode = container_of(item, struct inode, i_lru);
729
730 /*
731 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
732 * If we fail to get the lock, just skip it.
733 */
734 if (!spin_trylock(&inode->i_lock))
735 return LRU_SKIP;
736
737 /*
738 * Referenced or dirty inodes are still in use. Give them another pass
739 * through the LRU as we canot reclaim them now.
740 */
741 if (atomic_read(&inode->i_count) ||
742 (inode->i_state & ~I_REFERENCED)) {
743 list_lru_isolate(lru, &inode->i_lru);
744 spin_unlock(&inode->i_lock);
745 this_cpu_dec(nr_unused);
746 return LRU_REMOVED;
747 }
748
749 /* recently referenced inodes get one more pass */
750 if (inode->i_state & I_REFERENCED) {
751 inode->i_state &= ~I_REFERENCED;
752 spin_unlock(&inode->i_lock);
753 return LRU_ROTATE;
754 }
755
756 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
757 __iget(inode);
758 spin_unlock(&inode->i_lock);
759 spin_unlock(lru_lock);
760 if (remove_inode_buffers(inode)) {
761 unsigned long reap;
762 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
763 if (current_is_kswapd())
764 __count_vm_events(KSWAPD_INODESTEAL, reap);
765 else
766 __count_vm_events(PGINODESTEAL, reap);
767 if (current->reclaim_state)
768 current->reclaim_state->reclaimed_slab += reap;
769 }
770 iput(inode);
771 spin_lock(lru_lock);
772 return LRU_RETRY;
773 }
774
775 WARN_ON(inode->i_state & I_NEW);
776 inode->i_state |= I_FREEING;
777 list_lru_isolate_move(lru, &inode->i_lru, freeable);
778 spin_unlock(&inode->i_lock);
779
780 this_cpu_dec(nr_unused);
781 return LRU_REMOVED;
782 }
783
784 /*
785 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
786 * This is called from the superblock shrinker function with a number of inodes
787 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
788 * then are freed outside inode_lock by dispose_list().
789 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)790 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
791 {
792 LIST_HEAD(freeable);
793 long freed;
794
795 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
796 inode_lru_isolate, &freeable);
797 dispose_list(&freeable);
798 return freed;
799 }
800
801 static void __wait_on_freeing_inode(struct inode *inode);
802 /*
803 * Called with the inode lock held.
804 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)805 static struct inode *find_inode(struct super_block *sb,
806 struct hlist_head *head,
807 int (*test)(struct inode *, void *),
808 void *data)
809 {
810 struct inode *inode = NULL;
811
812 repeat:
813 hlist_for_each_entry(inode, head, i_hash) {
814 if (inode->i_sb != sb)
815 continue;
816 if (!test(inode, data))
817 continue;
818 spin_lock(&inode->i_lock);
819 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 __wait_on_freeing_inode(inode);
821 goto repeat;
822 }
823 if (unlikely(inode->i_state & I_CREATING)) {
824 spin_unlock(&inode->i_lock);
825 return ERR_PTR(-ESTALE);
826 }
827 __iget(inode);
828 spin_unlock(&inode->i_lock);
829 return inode;
830 }
831 return NULL;
832 }
833
834 /*
835 * find_inode_fast is the fast path version of find_inode, see the comment at
836 * iget_locked for details.
837 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)838 static struct inode *find_inode_fast(struct super_block *sb,
839 struct hlist_head *head, unsigned long ino)
840 {
841 struct inode *inode = NULL;
842
843 repeat:
844 hlist_for_each_entry(inode, head, i_hash) {
845 if (inode->i_ino != ino)
846 continue;
847 if (inode->i_sb != sb)
848 continue;
849 spin_lock(&inode->i_lock);
850 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
851 __wait_on_freeing_inode(inode);
852 goto repeat;
853 }
854 if (unlikely(inode->i_state & I_CREATING)) {
855 spin_unlock(&inode->i_lock);
856 return ERR_PTR(-ESTALE);
857 }
858 __iget(inode);
859 spin_unlock(&inode->i_lock);
860 return inode;
861 }
862 return NULL;
863 }
864
865 /*
866 * Each cpu owns a range of LAST_INO_BATCH numbers.
867 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
868 * to renew the exhausted range.
869 *
870 * This does not significantly increase overflow rate because every CPU can
871 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
872 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
873 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
874 * overflow rate by 2x, which does not seem too significant.
875 *
876 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
877 * error if st_ino won't fit in target struct field. Use 32bit counter
878 * here to attempt to avoid that.
879 */
880 #define LAST_INO_BATCH 1024
881 static DEFINE_PER_CPU(unsigned int, last_ino);
882
get_next_ino(void)883 unsigned int get_next_ino(void)
884 {
885 unsigned int *p = &get_cpu_var(last_ino);
886 unsigned int res = *p;
887
888 #ifdef CONFIG_SMP
889 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
890 static atomic_t shared_last_ino;
891 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
892
893 res = next - LAST_INO_BATCH;
894 }
895 #endif
896
897 res++;
898 /* get_next_ino should not provide a 0 inode number */
899 if (unlikely(!res))
900 res++;
901 *p = res;
902 put_cpu_var(last_ino);
903 return res;
904 }
905 EXPORT_SYMBOL(get_next_ino);
906
907 /**
908 * new_inode_pseudo - obtain an inode
909 * @sb: superblock
910 *
911 * Allocates a new inode for given superblock.
912 * Inode wont be chained in superblock s_inodes list
913 * This means :
914 * - fs can't be unmount
915 * - quotas, fsnotify, writeback can't work
916 */
new_inode_pseudo(struct super_block * sb)917 struct inode *new_inode_pseudo(struct super_block *sb)
918 {
919 struct inode *inode = alloc_inode(sb);
920
921 if (inode) {
922 spin_lock(&inode->i_lock);
923 inode->i_state = 0;
924 spin_unlock(&inode->i_lock);
925 INIT_LIST_HEAD(&inode->i_sb_list);
926 }
927 return inode;
928 }
929
930 /**
931 * new_inode - obtain an inode
932 * @sb: superblock
933 *
934 * Allocates a new inode for given superblock. The default gfp_mask
935 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
936 * If HIGHMEM pages are unsuitable or it is known that pages allocated
937 * for the page cache are not reclaimable or migratable,
938 * mapping_set_gfp_mask() must be called with suitable flags on the
939 * newly created inode's mapping
940 *
941 */
new_inode(struct super_block * sb)942 struct inode *new_inode(struct super_block *sb)
943 {
944 struct inode *inode;
945
946 spin_lock_prefetch(&sb->s_inode_list_lock);
947
948 inode = new_inode_pseudo(sb);
949 if (inode)
950 inode_sb_list_add(inode);
951 return inode;
952 }
953 EXPORT_SYMBOL(new_inode);
954
955 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)956 void lockdep_annotate_inode_mutex_key(struct inode *inode)
957 {
958 if (S_ISDIR(inode->i_mode)) {
959 struct file_system_type *type = inode->i_sb->s_type;
960
961 /* Set new key only if filesystem hasn't already changed it */
962 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
963 /*
964 * ensure nobody is actually holding i_mutex
965 */
966 // mutex_destroy(&inode->i_mutex);
967 init_rwsem(&inode->i_rwsem);
968 lockdep_set_class(&inode->i_rwsem,
969 &type->i_mutex_dir_key);
970 }
971 }
972 }
973 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
974 #endif
975
976 /**
977 * unlock_new_inode - clear the I_NEW state and wake up any waiters
978 * @inode: new inode to unlock
979 *
980 * Called when the inode is fully initialised to clear the new state of the
981 * inode and wake up anyone waiting for the inode to finish initialisation.
982 */
unlock_new_inode(struct inode * inode)983 void unlock_new_inode(struct inode *inode)
984 {
985 lockdep_annotate_inode_mutex_key(inode);
986 spin_lock(&inode->i_lock);
987 WARN_ON(!(inode->i_state & I_NEW));
988 inode->i_state &= ~I_NEW & ~I_CREATING;
989 smp_mb();
990 wake_up_bit(&inode->i_state, __I_NEW);
991 spin_unlock(&inode->i_lock);
992 }
993 EXPORT_SYMBOL(unlock_new_inode);
994
discard_new_inode(struct inode * inode)995 void discard_new_inode(struct inode *inode)
996 {
997 lockdep_annotate_inode_mutex_key(inode);
998 spin_lock(&inode->i_lock);
999 WARN_ON(!(inode->i_state & I_NEW));
1000 inode->i_state &= ~I_NEW;
1001 smp_mb();
1002 wake_up_bit(&inode->i_state, __I_NEW);
1003 spin_unlock(&inode->i_lock);
1004 iput(inode);
1005 }
1006 EXPORT_SYMBOL(discard_new_inode);
1007
1008 /**
1009 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1010 *
1011 * Lock any non-NULL argument that is not a directory.
1012 * Zero, one or two objects may be locked by this function.
1013 *
1014 * @inode1: first inode to lock
1015 * @inode2: second inode to lock
1016 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1017 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1018 {
1019 if (inode1 > inode2)
1020 swap(inode1, inode2);
1021
1022 if (inode1 && !S_ISDIR(inode1->i_mode))
1023 inode_lock(inode1);
1024 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1025 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1026 }
1027 EXPORT_SYMBOL(lock_two_nondirectories);
1028
1029 /**
1030 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1031 * @inode1: first inode to unlock
1032 * @inode2: second inode to unlock
1033 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1034 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1035 {
1036 if (inode1 && !S_ISDIR(inode1->i_mode))
1037 inode_unlock(inode1);
1038 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1039 inode_unlock(inode2);
1040 }
1041 EXPORT_SYMBOL(unlock_two_nondirectories);
1042
1043 /**
1044 * inode_insert5 - obtain an inode from a mounted file system
1045 * @inode: pre-allocated inode to use for insert to cache
1046 * @hashval: hash value (usually inode number) to get
1047 * @test: callback used for comparisons between inodes
1048 * @set: callback used to initialize a new struct inode
1049 * @data: opaque data pointer to pass to @test and @set
1050 *
1051 * Search for the inode specified by @hashval and @data in the inode cache,
1052 * and if present it is return it with an increased reference count. This is
1053 * a variant of iget5_locked() for callers that don't want to fail on memory
1054 * allocation of inode.
1055 *
1056 * If the inode is not in cache, insert the pre-allocated inode to cache and
1057 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1058 * to fill it in before unlocking it via unlock_new_inode().
1059 *
1060 * Note both @test and @set are called with the inode_hash_lock held, so can't
1061 * sleep.
1062 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1063 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1064 int (*test)(struct inode *, void *),
1065 int (*set)(struct inode *, void *), void *data)
1066 {
1067 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1068 struct inode *old;
1069 bool creating = inode->i_state & I_CREATING;
1070
1071 again:
1072 spin_lock(&inode_hash_lock);
1073 old = find_inode(inode->i_sb, head, test, data);
1074 if (unlikely(old)) {
1075 /*
1076 * Uhhuh, somebody else created the same inode under us.
1077 * Use the old inode instead of the preallocated one.
1078 */
1079 spin_unlock(&inode_hash_lock);
1080 if (IS_ERR(old))
1081 return NULL;
1082 wait_on_inode(old);
1083 if (unlikely(inode_unhashed(old))) {
1084 iput(old);
1085 goto again;
1086 }
1087 return old;
1088 }
1089
1090 if (set && unlikely(set(inode, data))) {
1091 inode = NULL;
1092 goto unlock;
1093 }
1094
1095 /*
1096 * Return the locked inode with I_NEW set, the
1097 * caller is responsible for filling in the contents
1098 */
1099 spin_lock(&inode->i_lock);
1100 inode->i_state |= I_NEW;
1101 hlist_add_head(&inode->i_hash, head);
1102 spin_unlock(&inode->i_lock);
1103 if (!creating)
1104 inode_sb_list_add(inode);
1105 unlock:
1106 spin_unlock(&inode_hash_lock);
1107
1108 return inode;
1109 }
1110 EXPORT_SYMBOL(inode_insert5);
1111
1112 /**
1113 * iget5_locked - obtain an inode from a mounted file system
1114 * @sb: super block of file system
1115 * @hashval: hash value (usually inode number) to get
1116 * @test: callback used for comparisons between inodes
1117 * @set: callback used to initialize a new struct inode
1118 * @data: opaque data pointer to pass to @test and @set
1119 *
1120 * Search for the inode specified by @hashval and @data in the inode cache,
1121 * and if present it is return it with an increased reference count. This is
1122 * a generalized version of iget_locked() for file systems where the inode
1123 * number is not sufficient for unique identification of an inode.
1124 *
1125 * If the inode is not in cache, allocate a new inode and return it locked,
1126 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1127 * before unlocking it via unlock_new_inode().
1128 *
1129 * Note both @test and @set are called with the inode_hash_lock held, so can't
1130 * sleep.
1131 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1132 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1133 int (*test)(struct inode *, void *),
1134 int (*set)(struct inode *, void *), void *data)
1135 {
1136 struct inode *inode = ilookup5(sb, hashval, test, data);
1137
1138 if (!inode) {
1139 struct inode *new = alloc_inode(sb);
1140
1141 if (new) {
1142 new->i_state = 0;
1143 inode = inode_insert5(new, hashval, test, set, data);
1144 if (unlikely(inode != new))
1145 destroy_inode(new);
1146 }
1147 }
1148 return inode;
1149 }
1150 EXPORT_SYMBOL(iget5_locked);
1151
1152 /**
1153 * iget_locked - obtain an inode from a mounted file system
1154 * @sb: super block of file system
1155 * @ino: inode number to get
1156 *
1157 * Search for the inode specified by @ino in the inode cache and if present
1158 * return it with an increased reference count. This is for file systems
1159 * where the inode number is sufficient for unique identification of an inode.
1160 *
1161 * If the inode is not in cache, allocate a new inode and return it locked,
1162 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1163 * before unlocking it via unlock_new_inode().
1164 */
iget_locked(struct super_block * sb,unsigned long ino)1165 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1166 {
1167 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168 struct inode *inode;
1169 again:
1170 spin_lock(&inode_hash_lock);
1171 inode = find_inode_fast(sb, head, ino);
1172 spin_unlock(&inode_hash_lock);
1173 if (inode) {
1174 if (IS_ERR(inode))
1175 return NULL;
1176 wait_on_inode(inode);
1177 if (unlikely(inode_unhashed(inode))) {
1178 iput(inode);
1179 goto again;
1180 }
1181 return inode;
1182 }
1183
1184 inode = alloc_inode(sb);
1185 if (inode) {
1186 struct inode *old;
1187
1188 spin_lock(&inode_hash_lock);
1189 /* We released the lock, so.. */
1190 old = find_inode_fast(sb, head, ino);
1191 if (!old) {
1192 inode->i_ino = ino;
1193 spin_lock(&inode->i_lock);
1194 inode->i_state = I_NEW;
1195 hlist_add_head(&inode->i_hash, head);
1196 spin_unlock(&inode->i_lock);
1197 inode_sb_list_add(inode);
1198 spin_unlock(&inode_hash_lock);
1199
1200 /* Return the locked inode with I_NEW set, the
1201 * caller is responsible for filling in the contents
1202 */
1203 return inode;
1204 }
1205
1206 /*
1207 * Uhhuh, somebody else created the same inode under
1208 * us. Use the old inode instead of the one we just
1209 * allocated.
1210 */
1211 spin_unlock(&inode_hash_lock);
1212 destroy_inode(inode);
1213 if (IS_ERR(old))
1214 return NULL;
1215 inode = old;
1216 wait_on_inode(inode);
1217 if (unlikely(inode_unhashed(inode))) {
1218 iput(inode);
1219 goto again;
1220 }
1221 }
1222 return inode;
1223 }
1224 EXPORT_SYMBOL(iget_locked);
1225
1226 /*
1227 * search the inode cache for a matching inode number.
1228 * If we find one, then the inode number we are trying to
1229 * allocate is not unique and so we should not use it.
1230 *
1231 * Returns 1 if the inode number is unique, 0 if it is not.
1232 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1233 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1234 {
1235 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 hlist_for_each_entry(inode, b, i_hash) {
1240 if (inode->i_ino == ino && inode->i_sb == sb) {
1241 spin_unlock(&inode_hash_lock);
1242 return 0;
1243 }
1244 }
1245 spin_unlock(&inode_hash_lock);
1246
1247 return 1;
1248 }
1249
1250 /**
1251 * iunique - get a unique inode number
1252 * @sb: superblock
1253 * @max_reserved: highest reserved inode number
1254 *
1255 * Obtain an inode number that is unique on the system for a given
1256 * superblock. This is used by file systems that have no natural
1257 * permanent inode numbering system. An inode number is returned that
1258 * is higher than the reserved limit but unique.
1259 *
1260 * BUGS:
1261 * With a large number of inodes live on the file system this function
1262 * currently becomes quite slow.
1263 */
iunique(struct super_block * sb,ino_t max_reserved)1264 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1265 {
1266 /*
1267 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1268 * error if st_ino won't fit in target struct field. Use 32bit counter
1269 * here to attempt to avoid that.
1270 */
1271 static DEFINE_SPINLOCK(iunique_lock);
1272 static unsigned int counter;
1273 ino_t res;
1274
1275 spin_lock(&iunique_lock);
1276 do {
1277 if (counter <= max_reserved)
1278 counter = max_reserved + 1;
1279 res = counter++;
1280 } while (!test_inode_iunique(sb, res));
1281 spin_unlock(&iunique_lock);
1282
1283 return res;
1284 }
1285 EXPORT_SYMBOL(iunique);
1286
igrab(struct inode * inode)1287 struct inode *igrab(struct inode *inode)
1288 {
1289 spin_lock(&inode->i_lock);
1290 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1291 __iget(inode);
1292 spin_unlock(&inode->i_lock);
1293 } else {
1294 spin_unlock(&inode->i_lock);
1295 /*
1296 * Handle the case where s_op->clear_inode is not been
1297 * called yet, and somebody is calling igrab
1298 * while the inode is getting freed.
1299 */
1300 inode = NULL;
1301 }
1302 return inode;
1303 }
1304 EXPORT_SYMBOL(igrab);
1305
1306 /**
1307 * ilookup5_nowait - search for an inode in the inode cache
1308 * @sb: super block of file system to search
1309 * @hashval: hash value (usually inode number) to search for
1310 * @test: callback used for comparisons between inodes
1311 * @data: opaque data pointer to pass to @test
1312 *
1313 * Search for the inode specified by @hashval and @data in the inode cache.
1314 * If the inode is in the cache, the inode is returned with an incremented
1315 * reference count.
1316 *
1317 * Note: I_NEW is not waited upon so you have to be very careful what you do
1318 * with the returned inode. You probably should be using ilookup5() instead.
1319 *
1320 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1321 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1322 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1323 int (*test)(struct inode *, void *), void *data)
1324 {
1325 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326 struct inode *inode;
1327
1328 spin_lock(&inode_hash_lock);
1329 inode = find_inode(sb, head, test, data);
1330 spin_unlock(&inode_hash_lock);
1331
1332 return IS_ERR(inode) ? NULL : inode;
1333 }
1334 EXPORT_SYMBOL(ilookup5_nowait);
1335
1336 /**
1337 * ilookup5 - search for an inode in the inode cache
1338 * @sb: super block of file system to search
1339 * @hashval: hash value (usually inode number) to search for
1340 * @test: callback used for comparisons between inodes
1341 * @data: opaque data pointer to pass to @test
1342 *
1343 * Search for the inode specified by @hashval and @data in the inode cache,
1344 * and if the inode is in the cache, return the inode with an incremented
1345 * reference count. Waits on I_NEW before returning the inode.
1346 * returned with an incremented reference count.
1347 *
1348 * This is a generalized version of ilookup() for file systems where the
1349 * inode number is not sufficient for unique identification of an inode.
1350 *
1351 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1352 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1353 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1354 int (*test)(struct inode *, void *), void *data)
1355 {
1356 struct inode *inode;
1357 again:
1358 inode = ilookup5_nowait(sb, hashval, test, data);
1359 if (inode) {
1360 wait_on_inode(inode);
1361 if (unlikely(inode_unhashed(inode))) {
1362 iput(inode);
1363 goto again;
1364 }
1365 }
1366 return inode;
1367 }
1368 EXPORT_SYMBOL(ilookup5);
1369
1370 /**
1371 * ilookup - search for an inode in the inode cache
1372 * @sb: super block of file system to search
1373 * @ino: inode number to search for
1374 *
1375 * Search for the inode @ino in the inode cache, and if the inode is in the
1376 * cache, the inode is returned with an incremented reference count.
1377 */
ilookup(struct super_block * sb,unsigned long ino)1378 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1379 {
1380 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381 struct inode *inode;
1382 again:
1383 spin_lock(&inode_hash_lock);
1384 inode = find_inode_fast(sb, head, ino);
1385 spin_unlock(&inode_hash_lock);
1386
1387 if (inode) {
1388 if (IS_ERR(inode))
1389 return NULL;
1390 wait_on_inode(inode);
1391 if (unlikely(inode_unhashed(inode))) {
1392 iput(inode);
1393 goto again;
1394 }
1395 }
1396 return inode;
1397 }
1398 EXPORT_SYMBOL(ilookup);
1399
1400 /**
1401 * find_inode_nowait - find an inode in the inode cache
1402 * @sb: super block of file system to search
1403 * @hashval: hash value (usually inode number) to search for
1404 * @match: callback used for comparisons between inodes
1405 * @data: opaque data pointer to pass to @match
1406 *
1407 * Search for the inode specified by @hashval and @data in the inode
1408 * cache, where the helper function @match will return 0 if the inode
1409 * does not match, 1 if the inode does match, and -1 if the search
1410 * should be stopped. The @match function must be responsible for
1411 * taking the i_lock spin_lock and checking i_state for an inode being
1412 * freed or being initialized, and incrementing the reference count
1413 * before returning 1. It also must not sleep, since it is called with
1414 * the inode_hash_lock spinlock held.
1415 *
1416 * This is a even more generalized version of ilookup5() when the
1417 * function must never block --- find_inode() can block in
1418 * __wait_on_freeing_inode() --- or when the caller can not increment
1419 * the reference count because the resulting iput() might cause an
1420 * inode eviction. The tradeoff is that the @match funtion must be
1421 * very carefully implemented.
1422 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1423 struct inode *find_inode_nowait(struct super_block *sb,
1424 unsigned long hashval,
1425 int (*match)(struct inode *, unsigned long,
1426 void *),
1427 void *data)
1428 {
1429 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1430 struct inode *inode, *ret_inode = NULL;
1431 int mval;
1432
1433 spin_lock(&inode_hash_lock);
1434 hlist_for_each_entry(inode, head, i_hash) {
1435 if (inode->i_sb != sb)
1436 continue;
1437 mval = match(inode, hashval, data);
1438 if (mval == 0)
1439 continue;
1440 if (mval == 1)
1441 ret_inode = inode;
1442 goto out;
1443 }
1444 out:
1445 spin_unlock(&inode_hash_lock);
1446 return ret_inode;
1447 }
1448 EXPORT_SYMBOL(find_inode_nowait);
1449
insert_inode_locked(struct inode * inode)1450 int insert_inode_locked(struct inode *inode)
1451 {
1452 struct super_block *sb = inode->i_sb;
1453 ino_t ino = inode->i_ino;
1454 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1455
1456 while (1) {
1457 struct inode *old = NULL;
1458 spin_lock(&inode_hash_lock);
1459 hlist_for_each_entry(old, head, i_hash) {
1460 if (old->i_ino != ino)
1461 continue;
1462 if (old->i_sb != sb)
1463 continue;
1464 spin_lock(&old->i_lock);
1465 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1466 spin_unlock(&old->i_lock);
1467 continue;
1468 }
1469 break;
1470 }
1471 if (likely(!old)) {
1472 spin_lock(&inode->i_lock);
1473 inode->i_state |= I_NEW | I_CREATING;
1474 hlist_add_head(&inode->i_hash, head);
1475 spin_unlock(&inode->i_lock);
1476 spin_unlock(&inode_hash_lock);
1477 return 0;
1478 }
1479 if (unlikely(old->i_state & I_CREATING)) {
1480 spin_unlock(&old->i_lock);
1481 spin_unlock(&inode_hash_lock);
1482 return -EBUSY;
1483 }
1484 __iget(old);
1485 spin_unlock(&old->i_lock);
1486 spin_unlock(&inode_hash_lock);
1487 wait_on_inode(old);
1488 if (unlikely(!inode_unhashed(old))) {
1489 iput(old);
1490 return -EBUSY;
1491 }
1492 iput(old);
1493 }
1494 }
1495 EXPORT_SYMBOL(insert_inode_locked);
1496
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1497 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1498 int (*test)(struct inode *, void *), void *data)
1499 {
1500 struct inode *old;
1501
1502 inode->i_state |= I_CREATING;
1503 old = inode_insert5(inode, hashval, test, NULL, data);
1504
1505 if (old != inode) {
1506 iput(old);
1507 return -EBUSY;
1508 }
1509 return 0;
1510 }
1511 EXPORT_SYMBOL(insert_inode_locked4);
1512
1513
generic_delete_inode(struct inode * inode)1514 int generic_delete_inode(struct inode *inode)
1515 {
1516 return 1;
1517 }
1518 EXPORT_SYMBOL(generic_delete_inode);
1519
1520 /*
1521 * Called when we're dropping the last reference
1522 * to an inode.
1523 *
1524 * Call the FS "drop_inode()" function, defaulting to
1525 * the legacy UNIX filesystem behaviour. If it tells
1526 * us to evict inode, do so. Otherwise, retain inode
1527 * in cache if fs is alive, sync and evict if fs is
1528 * shutting down.
1529 */
iput_final(struct inode * inode)1530 static void iput_final(struct inode *inode)
1531 {
1532 struct super_block *sb = inode->i_sb;
1533 const struct super_operations *op = inode->i_sb->s_op;
1534 int drop;
1535
1536 WARN_ON(inode->i_state & I_NEW);
1537
1538 if (op->drop_inode)
1539 drop = op->drop_inode(inode);
1540 else
1541 drop = generic_drop_inode(inode);
1542
1543 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1544 inode_add_lru(inode);
1545 spin_unlock(&inode->i_lock);
1546 return;
1547 }
1548
1549 if (!drop) {
1550 inode->i_state |= I_WILL_FREE;
1551 spin_unlock(&inode->i_lock);
1552 write_inode_now(inode, 1);
1553 spin_lock(&inode->i_lock);
1554 WARN_ON(inode->i_state & I_NEW);
1555 inode->i_state &= ~I_WILL_FREE;
1556 }
1557
1558 inode->i_state |= I_FREEING;
1559 if (!list_empty(&inode->i_lru))
1560 inode_lru_list_del(inode);
1561 spin_unlock(&inode->i_lock);
1562
1563 evict(inode);
1564 }
1565
1566 /**
1567 * iput - put an inode
1568 * @inode: inode to put
1569 *
1570 * Puts an inode, dropping its usage count. If the inode use count hits
1571 * zero, the inode is then freed and may also be destroyed.
1572 *
1573 * Consequently, iput() can sleep.
1574 */
iput(struct inode * inode)1575 void iput(struct inode *inode)
1576 {
1577 if (!inode)
1578 return;
1579 BUG_ON(inode->i_state & I_CLEAR);
1580 retry:
1581 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1582 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1583 atomic_inc(&inode->i_count);
1584 spin_unlock(&inode->i_lock);
1585 trace_writeback_lazytime_iput(inode);
1586 mark_inode_dirty_sync(inode);
1587 goto retry;
1588 }
1589 iput_final(inode);
1590 }
1591 }
1592 EXPORT_SYMBOL(iput);
1593
1594 /**
1595 * bmap - find a block number in a file
1596 * @inode: inode of file
1597 * @block: block to find
1598 *
1599 * Returns the block number on the device holding the inode that
1600 * is the disk block number for the block of the file requested.
1601 * That is, asked for block 4 of inode 1 the function will return the
1602 * disk block relative to the disk start that holds that block of the
1603 * file.
1604 */
bmap(struct inode * inode,sector_t block)1605 sector_t bmap(struct inode *inode, sector_t block)
1606 {
1607 sector_t res = 0;
1608 if (inode->i_mapping->a_ops->bmap)
1609 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1610 return res;
1611 }
1612 EXPORT_SYMBOL(bmap);
1613
1614 /*
1615 * With relative atime, only update atime if the previous atime is
1616 * earlier than either the ctime or mtime or if at least a day has
1617 * passed since the last atime update.
1618 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1619 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1620 struct timespec64 now)
1621 {
1622
1623 if (!(mnt->mnt_flags & MNT_RELATIME))
1624 return 1;
1625 /*
1626 * Is mtime younger than atime? If yes, update atime:
1627 */
1628 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1629 return 1;
1630 /*
1631 * Is ctime younger than atime? If yes, update atime:
1632 */
1633 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1634 return 1;
1635
1636 /*
1637 * Is the previous atime value older than a day? If yes,
1638 * update atime:
1639 */
1640 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1641 return 1;
1642 /*
1643 * Good, we can skip the atime update:
1644 */
1645 return 0;
1646 }
1647
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1648 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1649 {
1650 int iflags = I_DIRTY_TIME;
1651 bool dirty = false;
1652
1653 if (flags & S_ATIME)
1654 inode->i_atime = *time;
1655 if (flags & S_VERSION)
1656 dirty = inode_maybe_inc_iversion(inode, false);
1657 if (flags & S_CTIME)
1658 inode->i_ctime = *time;
1659 if (flags & S_MTIME)
1660 inode->i_mtime = *time;
1661 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1662 !(inode->i_sb->s_flags & SB_LAZYTIME))
1663 dirty = true;
1664
1665 if (dirty)
1666 iflags |= I_DIRTY_SYNC;
1667 __mark_inode_dirty(inode, iflags);
1668 return 0;
1669 }
1670 EXPORT_SYMBOL(generic_update_time);
1671
1672 /*
1673 * This does the actual work of updating an inodes time or version. Must have
1674 * had called mnt_want_write() before calling this.
1675 */
update_time(struct inode * inode,struct timespec64 * time,int flags)1676 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1677 {
1678 int (*update_time)(struct inode *, struct timespec64 *, int);
1679
1680 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1681 generic_update_time;
1682
1683 return update_time(inode, time, flags);
1684 }
1685
1686 /**
1687 * touch_atime - update the access time
1688 * @path: the &struct path to update
1689 * @inode: inode to update
1690 *
1691 * Update the accessed time on an inode and mark it for writeback.
1692 * This function automatically handles read only file systems and media,
1693 * as well as the "noatime" flag and inode specific "noatime" markers.
1694 */
atime_needs_update(const struct path * path,struct inode * inode)1695 bool atime_needs_update(const struct path *path, struct inode *inode)
1696 {
1697 struct vfsmount *mnt = path->mnt;
1698 struct timespec64 now;
1699
1700 if (inode->i_flags & S_NOATIME)
1701 return false;
1702
1703 /* Atime updates will likely cause i_uid and i_gid to be written
1704 * back improprely if their true value is unknown to the vfs.
1705 */
1706 if (HAS_UNMAPPED_ID(inode))
1707 return false;
1708
1709 if (IS_NOATIME(inode))
1710 return false;
1711 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1712 return false;
1713
1714 if (mnt->mnt_flags & MNT_NOATIME)
1715 return false;
1716 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1717 return false;
1718
1719 now = current_time(inode);
1720
1721 if (!relatime_need_update(mnt, inode, now))
1722 return false;
1723
1724 if (timespec64_equal(&inode->i_atime, &now))
1725 return false;
1726
1727 return true;
1728 }
1729
touch_atime(const struct path * path)1730 void touch_atime(const struct path *path)
1731 {
1732 struct vfsmount *mnt = path->mnt;
1733 struct inode *inode = d_inode(path->dentry);
1734 struct timespec64 now;
1735
1736 if (!atime_needs_update(path, inode))
1737 return;
1738
1739 if (!sb_start_write_trylock(inode->i_sb))
1740 return;
1741
1742 if (__mnt_want_write(mnt) != 0)
1743 goto skip_update;
1744 /*
1745 * File systems can error out when updating inodes if they need to
1746 * allocate new space to modify an inode (such is the case for
1747 * Btrfs), but since we touch atime while walking down the path we
1748 * really don't care if we failed to update the atime of the file,
1749 * so just ignore the return value.
1750 * We may also fail on filesystems that have the ability to make parts
1751 * of the fs read only, e.g. subvolumes in Btrfs.
1752 */
1753 now = current_time(inode);
1754 update_time(inode, &now, S_ATIME);
1755 __mnt_drop_write(mnt);
1756 skip_update:
1757 sb_end_write(inode->i_sb);
1758 }
1759 EXPORT_SYMBOL(touch_atime);
1760
1761 /*
1762 * The logic we want is
1763 *
1764 * if suid or (sgid and xgrp)
1765 * remove privs
1766 */
should_remove_suid(struct dentry * dentry)1767 int should_remove_suid(struct dentry *dentry)
1768 {
1769 umode_t mode = d_inode(dentry)->i_mode;
1770 int kill = 0;
1771
1772 /* suid always must be killed */
1773 if (unlikely(mode & S_ISUID))
1774 kill = ATTR_KILL_SUID;
1775
1776 /*
1777 * sgid without any exec bits is just a mandatory locking mark; leave
1778 * it alone. If some exec bits are set, it's a real sgid; kill it.
1779 */
1780 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1781 kill |= ATTR_KILL_SGID;
1782
1783 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784 return kill;
1785
1786 return 0;
1787 }
1788 EXPORT_SYMBOL(should_remove_suid);
1789
1790 /*
1791 * Return mask of changes for notify_change() that need to be done as a
1792 * response to write or truncate. Return 0 if nothing has to be changed.
1793 * Negative value on error (change should be denied).
1794 */
dentry_needs_remove_privs(struct dentry * dentry)1795 int dentry_needs_remove_privs(struct dentry *dentry)
1796 {
1797 struct inode *inode = d_inode(dentry);
1798 int mask = 0;
1799 int ret;
1800
1801 if (IS_NOSEC(inode))
1802 return 0;
1803
1804 mask = should_remove_suid(dentry);
1805 ret = security_inode_need_killpriv(dentry);
1806 if (ret < 0)
1807 return ret;
1808 if (ret)
1809 mask |= ATTR_KILL_PRIV;
1810 return mask;
1811 }
1812
__remove_privs(struct dentry * dentry,int kill)1813 static int __remove_privs(struct dentry *dentry, int kill)
1814 {
1815 struct iattr newattrs;
1816
1817 newattrs.ia_valid = ATTR_FORCE | kill;
1818 /*
1819 * Note we call this on write, so notify_change will not
1820 * encounter any conflicting delegations:
1821 */
1822 return notify_change(dentry, &newattrs, NULL);
1823 }
1824
1825 /*
1826 * Remove special file priviledges (suid, capabilities) when file is written
1827 * to or truncated.
1828 */
file_remove_privs(struct file * file)1829 int file_remove_privs(struct file *file)
1830 {
1831 struct dentry *dentry = file_dentry(file);
1832 struct inode *inode = file_inode(file);
1833 int kill;
1834 int error = 0;
1835
1836 /*
1837 * Fast path for nothing security related.
1838 * As well for non-regular files, e.g. blkdev inodes.
1839 * For example, blkdev_write_iter() might get here
1840 * trying to remove privs which it is not allowed to.
1841 */
1842 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1843 return 0;
1844
1845 kill = dentry_needs_remove_privs(dentry);
1846 if (kill < 0)
1847 return kill;
1848 if (kill)
1849 error = __remove_privs(dentry, kill);
1850 if (!error)
1851 inode_has_no_xattr(inode);
1852
1853 return error;
1854 }
1855 EXPORT_SYMBOL(file_remove_privs);
1856
1857 /**
1858 * file_update_time - update mtime and ctime time
1859 * @file: file accessed
1860 *
1861 * Update the mtime and ctime members of an inode and mark the inode
1862 * for writeback. Note that this function is meant exclusively for
1863 * usage in the file write path of filesystems, and filesystems may
1864 * choose to explicitly ignore update via this function with the
1865 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1866 * timestamps are handled by the server. This can return an error for
1867 * file systems who need to allocate space in order to update an inode.
1868 */
1869
file_update_time(struct file * file)1870 int file_update_time(struct file *file)
1871 {
1872 struct inode *inode = file_inode(file);
1873 struct timespec64 now;
1874 int sync_it = 0;
1875 int ret;
1876
1877 /* First try to exhaust all avenues to not sync */
1878 if (IS_NOCMTIME(inode))
1879 return 0;
1880
1881 now = current_time(inode);
1882 if (!timespec64_equal(&inode->i_mtime, &now))
1883 sync_it = S_MTIME;
1884
1885 if (!timespec64_equal(&inode->i_ctime, &now))
1886 sync_it |= S_CTIME;
1887
1888 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1889 sync_it |= S_VERSION;
1890
1891 if (!sync_it)
1892 return 0;
1893
1894 /* Finally allowed to write? Takes lock. */
1895 if (__mnt_want_write_file(file))
1896 return 0;
1897
1898 ret = update_time(inode, &now, sync_it);
1899 __mnt_drop_write_file(file);
1900
1901 return ret;
1902 }
1903 EXPORT_SYMBOL(file_update_time);
1904
1905 /* Caller must hold the file's inode lock */
file_modified(struct file * file)1906 int file_modified(struct file *file)
1907 {
1908 int err;
1909
1910 /*
1911 * Clear the security bits if the process is not being run by root.
1912 * This keeps people from modifying setuid and setgid binaries.
1913 */
1914 err = file_remove_privs(file);
1915 if (err)
1916 return err;
1917
1918 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1919 return 0;
1920
1921 return file_update_time(file);
1922 }
1923 EXPORT_SYMBOL(file_modified);
1924
inode_needs_sync(struct inode * inode)1925 int inode_needs_sync(struct inode *inode)
1926 {
1927 if (IS_SYNC(inode))
1928 return 1;
1929 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1930 return 1;
1931 return 0;
1932 }
1933 EXPORT_SYMBOL(inode_needs_sync);
1934
1935 /*
1936 * If we try to find an inode in the inode hash while it is being
1937 * deleted, we have to wait until the filesystem completes its
1938 * deletion before reporting that it isn't found. This function waits
1939 * until the deletion _might_ have completed. Callers are responsible
1940 * to recheck inode state.
1941 *
1942 * It doesn't matter if I_NEW is not set initially, a call to
1943 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1944 * will DTRT.
1945 */
__wait_on_freeing_inode(struct inode * inode)1946 static void __wait_on_freeing_inode(struct inode *inode)
1947 {
1948 wait_queue_head_t *wq;
1949 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1950 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1951 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1952 spin_unlock(&inode->i_lock);
1953 spin_unlock(&inode_hash_lock);
1954 schedule();
1955 finish_wait(wq, &wait.wq_entry);
1956 spin_lock(&inode_hash_lock);
1957 }
1958
1959 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1960 static int __init set_ihash_entries(char *str)
1961 {
1962 if (!str)
1963 return 0;
1964 ihash_entries = simple_strtoul(str, &str, 0);
1965 return 1;
1966 }
1967 __setup("ihash_entries=", set_ihash_entries);
1968
1969 /*
1970 * Initialize the waitqueues and inode hash table.
1971 */
inode_init_early(void)1972 void __init inode_init_early(void)
1973 {
1974 /* If hashes are distributed across NUMA nodes, defer
1975 * hash allocation until vmalloc space is available.
1976 */
1977 if (hashdist)
1978 return;
1979
1980 inode_hashtable =
1981 alloc_large_system_hash("Inode-cache",
1982 sizeof(struct hlist_head),
1983 ihash_entries,
1984 14,
1985 HASH_EARLY | HASH_ZERO,
1986 &i_hash_shift,
1987 &i_hash_mask,
1988 0,
1989 0);
1990 }
1991
inode_init(void)1992 void __init inode_init(void)
1993 {
1994 /* inode slab cache */
1995 inode_cachep = kmem_cache_create("inode_cache",
1996 sizeof(struct inode),
1997 0,
1998 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1999 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2000 init_once);
2001
2002 /* Hash may have been set up in inode_init_early */
2003 if (!hashdist)
2004 return;
2005
2006 inode_hashtable =
2007 alloc_large_system_hash("Inode-cache",
2008 sizeof(struct hlist_head),
2009 ihash_entries,
2010 14,
2011 HASH_ZERO,
2012 &i_hash_shift,
2013 &i_hash_mask,
2014 0,
2015 0);
2016 }
2017
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2018 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2019 {
2020 inode->i_mode = mode;
2021 if (S_ISCHR(mode)) {
2022 inode->i_fop = &def_chr_fops;
2023 inode->i_rdev = rdev;
2024 } else if (S_ISBLK(mode)) {
2025 inode->i_fop = &def_blk_fops;
2026 inode->i_rdev = rdev;
2027 } else if (S_ISFIFO(mode))
2028 inode->i_fop = &pipefifo_fops;
2029 else if (S_ISSOCK(mode))
2030 ; /* leave it no_open_fops */
2031 else
2032 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2033 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2034 inode->i_ino);
2035 }
2036 EXPORT_SYMBOL(init_special_inode);
2037
2038 /**
2039 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2040 * @inode: New inode
2041 * @dir: Directory inode
2042 * @mode: mode of the new inode
2043 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2044 void inode_init_owner(struct inode *inode, const struct inode *dir,
2045 umode_t mode)
2046 {
2047 inode->i_uid = current_fsuid();
2048 if (dir && dir->i_mode & S_ISGID) {
2049 inode->i_gid = dir->i_gid;
2050
2051 /* Directories are special, and always inherit S_ISGID */
2052 if (S_ISDIR(mode))
2053 mode |= S_ISGID;
2054 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2055 !in_group_p(inode->i_gid) &&
2056 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2057 mode &= ~S_ISGID;
2058 } else
2059 inode->i_gid = current_fsgid();
2060 inode->i_mode = mode;
2061 }
2062 EXPORT_SYMBOL(inode_init_owner);
2063
2064 /**
2065 * inode_owner_or_capable - check current task permissions to inode
2066 * @inode: inode being checked
2067 *
2068 * Return true if current either has CAP_FOWNER in a namespace with the
2069 * inode owner uid mapped, or owns the file.
2070 */
inode_owner_or_capable(const struct inode * inode)2071 bool inode_owner_or_capable(const struct inode *inode)
2072 {
2073 struct user_namespace *ns;
2074
2075 if (uid_eq(current_fsuid(), inode->i_uid))
2076 return true;
2077
2078 ns = current_user_ns();
2079 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2080 return true;
2081 return false;
2082 }
2083 EXPORT_SYMBOL(inode_owner_or_capable);
2084
2085 /*
2086 * Direct i/o helper functions
2087 */
__inode_dio_wait(struct inode * inode)2088 static void __inode_dio_wait(struct inode *inode)
2089 {
2090 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2091 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2092
2093 do {
2094 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2095 if (atomic_read(&inode->i_dio_count))
2096 schedule();
2097 } while (atomic_read(&inode->i_dio_count));
2098 finish_wait(wq, &q.wq_entry);
2099 }
2100
2101 /**
2102 * inode_dio_wait - wait for outstanding DIO requests to finish
2103 * @inode: inode to wait for
2104 *
2105 * Waits for all pending direct I/O requests to finish so that we can
2106 * proceed with a truncate or equivalent operation.
2107 *
2108 * Must be called under a lock that serializes taking new references
2109 * to i_dio_count, usually by inode->i_mutex.
2110 */
inode_dio_wait(struct inode * inode)2111 void inode_dio_wait(struct inode *inode)
2112 {
2113 if (atomic_read(&inode->i_dio_count))
2114 __inode_dio_wait(inode);
2115 }
2116 EXPORT_SYMBOL(inode_dio_wait);
2117
2118 /*
2119 * inode_set_flags - atomically set some inode flags
2120 *
2121 * Note: the caller should be holding i_mutex, or else be sure that
2122 * they have exclusive access to the inode structure (i.e., while the
2123 * inode is being instantiated). The reason for the cmpxchg() loop
2124 * --- which wouldn't be necessary if all code paths which modify
2125 * i_flags actually followed this rule, is that there is at least one
2126 * code path which doesn't today so we use cmpxchg() out of an abundance
2127 * of caution.
2128 *
2129 * In the long run, i_mutex is overkill, and we should probably look
2130 * at using the i_lock spinlock to protect i_flags, and then make sure
2131 * it is so documented in include/linux/fs.h and that all code follows
2132 * the locking convention!!
2133 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2134 void inode_set_flags(struct inode *inode, unsigned int flags,
2135 unsigned int mask)
2136 {
2137 WARN_ON_ONCE(flags & ~mask);
2138 set_mask_bits(&inode->i_flags, mask, flags);
2139 }
2140 EXPORT_SYMBOL(inode_set_flags);
2141
inode_nohighmem(struct inode * inode)2142 void inode_nohighmem(struct inode *inode)
2143 {
2144 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2145 }
2146 EXPORT_SYMBOL(inode_nohighmem);
2147
2148 /**
2149 * timespec64_trunc - Truncate timespec64 to a granularity
2150 * @t: Timespec64
2151 * @gran: Granularity in ns.
2152 *
2153 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2154 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2155 */
timespec64_trunc(struct timespec64 t,unsigned gran)2156 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2157 {
2158 /* Avoid division in the common cases 1 ns and 1 s. */
2159 if (gran == 1) {
2160 /* nothing */
2161 } else if (gran == NSEC_PER_SEC) {
2162 t.tv_nsec = 0;
2163 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2164 t.tv_nsec -= t.tv_nsec % gran;
2165 } else {
2166 WARN(1, "illegal file time granularity: %u", gran);
2167 }
2168 return t;
2169 }
2170 EXPORT_SYMBOL(timespec64_trunc);
2171
2172 /**
2173 * timestamp_truncate - Truncate timespec to a granularity
2174 * @t: Timespec
2175 * @inode: inode being updated
2176 *
2177 * Truncate a timespec to the granularity supported by the fs
2178 * containing the inode. Always rounds down. gran must
2179 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2180 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2181 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2182 {
2183 struct super_block *sb = inode->i_sb;
2184 unsigned int gran = sb->s_time_gran;
2185
2186 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2187 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2188 t.tv_nsec = 0;
2189
2190 /* Avoid division in the common cases 1 ns and 1 s. */
2191 if (gran == 1)
2192 ; /* nothing */
2193 else if (gran == NSEC_PER_SEC)
2194 t.tv_nsec = 0;
2195 else if (gran > 1 && gran < NSEC_PER_SEC)
2196 t.tv_nsec -= t.tv_nsec % gran;
2197 else
2198 WARN(1, "invalid file time granularity: %u", gran);
2199 return t;
2200 }
2201 EXPORT_SYMBOL(timestamp_truncate);
2202
2203 /**
2204 * current_time - Return FS time
2205 * @inode: inode.
2206 *
2207 * Return the current time truncated to the time granularity supported by
2208 * the fs.
2209 *
2210 * Note that inode and inode->sb cannot be NULL.
2211 * Otherwise, the function warns and returns time without truncation.
2212 */
current_time(struct inode * inode)2213 struct timespec64 current_time(struct inode *inode)
2214 {
2215 struct timespec64 now;
2216
2217 ktime_get_coarse_real_ts64(&now);
2218
2219 if (unlikely(!inode->i_sb)) {
2220 WARN(1, "current_time() called with uninitialized super_block in the inode");
2221 return now;
2222 }
2223
2224 return timestamp_truncate(now, inode);
2225 }
2226 EXPORT_SYMBOL(current_time);
2227
2228 /*
2229 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2230 * configurations.
2231 *
2232 * Note: the caller should be holding i_mutex, or else be sure that they have
2233 * exclusive access to the inode structure.
2234 */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2235 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2236 unsigned int flags)
2237 {
2238 /*
2239 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2240 * the relevant capability.
2241 *
2242 * This test looks nicer. Thanks to Pauline Middelink
2243 */
2244 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2245 !capable(CAP_LINUX_IMMUTABLE))
2246 return -EPERM;
2247
2248 return 0;
2249 }
2250 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2251
2252 /*
2253 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2254 * configurations.
2255 *
2256 * Note: the caller should be holding i_mutex, or else be sure that they have
2257 * exclusive access to the inode structure.
2258 */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2259 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2260 struct fsxattr *fa)
2261 {
2262 /*
2263 * Can't modify an immutable/append-only file unless we have
2264 * appropriate permission.
2265 */
2266 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2267 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2268 !capable(CAP_LINUX_IMMUTABLE))
2269 return -EPERM;
2270
2271 /*
2272 * Project Quota ID state is only allowed to change from within the init
2273 * namespace. Enforce that restriction only if we are trying to change
2274 * the quota ID state. Everything else is allowed in user namespaces.
2275 */
2276 if (current_user_ns() != &init_user_ns) {
2277 if (old_fa->fsx_projid != fa->fsx_projid)
2278 return -EINVAL;
2279 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2280 FS_XFLAG_PROJINHERIT)
2281 return -EINVAL;
2282 }
2283
2284 /* Check extent size hints. */
2285 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2286 return -EINVAL;
2287
2288 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2289 !S_ISDIR(inode->i_mode))
2290 return -EINVAL;
2291
2292 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2293 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2294 return -EINVAL;
2295
2296 /*
2297 * It is only valid to set the DAX flag on regular files and
2298 * directories on filesystems.
2299 */
2300 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2301 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2302 return -EINVAL;
2303
2304 /* Extent size hints of zero turn off the flags. */
2305 if (fa->fsx_extsize == 0)
2306 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2307 if (fa->fsx_cowextsize == 0)
2308 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2309
2310 return 0;
2311 }
2312 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2313