1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * Flags for dio_complete()
50  */
51 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
52 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
53 
54 /*
55  * This code generally works in units of "dio_blocks".  A dio_block is
56  * somewhere between the hard sector size and the filesystem block size.  it
57  * is determined on a per-invocation basis.   When talking to the filesystem
58  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
60  * to bio_block quantities by shifting left by blkfactor.
61  *
62  * If blkfactor is zero then the user's request was aligned to the filesystem's
63  * blocksize.
64  */
65 
66 /* dio_state only used in the submission path */
67 
68 struct dio_submit {
69 	struct bio *bio;		/* bio under assembly */
70 	unsigned blkbits;		/* doesn't change */
71 	unsigned blkfactor;		/* When we're using an alignment which
72 					   is finer than the filesystem's soft
73 					   blocksize, this specifies how much
74 					   finer.  blkfactor=2 means 1/4-block
75 					   alignment.  Does not change */
76 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
77 					   been performed at the start of a
78 					   write */
79 	int pages_in_io;		/* approximate total IO pages */
80 	sector_t block_in_file;		/* Current offset into the underlying
81 					   file in dio_block units. */
82 	unsigned blocks_available;	/* At block_in_file.  changes */
83 	int reap_counter;		/* rate limit reaping */
84 	sector_t final_block_in_request;/* doesn't change */
85 	int boundary;			/* prev block is at a boundary */
86 	get_block_t *get_block;		/* block mapping function */
87 	dio_submit_t *submit_io;	/* IO submition function */
88 
89 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
90 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
91 	sector_t next_block_for_io;	/* next block to be put under IO,
92 					   in dio_blocks units */
93 
94 	/*
95 	 * Deferred addition of a page to the dio.  These variables are
96 	 * private to dio_send_cur_page(), submit_page_section() and
97 	 * dio_bio_add_page().
98 	 */
99 	struct page *cur_page;		/* The page */
100 	unsigned cur_page_offset;	/* Offset into it, in bytes */
101 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
102 	sector_t cur_page_block;	/* Where it starts */
103 	loff_t cur_page_fs_offset;	/* Offset in file */
104 
105 	struct iov_iter *iter;
106 	/*
107 	 * Page queue.  These variables belong to dio_refill_pages() and
108 	 * dio_get_page().
109 	 */
110 	unsigned head;			/* next page to process */
111 	unsigned tail;			/* last valid page + 1 */
112 	size_t from, to;
113 };
114 
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 	int flags;			/* doesn't change */
118 	int op;
119 	int op_flags;
120 	blk_qc_t bio_cookie;
121 	struct gendisk *bio_disk;
122 	struct inode *inode;
123 	loff_t i_size;			/* i_size when submitted */
124 	dio_iodone_t *end_io;		/* IO completion function */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* errno from get_user_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __read_mostly;
155 
156 /*
157  * How many pages are in the queue?
158  */
dio_pages_present(struct dio_submit * sdio)159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	ssize_t ret;
170 
171 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172 				&sdio->from);
173 
174 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
175 		struct page *page = ZERO_PAGE(0);
176 		/*
177 		 * A memory fault, but the filesystem has some outstanding
178 		 * mapped blocks.  We need to use those blocks up to avoid
179 		 * leaking stale data in the file.
180 		 */
181 		if (dio->page_errors == 0)
182 			dio->page_errors = ret;
183 		get_page(page);
184 		dio->pages[0] = page;
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		iov_iter_advance(sdio->iter, ret);
194 		ret += sdio->from;
195 		sdio->head = 0;
196 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 		return 0;
199 	}
200 	return ret;
201 }
202 
203 /*
204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
205  * buffered inside the dio so that we can call get_user_pages() against a
206  * decent number of pages, less frequently.  To provide nicer use of the
207  * L1 cache.
208  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)209 static inline struct page *dio_get_page(struct dio *dio,
210 					struct dio_submit *sdio)
211 {
212 	if (dio_pages_present(sdio) == 0) {
213 		int ret;
214 
215 		ret = dio_refill_pages(dio, sdio);
216 		if (ret)
217 			return ERR_PTR(ret);
218 		BUG_ON(dio_pages_present(sdio) == 0);
219 	}
220 	return dio->pages[sdio->head];
221 }
222 
223 /*
224  * Warn about a page cache invalidation failure during a direct io write.
225  */
dio_warn_stale_pagecache(struct file * filp)226 void dio_warn_stale_pagecache(struct file *filp)
227 {
228 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
229 	char pathname[128];
230 	struct inode *inode = file_inode(filp);
231 	char *path;
232 
233 	errseq_set(&inode->i_mapping->wb_err, -EIO);
234 	if (__ratelimit(&_rs)) {
235 		path = file_path(filp, pathname, sizeof(pathname));
236 		if (IS_ERR(path))
237 			path = "(unknown)";
238 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
239 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
240 			current->comm);
241 	}
242 }
243 
244 /*
245  * dio_complete() - called when all DIO BIO I/O has been completed
246  *
247  * This drops i_dio_count, lets interested parties know that a DIO operation
248  * has completed, and calculates the resulting return code for the operation.
249  *
250  * It lets the filesystem know if it registered an interest earlier via
251  * get_block.  Pass the private field of the map buffer_head so that
252  * filesystems can use it to hold additional state between get_block calls and
253  * dio_complete.
254  */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
256 {
257 	loff_t offset = dio->iocb->ki_pos;
258 	ssize_t transferred = 0;
259 	int err;
260 
261 	/*
262 	 * AIO submission can race with bio completion to get here while
263 	 * expecting to have the last io completed by bio completion.
264 	 * In that case -EIOCBQUEUED is in fact not an error we want
265 	 * to preserve through this call.
266 	 */
267 	if (ret == -EIOCBQUEUED)
268 		ret = 0;
269 
270 	if (dio->result) {
271 		transferred = dio->result;
272 
273 		/* Check for short read case */
274 		if ((dio->op == REQ_OP_READ) &&
275 		    ((offset + transferred) > dio->i_size))
276 			transferred = dio->i_size - offset;
277 		/* ignore EFAULT if some IO has been done */
278 		if (unlikely(ret == -EFAULT) && transferred)
279 			ret = 0;
280 	}
281 
282 	if (ret == 0)
283 		ret = dio->page_errors;
284 	if (ret == 0)
285 		ret = dio->io_error;
286 	if (ret == 0)
287 		ret = transferred;
288 
289 	if (dio->end_io) {
290 		// XXX: ki_pos??
291 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
292 		if (err)
293 			ret = err;
294 	}
295 
296 	/*
297 	 * Try again to invalidate clean pages which might have been cached by
298 	 * non-direct readahead, or faulted in by get_user_pages() if the source
299 	 * of the write was an mmap'ed region of the file we're writing.  Either
300 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
301 	 * this invalidation fails, tough, the write still worked...
302 	 *
303 	 * And this page cache invalidation has to be after dio->end_io(), as
304 	 * some filesystems convert unwritten extents to real allocations in
305 	 * end_io() when necessary, otherwise a racing buffer read would cache
306 	 * zeros from unwritten extents.
307 	 */
308 	if (flags & DIO_COMPLETE_INVALIDATE &&
309 	    ret > 0 && dio->op == REQ_OP_WRITE &&
310 	    dio->inode->i_mapping->nrpages) {
311 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 					offset >> PAGE_SHIFT,
313 					(offset + ret - 1) >> PAGE_SHIFT);
314 		if (err)
315 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
316 	}
317 
318 	inode_dio_end(dio->inode);
319 
320 	if (flags & DIO_COMPLETE_ASYNC) {
321 		/*
322 		 * generic_write_sync expects ki_pos to have been updated
323 		 * already, but the submission path only does this for
324 		 * synchronous I/O.
325 		 */
326 		dio->iocb->ki_pos += transferred;
327 
328 		if (ret > 0 && dio->op == REQ_OP_WRITE)
329 			ret = generic_write_sync(dio->iocb, ret);
330 		dio->iocb->ki_complete(dio->iocb, ret, 0);
331 	}
332 
333 	kmem_cache_free(dio_cache, dio);
334 	return ret;
335 }
336 
dio_aio_complete_work(struct work_struct * work)337 static void dio_aio_complete_work(struct work_struct *work)
338 {
339 	struct dio *dio = container_of(work, struct dio, complete_work);
340 
341 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
342 }
343 
344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
345 
346 /*
347  * Asynchronous IO callback.
348  */
dio_bio_end_aio(struct bio * bio)349 static void dio_bio_end_aio(struct bio *bio)
350 {
351 	struct dio *dio = bio->bi_private;
352 	unsigned long remaining;
353 	unsigned long flags;
354 	bool defer_completion = false;
355 
356 	/* cleanup the bio */
357 	dio_bio_complete(dio, bio);
358 
359 	spin_lock_irqsave(&dio->bio_lock, flags);
360 	remaining = --dio->refcount;
361 	if (remaining == 1 && dio->waiter)
362 		wake_up_process(dio->waiter);
363 	spin_unlock_irqrestore(&dio->bio_lock, flags);
364 
365 	if (remaining == 0) {
366 		/*
367 		 * Defer completion when defer_completion is set or
368 		 * when the inode has pages mapped and this is AIO write.
369 		 * We need to invalidate those pages because there is a
370 		 * chance they contain stale data in the case buffered IO
371 		 * went in between AIO submission and completion into the
372 		 * same region.
373 		 */
374 		if (dio->result)
375 			defer_completion = dio->defer_completion ||
376 					   (dio->op == REQ_OP_WRITE &&
377 					    dio->inode->i_mapping->nrpages);
378 		if (defer_completion) {
379 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
380 			queue_work(dio->inode->i_sb->s_dio_done_wq,
381 				   &dio->complete_work);
382 		} else {
383 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
384 		}
385 	}
386 }
387 
388 /*
389  * The BIO completion handler simply queues the BIO up for the process-context
390  * handler.
391  *
392  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
393  * implement a singly-linked list of completed BIOs, at dio->bio_list.
394  */
dio_bio_end_io(struct bio * bio)395 static void dio_bio_end_io(struct bio *bio)
396 {
397 	struct dio *dio = bio->bi_private;
398 	unsigned long flags;
399 
400 	spin_lock_irqsave(&dio->bio_lock, flags);
401 	bio->bi_private = dio->bio_list;
402 	dio->bio_list = bio;
403 	if (--dio->refcount == 1 && dio->waiter)
404 		wake_up_process(dio->waiter);
405 	spin_unlock_irqrestore(&dio->bio_lock, flags);
406 }
407 
408 /**
409  * dio_end_io - handle the end io action for the given bio
410  * @bio: The direct io bio thats being completed
411  *
412  * This is meant to be called by any filesystem that uses their own dio_submit_t
413  * so that the DIO specific endio actions are dealt with after the filesystem
414  * has done it's completion work.
415  */
dio_end_io(struct bio * bio)416 void dio_end_io(struct bio *bio)
417 {
418 	struct dio *dio = bio->bi_private;
419 
420 	if (dio->is_async)
421 		dio_bio_end_aio(bio);
422 	else
423 		dio_bio_end_io(bio);
424 }
425 EXPORT_SYMBOL_GPL(dio_end_io);
426 
427 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
429 	      struct block_device *bdev,
430 	      sector_t first_sector, int nr_vecs)
431 {
432 	struct bio *bio;
433 
434 	/*
435 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
436 	 * we request a valid number of vectors.
437 	 */
438 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
439 
440 	bio_set_dev(bio, bdev);
441 	bio->bi_iter.bi_sector = first_sector;
442 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
443 	if (dio->is_async)
444 		bio->bi_end_io = dio_bio_end_aio;
445 	else
446 		bio->bi_end_io = dio_bio_end_io;
447 
448 	bio->bi_write_hint = dio->iocb->ki_hint;
449 
450 	sdio->bio = bio;
451 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
452 }
453 
454 /*
455  * In the AIO read case we speculatively dirty the pages before starting IO.
456  * During IO completion, any of these pages which happen to have been written
457  * back will be redirtied by bio_check_pages_dirty().
458  *
459  * bios hold a dio reference between submit_bio and ->end_io.
460  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
462 {
463 	struct bio *bio = sdio->bio;
464 	unsigned long flags;
465 
466 	bio->bi_private = dio;
467 
468 	spin_lock_irqsave(&dio->bio_lock, flags);
469 	dio->refcount++;
470 	spin_unlock_irqrestore(&dio->bio_lock, flags);
471 
472 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
473 		bio_set_pages_dirty(bio);
474 
475 	dio->bio_disk = bio->bi_disk;
476 
477 	if (sdio->submit_io) {
478 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
479 		dio->bio_cookie = BLK_QC_T_NONE;
480 	} else
481 		dio->bio_cookie = submit_bio(bio);
482 
483 	sdio->bio = NULL;
484 	sdio->boundary = 0;
485 	sdio->logical_offset_in_bio = 0;
486 }
487 
488 /*
489  * Release any resources in case of a failure
490  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
492 {
493 	while (sdio->head < sdio->tail)
494 		put_page(dio->pages[sdio->head++]);
495 }
496 
497 /*
498  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
499  * returned once all BIOs have been completed.  This must only be called once
500  * all bios have been issued so that dio->refcount can only decrease.  This
501  * requires that that the caller hold a reference on the dio.
502  */
dio_await_one(struct dio * dio)503 static struct bio *dio_await_one(struct dio *dio)
504 {
505 	unsigned long flags;
506 	struct bio *bio = NULL;
507 
508 	spin_lock_irqsave(&dio->bio_lock, flags);
509 
510 	/*
511 	 * Wait as long as the list is empty and there are bios in flight.  bio
512 	 * completion drops the count, maybe adds to the list, and wakes while
513 	 * holding the bio_lock so we don't need set_current_state()'s barrier
514 	 * and can call it after testing our condition.
515 	 */
516 	while (dio->refcount > 1 && dio->bio_list == NULL) {
517 		__set_current_state(TASK_UNINTERRUPTIBLE);
518 		dio->waiter = current;
519 		spin_unlock_irqrestore(&dio->bio_lock, flags);
520 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
521 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
522 			io_schedule();
523 		/* wake up sets us TASK_RUNNING */
524 		spin_lock_irqsave(&dio->bio_lock, flags);
525 		dio->waiter = NULL;
526 	}
527 	if (dio->bio_list) {
528 		bio = dio->bio_list;
529 		dio->bio_list = bio->bi_private;
530 	}
531 	spin_unlock_irqrestore(&dio->bio_lock, flags);
532 	return bio;
533 }
534 
535 /*
536  * Process one completed BIO.  No locks are held.
537  */
dio_bio_complete(struct dio * dio,struct bio * bio)538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
539 {
540 	blk_status_t err = bio->bi_status;
541 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
542 
543 	if (err) {
544 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
545 			dio->io_error = -EAGAIN;
546 		else
547 			dio->io_error = -EIO;
548 	}
549 
550 	if (dio->is_async && should_dirty) {
551 		bio_check_pages_dirty(bio);	/* transfers ownership */
552 	} else {
553 		bio_release_pages(bio, should_dirty);
554 		bio_put(bio);
555 	}
556 	return err;
557 }
558 
559 /*
560  * Wait on and process all in-flight BIOs.  This must only be called once
561  * all bios have been issued so that the refcount can only decrease.
562  * This just waits for all bios to make it through dio_bio_complete.  IO
563  * errors are propagated through dio->io_error and should be propagated via
564  * dio_complete().
565  */
dio_await_completion(struct dio * dio)566 static void dio_await_completion(struct dio *dio)
567 {
568 	struct bio *bio;
569 	do {
570 		bio = dio_await_one(dio);
571 		if (bio)
572 			dio_bio_complete(dio, bio);
573 	} while (bio);
574 }
575 
576 /*
577  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
578  * to keep the memory consumption sane we periodically reap any completed BIOs
579  * during the BIO generation phase.
580  *
581  * This also helps to limit the peak amount of pinned userspace memory.
582  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)583 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
584 {
585 	int ret = 0;
586 
587 	if (sdio->reap_counter++ >= 64) {
588 		while (dio->bio_list) {
589 			unsigned long flags;
590 			struct bio *bio;
591 			int ret2;
592 
593 			spin_lock_irqsave(&dio->bio_lock, flags);
594 			bio = dio->bio_list;
595 			dio->bio_list = bio->bi_private;
596 			spin_unlock_irqrestore(&dio->bio_lock, flags);
597 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
598 			if (ret == 0)
599 				ret = ret2;
600 		}
601 		sdio->reap_counter = 0;
602 	}
603 	return ret;
604 }
605 
606 /*
607  * Create workqueue for deferred direct IO completions. We allocate the
608  * workqueue when it's first needed. This avoids creating workqueue for
609  * filesystems that don't need it and also allows us to create the workqueue
610  * late enough so the we can include s_id in the name of the workqueue.
611  */
sb_init_dio_done_wq(struct super_block * sb)612 int sb_init_dio_done_wq(struct super_block *sb)
613 {
614 	struct workqueue_struct *old;
615 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
616 						      WQ_MEM_RECLAIM, 0,
617 						      sb->s_id);
618 	if (!wq)
619 		return -ENOMEM;
620 	/*
621 	 * This has to be atomic as more DIOs can race to create the workqueue
622 	 */
623 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
624 	/* Someone created workqueue before us? Free ours... */
625 	if (old)
626 		destroy_workqueue(wq);
627 	return 0;
628 }
629 
dio_set_defer_completion(struct dio * dio)630 static int dio_set_defer_completion(struct dio *dio)
631 {
632 	struct super_block *sb = dio->inode->i_sb;
633 
634 	if (dio->defer_completion)
635 		return 0;
636 	dio->defer_completion = true;
637 	if (!sb->s_dio_done_wq)
638 		return sb_init_dio_done_wq(sb);
639 	return 0;
640 }
641 
642 /*
643  * Call into the fs to map some more disk blocks.  We record the current number
644  * of available blocks at sdio->blocks_available.  These are in units of the
645  * fs blocksize, i_blocksize(inode).
646  *
647  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
648  * it uses the passed inode-relative block number as the file offset, as usual.
649  *
650  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
651  * has remaining to do.  The fs should not map more than this number of blocks.
652  *
653  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
654  * indicate how much contiguous disk space has been made available at
655  * bh->b_blocknr.
656  *
657  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
658  * This isn't very efficient...
659  *
660  * In the case of filesystem holes: the fs may return an arbitrarily-large
661  * hole by returning an appropriate value in b_size and by clearing
662  * buffer_mapped().  However the direct-io code will only process holes one
663  * block at a time - it will repeatedly call get_block() as it walks the hole.
664  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)665 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
666 			   struct buffer_head *map_bh)
667 {
668 	int ret;
669 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
670 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
671 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
672 	int create;
673 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
674 	loff_t i_size;
675 
676 	/*
677 	 * If there was a memory error and we've overwritten all the
678 	 * mapped blocks then we can now return that memory error
679 	 */
680 	ret = dio->page_errors;
681 	if (ret == 0) {
682 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
683 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
684 		fs_endblk = (sdio->final_block_in_request - 1) >>
685 					sdio->blkfactor;
686 		fs_count = fs_endblk - fs_startblk + 1;
687 
688 		map_bh->b_state = 0;
689 		map_bh->b_size = fs_count << i_blkbits;
690 
691 		/*
692 		 * For writes that could fill holes inside i_size on a
693 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
694 		 * overwrites are permitted. We will return early to the caller
695 		 * once we see an unmapped buffer head returned, and the caller
696 		 * will fall back to buffered I/O.
697 		 *
698 		 * Otherwise the decision is left to the get_blocks method,
699 		 * which may decide to handle it or also return an unmapped
700 		 * buffer head.
701 		 */
702 		create = dio->op == REQ_OP_WRITE;
703 		if (dio->flags & DIO_SKIP_HOLES) {
704 			i_size = i_size_read(dio->inode);
705 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
706 				create = 0;
707 		}
708 
709 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
710 						map_bh, create);
711 
712 		/* Store for completion */
713 		dio->private = map_bh->b_private;
714 
715 		if (ret == 0 && buffer_defer_completion(map_bh))
716 			ret = dio_set_defer_completion(dio);
717 	}
718 	return ret;
719 }
720 
721 /*
722  * There is no bio.  Make one now.
723  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)724 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
725 		sector_t start_sector, struct buffer_head *map_bh)
726 {
727 	sector_t sector;
728 	int ret, nr_pages;
729 
730 	ret = dio_bio_reap(dio, sdio);
731 	if (ret)
732 		goto out;
733 	sector = start_sector << (sdio->blkbits - 9);
734 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
735 	BUG_ON(nr_pages <= 0);
736 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
737 	sdio->boundary = 0;
738 out:
739 	return ret;
740 }
741 
742 /*
743  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
744  * that was successful then update final_block_in_bio and take a ref against
745  * the just-added page.
746  *
747  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
748  */
dio_bio_add_page(struct dio_submit * sdio)749 static inline int dio_bio_add_page(struct dio_submit *sdio)
750 {
751 	int ret;
752 
753 	ret = bio_add_page(sdio->bio, sdio->cur_page,
754 			sdio->cur_page_len, sdio->cur_page_offset);
755 	if (ret == sdio->cur_page_len) {
756 		/*
757 		 * Decrement count only, if we are done with this page
758 		 */
759 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
760 			sdio->pages_in_io--;
761 		get_page(sdio->cur_page);
762 		sdio->final_block_in_bio = sdio->cur_page_block +
763 			(sdio->cur_page_len >> sdio->blkbits);
764 		ret = 0;
765 	} else {
766 		ret = 1;
767 	}
768 	return ret;
769 }
770 
771 /*
772  * Put cur_page under IO.  The section of cur_page which is described by
773  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
774  * starts on-disk at cur_page_block.
775  *
776  * We take a ref against the page here (on behalf of its presence in the bio).
777  *
778  * The caller of this function is responsible for removing cur_page from the
779  * dio, and for dropping the refcount which came from that presence.
780  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)781 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
782 		struct buffer_head *map_bh)
783 {
784 	int ret = 0;
785 
786 	if (sdio->bio) {
787 		loff_t cur_offset = sdio->cur_page_fs_offset;
788 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
789 			sdio->bio->bi_iter.bi_size;
790 
791 		/*
792 		 * See whether this new request is contiguous with the old.
793 		 *
794 		 * Btrfs cannot handle having logically non-contiguous requests
795 		 * submitted.  For example if you have
796 		 *
797 		 * Logical:  [0-4095][HOLE][8192-12287]
798 		 * Physical: [0-4095]      [4096-8191]
799 		 *
800 		 * We cannot submit those pages together as one BIO.  So if our
801 		 * current logical offset in the file does not equal what would
802 		 * be the next logical offset in the bio, submit the bio we
803 		 * have.
804 		 */
805 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
806 		    cur_offset != bio_next_offset)
807 			dio_bio_submit(dio, sdio);
808 	}
809 
810 	if (sdio->bio == NULL) {
811 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
812 		if (ret)
813 			goto out;
814 	}
815 
816 	if (dio_bio_add_page(sdio) != 0) {
817 		dio_bio_submit(dio, sdio);
818 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
819 		if (ret == 0) {
820 			ret = dio_bio_add_page(sdio);
821 			BUG_ON(ret != 0);
822 		}
823 	}
824 out:
825 	return ret;
826 }
827 
828 /*
829  * An autonomous function to put a chunk of a page under deferred IO.
830  *
831  * The caller doesn't actually know (or care) whether this piece of page is in
832  * a BIO, or is under IO or whatever.  We just take care of all possible
833  * situations here.  The separation between the logic of do_direct_IO() and
834  * that of submit_page_section() is important for clarity.  Please don't break.
835  *
836  * The chunk of page starts on-disk at blocknr.
837  *
838  * We perform deferred IO, by recording the last-submitted page inside our
839  * private part of the dio structure.  If possible, we just expand the IO
840  * across that page here.
841  *
842  * If that doesn't work out then we put the old page into the bio and add this
843  * page to the dio instead.
844  */
845 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)846 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
847 		    unsigned offset, unsigned len, sector_t blocknr,
848 		    struct buffer_head *map_bh)
849 {
850 	int ret = 0;
851 
852 	if (dio->op == REQ_OP_WRITE) {
853 		/*
854 		 * Read accounting is performed in submit_bio()
855 		 */
856 		task_io_account_write(len);
857 	}
858 
859 	/*
860 	 * Can we just grow the current page's presence in the dio?
861 	 */
862 	if (sdio->cur_page == page &&
863 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
864 	    sdio->cur_page_block +
865 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
866 		sdio->cur_page_len += len;
867 		goto out;
868 	}
869 
870 	/*
871 	 * If there's a deferred page already there then send it.
872 	 */
873 	if (sdio->cur_page) {
874 		ret = dio_send_cur_page(dio, sdio, map_bh);
875 		put_page(sdio->cur_page);
876 		sdio->cur_page = NULL;
877 		if (ret)
878 			return ret;
879 	}
880 
881 	get_page(page);		/* It is in dio */
882 	sdio->cur_page = page;
883 	sdio->cur_page_offset = offset;
884 	sdio->cur_page_len = len;
885 	sdio->cur_page_block = blocknr;
886 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
887 out:
888 	/*
889 	 * If sdio->boundary then we want to schedule the IO now to
890 	 * avoid metadata seeks.
891 	 */
892 	if (sdio->boundary) {
893 		ret = dio_send_cur_page(dio, sdio, map_bh);
894 		if (sdio->bio)
895 			dio_bio_submit(dio, sdio);
896 		put_page(sdio->cur_page);
897 		sdio->cur_page = NULL;
898 	}
899 	return ret;
900 }
901 
902 /*
903  * If we are not writing the entire block and get_block() allocated
904  * the block for us, we need to fill-in the unused portion of the
905  * block with zeros. This happens only if user-buffer, fileoffset or
906  * io length is not filesystem block-size multiple.
907  *
908  * `end' is zero if we're doing the start of the IO, 1 at the end of the
909  * IO.
910  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)911 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
912 		int end, struct buffer_head *map_bh)
913 {
914 	unsigned dio_blocks_per_fs_block;
915 	unsigned this_chunk_blocks;	/* In dio_blocks */
916 	unsigned this_chunk_bytes;
917 	struct page *page;
918 
919 	sdio->start_zero_done = 1;
920 	if (!sdio->blkfactor || !buffer_new(map_bh))
921 		return;
922 
923 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
924 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
925 
926 	if (!this_chunk_blocks)
927 		return;
928 
929 	/*
930 	 * We need to zero out part of an fs block.  It is either at the
931 	 * beginning or the end of the fs block.
932 	 */
933 	if (end)
934 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
935 
936 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
937 
938 	page = ZERO_PAGE(0);
939 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
940 				sdio->next_block_for_io, map_bh))
941 		return;
942 
943 	sdio->next_block_for_io += this_chunk_blocks;
944 }
945 
946 /*
947  * Walk the user pages, and the file, mapping blocks to disk and generating
948  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
949  * into submit_page_section(), which takes care of the next stage of submission
950  *
951  * Direct IO against a blockdev is different from a file.  Because we can
952  * happily perform page-sized but 512-byte aligned IOs.  It is important that
953  * blockdev IO be able to have fine alignment and large sizes.
954  *
955  * So what we do is to permit the ->get_block function to populate bh.b_size
956  * with the size of IO which is permitted at this offset and this i_blkbits.
957  *
958  * For best results, the blockdev should be set up with 512-byte i_blkbits and
959  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
960  * fine alignment but still allows this function to work in PAGE_SIZE units.
961  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)962 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
963 			struct buffer_head *map_bh)
964 {
965 	const unsigned blkbits = sdio->blkbits;
966 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
967 	int ret = 0;
968 
969 	while (sdio->block_in_file < sdio->final_block_in_request) {
970 		struct page *page;
971 		size_t from, to;
972 
973 		page = dio_get_page(dio, sdio);
974 		if (IS_ERR(page)) {
975 			ret = PTR_ERR(page);
976 			goto out;
977 		}
978 		from = sdio->head ? 0 : sdio->from;
979 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
980 		sdio->head++;
981 
982 		while (from < to) {
983 			unsigned this_chunk_bytes;	/* # of bytes mapped */
984 			unsigned this_chunk_blocks;	/* # of blocks */
985 			unsigned u;
986 
987 			if (sdio->blocks_available == 0) {
988 				/*
989 				 * Need to go and map some more disk
990 				 */
991 				unsigned long blkmask;
992 				unsigned long dio_remainder;
993 
994 				ret = get_more_blocks(dio, sdio, map_bh);
995 				if (ret) {
996 					put_page(page);
997 					goto out;
998 				}
999 				if (!buffer_mapped(map_bh))
1000 					goto do_holes;
1001 
1002 				sdio->blocks_available =
1003 						map_bh->b_size >> blkbits;
1004 				sdio->next_block_for_io =
1005 					map_bh->b_blocknr << sdio->blkfactor;
1006 				if (buffer_new(map_bh)) {
1007 					clean_bdev_aliases(
1008 						map_bh->b_bdev,
1009 						map_bh->b_blocknr,
1010 						map_bh->b_size >> i_blkbits);
1011 				}
1012 
1013 				if (!sdio->blkfactor)
1014 					goto do_holes;
1015 
1016 				blkmask = (1 << sdio->blkfactor) - 1;
1017 				dio_remainder = (sdio->block_in_file & blkmask);
1018 
1019 				/*
1020 				 * If we are at the start of IO and that IO
1021 				 * starts partway into a fs-block,
1022 				 * dio_remainder will be non-zero.  If the IO
1023 				 * is a read then we can simply advance the IO
1024 				 * cursor to the first block which is to be
1025 				 * read.  But if the IO is a write and the
1026 				 * block was newly allocated we cannot do that;
1027 				 * the start of the fs block must be zeroed out
1028 				 * on-disk
1029 				 */
1030 				if (!buffer_new(map_bh))
1031 					sdio->next_block_for_io += dio_remainder;
1032 				sdio->blocks_available -= dio_remainder;
1033 			}
1034 do_holes:
1035 			/* Handle holes */
1036 			if (!buffer_mapped(map_bh)) {
1037 				loff_t i_size_aligned;
1038 
1039 				/* AKPM: eargh, -ENOTBLK is a hack */
1040 				if (dio->op == REQ_OP_WRITE) {
1041 					put_page(page);
1042 					return -ENOTBLK;
1043 				}
1044 
1045 				/*
1046 				 * Be sure to account for a partial block as the
1047 				 * last block in the file
1048 				 */
1049 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1050 							1 << blkbits);
1051 				if (sdio->block_in_file >=
1052 						i_size_aligned >> blkbits) {
1053 					/* We hit eof */
1054 					put_page(page);
1055 					goto out;
1056 				}
1057 				zero_user(page, from, 1 << blkbits);
1058 				sdio->block_in_file++;
1059 				from += 1 << blkbits;
1060 				dio->result += 1 << blkbits;
1061 				goto next_block;
1062 			}
1063 
1064 			/*
1065 			 * If we're performing IO which has an alignment which
1066 			 * is finer than the underlying fs, go check to see if
1067 			 * we must zero out the start of this block.
1068 			 */
1069 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1070 				dio_zero_block(dio, sdio, 0, map_bh);
1071 
1072 			/*
1073 			 * Work out, in this_chunk_blocks, how much disk we
1074 			 * can add to this page
1075 			 */
1076 			this_chunk_blocks = sdio->blocks_available;
1077 			u = (to - from) >> blkbits;
1078 			if (this_chunk_blocks > u)
1079 				this_chunk_blocks = u;
1080 			u = sdio->final_block_in_request - sdio->block_in_file;
1081 			if (this_chunk_blocks > u)
1082 				this_chunk_blocks = u;
1083 			this_chunk_bytes = this_chunk_blocks << blkbits;
1084 			BUG_ON(this_chunk_bytes == 0);
1085 
1086 			if (this_chunk_blocks == sdio->blocks_available)
1087 				sdio->boundary = buffer_boundary(map_bh);
1088 			ret = submit_page_section(dio, sdio, page,
1089 						  from,
1090 						  this_chunk_bytes,
1091 						  sdio->next_block_for_io,
1092 						  map_bh);
1093 			if (ret) {
1094 				put_page(page);
1095 				goto out;
1096 			}
1097 			sdio->next_block_for_io += this_chunk_blocks;
1098 
1099 			sdio->block_in_file += this_chunk_blocks;
1100 			from += this_chunk_bytes;
1101 			dio->result += this_chunk_bytes;
1102 			sdio->blocks_available -= this_chunk_blocks;
1103 next_block:
1104 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1105 			if (sdio->block_in_file == sdio->final_block_in_request)
1106 				break;
1107 		}
1108 
1109 		/* Drop the ref which was taken in get_user_pages() */
1110 		put_page(page);
1111 	}
1112 out:
1113 	return ret;
1114 }
1115 
drop_refcount(struct dio * dio)1116 static inline int drop_refcount(struct dio *dio)
1117 {
1118 	int ret2;
1119 	unsigned long flags;
1120 
1121 	/*
1122 	 * Sync will always be dropping the final ref and completing the
1123 	 * operation.  AIO can if it was a broken operation described above or
1124 	 * in fact if all the bios race to complete before we get here.  In
1125 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1126 	 * return code that the caller will hand to ->complete().
1127 	 *
1128 	 * This is managed by the bio_lock instead of being an atomic_t so that
1129 	 * completion paths can drop their ref and use the remaining count to
1130 	 * decide to wake the submission path atomically.
1131 	 */
1132 	spin_lock_irqsave(&dio->bio_lock, flags);
1133 	ret2 = --dio->refcount;
1134 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1135 	return ret2;
1136 }
1137 
1138 /*
1139  * This is a library function for use by filesystem drivers.
1140  *
1141  * The locking rules are governed by the flags parameter:
1142  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1143  *    scheme for dumb filesystems.
1144  *    For writes this function is called under i_mutex and returns with
1145  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1146  *    taken and dropped again before returning.
1147  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1148  *    internal locking but rather rely on the filesystem to synchronize
1149  *    direct I/O reads/writes versus each other and truncate.
1150  *
1151  * To help with locking against truncate we incremented the i_dio_count
1152  * counter before starting direct I/O, and decrement it once we are done.
1153  * Truncate can wait for it to reach zero to provide exclusion.  It is
1154  * expected that filesystem provide exclusion between new direct I/O
1155  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1156  * but other filesystems need to take care of this on their own.
1157  *
1158  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1159  * is always inlined. Otherwise gcc is unable to split the structure into
1160  * individual fields and will generate much worse code. This is important
1161  * for the whole file.
1162  */
1163 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1164 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1165 		      struct block_device *bdev, struct iov_iter *iter,
1166 		      get_block_t get_block, dio_iodone_t end_io,
1167 		      dio_submit_t submit_io, int flags)
1168 {
1169 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1170 	unsigned blkbits = i_blkbits;
1171 	unsigned blocksize_mask = (1 << blkbits) - 1;
1172 	ssize_t retval = -EINVAL;
1173 	const size_t count = iov_iter_count(iter);
1174 	loff_t offset = iocb->ki_pos;
1175 	const loff_t end = offset + count;
1176 	struct dio *dio;
1177 	struct dio_submit sdio = { 0, };
1178 	struct buffer_head map_bh = { 0, };
1179 	struct blk_plug plug;
1180 	unsigned long align = offset | iov_iter_alignment(iter);
1181 
1182 	/*
1183 	 * Avoid references to bdev if not absolutely needed to give
1184 	 * the early prefetch in the caller enough time.
1185 	 */
1186 
1187 	if (align & blocksize_mask) {
1188 		if (bdev)
1189 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1190 		blocksize_mask = (1 << blkbits) - 1;
1191 		if (align & blocksize_mask)
1192 			goto out;
1193 	}
1194 
1195 	/* watch out for a 0 len io from a tricksy fs */
1196 	if (iov_iter_rw(iter) == READ && !count)
1197 		return 0;
1198 
1199 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1200 	retval = -ENOMEM;
1201 	if (!dio)
1202 		goto out;
1203 	/*
1204 	 * Believe it or not, zeroing out the page array caused a .5%
1205 	 * performance regression in a database benchmark.  So, we take
1206 	 * care to only zero out what's needed.
1207 	 */
1208 	memset(dio, 0, offsetof(struct dio, pages));
1209 
1210 	dio->flags = flags;
1211 	if (dio->flags & DIO_LOCKING) {
1212 		if (iov_iter_rw(iter) == READ) {
1213 			struct address_space *mapping =
1214 					iocb->ki_filp->f_mapping;
1215 
1216 			/* will be released by direct_io_worker */
1217 			inode_lock(inode);
1218 
1219 			retval = filemap_write_and_wait_range(mapping, offset,
1220 							      end - 1);
1221 			if (retval) {
1222 				inode_unlock(inode);
1223 				kmem_cache_free(dio_cache, dio);
1224 				goto out;
1225 			}
1226 		}
1227 	}
1228 
1229 	/* Once we sampled i_size check for reads beyond EOF */
1230 	dio->i_size = i_size_read(inode);
1231 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1232 		if (dio->flags & DIO_LOCKING)
1233 			inode_unlock(inode);
1234 		kmem_cache_free(dio_cache, dio);
1235 		retval = 0;
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * For file extending writes updating i_size before data writeouts
1241 	 * complete can expose uninitialized blocks in dumb filesystems.
1242 	 * In that case we need to wait for I/O completion even if asked
1243 	 * for an asynchronous write.
1244 	 */
1245 	if (is_sync_kiocb(iocb))
1246 		dio->is_async = false;
1247 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1248 		dio->is_async = false;
1249 	else
1250 		dio->is_async = true;
1251 
1252 	dio->inode = inode;
1253 	if (iov_iter_rw(iter) == WRITE) {
1254 		dio->op = REQ_OP_WRITE;
1255 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1256 		if (iocb->ki_flags & IOCB_NOWAIT)
1257 			dio->op_flags |= REQ_NOWAIT;
1258 	} else {
1259 		dio->op = REQ_OP_READ;
1260 	}
1261 	if (iocb->ki_flags & IOCB_HIPRI)
1262 		dio->op_flags |= REQ_HIPRI;
1263 
1264 	/*
1265 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1266 	 * so that we can call ->fsync.
1267 	 */
1268 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1269 		retval = 0;
1270 		if (iocb->ki_flags & IOCB_DSYNC)
1271 			retval = dio_set_defer_completion(dio);
1272 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1273 			/*
1274 			 * In case of AIO write racing with buffered read we
1275 			 * need to defer completion. We can't decide this now,
1276 			 * however the workqueue needs to be initialized here.
1277 			 */
1278 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1279 		}
1280 		if (retval) {
1281 			/*
1282 			 * We grab i_mutex only for reads so we don't have
1283 			 * to release it here
1284 			 */
1285 			kmem_cache_free(dio_cache, dio);
1286 			goto out;
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * Will be decremented at I/O completion time.
1292 	 */
1293 	inode_dio_begin(inode);
1294 
1295 	retval = 0;
1296 	sdio.blkbits = blkbits;
1297 	sdio.blkfactor = i_blkbits - blkbits;
1298 	sdio.block_in_file = offset >> blkbits;
1299 
1300 	sdio.get_block = get_block;
1301 	dio->end_io = end_io;
1302 	sdio.submit_io = submit_io;
1303 	sdio.final_block_in_bio = -1;
1304 	sdio.next_block_for_io = -1;
1305 
1306 	dio->iocb = iocb;
1307 
1308 	spin_lock_init(&dio->bio_lock);
1309 	dio->refcount = 1;
1310 
1311 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1312 	sdio.iter = iter;
1313 	sdio.final_block_in_request = end >> blkbits;
1314 
1315 	/*
1316 	 * In case of non-aligned buffers, we may need 2 more
1317 	 * pages since we need to zero out first and last block.
1318 	 */
1319 	if (unlikely(sdio.blkfactor))
1320 		sdio.pages_in_io = 2;
1321 
1322 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1323 
1324 	blk_start_plug(&plug);
1325 
1326 	retval = do_direct_IO(dio, &sdio, &map_bh);
1327 	if (retval)
1328 		dio_cleanup(dio, &sdio);
1329 
1330 	if (retval == -ENOTBLK) {
1331 		/*
1332 		 * The remaining part of the request will be
1333 		 * be handled by buffered I/O when we return
1334 		 */
1335 		retval = 0;
1336 	}
1337 	/*
1338 	 * There may be some unwritten disk at the end of a part-written
1339 	 * fs-block-sized block.  Go zero that now.
1340 	 */
1341 	dio_zero_block(dio, &sdio, 1, &map_bh);
1342 
1343 	if (sdio.cur_page) {
1344 		ssize_t ret2;
1345 
1346 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1347 		if (retval == 0)
1348 			retval = ret2;
1349 		put_page(sdio.cur_page);
1350 		sdio.cur_page = NULL;
1351 	}
1352 	if (sdio.bio)
1353 		dio_bio_submit(dio, &sdio);
1354 
1355 	blk_finish_plug(&plug);
1356 
1357 	/*
1358 	 * It is possible that, we return short IO due to end of file.
1359 	 * In that case, we need to release all the pages we got hold on.
1360 	 */
1361 	dio_cleanup(dio, &sdio);
1362 
1363 	/*
1364 	 * All block lookups have been performed. For READ requests
1365 	 * we can let i_mutex go now that its achieved its purpose
1366 	 * of protecting us from looking up uninitialized blocks.
1367 	 */
1368 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1369 		inode_unlock(dio->inode);
1370 
1371 	/*
1372 	 * The only time we want to leave bios in flight is when a successful
1373 	 * partial aio read or full aio write have been setup.  In that case
1374 	 * bio completion will call aio_complete.  The only time it's safe to
1375 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1376 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1377 	 */
1378 	BUG_ON(retval == -EIOCBQUEUED);
1379 	if (dio->is_async && retval == 0 && dio->result &&
1380 	    (iov_iter_rw(iter) == READ || dio->result == count))
1381 		retval = -EIOCBQUEUED;
1382 	else
1383 		dio_await_completion(dio);
1384 
1385 	if (drop_refcount(dio) == 0) {
1386 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1387 	} else
1388 		BUG_ON(retval != -EIOCBQUEUED);
1389 
1390 out:
1391 	return retval;
1392 }
1393 
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1394 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1395 			     struct block_device *bdev, struct iov_iter *iter,
1396 			     get_block_t get_block,
1397 			     dio_iodone_t end_io, dio_submit_t submit_io,
1398 			     int flags)
1399 {
1400 	/*
1401 	 * The block device state is needed in the end to finally
1402 	 * submit everything.  Since it's likely to be cache cold
1403 	 * prefetch it here as first thing to hide some of the
1404 	 * latency.
1405 	 *
1406 	 * Attempt to prefetch the pieces we likely need later.
1407 	 */
1408 	prefetch(&bdev->bd_disk->part_tbl);
1409 	prefetch(bdev->bd_queue);
1410 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1411 
1412 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1413 				     end_io, submit_io, flags);
1414 }
1415 
1416 EXPORT_SYMBOL(__blockdev_direct_IO);
1417 
dio_init(void)1418 static __init int dio_init(void)
1419 {
1420 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1421 	return 0;
1422 }
1423 module_init(dio_init)
1424