1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "volumes.h"
12 #include "disk-io.h"
13 #include "ordered-data.h"
14 #include "transaction.h"
15 #include "backref.h"
16 #include "extent_io.h"
17 #include "dev-replace.h"
18 #include "check-integrity.h"
19 #include "rcu-string.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 
23 /*
24  * This is only the first step towards a full-features scrub. It reads all
25  * extent and super block and verifies the checksums. In case a bad checksum
26  * is found or the extent cannot be read, good data will be written back if
27  * any can be found.
28  *
29  * Future enhancements:
30  *  - In case an unrepairable extent is encountered, track which files are
31  *    affected and report them
32  *  - track and record media errors, throw out bad devices
33  *  - add a mode to also read unallocated space
34  */
35 
36 struct scrub_block;
37 struct scrub_ctx;
38 
39 /*
40  * the following three values only influence the performance.
41  * The last one configures the number of parallel and outstanding I/O
42  * operations. The first two values configure an upper limit for the number
43  * of (dynamically allocated) pages that are added to a bio.
44  */
45 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
46 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
47 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
48 
49 /*
50  * the following value times PAGE_SIZE needs to be large enough to match the
51  * largest node/leaf/sector size that shall be supported.
52  * Values larger than BTRFS_STRIPE_LEN are not supported.
53  */
54 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
55 
56 struct scrub_recover {
57 	refcount_t		refs;
58 	struct btrfs_bio	*bbio;
59 	u64			map_length;
60 };
61 
62 struct scrub_page {
63 	struct scrub_block	*sblock;
64 	struct page		*page;
65 	struct btrfs_device	*dev;
66 	struct list_head	list;
67 	u64			flags;  /* extent flags */
68 	u64			generation;
69 	u64			logical;
70 	u64			physical;
71 	u64			physical_for_dev_replace;
72 	atomic_t		refs;
73 	struct {
74 		unsigned int	mirror_num:8;
75 		unsigned int	have_csum:1;
76 		unsigned int	io_error:1;
77 	};
78 	u8			csum[BTRFS_CSUM_SIZE];
79 
80 	struct scrub_recover	*recover;
81 };
82 
83 struct scrub_bio {
84 	int			index;
85 	struct scrub_ctx	*sctx;
86 	struct btrfs_device	*dev;
87 	struct bio		*bio;
88 	blk_status_t		status;
89 	u64			logical;
90 	u64			physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 	int			page_count;
97 	int			next_free;
98 	struct btrfs_work	work;
99 };
100 
101 struct scrub_block {
102 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 	int			page_count;
104 	atomic_t		outstanding_pages;
105 	refcount_t		refs; /* free mem on transition to zero */
106 	struct scrub_ctx	*sctx;
107 	struct scrub_parity	*sparity;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 
114 		/* The following is for the data used to check parity */
115 		/* It is for the data with checksum */
116 		unsigned int	data_corrected:1;
117 	};
118 	struct btrfs_work	work;
119 };
120 
121 /* Used for the chunks with parity stripe such RAID5/6 */
122 struct scrub_parity {
123 	struct scrub_ctx	*sctx;
124 
125 	struct btrfs_device	*scrub_dev;
126 
127 	u64			logic_start;
128 
129 	u64			logic_end;
130 
131 	int			nsectors;
132 
133 	u64			stripe_len;
134 
135 	refcount_t		refs;
136 
137 	struct list_head	spages;
138 
139 	/* Work of parity check and repair */
140 	struct btrfs_work	work;
141 
142 	/* Mark the parity blocks which have data */
143 	unsigned long		*dbitmap;
144 
145 	/*
146 	 * Mark the parity blocks which have data, but errors happen when
147 	 * read data or check data
148 	 */
149 	unsigned long		*ebitmap;
150 
151 	unsigned long		bitmap[0];
152 };
153 
154 struct scrub_ctx {
155 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156 	struct btrfs_fs_info	*fs_info;
157 	int			first_free;
158 	int			curr;
159 	atomic_t		bios_in_flight;
160 	atomic_t		workers_pending;
161 	spinlock_t		list_lock;
162 	wait_queue_head_t	list_wait;
163 	u16			csum_size;
164 	struct list_head	csum_list;
165 	atomic_t		cancel_req;
166 	int			readonly;
167 	int			pages_per_rd_bio;
168 
169 	int			is_dev_replace;
170 
171 	struct scrub_bio        *wr_curr_bio;
172 	struct mutex            wr_lock;
173 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
174 	struct btrfs_device     *wr_tgtdev;
175 	bool                    flush_all_writes;
176 
177 	/*
178 	 * statistics
179 	 */
180 	struct btrfs_scrub_progress stat;
181 	spinlock_t		stat_lock;
182 
183 	/*
184 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
185 	 * decrement bios_in_flight and workers_pending and then do a wakeup
186 	 * on the list_wait wait queue. We must ensure the main scrub task
187 	 * doesn't free the scrub context before or while the workers are
188 	 * doing the wakeup() call.
189 	 */
190 	refcount_t              refs;
191 };
192 
193 struct scrub_warning {
194 	struct btrfs_path	*path;
195 	u64			extent_item_size;
196 	const char		*errstr;
197 	u64			physical;
198 	u64			logical;
199 	struct btrfs_device	*dev;
200 };
201 
202 struct full_stripe_lock {
203 	struct rb_node node;
204 	u64 logical;
205 	u64 refs;
206 	struct mutex mutex;
207 };
208 
209 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
210 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213 				     struct scrub_block *sblocks_for_recheck);
214 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 				struct scrub_block *sblock,
216 				int retry_failed_mirror);
217 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219 					     struct scrub_block *sblock_good);
220 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
221 					    struct scrub_block *sblock_good,
222 					    int page_num, int force_write);
223 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
224 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
225 					   int page_num);
226 static int scrub_checksum_data(struct scrub_block *sblock);
227 static int scrub_checksum_tree_block(struct scrub_block *sblock);
228 static int scrub_checksum_super(struct scrub_block *sblock);
229 static void scrub_block_get(struct scrub_block *sblock);
230 static void scrub_block_put(struct scrub_block *sblock);
231 static void scrub_page_get(struct scrub_page *spage);
232 static void scrub_page_put(struct scrub_page *spage);
233 static void scrub_parity_get(struct scrub_parity *sparity);
234 static void scrub_parity_put(struct scrub_parity *sparity);
235 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
236 				    struct scrub_page *spage);
237 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
238 		       u64 physical, struct btrfs_device *dev, u64 flags,
239 		       u64 gen, int mirror_num, u8 *csum, int force,
240 		       u64 physical_for_dev_replace);
241 static void scrub_bio_end_io(struct bio *bio);
242 static void scrub_bio_end_io_worker(struct btrfs_work *work);
243 static void scrub_block_complete(struct scrub_block *sblock);
244 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245 			       u64 extent_logical, u64 extent_len,
246 			       u64 *extent_physical,
247 			       struct btrfs_device **extent_dev,
248 			       int *extent_mirror_num);
249 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
250 				    struct scrub_page *spage);
251 static void scrub_wr_submit(struct scrub_ctx *sctx);
252 static void scrub_wr_bio_end_io(struct bio *bio);
253 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256 static void scrub_put_ctx(struct scrub_ctx *sctx);
257 
scrub_is_page_on_raid56(struct scrub_page * page)258 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
259 {
260 	return page->recover &&
261 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262 }
263 
scrub_pending_bio_inc(struct scrub_ctx * sctx)264 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
265 {
266 	refcount_inc(&sctx->refs);
267 	atomic_inc(&sctx->bios_in_flight);
268 }
269 
scrub_pending_bio_dec(struct scrub_ctx * sctx)270 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
271 {
272 	atomic_dec(&sctx->bios_in_flight);
273 	wake_up(&sctx->list_wait);
274 	scrub_put_ctx(sctx);
275 }
276 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)277 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 {
279 	while (atomic_read(&fs_info->scrub_pause_req)) {
280 		mutex_unlock(&fs_info->scrub_lock);
281 		wait_event(fs_info->scrub_pause_wait,
282 		   atomic_read(&fs_info->scrub_pause_req) == 0);
283 		mutex_lock(&fs_info->scrub_lock);
284 	}
285 }
286 
scrub_pause_on(struct btrfs_fs_info * fs_info)287 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 {
289 	atomic_inc(&fs_info->scrubs_paused);
290 	wake_up(&fs_info->scrub_pause_wait);
291 }
292 
scrub_pause_off(struct btrfs_fs_info * fs_info)293 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
294 {
295 	mutex_lock(&fs_info->scrub_lock);
296 	__scrub_blocked_if_needed(fs_info);
297 	atomic_dec(&fs_info->scrubs_paused);
298 	mutex_unlock(&fs_info->scrub_lock);
299 
300 	wake_up(&fs_info->scrub_pause_wait);
301 }
302 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)303 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
304 {
305 	scrub_pause_on(fs_info);
306 	scrub_pause_off(fs_info);
307 }
308 
309 /*
310  * Insert new full stripe lock into full stripe locks tree
311  *
312  * Return pointer to existing or newly inserted full_stripe_lock structure if
313  * everything works well.
314  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
315  *
316  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317  * function
318  */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)319 static struct full_stripe_lock *insert_full_stripe_lock(
320 		struct btrfs_full_stripe_locks_tree *locks_root,
321 		u64 fstripe_logical)
322 {
323 	struct rb_node **p;
324 	struct rb_node *parent = NULL;
325 	struct full_stripe_lock *entry;
326 	struct full_stripe_lock *ret;
327 
328 	lockdep_assert_held(&locks_root->lock);
329 
330 	p = &locks_root->root.rb_node;
331 	while (*p) {
332 		parent = *p;
333 		entry = rb_entry(parent, struct full_stripe_lock, node);
334 		if (fstripe_logical < entry->logical) {
335 			p = &(*p)->rb_left;
336 		} else if (fstripe_logical > entry->logical) {
337 			p = &(*p)->rb_right;
338 		} else {
339 			entry->refs++;
340 			return entry;
341 		}
342 	}
343 
344 	/*
345 	 * Insert new lock.
346 	 */
347 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
348 	if (!ret)
349 		return ERR_PTR(-ENOMEM);
350 	ret->logical = fstripe_logical;
351 	ret->refs = 1;
352 	mutex_init(&ret->mutex);
353 
354 	rb_link_node(&ret->node, parent, p);
355 	rb_insert_color(&ret->node, &locks_root->root);
356 	return ret;
357 }
358 
359 /*
360  * Search for a full stripe lock of a block group
361  *
362  * Return pointer to existing full stripe lock if found
363  * Return NULL if not found
364  */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)365 static struct full_stripe_lock *search_full_stripe_lock(
366 		struct btrfs_full_stripe_locks_tree *locks_root,
367 		u64 fstripe_logical)
368 {
369 	struct rb_node *node;
370 	struct full_stripe_lock *entry;
371 
372 	lockdep_assert_held(&locks_root->lock);
373 
374 	node = locks_root->root.rb_node;
375 	while (node) {
376 		entry = rb_entry(node, struct full_stripe_lock, node);
377 		if (fstripe_logical < entry->logical)
378 			node = node->rb_left;
379 		else if (fstripe_logical > entry->logical)
380 			node = node->rb_right;
381 		else
382 			return entry;
383 	}
384 	return NULL;
385 }
386 
387 /*
388  * Helper to get full stripe logical from a normal bytenr.
389  *
390  * Caller must ensure @cache is a RAID56 block group.
391  */
get_full_stripe_logical(struct btrfs_block_group_cache * cache,u64 bytenr)392 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
393 				   u64 bytenr)
394 {
395 	u64 ret;
396 
397 	/*
398 	 * Due to chunk item size limit, full stripe length should not be
399 	 * larger than U32_MAX. Just a sanity check here.
400 	 */
401 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402 
403 	/*
404 	 * round_down() can only handle power of 2, while RAID56 full
405 	 * stripe length can be 64KiB * n, so we need to manually round down.
406 	 */
407 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
408 		cache->full_stripe_len + cache->key.objectid;
409 	return ret;
410 }
411 
412 /*
413  * Lock a full stripe to avoid concurrency of recovery and read
414  *
415  * It's only used for profiles with parities (RAID5/6), for other profiles it
416  * does nothing.
417  *
418  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419  * So caller must call unlock_full_stripe() at the same context.
420  *
421  * Return <0 if encounters error.
422  */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 			    bool *locked_ret)
425 {
426 	struct btrfs_block_group_cache *bg_cache;
427 	struct btrfs_full_stripe_locks_tree *locks_root;
428 	struct full_stripe_lock *existing;
429 	u64 fstripe_start;
430 	int ret = 0;
431 
432 	*locked_ret = false;
433 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 	if (!bg_cache) {
435 		ASSERT(0);
436 		return -ENOENT;
437 	}
438 
439 	/* Profiles not based on parity don't need full stripe lock */
440 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 		goto out;
442 	locks_root = &bg_cache->full_stripe_locks_root;
443 
444 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445 
446 	/* Now insert the full stripe lock */
447 	mutex_lock(&locks_root->lock);
448 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 	mutex_unlock(&locks_root->lock);
450 	if (IS_ERR(existing)) {
451 		ret = PTR_ERR(existing);
452 		goto out;
453 	}
454 	mutex_lock(&existing->mutex);
455 	*locked_ret = true;
456 out:
457 	btrfs_put_block_group(bg_cache);
458 	return ret;
459 }
460 
461 /*
462  * Unlock a full stripe.
463  *
464  * NOTE: Caller must ensure it's the same context calling corresponding
465  * lock_full_stripe().
466  *
467  * Return 0 if we unlock full stripe without problem.
468  * Return <0 for error
469  */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 			      bool locked)
472 {
473 	struct btrfs_block_group_cache *bg_cache;
474 	struct btrfs_full_stripe_locks_tree *locks_root;
475 	struct full_stripe_lock *fstripe_lock;
476 	u64 fstripe_start;
477 	bool freeit = false;
478 	int ret = 0;
479 
480 	/* If we didn't acquire full stripe lock, no need to continue */
481 	if (!locked)
482 		return 0;
483 
484 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 	if (!bg_cache) {
486 		ASSERT(0);
487 		return -ENOENT;
488 	}
489 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 		goto out;
491 
492 	locks_root = &bg_cache->full_stripe_locks_root;
493 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494 
495 	mutex_lock(&locks_root->lock);
496 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 	/* Unpaired unlock_full_stripe() detected */
498 	if (!fstripe_lock) {
499 		WARN_ON(1);
500 		ret = -ENOENT;
501 		mutex_unlock(&locks_root->lock);
502 		goto out;
503 	}
504 
505 	if (fstripe_lock->refs == 0) {
506 		WARN_ON(1);
507 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 			fstripe_lock->logical);
509 	} else {
510 		fstripe_lock->refs--;
511 	}
512 
513 	if (fstripe_lock->refs == 0) {
514 		rb_erase(&fstripe_lock->node, &locks_root->root);
515 		freeit = true;
516 	}
517 	mutex_unlock(&locks_root->lock);
518 
519 	mutex_unlock(&fstripe_lock->mutex);
520 	if (freeit)
521 		kfree(fstripe_lock);
522 out:
523 	btrfs_put_block_group(bg_cache);
524 	return ret;
525 }
526 
scrub_free_csums(struct scrub_ctx * sctx)527 static void scrub_free_csums(struct scrub_ctx *sctx)
528 {
529 	while (!list_empty(&sctx->csum_list)) {
530 		struct btrfs_ordered_sum *sum;
531 		sum = list_first_entry(&sctx->csum_list,
532 				       struct btrfs_ordered_sum, list);
533 		list_del(&sum->list);
534 		kfree(sum);
535 	}
536 }
537 
scrub_free_ctx(struct scrub_ctx * sctx)538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
539 {
540 	int i;
541 
542 	if (!sctx)
543 		return;
544 
545 	/* this can happen when scrub is cancelled */
546 	if (sctx->curr != -1) {
547 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 
549 		for (i = 0; i < sbio->page_count; i++) {
550 			WARN_ON(!sbio->pagev[i]->page);
551 			scrub_block_put(sbio->pagev[i]->sblock);
552 		}
553 		bio_put(sbio->bio);
554 	}
555 
556 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557 		struct scrub_bio *sbio = sctx->bios[i];
558 
559 		if (!sbio)
560 			break;
561 		kfree(sbio);
562 	}
563 
564 	kfree(sctx->wr_curr_bio);
565 	scrub_free_csums(sctx);
566 	kfree(sctx);
567 }
568 
scrub_put_ctx(struct scrub_ctx * sctx)569 static void scrub_put_ctx(struct scrub_ctx *sctx)
570 {
571 	if (refcount_dec_and_test(&sctx->refs))
572 		scrub_free_ctx(sctx);
573 }
574 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 		struct btrfs_fs_info *fs_info, int is_dev_replace)
577 {
578 	struct scrub_ctx *sctx;
579 	int		i;
580 
581 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582 	if (!sctx)
583 		goto nomem;
584 	refcount_set(&sctx->refs, 1);
585 	sctx->is_dev_replace = is_dev_replace;
586 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587 	sctx->curr = -1;
588 	sctx->fs_info = fs_info;
589 	INIT_LIST_HEAD(&sctx->csum_list);
590 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
591 		struct scrub_bio *sbio;
592 
593 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
594 		if (!sbio)
595 			goto nomem;
596 		sctx->bios[i] = sbio;
597 
598 		sbio->index = i;
599 		sbio->sctx = sctx;
600 		sbio->page_count = 0;
601 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
602 				scrub_bio_end_io_worker, NULL, NULL);
603 
604 		if (i != SCRUB_BIOS_PER_SCTX - 1)
605 			sctx->bios[i]->next_free = i + 1;
606 		else
607 			sctx->bios[i]->next_free = -1;
608 	}
609 	sctx->first_free = 0;
610 	atomic_set(&sctx->bios_in_flight, 0);
611 	atomic_set(&sctx->workers_pending, 0);
612 	atomic_set(&sctx->cancel_req, 0);
613 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
614 
615 	spin_lock_init(&sctx->list_lock);
616 	spin_lock_init(&sctx->stat_lock);
617 	init_waitqueue_head(&sctx->list_wait);
618 
619 	WARN_ON(sctx->wr_curr_bio != NULL);
620 	mutex_init(&sctx->wr_lock);
621 	sctx->wr_curr_bio = NULL;
622 	if (is_dev_replace) {
623 		WARN_ON(!fs_info->dev_replace.tgtdev);
624 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626 		sctx->flush_all_writes = false;
627 	}
628 
629 	return sctx;
630 
631 nomem:
632 	scrub_free_ctx(sctx);
633 	return ERR_PTR(-ENOMEM);
634 }
635 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 				     void *warn_ctx)
638 {
639 	u64 isize;
640 	u32 nlink;
641 	int ret;
642 	int i;
643 	unsigned nofs_flag;
644 	struct extent_buffer *eb;
645 	struct btrfs_inode_item *inode_item;
646 	struct scrub_warning *swarn = warn_ctx;
647 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 	struct inode_fs_paths *ipath = NULL;
649 	struct btrfs_root *local_root;
650 	struct btrfs_key root_key;
651 	struct btrfs_key key;
652 
653 	root_key.objectid = root;
654 	root_key.type = BTRFS_ROOT_ITEM_KEY;
655 	root_key.offset = (u64)-1;
656 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
657 	if (IS_ERR(local_root)) {
658 		ret = PTR_ERR(local_root);
659 		goto err;
660 	}
661 
662 	/*
663 	 * this makes the path point to (inum INODE_ITEM ioff)
664 	 */
665 	key.objectid = inum;
666 	key.type = BTRFS_INODE_ITEM_KEY;
667 	key.offset = 0;
668 
669 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
670 	if (ret) {
671 		btrfs_release_path(swarn->path);
672 		goto err;
673 	}
674 
675 	eb = swarn->path->nodes[0];
676 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
677 					struct btrfs_inode_item);
678 	isize = btrfs_inode_size(eb, inode_item);
679 	nlink = btrfs_inode_nlink(eb, inode_item);
680 	btrfs_release_path(swarn->path);
681 
682 	/*
683 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
684 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
685 	 * not seem to be strictly necessary.
686 	 */
687 	nofs_flag = memalloc_nofs_save();
688 	ipath = init_ipath(4096, local_root, swarn->path);
689 	memalloc_nofs_restore(nofs_flag);
690 	if (IS_ERR(ipath)) {
691 		ret = PTR_ERR(ipath);
692 		ipath = NULL;
693 		goto err;
694 	}
695 	ret = paths_from_inode(inum, ipath);
696 
697 	if (ret < 0)
698 		goto err;
699 
700 	/*
701 	 * we deliberately ignore the bit ipath might have been too small to
702 	 * hold all of the paths here
703 	 */
704 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
705 		btrfs_warn_in_rcu(fs_info,
706 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
707 				  swarn->errstr, swarn->logical,
708 				  rcu_str_deref(swarn->dev->name),
709 				  swarn->physical,
710 				  root, inum, offset,
711 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
712 				  (char *)(unsigned long)ipath->fspath->val[i]);
713 
714 	free_ipath(ipath);
715 	return 0;
716 
717 err:
718 	btrfs_warn_in_rcu(fs_info,
719 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
720 			  swarn->errstr, swarn->logical,
721 			  rcu_str_deref(swarn->dev->name),
722 			  swarn->physical,
723 			  root, inum, offset, ret);
724 
725 	free_ipath(ipath);
726 	return 0;
727 }
728 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)729 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
730 {
731 	struct btrfs_device *dev;
732 	struct btrfs_fs_info *fs_info;
733 	struct btrfs_path *path;
734 	struct btrfs_key found_key;
735 	struct extent_buffer *eb;
736 	struct btrfs_extent_item *ei;
737 	struct scrub_warning swarn;
738 	unsigned long ptr = 0;
739 	u64 extent_item_pos;
740 	u64 flags = 0;
741 	u64 ref_root;
742 	u32 item_size;
743 	u8 ref_level = 0;
744 	int ret;
745 
746 	WARN_ON(sblock->page_count < 1);
747 	dev = sblock->pagev[0]->dev;
748 	fs_info = sblock->sctx->fs_info;
749 
750 	path = btrfs_alloc_path();
751 	if (!path)
752 		return;
753 
754 	swarn.physical = sblock->pagev[0]->physical;
755 	swarn.logical = sblock->pagev[0]->logical;
756 	swarn.errstr = errstr;
757 	swarn.dev = NULL;
758 
759 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
760 				  &flags);
761 	if (ret < 0)
762 		goto out;
763 
764 	extent_item_pos = swarn.logical - found_key.objectid;
765 	swarn.extent_item_size = found_key.offset;
766 
767 	eb = path->nodes[0];
768 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
769 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
770 
771 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
772 		do {
773 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
774 						      item_size, &ref_root,
775 						      &ref_level);
776 			btrfs_warn_in_rcu(fs_info,
777 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
778 				errstr, swarn.logical,
779 				rcu_str_deref(dev->name),
780 				swarn.physical,
781 				ref_level ? "node" : "leaf",
782 				ret < 0 ? -1 : ref_level,
783 				ret < 0 ? -1 : ref_root);
784 		} while (ret != 1);
785 		btrfs_release_path(path);
786 	} else {
787 		btrfs_release_path(path);
788 		swarn.path = path;
789 		swarn.dev = dev;
790 		iterate_extent_inodes(fs_info, found_key.objectid,
791 					extent_item_pos, 1,
792 					scrub_print_warning_inode, &swarn, false);
793 	}
794 
795 out:
796 	btrfs_free_path(path);
797 }
798 
scrub_get_recover(struct scrub_recover * recover)799 static inline void scrub_get_recover(struct scrub_recover *recover)
800 {
801 	refcount_inc(&recover->refs);
802 }
803 
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)804 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
805 				     struct scrub_recover *recover)
806 {
807 	if (refcount_dec_and_test(&recover->refs)) {
808 		btrfs_bio_counter_dec(fs_info);
809 		btrfs_put_bbio(recover->bbio);
810 		kfree(recover);
811 	}
812 }
813 
814 /*
815  * scrub_handle_errored_block gets called when either verification of the
816  * pages failed or the bio failed to read, e.g. with EIO. In the latter
817  * case, this function handles all pages in the bio, even though only one
818  * may be bad.
819  * The goal of this function is to repair the errored block by using the
820  * contents of one of the mirrors.
821  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)822 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
823 {
824 	struct scrub_ctx *sctx = sblock_to_check->sctx;
825 	struct btrfs_device *dev;
826 	struct btrfs_fs_info *fs_info;
827 	u64 logical;
828 	unsigned int failed_mirror_index;
829 	unsigned int is_metadata;
830 	unsigned int have_csum;
831 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
832 	struct scrub_block *sblock_bad;
833 	int ret;
834 	int mirror_index;
835 	int page_num;
836 	int success;
837 	bool full_stripe_locked;
838 	unsigned int nofs_flag;
839 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
840 				      DEFAULT_RATELIMIT_BURST);
841 
842 	BUG_ON(sblock_to_check->page_count < 1);
843 	fs_info = sctx->fs_info;
844 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
845 		/*
846 		 * if we find an error in a super block, we just report it.
847 		 * They will get written with the next transaction commit
848 		 * anyway
849 		 */
850 		spin_lock(&sctx->stat_lock);
851 		++sctx->stat.super_errors;
852 		spin_unlock(&sctx->stat_lock);
853 		return 0;
854 	}
855 	logical = sblock_to_check->pagev[0]->logical;
856 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
857 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
858 	is_metadata = !(sblock_to_check->pagev[0]->flags &
859 			BTRFS_EXTENT_FLAG_DATA);
860 	have_csum = sblock_to_check->pagev[0]->have_csum;
861 	dev = sblock_to_check->pagev[0]->dev;
862 
863 	/*
864 	 * We must use GFP_NOFS because the scrub task might be waiting for a
865 	 * worker task executing this function and in turn a transaction commit
866 	 * might be waiting the scrub task to pause (which needs to wait for all
867 	 * the worker tasks to complete before pausing).
868 	 * We do allocations in the workers through insert_full_stripe_lock()
869 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
870 	 * this function.
871 	 */
872 	nofs_flag = memalloc_nofs_save();
873 	/*
874 	 * For RAID5/6, race can happen for a different device scrub thread.
875 	 * For data corruption, Parity and Data threads will both try
876 	 * to recovery the data.
877 	 * Race can lead to doubly added csum error, or even unrecoverable
878 	 * error.
879 	 */
880 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
881 	if (ret < 0) {
882 		memalloc_nofs_restore(nofs_flag);
883 		spin_lock(&sctx->stat_lock);
884 		if (ret == -ENOMEM)
885 			sctx->stat.malloc_errors++;
886 		sctx->stat.read_errors++;
887 		sctx->stat.uncorrectable_errors++;
888 		spin_unlock(&sctx->stat_lock);
889 		return ret;
890 	}
891 
892 	/*
893 	 * read all mirrors one after the other. This includes to
894 	 * re-read the extent or metadata block that failed (that was
895 	 * the cause that this fixup code is called) another time,
896 	 * page by page this time in order to know which pages
897 	 * caused I/O errors and which ones are good (for all mirrors).
898 	 * It is the goal to handle the situation when more than one
899 	 * mirror contains I/O errors, but the errors do not
900 	 * overlap, i.e. the data can be repaired by selecting the
901 	 * pages from those mirrors without I/O error on the
902 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
903 	 * would be that mirror #1 has an I/O error on the first page,
904 	 * the second page is good, and mirror #2 has an I/O error on
905 	 * the second page, but the first page is good.
906 	 * Then the first page of the first mirror can be repaired by
907 	 * taking the first page of the second mirror, and the
908 	 * second page of the second mirror can be repaired by
909 	 * copying the contents of the 2nd page of the 1st mirror.
910 	 * One more note: if the pages of one mirror contain I/O
911 	 * errors, the checksum cannot be verified. In order to get
912 	 * the best data for repairing, the first attempt is to find
913 	 * a mirror without I/O errors and with a validated checksum.
914 	 * Only if this is not possible, the pages are picked from
915 	 * mirrors with I/O errors without considering the checksum.
916 	 * If the latter is the case, at the end, the checksum of the
917 	 * repaired area is verified in order to correctly maintain
918 	 * the statistics.
919 	 */
920 
921 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
922 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
923 	if (!sblocks_for_recheck) {
924 		spin_lock(&sctx->stat_lock);
925 		sctx->stat.malloc_errors++;
926 		sctx->stat.read_errors++;
927 		sctx->stat.uncorrectable_errors++;
928 		spin_unlock(&sctx->stat_lock);
929 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
930 		goto out;
931 	}
932 
933 	/* setup the context, map the logical blocks and alloc the pages */
934 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
935 	if (ret) {
936 		spin_lock(&sctx->stat_lock);
937 		sctx->stat.read_errors++;
938 		sctx->stat.uncorrectable_errors++;
939 		spin_unlock(&sctx->stat_lock);
940 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 		goto out;
942 	}
943 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
944 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
945 
946 	/* build and submit the bios for the failed mirror, check checksums */
947 	scrub_recheck_block(fs_info, sblock_bad, 1);
948 
949 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
950 	    sblock_bad->no_io_error_seen) {
951 		/*
952 		 * the error disappeared after reading page by page, or
953 		 * the area was part of a huge bio and other parts of the
954 		 * bio caused I/O errors, or the block layer merged several
955 		 * read requests into one and the error is caused by a
956 		 * different bio (usually one of the two latter cases is
957 		 * the cause)
958 		 */
959 		spin_lock(&sctx->stat_lock);
960 		sctx->stat.unverified_errors++;
961 		sblock_to_check->data_corrected = 1;
962 		spin_unlock(&sctx->stat_lock);
963 
964 		if (sctx->is_dev_replace)
965 			scrub_write_block_to_dev_replace(sblock_bad);
966 		goto out;
967 	}
968 
969 	if (!sblock_bad->no_io_error_seen) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		if (__ratelimit(&_rs))
974 			scrub_print_warning("i/o error", sblock_to_check);
975 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 	} else if (sblock_bad->checksum_error) {
977 		spin_lock(&sctx->stat_lock);
978 		sctx->stat.csum_errors++;
979 		spin_unlock(&sctx->stat_lock);
980 		if (__ratelimit(&_rs))
981 			scrub_print_warning("checksum error", sblock_to_check);
982 		btrfs_dev_stat_inc_and_print(dev,
983 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
984 	} else if (sblock_bad->header_error) {
985 		spin_lock(&sctx->stat_lock);
986 		sctx->stat.verify_errors++;
987 		spin_unlock(&sctx->stat_lock);
988 		if (__ratelimit(&_rs))
989 			scrub_print_warning("checksum/header error",
990 					    sblock_to_check);
991 		if (sblock_bad->generation_error)
992 			btrfs_dev_stat_inc_and_print(dev,
993 				BTRFS_DEV_STAT_GENERATION_ERRS);
994 		else
995 			btrfs_dev_stat_inc_and_print(dev,
996 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
997 	}
998 
999 	if (sctx->readonly) {
1000 		ASSERT(!sctx->is_dev_replace);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 * now build and submit the bios for the other mirrors, check
1006 	 * checksums.
1007 	 * First try to pick the mirror which is completely without I/O
1008 	 * errors and also does not have a checksum error.
1009 	 * If one is found, and if a checksum is present, the full block
1010 	 * that is known to contain an error is rewritten. Afterwards
1011 	 * the block is known to be corrected.
1012 	 * If a mirror is found which is completely correct, and no
1013 	 * checksum is present, only those pages are rewritten that had
1014 	 * an I/O error in the block to be repaired, since it cannot be
1015 	 * determined, which copy of the other pages is better (and it
1016 	 * could happen otherwise that a correct page would be
1017 	 * overwritten by a bad one).
1018 	 */
1019 	for (mirror_index = 0; ;mirror_index++) {
1020 		struct scrub_block *sblock_other;
1021 
1022 		if (mirror_index == failed_mirror_index)
1023 			continue;
1024 
1025 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028 				break;
1029 			if (!sblocks_for_recheck[mirror_index].page_count)
1030 				break;
1031 
1032 			sblock_other = sblocks_for_recheck + mirror_index;
1033 		} else {
1034 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035 			int max_allowed = r->bbio->num_stripes -
1036 						r->bbio->num_tgtdevs;
1037 
1038 			if (mirror_index >= max_allowed)
1039 				break;
1040 			if (!sblocks_for_recheck[1].page_count)
1041 				break;
1042 
1043 			ASSERT(failed_mirror_index == 0);
1044 			sblock_other = sblocks_for_recheck + 1;
1045 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046 		}
1047 
1048 		/* build and submit the bios, check checksums */
1049 		scrub_recheck_block(fs_info, sblock_other, 0);
1050 
1051 		if (!sblock_other->header_error &&
1052 		    !sblock_other->checksum_error &&
1053 		    sblock_other->no_io_error_seen) {
1054 			if (sctx->is_dev_replace) {
1055 				scrub_write_block_to_dev_replace(sblock_other);
1056 				goto corrected_error;
1057 			} else {
1058 				ret = scrub_repair_block_from_good_copy(
1059 						sblock_bad, sblock_other);
1060 				if (!ret)
1061 					goto corrected_error;
1062 			}
1063 		}
1064 	}
1065 
1066 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067 		goto did_not_correct_error;
1068 
1069 	/*
1070 	 * In case of I/O errors in the area that is supposed to be
1071 	 * repaired, continue by picking good copies of those pages.
1072 	 * Select the good pages from mirrors to rewrite bad pages from
1073 	 * the area to fix. Afterwards verify the checksum of the block
1074 	 * that is supposed to be repaired. This verification step is
1075 	 * only done for the purpose of statistic counting and for the
1076 	 * final scrub report, whether errors remain.
1077 	 * A perfect algorithm could make use of the checksum and try
1078 	 * all possible combinations of pages from the different mirrors
1079 	 * until the checksum verification succeeds. For example, when
1080 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 	 * of mirror #2 is readable but the final checksum test fails,
1082 	 * then the 2nd page of mirror #3 could be tried, whether now
1083 	 * the final checksum succeeds. But this would be a rare
1084 	 * exception and is therefore not implemented. At least it is
1085 	 * avoided that the good copy is overwritten.
1086 	 * A more useful improvement would be to pick the sectors
1087 	 * without I/O error based on sector sizes (512 bytes on legacy
1088 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 	 * mirror could be repaired by taking 512 byte of a different
1090 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 	 * area are unreadable.
1092 	 */
1093 	success = 1;
1094 	for (page_num = 0; page_num < sblock_bad->page_count;
1095 	     page_num++) {
1096 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097 		struct scrub_block *sblock_other = NULL;
1098 
1099 		/* skip no-io-error page in scrub */
1100 		if (!page_bad->io_error && !sctx->is_dev_replace)
1101 			continue;
1102 
1103 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104 			/*
1105 			 * In case of dev replace, if raid56 rebuild process
1106 			 * didn't work out correct data, then copy the content
1107 			 * in sblock_bad to make sure target device is identical
1108 			 * to source device, instead of writing garbage data in
1109 			 * sblock_for_recheck array to target device.
1110 			 */
1111 			sblock_other = NULL;
1112 		} else if (page_bad->io_error) {
1113 			/* try to find no-io-error page in mirrors */
1114 			for (mirror_index = 0;
1115 			     mirror_index < BTRFS_MAX_MIRRORS &&
1116 			     sblocks_for_recheck[mirror_index].page_count > 0;
1117 			     mirror_index++) {
1118 				if (!sblocks_for_recheck[mirror_index].
1119 				    pagev[page_num]->io_error) {
1120 					sblock_other = sblocks_for_recheck +
1121 						       mirror_index;
1122 					break;
1123 				}
1124 			}
1125 			if (!sblock_other)
1126 				success = 0;
1127 		}
1128 
1129 		if (sctx->is_dev_replace) {
1130 			/*
1131 			 * did not find a mirror to fetch the page
1132 			 * from. scrub_write_page_to_dev_replace()
1133 			 * handles this case (page->io_error), by
1134 			 * filling the block with zeros before
1135 			 * submitting the write request
1136 			 */
1137 			if (!sblock_other)
1138 				sblock_other = sblock_bad;
1139 
1140 			if (scrub_write_page_to_dev_replace(sblock_other,
1141 							    page_num) != 0) {
1142 				atomic64_inc(
1143 					&fs_info->dev_replace.num_write_errors);
1144 				success = 0;
1145 			}
1146 		} else if (sblock_other) {
1147 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148 							       sblock_other,
1149 							       page_num, 0);
1150 			if (0 == ret)
1151 				page_bad->io_error = 0;
1152 			else
1153 				success = 0;
1154 		}
1155 	}
1156 
1157 	if (success && !sctx->is_dev_replace) {
1158 		if (is_metadata || have_csum) {
1159 			/*
1160 			 * need to verify the checksum now that all
1161 			 * sectors on disk are repaired (the write
1162 			 * request for data to be repaired is on its way).
1163 			 * Just be lazy and use scrub_recheck_block()
1164 			 * which re-reads the data before the checksum
1165 			 * is verified, but most likely the data comes out
1166 			 * of the page cache.
1167 			 */
1168 			scrub_recheck_block(fs_info, sblock_bad, 1);
1169 			if (!sblock_bad->header_error &&
1170 			    !sblock_bad->checksum_error &&
1171 			    sblock_bad->no_io_error_seen)
1172 				goto corrected_error;
1173 			else
1174 				goto did_not_correct_error;
1175 		} else {
1176 corrected_error:
1177 			spin_lock(&sctx->stat_lock);
1178 			sctx->stat.corrected_errors++;
1179 			sblock_to_check->data_corrected = 1;
1180 			spin_unlock(&sctx->stat_lock);
1181 			btrfs_err_rl_in_rcu(fs_info,
1182 				"fixed up error at logical %llu on dev %s",
1183 				logical, rcu_str_deref(dev->name));
1184 		}
1185 	} else {
1186 did_not_correct_error:
1187 		spin_lock(&sctx->stat_lock);
1188 		sctx->stat.uncorrectable_errors++;
1189 		spin_unlock(&sctx->stat_lock);
1190 		btrfs_err_rl_in_rcu(fs_info,
1191 			"unable to fixup (regular) error at logical %llu on dev %s",
1192 			logical, rcu_str_deref(dev->name));
1193 	}
1194 
1195 out:
1196 	if (sblocks_for_recheck) {
1197 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198 		     mirror_index++) {
1199 			struct scrub_block *sblock = sblocks_for_recheck +
1200 						     mirror_index;
1201 			struct scrub_recover *recover;
1202 			int page_index;
1203 
1204 			for (page_index = 0; page_index < sblock->page_count;
1205 			     page_index++) {
1206 				sblock->pagev[page_index]->sblock = NULL;
1207 				recover = sblock->pagev[page_index]->recover;
1208 				if (recover) {
1209 					scrub_put_recover(fs_info, recover);
1210 					sblock->pagev[page_index]->recover =
1211 									NULL;
1212 				}
1213 				scrub_page_put(sblock->pagev[page_index]);
1214 			}
1215 		}
1216 		kfree(sblocks_for_recheck);
1217 	}
1218 
1219 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220 	memalloc_nofs_restore(nofs_flag);
1221 	if (ret < 0)
1222 		return ret;
1223 	return 0;
1224 }
1225 
scrub_nr_raid_mirrors(struct btrfs_bio * bbio)1226 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227 {
1228 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229 		return 2;
1230 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231 		return 3;
1232 	else
1233 		return (int)bbio->num_stripes;
1234 }
1235 
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1236 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237 						 u64 *raid_map,
1238 						 u64 mapped_length,
1239 						 int nstripes, int mirror,
1240 						 int *stripe_index,
1241 						 u64 *stripe_offset)
1242 {
1243 	int i;
1244 
1245 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246 		/* RAID5/6 */
1247 		for (i = 0; i < nstripes; i++) {
1248 			if (raid_map[i] == RAID6_Q_STRIPE ||
1249 			    raid_map[i] == RAID5_P_STRIPE)
1250 				continue;
1251 
1252 			if (logical >= raid_map[i] &&
1253 			    logical < raid_map[i] + mapped_length)
1254 				break;
1255 		}
1256 
1257 		*stripe_index = i;
1258 		*stripe_offset = logical - raid_map[i];
1259 	} else {
1260 		/* The other RAID type */
1261 		*stripe_index = mirror;
1262 		*stripe_offset = 0;
1263 	}
1264 }
1265 
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1266 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267 				     struct scrub_block *sblocks_for_recheck)
1268 {
1269 	struct scrub_ctx *sctx = original_sblock->sctx;
1270 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271 	u64 length = original_sblock->page_count * PAGE_SIZE;
1272 	u64 logical = original_sblock->pagev[0]->logical;
1273 	u64 generation = original_sblock->pagev[0]->generation;
1274 	u64 flags = original_sblock->pagev[0]->flags;
1275 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276 	struct scrub_recover *recover;
1277 	struct btrfs_bio *bbio;
1278 	u64 sublen;
1279 	u64 mapped_length;
1280 	u64 stripe_offset;
1281 	int stripe_index;
1282 	int page_index = 0;
1283 	int mirror_index;
1284 	int nmirrors;
1285 	int ret;
1286 
1287 	/*
1288 	 * note: the two members refs and outstanding_pages
1289 	 * are not used (and not set) in the blocks that are used for
1290 	 * the recheck procedure
1291 	 */
1292 
1293 	while (length > 0) {
1294 		sublen = min_t(u64, length, PAGE_SIZE);
1295 		mapped_length = sublen;
1296 		bbio = NULL;
1297 
1298 		/*
1299 		 * with a length of PAGE_SIZE, each returned stripe
1300 		 * represents one mirror
1301 		 */
1302 		btrfs_bio_counter_inc_blocked(fs_info);
1303 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304 				logical, &mapped_length, &bbio);
1305 		if (ret || !bbio || mapped_length < sublen) {
1306 			btrfs_put_bbio(bbio);
1307 			btrfs_bio_counter_dec(fs_info);
1308 			return -EIO;
1309 		}
1310 
1311 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312 		if (!recover) {
1313 			btrfs_put_bbio(bbio);
1314 			btrfs_bio_counter_dec(fs_info);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		refcount_set(&recover->refs, 1);
1319 		recover->bbio = bbio;
1320 		recover->map_length = mapped_length;
1321 
1322 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323 
1324 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325 
1326 		for (mirror_index = 0; mirror_index < nmirrors;
1327 		     mirror_index++) {
1328 			struct scrub_block *sblock;
1329 			struct scrub_page *page;
1330 
1331 			sblock = sblocks_for_recheck + mirror_index;
1332 			sblock->sctx = sctx;
1333 
1334 			page = kzalloc(sizeof(*page), GFP_NOFS);
1335 			if (!page) {
1336 leave_nomem:
1337 				spin_lock(&sctx->stat_lock);
1338 				sctx->stat.malloc_errors++;
1339 				spin_unlock(&sctx->stat_lock);
1340 				scrub_put_recover(fs_info, recover);
1341 				return -ENOMEM;
1342 			}
1343 			scrub_page_get(page);
1344 			sblock->pagev[page_index] = page;
1345 			page->sblock = sblock;
1346 			page->flags = flags;
1347 			page->generation = generation;
1348 			page->logical = logical;
1349 			page->have_csum = have_csum;
1350 			if (have_csum)
1351 				memcpy(page->csum,
1352 				       original_sblock->pagev[0]->csum,
1353 				       sctx->csum_size);
1354 
1355 			scrub_stripe_index_and_offset(logical,
1356 						      bbio->map_type,
1357 						      bbio->raid_map,
1358 						      mapped_length,
1359 						      bbio->num_stripes -
1360 						      bbio->num_tgtdevs,
1361 						      mirror_index,
1362 						      &stripe_index,
1363 						      &stripe_offset);
1364 			page->physical = bbio->stripes[stripe_index].physical +
1365 					 stripe_offset;
1366 			page->dev = bbio->stripes[stripe_index].dev;
1367 
1368 			BUG_ON(page_index >= original_sblock->page_count);
1369 			page->physical_for_dev_replace =
1370 				original_sblock->pagev[page_index]->
1371 				physical_for_dev_replace;
1372 			/* for missing devices, dev->bdev is NULL */
1373 			page->mirror_num = mirror_index + 1;
1374 			sblock->page_count++;
1375 			page->page = alloc_page(GFP_NOFS);
1376 			if (!page->page)
1377 				goto leave_nomem;
1378 
1379 			scrub_get_recover(recover);
1380 			page->recover = recover;
1381 		}
1382 		scrub_put_recover(fs_info, recover);
1383 		length -= sublen;
1384 		logical += sublen;
1385 		page_index++;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
scrub_bio_wait_endio(struct bio * bio)1391 static void scrub_bio_wait_endio(struct bio *bio)
1392 {
1393 	complete(bio->bi_private);
1394 }
1395 
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * page)1396 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397 					struct bio *bio,
1398 					struct scrub_page *page)
1399 {
1400 	DECLARE_COMPLETION_ONSTACK(done);
1401 	int ret;
1402 	int mirror_num;
1403 
1404 	bio->bi_iter.bi_sector = page->logical >> 9;
1405 	bio->bi_private = &done;
1406 	bio->bi_end_io = scrub_bio_wait_endio;
1407 
1408 	mirror_num = page->sblock->pagev[0]->mirror_num;
1409 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410 				    page->recover->map_length,
1411 				    mirror_num, 0);
1412 	if (ret)
1413 		return ret;
1414 
1415 	wait_for_completion_io(&done);
1416 	return blk_status_to_errno(bio->bi_status);
1417 }
1418 
scrub_recheck_block_on_raid56(struct btrfs_fs_info * fs_info,struct scrub_block * sblock)1419 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420 					  struct scrub_block *sblock)
1421 {
1422 	struct scrub_page *first_page = sblock->pagev[0];
1423 	struct bio *bio;
1424 	int page_num;
1425 
1426 	/* All pages in sblock belong to the same stripe on the same device. */
1427 	ASSERT(first_page->dev);
1428 	if (!first_page->dev->bdev)
1429 		goto out;
1430 
1431 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432 	bio_set_dev(bio, first_page->dev->bdev);
1433 
1434 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435 		struct scrub_page *page = sblock->pagev[page_num];
1436 
1437 		WARN_ON(!page->page);
1438 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439 	}
1440 
1441 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442 		bio_put(bio);
1443 		goto out;
1444 	}
1445 
1446 	bio_put(bio);
1447 
1448 	scrub_recheck_block_checksum(sblock);
1449 
1450 	return;
1451 out:
1452 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453 		sblock->pagev[page_num]->io_error = 1;
1454 
1455 	sblock->no_io_error_seen = 0;
1456 }
1457 
1458 /*
1459  * this function will check the on disk data for checksum errors, header
1460  * errors and read I/O errors. If any I/O errors happen, the exact pages
1461  * which are errored are marked as being bad. The goal is to enable scrub
1462  * to take those pages that are not errored from all the mirrors so that
1463  * the pages that are errored in the just handled mirror can be repaired.
1464  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1465 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466 				struct scrub_block *sblock,
1467 				int retry_failed_mirror)
1468 {
1469 	int page_num;
1470 
1471 	sblock->no_io_error_seen = 1;
1472 
1473 	/* short cut for raid56 */
1474 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1476 
1477 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478 		struct bio *bio;
1479 		struct scrub_page *page = sblock->pagev[page_num];
1480 
1481 		if (page->dev->bdev == NULL) {
1482 			page->io_error = 1;
1483 			sblock->no_io_error_seen = 0;
1484 			continue;
1485 		}
1486 
1487 		WARN_ON(!page->page);
1488 		bio = btrfs_io_bio_alloc(1);
1489 		bio_set_dev(bio, page->dev->bdev);
1490 
1491 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492 		bio->bi_iter.bi_sector = page->physical >> 9;
1493 		bio->bi_opf = REQ_OP_READ;
1494 
1495 		if (btrfsic_submit_bio_wait(bio)) {
1496 			page->io_error = 1;
1497 			sblock->no_io_error_seen = 0;
1498 		}
1499 
1500 		bio_put(bio);
1501 	}
1502 
1503 	if (sblock->no_io_error_seen)
1504 		scrub_recheck_block_checksum(sblock);
1505 }
1506 
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1507 static inline int scrub_check_fsid(u8 fsid[],
1508 				   struct scrub_page *spage)
1509 {
1510 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511 	int ret;
1512 
1513 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514 	return !ret;
1515 }
1516 
scrub_recheck_block_checksum(struct scrub_block * sblock)1517 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518 {
1519 	sblock->header_error = 0;
1520 	sblock->checksum_error = 0;
1521 	sblock->generation_error = 0;
1522 
1523 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524 		scrub_checksum_data(sblock);
1525 	else
1526 		scrub_checksum_tree_block(sblock);
1527 }
1528 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1529 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530 					     struct scrub_block *sblock_good)
1531 {
1532 	int page_num;
1533 	int ret = 0;
1534 
1535 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536 		int ret_sub;
1537 
1538 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539 							   sblock_good,
1540 							   page_num, 1);
1541 		if (ret_sub)
1542 			ret = ret_sub;
1543 	}
1544 
1545 	return ret;
1546 }
1547 
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1548 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549 					    struct scrub_block *sblock_good,
1550 					    int page_num, int force_write)
1551 {
1552 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555 
1556 	BUG_ON(page_bad->page == NULL);
1557 	BUG_ON(page_good->page == NULL);
1558 	if (force_write || sblock_bad->header_error ||
1559 	    sblock_bad->checksum_error || page_bad->io_error) {
1560 		struct bio *bio;
1561 		int ret;
1562 
1563 		if (!page_bad->dev->bdev) {
1564 			btrfs_warn_rl(fs_info,
1565 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566 			return -EIO;
1567 		}
1568 
1569 		bio = btrfs_io_bio_alloc(1);
1570 		bio_set_dev(bio, page_bad->dev->bdev);
1571 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572 		bio->bi_opf = REQ_OP_WRITE;
1573 
1574 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575 		if (PAGE_SIZE != ret) {
1576 			bio_put(bio);
1577 			return -EIO;
1578 		}
1579 
1580 		if (btrfsic_submit_bio_wait(bio)) {
1581 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1582 				BTRFS_DEV_STAT_WRITE_ERRS);
1583 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584 			bio_put(bio);
1585 			return -EIO;
1586 		}
1587 		bio_put(bio);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1593 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594 {
1595 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596 	int page_num;
1597 
1598 	/*
1599 	 * This block is used for the check of the parity on the source device,
1600 	 * so the data needn't be written into the destination device.
1601 	 */
1602 	if (sblock->sparity)
1603 		return;
1604 
1605 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606 		int ret;
1607 
1608 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609 		if (ret)
1610 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611 	}
1612 }
1613 
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1614 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615 					   int page_num)
1616 {
1617 	struct scrub_page *spage = sblock->pagev[page_num];
1618 
1619 	BUG_ON(spage->page == NULL);
1620 	if (spage->io_error) {
1621 		void *mapped_buffer = kmap_atomic(spage->page);
1622 
1623 		clear_page(mapped_buffer);
1624 		flush_dcache_page(spage->page);
1625 		kunmap_atomic(mapped_buffer);
1626 	}
1627 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628 }
1629 
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1630 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631 				    struct scrub_page *spage)
1632 {
1633 	struct scrub_bio *sbio;
1634 	int ret;
1635 
1636 	mutex_lock(&sctx->wr_lock);
1637 again:
1638 	if (!sctx->wr_curr_bio) {
1639 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640 					      GFP_KERNEL);
1641 		if (!sctx->wr_curr_bio) {
1642 			mutex_unlock(&sctx->wr_lock);
1643 			return -ENOMEM;
1644 		}
1645 		sctx->wr_curr_bio->sctx = sctx;
1646 		sctx->wr_curr_bio->page_count = 0;
1647 	}
1648 	sbio = sctx->wr_curr_bio;
1649 	if (sbio->page_count == 0) {
1650 		struct bio *bio;
1651 
1652 		sbio->physical = spage->physical_for_dev_replace;
1653 		sbio->logical = spage->logical;
1654 		sbio->dev = sctx->wr_tgtdev;
1655 		bio = sbio->bio;
1656 		if (!bio) {
1657 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658 			sbio->bio = bio;
1659 		}
1660 
1661 		bio->bi_private = sbio;
1662 		bio->bi_end_io = scrub_wr_bio_end_io;
1663 		bio_set_dev(bio, sbio->dev->bdev);
1664 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1665 		bio->bi_opf = REQ_OP_WRITE;
1666 		sbio->status = 0;
1667 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668 		   spage->physical_for_dev_replace ||
1669 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670 		   spage->logical) {
1671 		scrub_wr_submit(sctx);
1672 		goto again;
1673 	}
1674 
1675 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676 	if (ret != PAGE_SIZE) {
1677 		if (sbio->page_count < 1) {
1678 			bio_put(sbio->bio);
1679 			sbio->bio = NULL;
1680 			mutex_unlock(&sctx->wr_lock);
1681 			return -EIO;
1682 		}
1683 		scrub_wr_submit(sctx);
1684 		goto again;
1685 	}
1686 
1687 	sbio->pagev[sbio->page_count] = spage;
1688 	scrub_page_get(spage);
1689 	sbio->page_count++;
1690 	if (sbio->page_count == sctx->pages_per_wr_bio)
1691 		scrub_wr_submit(sctx);
1692 	mutex_unlock(&sctx->wr_lock);
1693 
1694 	return 0;
1695 }
1696 
scrub_wr_submit(struct scrub_ctx * sctx)1697 static void scrub_wr_submit(struct scrub_ctx *sctx)
1698 {
1699 	struct scrub_bio *sbio;
1700 
1701 	if (!sctx->wr_curr_bio)
1702 		return;
1703 
1704 	sbio = sctx->wr_curr_bio;
1705 	sctx->wr_curr_bio = NULL;
1706 	WARN_ON(!sbio->bio->bi_disk);
1707 	scrub_pending_bio_inc(sctx);
1708 	/* process all writes in a single worker thread. Then the block layer
1709 	 * orders the requests before sending them to the driver which
1710 	 * doubled the write performance on spinning disks when measured
1711 	 * with Linux 3.5 */
1712 	btrfsic_submit_bio(sbio->bio);
1713 }
1714 
scrub_wr_bio_end_io(struct bio * bio)1715 static void scrub_wr_bio_end_io(struct bio *bio)
1716 {
1717 	struct scrub_bio *sbio = bio->bi_private;
1718 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719 
1720 	sbio->status = bio->bi_status;
1721 	sbio->bio = bio;
1722 
1723 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1724 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1725 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726 }
1727 
scrub_wr_bio_end_io_worker(struct btrfs_work * work)1728 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1729 {
1730 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1731 	struct scrub_ctx *sctx = sbio->sctx;
1732 	int i;
1733 
1734 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735 	if (sbio->status) {
1736 		struct btrfs_dev_replace *dev_replace =
1737 			&sbio->sctx->fs_info->dev_replace;
1738 
1739 		for (i = 0; i < sbio->page_count; i++) {
1740 			struct scrub_page *spage = sbio->pagev[i];
1741 
1742 			spage->io_error = 1;
1743 			atomic64_inc(&dev_replace->num_write_errors);
1744 		}
1745 	}
1746 
1747 	for (i = 0; i < sbio->page_count; i++)
1748 		scrub_page_put(sbio->pagev[i]);
1749 
1750 	bio_put(sbio->bio);
1751 	kfree(sbio);
1752 	scrub_pending_bio_dec(sctx);
1753 }
1754 
scrub_checksum(struct scrub_block * sblock)1755 static int scrub_checksum(struct scrub_block *sblock)
1756 {
1757 	u64 flags;
1758 	int ret;
1759 
1760 	/*
1761 	 * No need to initialize these stats currently,
1762 	 * because this function only use return value
1763 	 * instead of these stats value.
1764 	 *
1765 	 * Todo:
1766 	 * always use stats
1767 	 */
1768 	sblock->header_error = 0;
1769 	sblock->generation_error = 0;
1770 	sblock->checksum_error = 0;
1771 
1772 	WARN_ON(sblock->page_count < 1);
1773 	flags = sblock->pagev[0]->flags;
1774 	ret = 0;
1775 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1776 		ret = scrub_checksum_data(sblock);
1777 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1778 		ret = scrub_checksum_tree_block(sblock);
1779 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1780 		(void)scrub_checksum_super(sblock);
1781 	else
1782 		WARN_ON(1);
1783 	if (ret)
1784 		scrub_handle_errored_block(sblock);
1785 
1786 	return ret;
1787 }
1788 
scrub_checksum_data(struct scrub_block * sblock)1789 static int scrub_checksum_data(struct scrub_block *sblock)
1790 {
1791 	struct scrub_ctx *sctx = sblock->sctx;
1792 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1793 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1794 	u8 csum[BTRFS_CSUM_SIZE];
1795 	u8 *on_disk_csum;
1796 	struct page *page;
1797 	void *buffer;
1798 	u64 len;
1799 	int index;
1800 
1801 	BUG_ON(sblock->page_count < 1);
1802 	if (!sblock->pagev[0]->have_csum)
1803 		return 0;
1804 
1805 	shash->tfm = fs_info->csum_shash;
1806 	crypto_shash_init(shash);
1807 
1808 	on_disk_csum = sblock->pagev[0]->csum;
1809 	page = sblock->pagev[0]->page;
1810 	buffer = kmap_atomic(page);
1811 
1812 	len = sctx->fs_info->sectorsize;
1813 	index = 0;
1814 	for (;;) {
1815 		u64 l = min_t(u64, len, PAGE_SIZE);
1816 
1817 		crypto_shash_update(shash, buffer, l);
1818 		kunmap_atomic(buffer);
1819 		len -= l;
1820 		if (len == 0)
1821 			break;
1822 		index++;
1823 		BUG_ON(index >= sblock->page_count);
1824 		BUG_ON(!sblock->pagev[index]->page);
1825 		page = sblock->pagev[index]->page;
1826 		buffer = kmap_atomic(page);
1827 	}
1828 
1829 	crypto_shash_final(shash, csum);
1830 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831 		sblock->checksum_error = 1;
1832 
1833 	return sblock->checksum_error;
1834 }
1835 
scrub_checksum_tree_block(struct scrub_block * sblock)1836 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1837 {
1838 	struct scrub_ctx *sctx = sblock->sctx;
1839 	struct btrfs_header *h;
1840 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1843 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844 	struct page *page;
1845 	void *mapped_buffer;
1846 	u64 mapped_size;
1847 	void *p;
1848 	u64 len;
1849 	int index;
1850 
1851 	shash->tfm = fs_info->csum_shash;
1852 	crypto_shash_init(shash);
1853 
1854 	BUG_ON(sblock->page_count < 1);
1855 	page = sblock->pagev[0]->page;
1856 	mapped_buffer = kmap_atomic(page);
1857 	h = (struct btrfs_header *)mapped_buffer;
1858 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859 
1860 	/*
1861 	 * we don't use the getter functions here, as we
1862 	 * a) don't have an extent buffer and
1863 	 * b) the page is already kmapped
1864 	 */
1865 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866 		sblock->header_error = 1;
1867 
1868 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869 		sblock->header_error = 1;
1870 		sblock->generation_error = 1;
1871 	}
1872 
1873 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874 		sblock->header_error = 1;
1875 
1876 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877 		   BTRFS_UUID_SIZE))
1878 		sblock->header_error = 1;
1879 
1880 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883 	index = 0;
1884 	for (;;) {
1885 		u64 l = min_t(u64, len, mapped_size);
1886 
1887 		crypto_shash_update(shash, p, l);
1888 		kunmap_atomic(mapped_buffer);
1889 		len -= l;
1890 		if (len == 0)
1891 			break;
1892 		index++;
1893 		BUG_ON(index >= sblock->page_count);
1894 		BUG_ON(!sblock->pagev[index]->page);
1895 		page = sblock->pagev[index]->page;
1896 		mapped_buffer = kmap_atomic(page);
1897 		mapped_size = PAGE_SIZE;
1898 		p = mapped_buffer;
1899 	}
1900 
1901 	crypto_shash_final(shash, calculated_csum);
1902 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903 		sblock->checksum_error = 1;
1904 
1905 	return sblock->header_error || sblock->checksum_error;
1906 }
1907 
scrub_checksum_super(struct scrub_block * sblock)1908 static int scrub_checksum_super(struct scrub_block *sblock)
1909 {
1910 	struct btrfs_super_block *s;
1911 	struct scrub_ctx *sctx = sblock->sctx;
1912 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1913 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1915 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1916 	struct page *page;
1917 	void *mapped_buffer;
1918 	u64 mapped_size;
1919 	void *p;
1920 	int fail_gen = 0;
1921 	int fail_cor = 0;
1922 	u64 len;
1923 	int index;
1924 
1925 	shash->tfm = fs_info->csum_shash;
1926 	crypto_shash_init(shash);
1927 
1928 	BUG_ON(sblock->page_count < 1);
1929 	page = sblock->pagev[0]->page;
1930 	mapped_buffer = kmap_atomic(page);
1931 	s = (struct btrfs_super_block *)mapped_buffer;
1932 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1933 
1934 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935 		++fail_cor;
1936 
1937 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938 		++fail_gen;
1939 
1940 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941 		++fail_cor;
1942 
1943 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1944 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946 	index = 0;
1947 	for (;;) {
1948 		u64 l = min_t(u64, len, mapped_size);
1949 
1950 		crypto_shash_update(shash, p, l);
1951 		kunmap_atomic(mapped_buffer);
1952 		len -= l;
1953 		if (len == 0)
1954 			break;
1955 		index++;
1956 		BUG_ON(index >= sblock->page_count);
1957 		BUG_ON(!sblock->pagev[index]->page);
1958 		page = sblock->pagev[index]->page;
1959 		mapped_buffer = kmap_atomic(page);
1960 		mapped_size = PAGE_SIZE;
1961 		p = mapped_buffer;
1962 	}
1963 
1964 	crypto_shash_final(shash, calculated_csum);
1965 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966 		++fail_cor;
1967 
1968 	if (fail_cor + fail_gen) {
1969 		/*
1970 		 * if we find an error in a super block, we just report it.
1971 		 * They will get written with the next transaction commit
1972 		 * anyway
1973 		 */
1974 		spin_lock(&sctx->stat_lock);
1975 		++sctx->stat.super_errors;
1976 		spin_unlock(&sctx->stat_lock);
1977 		if (fail_cor)
1978 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1980 		else
1981 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982 				BTRFS_DEV_STAT_GENERATION_ERRS);
1983 	}
1984 
1985 	return fail_cor + fail_gen;
1986 }
1987 
scrub_block_get(struct scrub_block * sblock)1988 static void scrub_block_get(struct scrub_block *sblock)
1989 {
1990 	refcount_inc(&sblock->refs);
1991 }
1992 
scrub_block_put(struct scrub_block * sblock)1993 static void scrub_block_put(struct scrub_block *sblock)
1994 {
1995 	if (refcount_dec_and_test(&sblock->refs)) {
1996 		int i;
1997 
1998 		if (sblock->sparity)
1999 			scrub_parity_put(sblock->sparity);
2000 
2001 		for (i = 0; i < sblock->page_count; i++)
2002 			scrub_page_put(sblock->pagev[i]);
2003 		kfree(sblock);
2004 	}
2005 }
2006 
scrub_page_get(struct scrub_page * spage)2007 static void scrub_page_get(struct scrub_page *spage)
2008 {
2009 	atomic_inc(&spage->refs);
2010 }
2011 
scrub_page_put(struct scrub_page * spage)2012 static void scrub_page_put(struct scrub_page *spage)
2013 {
2014 	if (atomic_dec_and_test(&spage->refs)) {
2015 		if (spage->page)
2016 			__free_page(spage->page);
2017 		kfree(spage);
2018 	}
2019 }
2020 
scrub_submit(struct scrub_ctx * sctx)2021 static void scrub_submit(struct scrub_ctx *sctx)
2022 {
2023 	struct scrub_bio *sbio;
2024 
2025 	if (sctx->curr == -1)
2026 		return;
2027 
2028 	sbio = sctx->bios[sctx->curr];
2029 	sctx->curr = -1;
2030 	scrub_pending_bio_inc(sctx);
2031 	btrfsic_submit_bio(sbio->bio);
2032 }
2033 
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2034 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2035 				    struct scrub_page *spage)
2036 {
2037 	struct scrub_block *sblock = spage->sblock;
2038 	struct scrub_bio *sbio;
2039 	int ret;
2040 
2041 again:
2042 	/*
2043 	 * grab a fresh bio or wait for one to become available
2044 	 */
2045 	while (sctx->curr == -1) {
2046 		spin_lock(&sctx->list_lock);
2047 		sctx->curr = sctx->first_free;
2048 		if (sctx->curr != -1) {
2049 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2050 			sctx->bios[sctx->curr]->next_free = -1;
2051 			sctx->bios[sctx->curr]->page_count = 0;
2052 			spin_unlock(&sctx->list_lock);
2053 		} else {
2054 			spin_unlock(&sctx->list_lock);
2055 			wait_event(sctx->list_wait, sctx->first_free != -1);
2056 		}
2057 	}
2058 	sbio = sctx->bios[sctx->curr];
2059 	if (sbio->page_count == 0) {
2060 		struct bio *bio;
2061 
2062 		sbio->physical = spage->physical;
2063 		sbio->logical = spage->logical;
2064 		sbio->dev = spage->dev;
2065 		bio = sbio->bio;
2066 		if (!bio) {
2067 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2068 			sbio->bio = bio;
2069 		}
2070 
2071 		bio->bi_private = sbio;
2072 		bio->bi_end_io = scrub_bio_end_io;
2073 		bio_set_dev(bio, sbio->dev->bdev);
2074 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2075 		bio->bi_opf = REQ_OP_READ;
2076 		sbio->status = 0;
2077 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2078 		   spage->physical ||
2079 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080 		   spage->logical ||
2081 		   sbio->dev != spage->dev) {
2082 		scrub_submit(sctx);
2083 		goto again;
2084 	}
2085 
2086 	sbio->pagev[sbio->page_count] = spage;
2087 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2088 	if (ret != PAGE_SIZE) {
2089 		if (sbio->page_count < 1) {
2090 			bio_put(sbio->bio);
2091 			sbio->bio = NULL;
2092 			return -EIO;
2093 		}
2094 		scrub_submit(sctx);
2095 		goto again;
2096 	}
2097 
2098 	scrub_block_get(sblock); /* one for the page added to the bio */
2099 	atomic_inc(&sblock->outstanding_pages);
2100 	sbio->page_count++;
2101 	if (sbio->page_count == sctx->pages_per_rd_bio)
2102 		scrub_submit(sctx);
2103 
2104 	return 0;
2105 }
2106 
scrub_missing_raid56_end_io(struct bio * bio)2107 static void scrub_missing_raid56_end_io(struct bio *bio)
2108 {
2109 	struct scrub_block *sblock = bio->bi_private;
2110 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2111 
2112 	if (bio->bi_status)
2113 		sblock->no_io_error_seen = 0;
2114 
2115 	bio_put(bio);
2116 
2117 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2118 }
2119 
scrub_missing_raid56_worker(struct btrfs_work * work)2120 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2121 {
2122 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2123 	struct scrub_ctx *sctx = sblock->sctx;
2124 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2125 	u64 logical;
2126 	struct btrfs_device *dev;
2127 
2128 	logical = sblock->pagev[0]->logical;
2129 	dev = sblock->pagev[0]->dev;
2130 
2131 	if (sblock->no_io_error_seen)
2132 		scrub_recheck_block_checksum(sblock);
2133 
2134 	if (!sblock->no_io_error_seen) {
2135 		spin_lock(&sctx->stat_lock);
2136 		sctx->stat.read_errors++;
2137 		spin_unlock(&sctx->stat_lock);
2138 		btrfs_err_rl_in_rcu(fs_info,
2139 			"IO error rebuilding logical %llu for dev %s",
2140 			logical, rcu_str_deref(dev->name));
2141 	} else if (sblock->header_error || sblock->checksum_error) {
2142 		spin_lock(&sctx->stat_lock);
2143 		sctx->stat.uncorrectable_errors++;
2144 		spin_unlock(&sctx->stat_lock);
2145 		btrfs_err_rl_in_rcu(fs_info,
2146 			"failed to rebuild valid logical %llu for dev %s",
2147 			logical, rcu_str_deref(dev->name));
2148 	} else {
2149 		scrub_write_block_to_dev_replace(sblock);
2150 	}
2151 
2152 	scrub_block_put(sblock);
2153 
2154 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155 		mutex_lock(&sctx->wr_lock);
2156 		scrub_wr_submit(sctx);
2157 		mutex_unlock(&sctx->wr_lock);
2158 	}
2159 
2160 	scrub_pending_bio_dec(sctx);
2161 }
2162 
scrub_missing_raid56_pages(struct scrub_block * sblock)2163 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2164 {
2165 	struct scrub_ctx *sctx = sblock->sctx;
2166 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2167 	u64 length = sblock->page_count * PAGE_SIZE;
2168 	u64 logical = sblock->pagev[0]->logical;
2169 	struct btrfs_bio *bbio = NULL;
2170 	struct bio *bio;
2171 	struct btrfs_raid_bio *rbio;
2172 	int ret;
2173 	int i;
2174 
2175 	btrfs_bio_counter_inc_blocked(fs_info);
2176 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177 			&length, &bbio);
2178 	if (ret || !bbio || !bbio->raid_map)
2179 		goto bbio_out;
2180 
2181 	if (WARN_ON(!sctx->is_dev_replace ||
2182 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2183 		/*
2184 		 * We shouldn't be scrubbing a missing device. Even for dev
2185 		 * replace, we should only get here for RAID 5/6. We either
2186 		 * managed to mount something with no mirrors remaining or
2187 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2188 		 */
2189 		goto bbio_out;
2190 	}
2191 
2192 	bio = btrfs_io_bio_alloc(0);
2193 	bio->bi_iter.bi_sector = logical >> 9;
2194 	bio->bi_private = sblock;
2195 	bio->bi_end_io = scrub_missing_raid56_end_io;
2196 
2197 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198 	if (!rbio)
2199 		goto rbio_out;
2200 
2201 	for (i = 0; i < sblock->page_count; i++) {
2202 		struct scrub_page *spage = sblock->pagev[i];
2203 
2204 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2205 	}
2206 
2207 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2208 			scrub_missing_raid56_worker, NULL, NULL);
2209 	scrub_block_get(sblock);
2210 	scrub_pending_bio_inc(sctx);
2211 	raid56_submit_missing_rbio(rbio);
2212 	return;
2213 
2214 rbio_out:
2215 	bio_put(bio);
2216 bbio_out:
2217 	btrfs_bio_counter_dec(fs_info);
2218 	btrfs_put_bbio(bbio);
2219 	spin_lock(&sctx->stat_lock);
2220 	sctx->stat.malloc_errors++;
2221 	spin_unlock(&sctx->stat_lock);
2222 }
2223 
scrub_pages(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,int force,u64 physical_for_dev_replace)2224 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225 		       u64 physical, struct btrfs_device *dev, u64 flags,
2226 		       u64 gen, int mirror_num, u8 *csum, int force,
2227 		       u64 physical_for_dev_replace)
2228 {
2229 	struct scrub_block *sblock;
2230 	int index;
2231 
2232 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233 	if (!sblock) {
2234 		spin_lock(&sctx->stat_lock);
2235 		sctx->stat.malloc_errors++;
2236 		spin_unlock(&sctx->stat_lock);
2237 		return -ENOMEM;
2238 	}
2239 
2240 	/* one ref inside this function, plus one for each page added to
2241 	 * a bio later on */
2242 	refcount_set(&sblock->refs, 1);
2243 	sblock->sctx = sctx;
2244 	sblock->no_io_error_seen = 1;
2245 
2246 	for (index = 0; len > 0; index++) {
2247 		struct scrub_page *spage;
2248 		u64 l = min_t(u64, len, PAGE_SIZE);
2249 
2250 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251 		if (!spage) {
2252 leave_nomem:
2253 			spin_lock(&sctx->stat_lock);
2254 			sctx->stat.malloc_errors++;
2255 			spin_unlock(&sctx->stat_lock);
2256 			scrub_block_put(sblock);
2257 			return -ENOMEM;
2258 		}
2259 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260 		scrub_page_get(spage);
2261 		sblock->pagev[index] = spage;
2262 		spage->sblock = sblock;
2263 		spage->dev = dev;
2264 		spage->flags = flags;
2265 		spage->generation = gen;
2266 		spage->logical = logical;
2267 		spage->physical = physical;
2268 		spage->physical_for_dev_replace = physical_for_dev_replace;
2269 		spage->mirror_num = mirror_num;
2270 		if (csum) {
2271 			spage->have_csum = 1;
2272 			memcpy(spage->csum, csum, sctx->csum_size);
2273 		} else {
2274 			spage->have_csum = 0;
2275 		}
2276 		sblock->page_count++;
2277 		spage->page = alloc_page(GFP_KERNEL);
2278 		if (!spage->page)
2279 			goto leave_nomem;
2280 		len -= l;
2281 		logical += l;
2282 		physical += l;
2283 		physical_for_dev_replace += l;
2284 	}
2285 
2286 	WARN_ON(sblock->page_count == 0);
2287 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288 		/*
2289 		 * This case should only be hit for RAID 5/6 device replace. See
2290 		 * the comment in scrub_missing_raid56_pages() for details.
2291 		 */
2292 		scrub_missing_raid56_pages(sblock);
2293 	} else {
2294 		for (index = 0; index < sblock->page_count; index++) {
2295 			struct scrub_page *spage = sblock->pagev[index];
2296 			int ret;
2297 
2298 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2299 			if (ret) {
2300 				scrub_block_put(sblock);
2301 				return ret;
2302 			}
2303 		}
2304 
2305 		if (force)
2306 			scrub_submit(sctx);
2307 	}
2308 
2309 	/* last one frees, either here or in bio completion for last page */
2310 	scrub_block_put(sblock);
2311 	return 0;
2312 }
2313 
scrub_bio_end_io(struct bio * bio)2314 static void scrub_bio_end_io(struct bio *bio)
2315 {
2316 	struct scrub_bio *sbio = bio->bi_private;
2317 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318 
2319 	sbio->status = bio->bi_status;
2320 	sbio->bio = bio;
2321 
2322 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323 }
2324 
scrub_bio_end_io_worker(struct btrfs_work * work)2325 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326 {
2327 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328 	struct scrub_ctx *sctx = sbio->sctx;
2329 	int i;
2330 
2331 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332 	if (sbio->status) {
2333 		for (i = 0; i < sbio->page_count; i++) {
2334 			struct scrub_page *spage = sbio->pagev[i];
2335 
2336 			spage->io_error = 1;
2337 			spage->sblock->no_io_error_seen = 0;
2338 		}
2339 	}
2340 
2341 	/* now complete the scrub_block items that have all pages completed */
2342 	for (i = 0; i < sbio->page_count; i++) {
2343 		struct scrub_page *spage = sbio->pagev[i];
2344 		struct scrub_block *sblock = spage->sblock;
2345 
2346 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2347 			scrub_block_complete(sblock);
2348 		scrub_block_put(sblock);
2349 	}
2350 
2351 	bio_put(sbio->bio);
2352 	sbio->bio = NULL;
2353 	spin_lock(&sctx->list_lock);
2354 	sbio->next_free = sctx->first_free;
2355 	sctx->first_free = sbio->index;
2356 	spin_unlock(&sctx->list_lock);
2357 
2358 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359 		mutex_lock(&sctx->wr_lock);
2360 		scrub_wr_submit(sctx);
2361 		mutex_unlock(&sctx->wr_lock);
2362 	}
2363 
2364 	scrub_pending_bio_dec(sctx);
2365 }
2366 
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u64 len)2367 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368 				       unsigned long *bitmap,
2369 				       u64 start, u64 len)
2370 {
2371 	u64 offset;
2372 	u64 nsectors64;
2373 	u32 nsectors;
2374 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2375 
2376 	if (len >= sparity->stripe_len) {
2377 		bitmap_set(bitmap, 0, sparity->nsectors);
2378 		return;
2379 	}
2380 
2381 	start -= sparity->logic_start;
2382 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383 	offset = div_u64(offset, sectorsize);
2384 	nsectors64 = div_u64(len, sectorsize);
2385 
2386 	ASSERT(nsectors64 < UINT_MAX);
2387 	nsectors = (u32)nsectors64;
2388 
2389 	if (offset + nsectors <= sparity->nsectors) {
2390 		bitmap_set(bitmap, offset, nsectors);
2391 		return;
2392 	}
2393 
2394 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396 }
2397 
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u64 len)2398 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399 						   u64 start, u64 len)
2400 {
2401 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402 }
2403 
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u64 len)2404 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405 						  u64 start, u64 len)
2406 {
2407 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408 }
2409 
scrub_block_complete(struct scrub_block * sblock)2410 static void scrub_block_complete(struct scrub_block *sblock)
2411 {
2412 	int corrupted = 0;
2413 
2414 	if (!sblock->no_io_error_seen) {
2415 		corrupted = 1;
2416 		scrub_handle_errored_block(sblock);
2417 	} else {
2418 		/*
2419 		 * if has checksum error, write via repair mechanism in
2420 		 * dev replace case, otherwise write here in dev replace
2421 		 * case.
2422 		 */
2423 		corrupted = scrub_checksum(sblock);
2424 		if (!corrupted && sblock->sctx->is_dev_replace)
2425 			scrub_write_block_to_dev_replace(sblock);
2426 	}
2427 
2428 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429 		u64 start = sblock->pagev[0]->logical;
2430 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431 			  PAGE_SIZE;
2432 
2433 		scrub_parity_mark_sectors_error(sblock->sparity,
2434 						start, end - start);
2435 	}
2436 }
2437 
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2438 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2439 {
2440 	struct btrfs_ordered_sum *sum = NULL;
2441 	unsigned long index;
2442 	unsigned long num_sectors;
2443 
2444 	while (!list_empty(&sctx->csum_list)) {
2445 		sum = list_first_entry(&sctx->csum_list,
2446 				       struct btrfs_ordered_sum, list);
2447 		if (sum->bytenr > logical)
2448 			return 0;
2449 		if (sum->bytenr + sum->len > logical)
2450 			break;
2451 
2452 		++sctx->stat.csum_discards;
2453 		list_del(&sum->list);
2454 		kfree(sum);
2455 		sum = NULL;
2456 	}
2457 	if (!sum)
2458 		return 0;
2459 
2460 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461 	ASSERT(index < UINT_MAX);
2462 
2463 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2464 	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465 	if (index == num_sectors - 1) {
2466 		list_del(&sum->list);
2467 		kfree(sum);
2468 	}
2469 	return 1;
2470 }
2471 
2472 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,struct map_lookup * map,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2473 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474 			u64 logical, u64 len,
2475 			u64 physical, struct btrfs_device *dev, u64 flags,
2476 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477 {
2478 	int ret;
2479 	u8 csum[BTRFS_CSUM_SIZE];
2480 	u32 blocksize;
2481 
2482 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484 			blocksize = map->stripe_len;
2485 		else
2486 			blocksize = sctx->fs_info->sectorsize;
2487 		spin_lock(&sctx->stat_lock);
2488 		sctx->stat.data_extents_scrubbed++;
2489 		sctx->stat.data_bytes_scrubbed += len;
2490 		spin_unlock(&sctx->stat_lock);
2491 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493 			blocksize = map->stripe_len;
2494 		else
2495 			blocksize = sctx->fs_info->nodesize;
2496 		spin_lock(&sctx->stat_lock);
2497 		sctx->stat.tree_extents_scrubbed++;
2498 		sctx->stat.tree_bytes_scrubbed += len;
2499 		spin_unlock(&sctx->stat_lock);
2500 	} else {
2501 		blocksize = sctx->fs_info->sectorsize;
2502 		WARN_ON(1);
2503 	}
2504 
2505 	while (len) {
2506 		u64 l = min_t(u64, len, blocksize);
2507 		int have_csum = 0;
2508 
2509 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510 			/* push csums to sbio */
2511 			have_csum = scrub_find_csum(sctx, logical, csum);
2512 			if (have_csum == 0)
2513 				++sctx->stat.no_csum;
2514 		}
2515 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516 				  mirror_num, have_csum ? csum : NULL, 0,
2517 				  physical_for_dev_replace);
2518 		if (ret)
2519 			return ret;
2520 		len -= l;
2521 		logical += l;
2522 		physical += l;
2523 		physical_for_dev_replace += l;
2524 	}
2525 	return 0;
2526 }
2527 
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2528 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529 				  u64 logical, u64 len,
2530 				  u64 physical, struct btrfs_device *dev,
2531 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532 {
2533 	struct scrub_ctx *sctx = sparity->sctx;
2534 	struct scrub_block *sblock;
2535 	int index;
2536 
2537 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538 	if (!sblock) {
2539 		spin_lock(&sctx->stat_lock);
2540 		sctx->stat.malloc_errors++;
2541 		spin_unlock(&sctx->stat_lock);
2542 		return -ENOMEM;
2543 	}
2544 
2545 	/* one ref inside this function, plus one for each page added to
2546 	 * a bio later on */
2547 	refcount_set(&sblock->refs, 1);
2548 	sblock->sctx = sctx;
2549 	sblock->no_io_error_seen = 1;
2550 	sblock->sparity = sparity;
2551 	scrub_parity_get(sparity);
2552 
2553 	for (index = 0; len > 0; index++) {
2554 		struct scrub_page *spage;
2555 		u64 l = min_t(u64, len, PAGE_SIZE);
2556 
2557 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558 		if (!spage) {
2559 leave_nomem:
2560 			spin_lock(&sctx->stat_lock);
2561 			sctx->stat.malloc_errors++;
2562 			spin_unlock(&sctx->stat_lock);
2563 			scrub_block_put(sblock);
2564 			return -ENOMEM;
2565 		}
2566 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567 		/* For scrub block */
2568 		scrub_page_get(spage);
2569 		sblock->pagev[index] = spage;
2570 		/* For scrub parity */
2571 		scrub_page_get(spage);
2572 		list_add_tail(&spage->list, &sparity->spages);
2573 		spage->sblock = sblock;
2574 		spage->dev = dev;
2575 		spage->flags = flags;
2576 		spage->generation = gen;
2577 		spage->logical = logical;
2578 		spage->physical = physical;
2579 		spage->mirror_num = mirror_num;
2580 		if (csum) {
2581 			spage->have_csum = 1;
2582 			memcpy(spage->csum, csum, sctx->csum_size);
2583 		} else {
2584 			spage->have_csum = 0;
2585 		}
2586 		sblock->page_count++;
2587 		spage->page = alloc_page(GFP_KERNEL);
2588 		if (!spage->page)
2589 			goto leave_nomem;
2590 		len -= l;
2591 		logical += l;
2592 		physical += l;
2593 	}
2594 
2595 	WARN_ON(sblock->page_count == 0);
2596 	for (index = 0; index < sblock->page_count; index++) {
2597 		struct scrub_page *spage = sblock->pagev[index];
2598 		int ret;
2599 
2600 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2601 		if (ret) {
2602 			scrub_block_put(sblock);
2603 			return ret;
2604 		}
2605 	}
2606 
2607 	/* last one frees, either here or in bio completion for last page */
2608 	scrub_block_put(sblock);
2609 	return 0;
2610 }
2611 
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2612 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613 				   u64 logical, u64 len,
2614 				   u64 physical, struct btrfs_device *dev,
2615 				   u64 flags, u64 gen, int mirror_num)
2616 {
2617 	struct scrub_ctx *sctx = sparity->sctx;
2618 	int ret;
2619 	u8 csum[BTRFS_CSUM_SIZE];
2620 	u32 blocksize;
2621 
2622 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623 		scrub_parity_mark_sectors_error(sparity, logical, len);
2624 		return 0;
2625 	}
2626 
2627 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628 		blocksize = sparity->stripe_len;
2629 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630 		blocksize = sparity->stripe_len;
2631 	} else {
2632 		blocksize = sctx->fs_info->sectorsize;
2633 		WARN_ON(1);
2634 	}
2635 
2636 	while (len) {
2637 		u64 l = min_t(u64, len, blocksize);
2638 		int have_csum = 0;
2639 
2640 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641 			/* push csums to sbio */
2642 			have_csum = scrub_find_csum(sctx, logical, csum);
2643 			if (have_csum == 0)
2644 				goto skip;
2645 		}
2646 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647 					     flags, gen, mirror_num,
2648 					     have_csum ? csum : NULL);
2649 		if (ret)
2650 			return ret;
2651 skip:
2652 		len -= l;
2653 		logical += l;
2654 		physical += l;
2655 	}
2656 	return 0;
2657 }
2658 
2659 /*
2660  * Given a physical address, this will calculate it's
2661  * logical offset. if this is a parity stripe, it will return
2662  * the most left data stripe's logical offset.
2663  *
2664  * return 0 if it is a data stripe, 1 means parity stripe.
2665  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2666 static int get_raid56_logic_offset(u64 physical, int num,
2667 				   struct map_lookup *map, u64 *offset,
2668 				   u64 *stripe_start)
2669 {
2670 	int i;
2671 	int j = 0;
2672 	u64 stripe_nr;
2673 	u64 last_offset;
2674 	u32 stripe_index;
2675 	u32 rot;
2676 	const int data_stripes = nr_data_stripes(map);
2677 
2678 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679 	if (stripe_start)
2680 		*stripe_start = last_offset;
2681 
2682 	*offset = last_offset;
2683 	for (i = 0; i < data_stripes; i++) {
2684 		*offset = last_offset + i * map->stripe_len;
2685 
2686 		stripe_nr = div64_u64(*offset, map->stripe_len);
2687 		stripe_nr = div_u64(stripe_nr, data_stripes);
2688 
2689 		/* Work out the disk rotation on this stripe-set */
2690 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691 		/* calculate which stripe this data locates */
2692 		rot += i;
2693 		stripe_index = rot % map->num_stripes;
2694 		if (stripe_index == num)
2695 			return 0;
2696 		if (stripe_index < num)
2697 			j++;
2698 	}
2699 	*offset = last_offset + j * map->stripe_len;
2700 	return 1;
2701 }
2702 
scrub_free_parity(struct scrub_parity * sparity)2703 static void scrub_free_parity(struct scrub_parity *sparity)
2704 {
2705 	struct scrub_ctx *sctx = sparity->sctx;
2706 	struct scrub_page *curr, *next;
2707 	int nbits;
2708 
2709 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710 	if (nbits) {
2711 		spin_lock(&sctx->stat_lock);
2712 		sctx->stat.read_errors += nbits;
2713 		sctx->stat.uncorrectable_errors += nbits;
2714 		spin_unlock(&sctx->stat_lock);
2715 	}
2716 
2717 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718 		list_del_init(&curr->list);
2719 		scrub_page_put(curr);
2720 	}
2721 
2722 	kfree(sparity);
2723 }
2724 
scrub_parity_bio_endio_worker(struct btrfs_work * work)2725 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726 {
2727 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728 						    work);
2729 	struct scrub_ctx *sctx = sparity->sctx;
2730 
2731 	scrub_free_parity(sparity);
2732 	scrub_pending_bio_dec(sctx);
2733 }
2734 
scrub_parity_bio_endio(struct bio * bio)2735 static void scrub_parity_bio_endio(struct bio *bio)
2736 {
2737 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739 
2740 	if (bio->bi_status)
2741 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742 			  sparity->nsectors);
2743 
2744 	bio_put(bio);
2745 
2746 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2747 			scrub_parity_bio_endio_worker, NULL, NULL);
2748 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749 }
2750 
scrub_parity_check_and_repair(struct scrub_parity * sparity)2751 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2752 {
2753 	struct scrub_ctx *sctx = sparity->sctx;
2754 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2755 	struct bio *bio;
2756 	struct btrfs_raid_bio *rbio;
2757 	struct btrfs_bio *bbio = NULL;
2758 	u64 length;
2759 	int ret;
2760 
2761 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762 			   sparity->nsectors))
2763 		goto out;
2764 
2765 	length = sparity->logic_end - sparity->logic_start;
2766 
2767 	btrfs_bio_counter_inc_blocked(fs_info);
2768 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769 			       &length, &bbio);
2770 	if (ret || !bbio || !bbio->raid_map)
2771 		goto bbio_out;
2772 
2773 	bio = btrfs_io_bio_alloc(0);
2774 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775 	bio->bi_private = sparity;
2776 	bio->bi_end_io = scrub_parity_bio_endio;
2777 
2778 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779 					      length, sparity->scrub_dev,
2780 					      sparity->dbitmap,
2781 					      sparity->nsectors);
2782 	if (!rbio)
2783 		goto rbio_out;
2784 
2785 	scrub_pending_bio_inc(sctx);
2786 	raid56_parity_submit_scrub_rbio(rbio);
2787 	return;
2788 
2789 rbio_out:
2790 	bio_put(bio);
2791 bbio_out:
2792 	btrfs_bio_counter_dec(fs_info);
2793 	btrfs_put_bbio(bbio);
2794 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795 		  sparity->nsectors);
2796 	spin_lock(&sctx->stat_lock);
2797 	sctx->stat.malloc_errors++;
2798 	spin_unlock(&sctx->stat_lock);
2799 out:
2800 	scrub_free_parity(sparity);
2801 }
2802 
scrub_calc_parity_bitmap_len(int nsectors)2803 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2804 {
2805 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806 }
2807 
scrub_parity_get(struct scrub_parity * sparity)2808 static void scrub_parity_get(struct scrub_parity *sparity)
2809 {
2810 	refcount_inc(&sparity->refs);
2811 }
2812 
scrub_parity_put(struct scrub_parity * sparity)2813 static void scrub_parity_put(struct scrub_parity *sparity)
2814 {
2815 	if (!refcount_dec_and_test(&sparity->refs))
2816 		return;
2817 
2818 	scrub_parity_check_and_repair(sparity);
2819 }
2820 
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)2821 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822 						  struct map_lookup *map,
2823 						  struct btrfs_device *sdev,
2824 						  struct btrfs_path *path,
2825 						  u64 logic_start,
2826 						  u64 logic_end)
2827 {
2828 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2829 	struct btrfs_root *root = fs_info->extent_root;
2830 	struct btrfs_root *csum_root = fs_info->csum_root;
2831 	struct btrfs_extent_item *extent;
2832 	struct btrfs_bio *bbio = NULL;
2833 	u64 flags;
2834 	int ret;
2835 	int slot;
2836 	struct extent_buffer *l;
2837 	struct btrfs_key key;
2838 	u64 generation;
2839 	u64 extent_logical;
2840 	u64 extent_physical;
2841 	u64 extent_len;
2842 	u64 mapped_length;
2843 	struct btrfs_device *extent_dev;
2844 	struct scrub_parity *sparity;
2845 	int nsectors;
2846 	int bitmap_len;
2847 	int extent_mirror_num;
2848 	int stop_loop = 0;
2849 
2850 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853 			  GFP_NOFS);
2854 	if (!sparity) {
2855 		spin_lock(&sctx->stat_lock);
2856 		sctx->stat.malloc_errors++;
2857 		spin_unlock(&sctx->stat_lock);
2858 		return -ENOMEM;
2859 	}
2860 
2861 	sparity->stripe_len = map->stripe_len;
2862 	sparity->nsectors = nsectors;
2863 	sparity->sctx = sctx;
2864 	sparity->scrub_dev = sdev;
2865 	sparity->logic_start = logic_start;
2866 	sparity->logic_end = logic_end;
2867 	refcount_set(&sparity->refs, 1);
2868 	INIT_LIST_HEAD(&sparity->spages);
2869 	sparity->dbitmap = sparity->bitmap;
2870 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871 
2872 	ret = 0;
2873 	while (logic_start < logic_end) {
2874 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875 			key.type = BTRFS_METADATA_ITEM_KEY;
2876 		else
2877 			key.type = BTRFS_EXTENT_ITEM_KEY;
2878 		key.objectid = logic_start;
2879 		key.offset = (u64)-1;
2880 
2881 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882 		if (ret < 0)
2883 			goto out;
2884 
2885 		if (ret > 0) {
2886 			ret = btrfs_previous_extent_item(root, path, 0);
2887 			if (ret < 0)
2888 				goto out;
2889 			if (ret > 0) {
2890 				btrfs_release_path(path);
2891 				ret = btrfs_search_slot(NULL, root, &key,
2892 							path, 0, 0);
2893 				if (ret < 0)
2894 					goto out;
2895 			}
2896 		}
2897 
2898 		stop_loop = 0;
2899 		while (1) {
2900 			u64 bytes;
2901 
2902 			l = path->nodes[0];
2903 			slot = path->slots[0];
2904 			if (slot >= btrfs_header_nritems(l)) {
2905 				ret = btrfs_next_leaf(root, path);
2906 				if (ret == 0)
2907 					continue;
2908 				if (ret < 0)
2909 					goto out;
2910 
2911 				stop_loop = 1;
2912 				break;
2913 			}
2914 			btrfs_item_key_to_cpu(l, &key, slot);
2915 
2916 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917 			    key.type != BTRFS_METADATA_ITEM_KEY)
2918 				goto next;
2919 
2920 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2921 				bytes = fs_info->nodesize;
2922 			else
2923 				bytes = key.offset;
2924 
2925 			if (key.objectid + bytes <= logic_start)
2926 				goto next;
2927 
2928 			if (key.objectid >= logic_end) {
2929 				stop_loop = 1;
2930 				break;
2931 			}
2932 
2933 			while (key.objectid >= logic_start + map->stripe_len)
2934 				logic_start += map->stripe_len;
2935 
2936 			extent = btrfs_item_ptr(l, slot,
2937 						struct btrfs_extent_item);
2938 			flags = btrfs_extent_flags(l, extent);
2939 			generation = btrfs_extent_generation(l, extent);
2940 
2941 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942 			    (key.objectid < logic_start ||
2943 			     key.objectid + bytes >
2944 			     logic_start + map->stripe_len)) {
2945 				btrfs_err(fs_info,
2946 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947 					  key.objectid, logic_start);
2948 				spin_lock(&sctx->stat_lock);
2949 				sctx->stat.uncorrectable_errors++;
2950 				spin_unlock(&sctx->stat_lock);
2951 				goto next;
2952 			}
2953 again:
2954 			extent_logical = key.objectid;
2955 			extent_len = bytes;
2956 
2957 			if (extent_logical < logic_start) {
2958 				extent_len -= logic_start - extent_logical;
2959 				extent_logical = logic_start;
2960 			}
2961 
2962 			if (extent_logical + extent_len >
2963 			    logic_start + map->stripe_len)
2964 				extent_len = logic_start + map->stripe_len -
2965 					     extent_logical;
2966 
2967 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2968 						       extent_len);
2969 
2970 			mapped_length = extent_len;
2971 			bbio = NULL;
2972 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973 					extent_logical, &mapped_length, &bbio,
2974 					0);
2975 			if (!ret) {
2976 				if (!bbio || mapped_length < extent_len)
2977 					ret = -EIO;
2978 			}
2979 			if (ret) {
2980 				btrfs_put_bbio(bbio);
2981 				goto out;
2982 			}
2983 			extent_physical = bbio->stripes[0].physical;
2984 			extent_mirror_num = bbio->mirror_num;
2985 			extent_dev = bbio->stripes[0].dev;
2986 			btrfs_put_bbio(bbio);
2987 
2988 			ret = btrfs_lookup_csums_range(csum_root,
2989 						extent_logical,
2990 						extent_logical + extent_len - 1,
2991 						&sctx->csum_list, 1);
2992 			if (ret)
2993 				goto out;
2994 
2995 			ret = scrub_extent_for_parity(sparity, extent_logical,
2996 						      extent_len,
2997 						      extent_physical,
2998 						      extent_dev, flags,
2999 						      generation,
3000 						      extent_mirror_num);
3001 
3002 			scrub_free_csums(sctx);
3003 
3004 			if (ret)
3005 				goto out;
3006 
3007 			if (extent_logical + extent_len <
3008 			    key.objectid + bytes) {
3009 				logic_start += map->stripe_len;
3010 
3011 				if (logic_start >= logic_end) {
3012 					stop_loop = 1;
3013 					break;
3014 				}
3015 
3016 				if (logic_start < key.objectid + bytes) {
3017 					cond_resched();
3018 					goto again;
3019 				}
3020 			}
3021 next:
3022 			path->slots[0]++;
3023 		}
3024 
3025 		btrfs_release_path(path);
3026 
3027 		if (stop_loop)
3028 			break;
3029 
3030 		logic_start += map->stripe_len;
3031 	}
3032 out:
3033 	if (ret < 0)
3034 		scrub_parity_mark_sectors_error(sparity, logic_start,
3035 						logic_end - logic_start);
3036 	scrub_parity_put(sparity);
3037 	scrub_submit(sctx);
3038 	mutex_lock(&sctx->wr_lock);
3039 	scrub_wr_submit(sctx);
3040 	mutex_unlock(&sctx->wr_lock);
3041 
3042 	btrfs_release_path(path);
3043 	return ret < 0 ? ret : 0;
3044 }
3045 
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length)3046 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047 					   struct map_lookup *map,
3048 					   struct btrfs_device *scrub_dev,
3049 					   int num, u64 base, u64 length)
3050 {
3051 	struct btrfs_path *path, *ppath;
3052 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3053 	struct btrfs_root *root = fs_info->extent_root;
3054 	struct btrfs_root *csum_root = fs_info->csum_root;
3055 	struct btrfs_extent_item *extent;
3056 	struct blk_plug plug;
3057 	u64 flags;
3058 	int ret;
3059 	int slot;
3060 	u64 nstripes;
3061 	struct extent_buffer *l;
3062 	u64 physical;
3063 	u64 logical;
3064 	u64 logic_end;
3065 	u64 physical_end;
3066 	u64 generation;
3067 	int mirror_num;
3068 	struct reada_control *reada1;
3069 	struct reada_control *reada2;
3070 	struct btrfs_key key;
3071 	struct btrfs_key key_end;
3072 	u64 increment = map->stripe_len;
3073 	u64 offset;
3074 	u64 extent_logical;
3075 	u64 extent_physical;
3076 	u64 extent_len;
3077 	u64 stripe_logical;
3078 	u64 stripe_end;
3079 	struct btrfs_device *extent_dev;
3080 	int extent_mirror_num;
3081 	int stop_loop = 0;
3082 
3083 	physical = map->stripes[num].physical;
3084 	offset = 0;
3085 	nstripes = div64_u64(length, map->stripe_len);
3086 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087 		offset = map->stripe_len * num;
3088 		increment = map->stripe_len * map->num_stripes;
3089 		mirror_num = 1;
3090 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091 		int factor = map->num_stripes / map->sub_stripes;
3092 		offset = map->stripe_len * (num / map->sub_stripes);
3093 		increment = map->stripe_len * factor;
3094 		mirror_num = num % map->sub_stripes + 1;
3095 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096 		increment = map->stripe_len;
3097 		mirror_num = num % map->num_stripes + 1;
3098 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099 		increment = map->stripe_len;
3100 		mirror_num = num % map->num_stripes + 1;
3101 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103 		increment = map->stripe_len * nr_data_stripes(map);
3104 		mirror_num = 1;
3105 	} else {
3106 		increment = map->stripe_len;
3107 		mirror_num = 1;
3108 	}
3109 
3110 	path = btrfs_alloc_path();
3111 	if (!path)
3112 		return -ENOMEM;
3113 
3114 	ppath = btrfs_alloc_path();
3115 	if (!ppath) {
3116 		btrfs_free_path(path);
3117 		return -ENOMEM;
3118 	}
3119 
3120 	/*
3121 	 * work on commit root. The related disk blocks are static as
3122 	 * long as COW is applied. This means, it is save to rewrite
3123 	 * them to repair disk errors without any race conditions
3124 	 */
3125 	path->search_commit_root = 1;
3126 	path->skip_locking = 1;
3127 
3128 	ppath->search_commit_root = 1;
3129 	ppath->skip_locking = 1;
3130 	/*
3131 	 * trigger the readahead for extent tree csum tree and wait for
3132 	 * completion. During readahead, the scrub is officially paused
3133 	 * to not hold off transaction commits
3134 	 */
3135 	logical = base + offset;
3136 	physical_end = physical + nstripes * map->stripe_len;
3137 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138 		get_raid56_logic_offset(physical_end, num,
3139 					map, &logic_end, NULL);
3140 		logic_end += base;
3141 	} else {
3142 		logic_end = logical + increment * nstripes;
3143 	}
3144 	wait_event(sctx->list_wait,
3145 		   atomic_read(&sctx->bios_in_flight) == 0);
3146 	scrub_blocked_if_needed(fs_info);
3147 
3148 	/* FIXME it might be better to start readahead at commit root */
3149 	key.objectid = logical;
3150 	key.type = BTRFS_EXTENT_ITEM_KEY;
3151 	key.offset = (u64)0;
3152 	key_end.objectid = logic_end;
3153 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3154 	key_end.offset = (u64)-1;
3155 	reada1 = btrfs_reada_add(root, &key, &key_end);
3156 
3157 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158 	key.type = BTRFS_EXTENT_CSUM_KEY;
3159 	key.offset = logical;
3160 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162 	key_end.offset = logic_end;
3163 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164 
3165 	if (!IS_ERR(reada1))
3166 		btrfs_reada_wait(reada1);
3167 	if (!IS_ERR(reada2))
3168 		btrfs_reada_wait(reada2);
3169 
3170 
3171 	/*
3172 	 * collect all data csums for the stripe to avoid seeking during
3173 	 * the scrub. This might currently (crc32) end up to be about 1MB
3174 	 */
3175 	blk_start_plug(&plug);
3176 
3177 	/*
3178 	 * now find all extents for each stripe and scrub them
3179 	 */
3180 	ret = 0;
3181 	while (physical < physical_end) {
3182 		/*
3183 		 * canceled?
3184 		 */
3185 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3186 		    atomic_read(&sctx->cancel_req)) {
3187 			ret = -ECANCELED;
3188 			goto out;
3189 		}
3190 		/*
3191 		 * check to see if we have to pause
3192 		 */
3193 		if (atomic_read(&fs_info->scrub_pause_req)) {
3194 			/* push queued extents */
3195 			sctx->flush_all_writes = true;
3196 			scrub_submit(sctx);
3197 			mutex_lock(&sctx->wr_lock);
3198 			scrub_wr_submit(sctx);
3199 			mutex_unlock(&sctx->wr_lock);
3200 			wait_event(sctx->list_wait,
3201 				   atomic_read(&sctx->bios_in_flight) == 0);
3202 			sctx->flush_all_writes = false;
3203 			scrub_blocked_if_needed(fs_info);
3204 		}
3205 
3206 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207 			ret = get_raid56_logic_offset(physical, num, map,
3208 						      &logical,
3209 						      &stripe_logical);
3210 			logical += base;
3211 			if (ret) {
3212 				/* it is parity strip */
3213 				stripe_logical += base;
3214 				stripe_end = stripe_logical + increment;
3215 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216 							  ppath, stripe_logical,
3217 							  stripe_end);
3218 				if (ret)
3219 					goto out;
3220 				goto skip;
3221 			}
3222 		}
3223 
3224 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225 			key.type = BTRFS_METADATA_ITEM_KEY;
3226 		else
3227 			key.type = BTRFS_EXTENT_ITEM_KEY;
3228 		key.objectid = logical;
3229 		key.offset = (u64)-1;
3230 
3231 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232 		if (ret < 0)
3233 			goto out;
3234 
3235 		if (ret > 0) {
3236 			ret = btrfs_previous_extent_item(root, path, 0);
3237 			if (ret < 0)
3238 				goto out;
3239 			if (ret > 0) {
3240 				/* there's no smaller item, so stick with the
3241 				 * larger one */
3242 				btrfs_release_path(path);
3243 				ret = btrfs_search_slot(NULL, root, &key,
3244 							path, 0, 0);
3245 				if (ret < 0)
3246 					goto out;
3247 			}
3248 		}
3249 
3250 		stop_loop = 0;
3251 		while (1) {
3252 			u64 bytes;
3253 
3254 			l = path->nodes[0];
3255 			slot = path->slots[0];
3256 			if (slot >= btrfs_header_nritems(l)) {
3257 				ret = btrfs_next_leaf(root, path);
3258 				if (ret == 0)
3259 					continue;
3260 				if (ret < 0)
3261 					goto out;
3262 
3263 				stop_loop = 1;
3264 				break;
3265 			}
3266 			btrfs_item_key_to_cpu(l, &key, slot);
3267 
3268 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269 			    key.type != BTRFS_METADATA_ITEM_KEY)
3270 				goto next;
3271 
3272 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3273 				bytes = fs_info->nodesize;
3274 			else
3275 				bytes = key.offset;
3276 
3277 			if (key.objectid + bytes <= logical)
3278 				goto next;
3279 
3280 			if (key.objectid >= logical + map->stripe_len) {
3281 				/* out of this device extent */
3282 				if (key.objectid >= logic_end)
3283 					stop_loop = 1;
3284 				break;
3285 			}
3286 
3287 			extent = btrfs_item_ptr(l, slot,
3288 						struct btrfs_extent_item);
3289 			flags = btrfs_extent_flags(l, extent);
3290 			generation = btrfs_extent_generation(l, extent);
3291 
3292 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293 			    (key.objectid < logical ||
3294 			     key.objectid + bytes >
3295 			     logical + map->stripe_len)) {
3296 				btrfs_err(fs_info,
3297 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298 				       key.objectid, logical);
3299 				spin_lock(&sctx->stat_lock);
3300 				sctx->stat.uncorrectable_errors++;
3301 				spin_unlock(&sctx->stat_lock);
3302 				goto next;
3303 			}
3304 
3305 again:
3306 			extent_logical = key.objectid;
3307 			extent_len = bytes;
3308 
3309 			/*
3310 			 * trim extent to this stripe
3311 			 */
3312 			if (extent_logical < logical) {
3313 				extent_len -= logical - extent_logical;
3314 				extent_logical = logical;
3315 			}
3316 			if (extent_logical + extent_len >
3317 			    logical + map->stripe_len) {
3318 				extent_len = logical + map->stripe_len -
3319 					     extent_logical;
3320 			}
3321 
3322 			extent_physical = extent_logical - logical + physical;
3323 			extent_dev = scrub_dev;
3324 			extent_mirror_num = mirror_num;
3325 			if (sctx->is_dev_replace)
3326 				scrub_remap_extent(fs_info, extent_logical,
3327 						   extent_len, &extent_physical,
3328 						   &extent_dev,
3329 						   &extent_mirror_num);
3330 
3331 			ret = btrfs_lookup_csums_range(csum_root,
3332 						       extent_logical,
3333 						       extent_logical +
3334 						       extent_len - 1,
3335 						       &sctx->csum_list, 1);
3336 			if (ret)
3337 				goto out;
3338 
3339 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340 					   extent_physical, extent_dev, flags,
3341 					   generation, extent_mirror_num,
3342 					   extent_logical - logical + physical);
3343 
3344 			scrub_free_csums(sctx);
3345 
3346 			if (ret)
3347 				goto out;
3348 
3349 			if (extent_logical + extent_len <
3350 			    key.objectid + bytes) {
3351 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352 					/*
3353 					 * loop until we find next data stripe
3354 					 * or we have finished all stripes.
3355 					 */
3356 loop:
3357 					physical += map->stripe_len;
3358 					ret = get_raid56_logic_offset(physical,
3359 							num, map, &logical,
3360 							&stripe_logical);
3361 					logical += base;
3362 
3363 					if (ret && physical < physical_end) {
3364 						stripe_logical += base;
3365 						stripe_end = stripe_logical +
3366 								increment;
3367 						ret = scrub_raid56_parity(sctx,
3368 							map, scrub_dev, ppath,
3369 							stripe_logical,
3370 							stripe_end);
3371 						if (ret)
3372 							goto out;
3373 						goto loop;
3374 					}
3375 				} else {
3376 					physical += map->stripe_len;
3377 					logical += increment;
3378 				}
3379 				if (logical < key.objectid + bytes) {
3380 					cond_resched();
3381 					goto again;
3382 				}
3383 
3384 				if (physical >= physical_end) {
3385 					stop_loop = 1;
3386 					break;
3387 				}
3388 			}
3389 next:
3390 			path->slots[0]++;
3391 		}
3392 		btrfs_release_path(path);
3393 skip:
3394 		logical += increment;
3395 		physical += map->stripe_len;
3396 		spin_lock(&sctx->stat_lock);
3397 		if (stop_loop)
3398 			sctx->stat.last_physical = map->stripes[num].physical +
3399 						   length;
3400 		else
3401 			sctx->stat.last_physical = physical;
3402 		spin_unlock(&sctx->stat_lock);
3403 		if (stop_loop)
3404 			break;
3405 	}
3406 out:
3407 	/* push queued extents */
3408 	scrub_submit(sctx);
3409 	mutex_lock(&sctx->wr_lock);
3410 	scrub_wr_submit(sctx);
3411 	mutex_unlock(&sctx->wr_lock);
3412 
3413 	blk_finish_plug(&plug);
3414 	btrfs_free_path(path);
3415 	btrfs_free_path(ppath);
3416 	return ret < 0 ? ret : 0;
3417 }
3418 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group_cache * cache)3419 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3420 					  struct btrfs_device *scrub_dev,
3421 					  u64 chunk_offset, u64 length,
3422 					  u64 dev_offset,
3423 					  struct btrfs_block_group_cache *cache)
3424 {
3425 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3426 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427 	struct map_lookup *map;
3428 	struct extent_map *em;
3429 	int i;
3430 	int ret = 0;
3431 
3432 	read_lock(&map_tree->lock);
3433 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434 	read_unlock(&map_tree->lock);
3435 
3436 	if (!em) {
3437 		/*
3438 		 * Might have been an unused block group deleted by the cleaner
3439 		 * kthread or relocation.
3440 		 */
3441 		spin_lock(&cache->lock);
3442 		if (!cache->removed)
3443 			ret = -EINVAL;
3444 		spin_unlock(&cache->lock);
3445 
3446 		return ret;
3447 	}
3448 
3449 	map = em->map_lookup;
3450 	if (em->start != chunk_offset)
3451 		goto out;
3452 
3453 	if (em->len < length)
3454 		goto out;
3455 
3456 	for (i = 0; i < map->num_stripes; ++i) {
3457 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458 		    map->stripes[i].physical == dev_offset) {
3459 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3460 					   chunk_offset, length);
3461 			if (ret)
3462 				goto out;
3463 		}
3464 	}
3465 out:
3466 	free_extent_map(em);
3467 
3468 	return ret;
3469 }
3470 
3471 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)3472 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3474 {
3475 	struct btrfs_dev_extent *dev_extent = NULL;
3476 	struct btrfs_path *path;
3477 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3478 	struct btrfs_root *root = fs_info->dev_root;
3479 	u64 length;
3480 	u64 chunk_offset;
3481 	int ret = 0;
3482 	int ro_set;
3483 	int slot;
3484 	struct extent_buffer *l;
3485 	struct btrfs_key key;
3486 	struct btrfs_key found_key;
3487 	struct btrfs_block_group_cache *cache;
3488 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489 
3490 	path = btrfs_alloc_path();
3491 	if (!path)
3492 		return -ENOMEM;
3493 
3494 	path->reada = READA_FORWARD;
3495 	path->search_commit_root = 1;
3496 	path->skip_locking = 1;
3497 
3498 	key.objectid = scrub_dev->devid;
3499 	key.offset = 0ull;
3500 	key.type = BTRFS_DEV_EXTENT_KEY;
3501 
3502 	while (1) {
3503 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504 		if (ret < 0)
3505 			break;
3506 		if (ret > 0) {
3507 			if (path->slots[0] >=
3508 			    btrfs_header_nritems(path->nodes[0])) {
3509 				ret = btrfs_next_leaf(root, path);
3510 				if (ret < 0)
3511 					break;
3512 				if (ret > 0) {
3513 					ret = 0;
3514 					break;
3515 				}
3516 			} else {
3517 				ret = 0;
3518 			}
3519 		}
3520 
3521 		l = path->nodes[0];
3522 		slot = path->slots[0];
3523 
3524 		btrfs_item_key_to_cpu(l, &found_key, slot);
3525 
3526 		if (found_key.objectid != scrub_dev->devid)
3527 			break;
3528 
3529 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530 			break;
3531 
3532 		if (found_key.offset >= end)
3533 			break;
3534 
3535 		if (found_key.offset < key.offset)
3536 			break;
3537 
3538 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539 		length = btrfs_dev_extent_length(l, dev_extent);
3540 
3541 		if (found_key.offset + length <= start)
3542 			goto skip;
3543 
3544 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545 
3546 		/*
3547 		 * get a reference on the corresponding block group to prevent
3548 		 * the chunk from going away while we scrub it
3549 		 */
3550 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551 
3552 		/* some chunks are removed but not committed to disk yet,
3553 		 * continue scrubbing */
3554 		if (!cache)
3555 			goto skip;
3556 
3557 		/*
3558 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559 		 * to avoid deadlock caused by:
3560 		 * btrfs_inc_block_group_ro()
3561 		 * -> btrfs_wait_for_commit()
3562 		 * -> btrfs_commit_transaction()
3563 		 * -> btrfs_scrub_pause()
3564 		 */
3565 		scrub_pause_on(fs_info);
3566 		ret = btrfs_inc_block_group_ro(cache);
3567 		if (!ret && sctx->is_dev_replace) {
3568 			/*
3569 			 * If we are doing a device replace wait for any tasks
3570 			 * that started delalloc right before we set the block
3571 			 * group to RO mode, as they might have just allocated
3572 			 * an extent from it or decided they could do a nocow
3573 			 * write. And if any such tasks did that, wait for their
3574 			 * ordered extents to complete and then commit the
3575 			 * current transaction, so that we can later see the new
3576 			 * extent items in the extent tree - the ordered extents
3577 			 * create delayed data references (for cow writes) when
3578 			 * they complete, which will be run and insert the
3579 			 * corresponding extent items into the extent tree when
3580 			 * we commit the transaction they used when running
3581 			 * inode.c:btrfs_finish_ordered_io(). We later use
3582 			 * the commit root of the extent tree to find extents
3583 			 * to copy from the srcdev into the tgtdev, and we don't
3584 			 * want to miss any new extents.
3585 			 */
3586 			btrfs_wait_block_group_reservations(cache);
3587 			btrfs_wait_nocow_writers(cache);
3588 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589 						       cache->key.objectid,
3590 						       cache->key.offset);
3591 			if (ret > 0) {
3592 				struct btrfs_trans_handle *trans;
3593 
3594 				trans = btrfs_join_transaction(root);
3595 				if (IS_ERR(trans))
3596 					ret = PTR_ERR(trans);
3597 				else
3598 					ret = btrfs_commit_transaction(trans);
3599 				if (ret) {
3600 					scrub_pause_off(fs_info);
3601 					btrfs_put_block_group(cache);
3602 					break;
3603 				}
3604 			}
3605 		}
3606 		scrub_pause_off(fs_info);
3607 
3608 		if (ret == 0) {
3609 			ro_set = 1;
3610 		} else if (ret == -ENOSPC) {
3611 			/*
3612 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3613 			 * failed in creating new chunk for metadata.
3614 			 * It is not a problem for scrub/replace, because
3615 			 * metadata are always cowed, and our scrub paused
3616 			 * commit_transactions.
3617 			 */
3618 			ro_set = 0;
3619 		} else {
3620 			btrfs_warn(fs_info,
3621 				   "failed setting block group ro: %d", ret);
3622 			btrfs_put_block_group(cache);
3623 			break;
3624 		}
3625 
3626 		down_write(&fs_info->dev_replace.rwsem);
3627 		dev_replace->cursor_right = found_key.offset + length;
3628 		dev_replace->cursor_left = found_key.offset;
3629 		dev_replace->item_needs_writeback = 1;
3630 		up_write(&dev_replace->rwsem);
3631 
3632 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633 				  found_key.offset, cache);
3634 
3635 		/*
3636 		 * flush, submit all pending read and write bios, afterwards
3637 		 * wait for them.
3638 		 * Note that in the dev replace case, a read request causes
3639 		 * write requests that are submitted in the read completion
3640 		 * worker. Therefore in the current situation, it is required
3641 		 * that all write requests are flushed, so that all read and
3642 		 * write requests are really completed when bios_in_flight
3643 		 * changes to 0.
3644 		 */
3645 		sctx->flush_all_writes = true;
3646 		scrub_submit(sctx);
3647 		mutex_lock(&sctx->wr_lock);
3648 		scrub_wr_submit(sctx);
3649 		mutex_unlock(&sctx->wr_lock);
3650 
3651 		wait_event(sctx->list_wait,
3652 			   atomic_read(&sctx->bios_in_flight) == 0);
3653 
3654 		scrub_pause_on(fs_info);
3655 
3656 		/*
3657 		 * must be called before we decrease @scrub_paused.
3658 		 * make sure we don't block transaction commit while
3659 		 * we are waiting pending workers finished.
3660 		 */
3661 		wait_event(sctx->list_wait,
3662 			   atomic_read(&sctx->workers_pending) == 0);
3663 		sctx->flush_all_writes = false;
3664 
3665 		scrub_pause_off(fs_info);
3666 
3667 		down_write(&fs_info->dev_replace.rwsem);
3668 		dev_replace->cursor_left = dev_replace->cursor_right;
3669 		dev_replace->item_needs_writeback = 1;
3670 		up_write(&fs_info->dev_replace.rwsem);
3671 
3672 		if (ro_set)
3673 			btrfs_dec_block_group_ro(cache);
3674 
3675 		/*
3676 		 * We might have prevented the cleaner kthread from deleting
3677 		 * this block group if it was already unused because we raced
3678 		 * and set it to RO mode first. So add it back to the unused
3679 		 * list, otherwise it might not ever be deleted unless a manual
3680 		 * balance is triggered or it becomes used and unused again.
3681 		 */
3682 		spin_lock(&cache->lock);
3683 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684 		    btrfs_block_group_used(&cache->item) == 0) {
3685 			spin_unlock(&cache->lock);
3686 			btrfs_mark_bg_unused(cache);
3687 		} else {
3688 			spin_unlock(&cache->lock);
3689 		}
3690 
3691 		btrfs_put_block_group(cache);
3692 		if (ret)
3693 			break;
3694 		if (sctx->is_dev_replace &&
3695 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696 			ret = -EIO;
3697 			break;
3698 		}
3699 		if (sctx->stat.malloc_errors > 0) {
3700 			ret = -ENOMEM;
3701 			break;
3702 		}
3703 skip:
3704 		key.offset = found_key.offset + length;
3705 		btrfs_release_path(path);
3706 	}
3707 
3708 	btrfs_free_path(path);
3709 
3710 	return ret;
3711 }
3712 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3713 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3714 					   struct btrfs_device *scrub_dev)
3715 {
3716 	int	i;
3717 	u64	bytenr;
3718 	u64	gen;
3719 	int	ret;
3720 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3721 
3722 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723 		return -EIO;
3724 
3725 	/* Seed devices of a new filesystem has their own generation. */
3726 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3727 		gen = scrub_dev->generation;
3728 	else
3729 		gen = fs_info->last_trans_committed;
3730 
3731 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3732 		bytenr = btrfs_sb_offset(i);
3733 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3734 		    scrub_dev->commit_total_bytes)
3735 			break;
3736 
3737 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739 				  NULL, 1, bytenr);
3740 		if (ret)
3741 			return ret;
3742 	}
3743 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3744 
3745 	return 0;
3746 }
3747 
3748 /*
3749  * get a reference count on fs_info->scrub_workers. start worker if necessary
3750  */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)3751 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3752 						int is_dev_replace)
3753 {
3754 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3755 	int max_active = fs_info->thread_pool_size;
3756 
3757 	lockdep_assert_held(&fs_info->scrub_lock);
3758 
3759 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760 		ASSERT(fs_info->scrub_workers == NULL);
3761 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3762 				flags, is_dev_replace ? 1 : max_active, 4);
3763 		if (!fs_info->scrub_workers)
3764 			goto fail_scrub_workers;
3765 
3766 		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3767 		fs_info->scrub_wr_completion_workers =
3768 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769 					      max_active, 2);
3770 		if (!fs_info->scrub_wr_completion_workers)
3771 			goto fail_scrub_wr_completion_workers;
3772 
3773 		ASSERT(fs_info->scrub_parity_workers == NULL);
3774 		fs_info->scrub_parity_workers =
3775 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776 					      max_active, 2);
3777 		if (!fs_info->scrub_parity_workers)
3778 			goto fail_scrub_parity_workers;
3779 
3780 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3781 	} else {
3782 		refcount_inc(&fs_info->scrub_workers_refcnt);
3783 	}
3784 	return 0;
3785 
3786 fail_scrub_parity_workers:
3787 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3788 fail_scrub_wr_completion_workers:
3789 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3790 fail_scrub_workers:
3791 	return -ENOMEM;
3792 }
3793 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)3794 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3795 		    u64 end, struct btrfs_scrub_progress *progress,
3796 		    int readonly, int is_dev_replace)
3797 {
3798 	struct scrub_ctx *sctx;
3799 	int ret;
3800 	struct btrfs_device *dev;
3801 	unsigned int nofs_flag;
3802 	struct btrfs_workqueue *scrub_workers = NULL;
3803 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3804 	struct btrfs_workqueue *scrub_parity = NULL;
3805 
3806 	if (btrfs_fs_closing(fs_info))
3807 		return -EAGAIN;
3808 
3809 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810 		/*
3811 		 * in this case scrub is unable to calculate the checksum
3812 		 * the way scrub is implemented. Do not handle this
3813 		 * situation at all because it won't ever happen.
3814 		 */
3815 		btrfs_err(fs_info,
3816 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817 		       fs_info->nodesize,
3818 		       BTRFS_STRIPE_LEN);
3819 		return -EINVAL;
3820 	}
3821 
3822 	if (fs_info->sectorsize != PAGE_SIZE) {
3823 		/* not supported for data w/o checksums */
3824 		btrfs_err_rl(fs_info,
3825 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826 		       fs_info->sectorsize, PAGE_SIZE);
3827 		return -EINVAL;
3828 	}
3829 
3830 	if (fs_info->nodesize >
3831 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3833 		/*
3834 		 * would exhaust the array bounds of pagev member in
3835 		 * struct scrub_block
3836 		 */
3837 		btrfs_err(fs_info,
3838 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839 		       fs_info->nodesize,
3840 		       SCRUB_MAX_PAGES_PER_BLOCK,
3841 		       fs_info->sectorsize,
3842 		       SCRUB_MAX_PAGES_PER_BLOCK);
3843 		return -EINVAL;
3844 	}
3845 
3846 	/* Allocate outside of device_list_mutex */
3847 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3848 	if (IS_ERR(sctx))
3849 		return PTR_ERR(sctx);
3850 
3851 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3854 		     !is_dev_replace)) {
3855 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856 		ret = -ENODEV;
3857 		goto out_free_ctx;
3858 	}
3859 
3860 	if (!is_dev_replace && !readonly &&
3861 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3864 				rcu_str_deref(dev->name));
3865 		ret = -EROFS;
3866 		goto out_free_ctx;
3867 	}
3868 
3869 	mutex_lock(&fs_info->scrub_lock);
3870 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3872 		mutex_unlock(&fs_info->scrub_lock);
3873 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 		ret = -EIO;
3875 		goto out_free_ctx;
3876 	}
3877 
3878 	down_read(&fs_info->dev_replace.rwsem);
3879 	if (dev->scrub_ctx ||
3880 	    (!is_dev_replace &&
3881 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882 		up_read(&fs_info->dev_replace.rwsem);
3883 		mutex_unlock(&fs_info->scrub_lock);
3884 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885 		ret = -EINPROGRESS;
3886 		goto out_free_ctx;
3887 	}
3888 	up_read(&fs_info->dev_replace.rwsem);
3889 
3890 	ret = scrub_workers_get(fs_info, is_dev_replace);
3891 	if (ret) {
3892 		mutex_unlock(&fs_info->scrub_lock);
3893 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894 		goto out_free_ctx;
3895 	}
3896 
3897 	sctx->readonly = readonly;
3898 	dev->scrub_ctx = sctx;
3899 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900 
3901 	/*
3902 	 * checking @scrub_pause_req here, we can avoid
3903 	 * race between committing transaction and scrubbing.
3904 	 */
3905 	__scrub_blocked_if_needed(fs_info);
3906 	atomic_inc(&fs_info->scrubs_running);
3907 	mutex_unlock(&fs_info->scrub_lock);
3908 
3909 	/*
3910 	 * In order to avoid deadlock with reclaim when there is a transaction
3911 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3912 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913 	 * invoked by our callees. The pausing request is done when the
3914 	 * transaction commit starts, and it blocks the transaction until scrub
3915 	 * is paused (done at specific points at scrub_stripe() or right above
3916 	 * before incrementing fs_info->scrubs_running).
3917 	 */
3918 	nofs_flag = memalloc_nofs_save();
3919 	if (!is_dev_replace) {
3920 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921 		/*
3922 		 * by holding device list mutex, we can
3923 		 * kick off writing super in log tree sync.
3924 		 */
3925 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926 		ret = scrub_supers(sctx, dev);
3927 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928 	}
3929 
3930 	if (!ret)
3931 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932 	memalloc_nofs_restore(nofs_flag);
3933 
3934 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935 	atomic_dec(&fs_info->scrubs_running);
3936 	wake_up(&fs_info->scrub_pause_wait);
3937 
3938 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939 
3940 	if (progress)
3941 		memcpy(progress, &sctx->stat, sizeof(*progress));
3942 
3943 	if (!is_dev_replace)
3944 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945 			ret ? "not finished" : "finished", devid, ret);
3946 
3947 	mutex_lock(&fs_info->scrub_lock);
3948 	dev->scrub_ctx = NULL;
3949 	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950 		scrub_workers = fs_info->scrub_workers;
3951 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3952 		scrub_parity = fs_info->scrub_parity_workers;
3953 
3954 		fs_info->scrub_workers = NULL;
3955 		fs_info->scrub_wr_completion_workers = NULL;
3956 		fs_info->scrub_parity_workers = NULL;
3957 	}
3958 	mutex_unlock(&fs_info->scrub_lock);
3959 
3960 	btrfs_destroy_workqueue(scrub_workers);
3961 	btrfs_destroy_workqueue(scrub_wr_comp);
3962 	btrfs_destroy_workqueue(scrub_parity);
3963 	scrub_put_ctx(sctx);
3964 
3965 	return ret;
3966 
3967 out_free_ctx:
3968 	scrub_free_ctx(sctx);
3969 
3970 	return ret;
3971 }
3972 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3973 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3974 {
3975 	mutex_lock(&fs_info->scrub_lock);
3976 	atomic_inc(&fs_info->scrub_pause_req);
3977 	while (atomic_read(&fs_info->scrubs_paused) !=
3978 	       atomic_read(&fs_info->scrubs_running)) {
3979 		mutex_unlock(&fs_info->scrub_lock);
3980 		wait_event(fs_info->scrub_pause_wait,
3981 			   atomic_read(&fs_info->scrubs_paused) ==
3982 			   atomic_read(&fs_info->scrubs_running));
3983 		mutex_lock(&fs_info->scrub_lock);
3984 	}
3985 	mutex_unlock(&fs_info->scrub_lock);
3986 }
3987 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3988 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3989 {
3990 	atomic_dec(&fs_info->scrub_pause_req);
3991 	wake_up(&fs_info->scrub_pause_wait);
3992 }
3993 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3994 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3995 {
3996 	mutex_lock(&fs_info->scrub_lock);
3997 	if (!atomic_read(&fs_info->scrubs_running)) {
3998 		mutex_unlock(&fs_info->scrub_lock);
3999 		return -ENOTCONN;
4000 	}
4001 
4002 	atomic_inc(&fs_info->scrub_cancel_req);
4003 	while (atomic_read(&fs_info->scrubs_running)) {
4004 		mutex_unlock(&fs_info->scrub_lock);
4005 		wait_event(fs_info->scrub_pause_wait,
4006 			   atomic_read(&fs_info->scrubs_running) == 0);
4007 		mutex_lock(&fs_info->scrub_lock);
4008 	}
4009 	atomic_dec(&fs_info->scrub_cancel_req);
4010 	mutex_unlock(&fs_info->scrub_lock);
4011 
4012 	return 0;
4013 }
4014 
btrfs_scrub_cancel_dev(struct btrfs_device * dev)4015 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4016 {
4017 	struct btrfs_fs_info *fs_info = dev->fs_info;
4018 	struct scrub_ctx *sctx;
4019 
4020 	mutex_lock(&fs_info->scrub_lock);
4021 	sctx = dev->scrub_ctx;
4022 	if (!sctx) {
4023 		mutex_unlock(&fs_info->scrub_lock);
4024 		return -ENOTCONN;
4025 	}
4026 	atomic_inc(&sctx->cancel_req);
4027 	while (dev->scrub_ctx) {
4028 		mutex_unlock(&fs_info->scrub_lock);
4029 		wait_event(fs_info->scrub_pause_wait,
4030 			   dev->scrub_ctx == NULL);
4031 		mutex_lock(&fs_info->scrub_lock);
4032 	}
4033 	mutex_unlock(&fs_info->scrub_lock);
4034 
4035 	return 0;
4036 }
4037 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)4038 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4039 			 struct btrfs_scrub_progress *progress)
4040 {
4041 	struct btrfs_device *dev;
4042 	struct scrub_ctx *sctx = NULL;
4043 
4044 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4046 	if (dev)
4047 		sctx = dev->scrub_ctx;
4048 	if (sctx)
4049 		memcpy(progress, &sctx->stat, sizeof(*progress));
4050 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051 
4052 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4053 }
4054 
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u64 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4055 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4056 			       u64 extent_logical, u64 extent_len,
4057 			       u64 *extent_physical,
4058 			       struct btrfs_device **extent_dev,
4059 			       int *extent_mirror_num)
4060 {
4061 	u64 mapped_length;
4062 	struct btrfs_bio *bbio = NULL;
4063 	int ret;
4064 
4065 	mapped_length = extent_len;
4066 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067 			      &mapped_length, &bbio, 0);
4068 	if (ret || !bbio || mapped_length < extent_len ||
4069 	    !bbio->stripes[0].dev->bdev) {
4070 		btrfs_put_bbio(bbio);
4071 		return;
4072 	}
4073 
4074 	*extent_physical = bbio->stripes[0].physical;
4075 	*extent_mirror_num = bbio->mirror_num;
4076 	*extent_dev = bbio->stripes[0].dev;
4077 	btrfs_put_bbio(bbio);
4078 }
4079