1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
18 
19 #undef DEBUG
20 
21 /*
22  * This is the implementation for the generic read ahead framework.
23  *
24  * To trigger a readahead, btrfs_reada_add must be called. It will start
25  * a read ahead for the given range [start, end) on tree root. The returned
26  * handle can either be used to wait on the readahead to finish
27  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28  *
29  * The read ahead works as follows:
30  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31  * reada_start_machine will then search for extents to prefetch and trigger
32  * some reads. When a read finishes for a node, all contained node/leaf
33  * pointers that lie in the given range will also be enqueued. The reads will
34  * be triggered in sequential order, thus giving a big win over a naive
35  * enumeration. It will also make use of multi-device layouts. Each disk
36  * will have its on read pointer and all disks will by utilized in parallel.
37  * Also will no two disks read both sides of a mirror simultaneously, as this
38  * would waste seeking capacity. Instead both disks will read different parts
39  * of the filesystem.
40  * Any number of readaheads can be started in parallel. The read order will be
41  * determined globally, i.e. 2 parallel readaheads will normally finish faster
42  * than the 2 started one after another.
43  */
44 
45 #define MAX_IN_FLIGHT 6
46 
47 struct reada_extctl {
48 	struct list_head	list;
49 	struct reada_control	*rc;
50 	u64			generation;
51 };
52 
53 struct reada_extent {
54 	u64			logical;
55 	struct btrfs_key	top;
56 	struct list_head	extctl;
57 	int 			refcnt;
58 	spinlock_t		lock;
59 	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
60 	int			nzones;
61 	int			scheduled;
62 };
63 
64 struct reada_zone {
65 	u64			start;
66 	u64			end;
67 	u64			elems;
68 	struct list_head	list;
69 	spinlock_t		lock;
70 	int			locked;
71 	struct btrfs_device	*device;
72 	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
73 							   * self */
74 	int			ndevs;
75 	struct kref		refcnt;
76 };
77 
78 struct reada_machine_work {
79 	struct btrfs_work	work;
80 	struct btrfs_fs_info	*fs_info;
81 };
82 
83 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
84 static void reada_control_release(struct kref *kref);
85 static void reada_zone_release(struct kref *kref);
86 static void reada_start_machine(struct btrfs_fs_info *fs_info);
87 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
88 
89 static int reada_add_block(struct reada_control *rc, u64 logical,
90 			   struct btrfs_key *top, u64 generation);
91 
92 /* recurses */
93 /* in case of err, eb might be NULL */
__readahead_hook(struct btrfs_fs_info * fs_info,struct reada_extent * re,struct extent_buffer * eb,int err)94 static void __readahead_hook(struct btrfs_fs_info *fs_info,
95 			     struct reada_extent *re, struct extent_buffer *eb,
96 			     int err)
97 {
98 	int nritems;
99 	int i;
100 	u64 bytenr;
101 	u64 generation;
102 	struct list_head list;
103 
104 	spin_lock(&re->lock);
105 	/*
106 	 * just take the full list from the extent. afterwards we
107 	 * don't need the lock anymore
108 	 */
109 	list_replace_init(&re->extctl, &list);
110 	re->scheduled = 0;
111 	spin_unlock(&re->lock);
112 
113 	/*
114 	 * this is the error case, the extent buffer has not been
115 	 * read correctly. We won't access anything from it and
116 	 * just cleanup our data structures. Effectively this will
117 	 * cut the branch below this node from read ahead.
118 	 */
119 	if (err)
120 		goto cleanup;
121 
122 	/*
123 	 * FIXME: currently we just set nritems to 0 if this is a leaf,
124 	 * effectively ignoring the content. In a next step we could
125 	 * trigger more readahead depending from the content, e.g.
126 	 * fetch the checksums for the extents in the leaf.
127 	 */
128 	if (!btrfs_header_level(eb))
129 		goto cleanup;
130 
131 	nritems = btrfs_header_nritems(eb);
132 	generation = btrfs_header_generation(eb);
133 	for (i = 0; i < nritems; i++) {
134 		struct reada_extctl *rec;
135 		u64 n_gen;
136 		struct btrfs_key key;
137 		struct btrfs_key next_key;
138 
139 		btrfs_node_key_to_cpu(eb, &key, i);
140 		if (i + 1 < nritems)
141 			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
142 		else
143 			next_key = re->top;
144 		bytenr = btrfs_node_blockptr(eb, i);
145 		n_gen = btrfs_node_ptr_generation(eb, i);
146 
147 		list_for_each_entry(rec, &list, list) {
148 			struct reada_control *rc = rec->rc;
149 
150 			/*
151 			 * if the generation doesn't match, just ignore this
152 			 * extctl. This will probably cut off a branch from
153 			 * prefetch. Alternatively one could start a new (sub-)
154 			 * prefetch for this branch, starting again from root.
155 			 * FIXME: move the generation check out of this loop
156 			 */
157 #ifdef DEBUG
158 			if (rec->generation != generation) {
159 				btrfs_debug(fs_info,
160 					    "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161 					    key.objectid, key.type, key.offset,
162 					    rec->generation, generation);
163 			}
164 #endif
165 			if (rec->generation == generation &&
166 			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
167 			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
168 				reada_add_block(rc, bytenr, &next_key, n_gen);
169 		}
170 	}
171 
172 cleanup:
173 	/*
174 	 * free extctl records
175 	 */
176 	while (!list_empty(&list)) {
177 		struct reada_control *rc;
178 		struct reada_extctl *rec;
179 
180 		rec = list_first_entry(&list, struct reada_extctl, list);
181 		list_del(&rec->list);
182 		rc = rec->rc;
183 		kfree(rec);
184 
185 		kref_get(&rc->refcnt);
186 		if (atomic_dec_and_test(&rc->elems)) {
187 			kref_put(&rc->refcnt, reada_control_release);
188 			wake_up(&rc->wait);
189 		}
190 		kref_put(&rc->refcnt, reada_control_release);
191 
192 		reada_extent_put(fs_info, re);	/* one ref for each entry */
193 	}
194 
195 	return;
196 }
197 
btree_readahead_hook(struct extent_buffer * eb,int err)198 int btree_readahead_hook(struct extent_buffer *eb, int err)
199 {
200 	struct btrfs_fs_info *fs_info = eb->fs_info;
201 	int ret = 0;
202 	struct reada_extent *re;
203 
204 	/* find extent */
205 	spin_lock(&fs_info->reada_lock);
206 	re = radix_tree_lookup(&fs_info->reada_tree,
207 			       eb->start >> PAGE_SHIFT);
208 	if (re)
209 		re->refcnt++;
210 	spin_unlock(&fs_info->reada_lock);
211 	if (!re) {
212 		ret = -1;
213 		goto start_machine;
214 	}
215 
216 	__readahead_hook(fs_info, re, eb, err);
217 	reada_extent_put(fs_info, re);	/* our ref */
218 
219 start_machine:
220 	reada_start_machine(fs_info);
221 	return ret;
222 }
223 
reada_find_zone(struct btrfs_device * dev,u64 logical,struct btrfs_bio * bbio)224 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
225 					  struct btrfs_bio *bbio)
226 {
227 	struct btrfs_fs_info *fs_info = dev->fs_info;
228 	int ret;
229 	struct reada_zone *zone;
230 	struct btrfs_block_group_cache *cache = NULL;
231 	u64 start;
232 	u64 end;
233 	int i;
234 
235 	zone = NULL;
236 	spin_lock(&fs_info->reada_lock);
237 	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
238 				     logical >> PAGE_SHIFT, 1);
239 	if (ret == 1 && logical >= zone->start && logical <= zone->end) {
240 		kref_get(&zone->refcnt);
241 		spin_unlock(&fs_info->reada_lock);
242 		return zone;
243 	}
244 
245 	spin_unlock(&fs_info->reada_lock);
246 
247 	cache = btrfs_lookup_block_group(fs_info, logical);
248 	if (!cache)
249 		return NULL;
250 
251 	start = cache->key.objectid;
252 	end = start + cache->key.offset - 1;
253 	btrfs_put_block_group(cache);
254 
255 	zone = kzalloc(sizeof(*zone), GFP_KERNEL);
256 	if (!zone)
257 		return NULL;
258 
259 	ret = radix_tree_preload(GFP_KERNEL);
260 	if (ret) {
261 		kfree(zone);
262 		return NULL;
263 	}
264 
265 	zone->start = start;
266 	zone->end = end;
267 	INIT_LIST_HEAD(&zone->list);
268 	spin_lock_init(&zone->lock);
269 	zone->locked = 0;
270 	kref_init(&zone->refcnt);
271 	zone->elems = 0;
272 	zone->device = dev; /* our device always sits at index 0 */
273 	for (i = 0; i < bbio->num_stripes; ++i) {
274 		/* bounds have already been checked */
275 		zone->devs[i] = bbio->stripes[i].dev;
276 	}
277 	zone->ndevs = bbio->num_stripes;
278 
279 	spin_lock(&fs_info->reada_lock);
280 	ret = radix_tree_insert(&dev->reada_zones,
281 				(unsigned long)(zone->end >> PAGE_SHIFT),
282 				zone);
283 
284 	if (ret == -EEXIST) {
285 		kfree(zone);
286 		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
287 					     logical >> PAGE_SHIFT, 1);
288 		if (ret == 1 && logical >= zone->start && logical <= zone->end)
289 			kref_get(&zone->refcnt);
290 		else
291 			zone = NULL;
292 	}
293 	spin_unlock(&fs_info->reada_lock);
294 	radix_tree_preload_end();
295 
296 	return zone;
297 }
298 
reada_find_extent(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_key * top)299 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
300 					      u64 logical,
301 					      struct btrfs_key *top)
302 {
303 	int ret;
304 	struct reada_extent *re = NULL;
305 	struct reada_extent *re_exist = NULL;
306 	struct btrfs_bio *bbio = NULL;
307 	struct btrfs_device *dev;
308 	struct btrfs_device *prev_dev;
309 	u64 length;
310 	int real_stripes;
311 	int nzones = 0;
312 	unsigned long index = logical >> PAGE_SHIFT;
313 	int dev_replace_is_ongoing;
314 	int have_zone = 0;
315 
316 	spin_lock(&fs_info->reada_lock);
317 	re = radix_tree_lookup(&fs_info->reada_tree, index);
318 	if (re)
319 		re->refcnt++;
320 	spin_unlock(&fs_info->reada_lock);
321 
322 	if (re)
323 		return re;
324 
325 	re = kzalloc(sizeof(*re), GFP_KERNEL);
326 	if (!re)
327 		return NULL;
328 
329 	re->logical = logical;
330 	re->top = *top;
331 	INIT_LIST_HEAD(&re->extctl);
332 	spin_lock_init(&re->lock);
333 	re->refcnt = 1;
334 
335 	/*
336 	 * map block
337 	 */
338 	length = fs_info->nodesize;
339 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
340 			&length, &bbio, 0);
341 	if (ret || !bbio || length < fs_info->nodesize)
342 		goto error;
343 
344 	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
345 		btrfs_err(fs_info,
346 			   "readahead: more than %d copies not supported",
347 			   BTRFS_MAX_MIRRORS);
348 		goto error;
349 	}
350 
351 	real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
352 	for (nzones = 0; nzones < real_stripes; ++nzones) {
353 		struct reada_zone *zone;
354 
355 		dev = bbio->stripes[nzones].dev;
356 
357 		/* cannot read ahead on missing device. */
358 		if (!dev->bdev)
359 			continue;
360 
361 		zone = reada_find_zone(dev, logical, bbio);
362 		if (!zone)
363 			continue;
364 
365 		re->zones[re->nzones++] = zone;
366 		spin_lock(&zone->lock);
367 		if (!zone->elems)
368 			kref_get(&zone->refcnt);
369 		++zone->elems;
370 		spin_unlock(&zone->lock);
371 		spin_lock(&fs_info->reada_lock);
372 		kref_put(&zone->refcnt, reada_zone_release);
373 		spin_unlock(&fs_info->reada_lock);
374 	}
375 	if (re->nzones == 0) {
376 		/* not a single zone found, error and out */
377 		goto error;
378 	}
379 
380 	/* Insert extent in reada tree + all per-device trees, all or nothing */
381 	down_read(&fs_info->dev_replace.rwsem);
382 	ret = radix_tree_preload(GFP_KERNEL);
383 	if (ret) {
384 		up_read(&fs_info->dev_replace.rwsem);
385 		goto error;
386 	}
387 
388 	spin_lock(&fs_info->reada_lock);
389 	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
390 	if (ret == -EEXIST) {
391 		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
392 		re_exist->refcnt++;
393 		spin_unlock(&fs_info->reada_lock);
394 		radix_tree_preload_end();
395 		up_read(&fs_info->dev_replace.rwsem);
396 		goto error;
397 	}
398 	if (ret) {
399 		spin_unlock(&fs_info->reada_lock);
400 		radix_tree_preload_end();
401 		up_read(&fs_info->dev_replace.rwsem);
402 		goto error;
403 	}
404 	radix_tree_preload_end();
405 	prev_dev = NULL;
406 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407 			&fs_info->dev_replace);
408 	for (nzones = 0; nzones < re->nzones; ++nzones) {
409 		dev = re->zones[nzones]->device;
410 
411 		if (dev == prev_dev) {
412 			/*
413 			 * in case of DUP, just add the first zone. As both
414 			 * are on the same device, there's nothing to gain
415 			 * from adding both.
416 			 * Also, it wouldn't work, as the tree is per device
417 			 * and adding would fail with EEXIST
418 			 */
419 			continue;
420 		}
421 		if (!dev->bdev)
422 			continue;
423 
424 		if (dev_replace_is_ongoing &&
425 		    dev == fs_info->dev_replace.tgtdev) {
426 			/*
427 			 * as this device is selected for reading only as
428 			 * a last resort, skip it for read ahead.
429 			 */
430 			continue;
431 		}
432 		prev_dev = dev;
433 		ret = radix_tree_insert(&dev->reada_extents, index, re);
434 		if (ret) {
435 			while (--nzones >= 0) {
436 				dev = re->zones[nzones]->device;
437 				BUG_ON(dev == NULL);
438 				/* ignore whether the entry was inserted */
439 				radix_tree_delete(&dev->reada_extents, index);
440 			}
441 			radix_tree_delete(&fs_info->reada_tree, index);
442 			spin_unlock(&fs_info->reada_lock);
443 			up_read(&fs_info->dev_replace.rwsem);
444 			goto error;
445 		}
446 		have_zone = 1;
447 	}
448 	spin_unlock(&fs_info->reada_lock);
449 	up_read(&fs_info->dev_replace.rwsem);
450 
451 	if (!have_zone)
452 		goto error;
453 
454 	btrfs_put_bbio(bbio);
455 	return re;
456 
457 error:
458 	for (nzones = 0; nzones < re->nzones; ++nzones) {
459 		struct reada_zone *zone;
460 
461 		zone = re->zones[nzones];
462 		kref_get(&zone->refcnt);
463 		spin_lock(&zone->lock);
464 		--zone->elems;
465 		if (zone->elems == 0) {
466 			/*
467 			 * no fs_info->reada_lock needed, as this can't be
468 			 * the last ref
469 			 */
470 			kref_put(&zone->refcnt, reada_zone_release);
471 		}
472 		spin_unlock(&zone->lock);
473 
474 		spin_lock(&fs_info->reada_lock);
475 		kref_put(&zone->refcnt, reada_zone_release);
476 		spin_unlock(&fs_info->reada_lock);
477 	}
478 	btrfs_put_bbio(bbio);
479 	kfree(re);
480 	return re_exist;
481 }
482 
reada_extent_put(struct btrfs_fs_info * fs_info,struct reada_extent * re)483 static void reada_extent_put(struct btrfs_fs_info *fs_info,
484 			     struct reada_extent *re)
485 {
486 	int i;
487 	unsigned long index = re->logical >> PAGE_SHIFT;
488 
489 	spin_lock(&fs_info->reada_lock);
490 	if (--re->refcnt) {
491 		spin_unlock(&fs_info->reada_lock);
492 		return;
493 	}
494 
495 	radix_tree_delete(&fs_info->reada_tree, index);
496 	for (i = 0; i < re->nzones; ++i) {
497 		struct reada_zone *zone = re->zones[i];
498 
499 		radix_tree_delete(&zone->device->reada_extents, index);
500 	}
501 
502 	spin_unlock(&fs_info->reada_lock);
503 
504 	for (i = 0; i < re->nzones; ++i) {
505 		struct reada_zone *zone = re->zones[i];
506 
507 		kref_get(&zone->refcnt);
508 		spin_lock(&zone->lock);
509 		--zone->elems;
510 		if (zone->elems == 0) {
511 			/* no fs_info->reada_lock needed, as this can't be
512 			 * the last ref */
513 			kref_put(&zone->refcnt, reada_zone_release);
514 		}
515 		spin_unlock(&zone->lock);
516 
517 		spin_lock(&fs_info->reada_lock);
518 		kref_put(&zone->refcnt, reada_zone_release);
519 		spin_unlock(&fs_info->reada_lock);
520 	}
521 
522 	kfree(re);
523 }
524 
reada_zone_release(struct kref * kref)525 static void reada_zone_release(struct kref *kref)
526 {
527 	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
528 
529 	radix_tree_delete(&zone->device->reada_zones,
530 			  zone->end >> PAGE_SHIFT);
531 
532 	kfree(zone);
533 }
534 
reada_control_release(struct kref * kref)535 static void reada_control_release(struct kref *kref)
536 {
537 	struct reada_control *rc = container_of(kref, struct reada_control,
538 						refcnt);
539 
540 	kfree(rc);
541 }
542 
reada_add_block(struct reada_control * rc,u64 logical,struct btrfs_key * top,u64 generation)543 static int reada_add_block(struct reada_control *rc, u64 logical,
544 			   struct btrfs_key *top, u64 generation)
545 {
546 	struct btrfs_fs_info *fs_info = rc->fs_info;
547 	struct reada_extent *re;
548 	struct reada_extctl *rec;
549 
550 	/* takes one ref */
551 	re = reada_find_extent(fs_info, logical, top);
552 	if (!re)
553 		return -1;
554 
555 	rec = kzalloc(sizeof(*rec), GFP_KERNEL);
556 	if (!rec) {
557 		reada_extent_put(fs_info, re);
558 		return -ENOMEM;
559 	}
560 
561 	rec->rc = rc;
562 	rec->generation = generation;
563 	atomic_inc(&rc->elems);
564 
565 	spin_lock(&re->lock);
566 	list_add_tail(&rec->list, &re->extctl);
567 	spin_unlock(&re->lock);
568 
569 	/* leave the ref on the extent */
570 
571 	return 0;
572 }
573 
574 /*
575  * called with fs_info->reada_lock held
576  */
reada_peer_zones_set_lock(struct reada_zone * zone,int lock)577 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
578 {
579 	int i;
580 	unsigned long index = zone->end >> PAGE_SHIFT;
581 
582 	for (i = 0; i < zone->ndevs; ++i) {
583 		struct reada_zone *peer;
584 		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
585 		if (peer && peer->device != zone->device)
586 			peer->locked = lock;
587 	}
588 }
589 
590 /*
591  * called with fs_info->reada_lock held
592  */
reada_pick_zone(struct btrfs_device * dev)593 static int reada_pick_zone(struct btrfs_device *dev)
594 {
595 	struct reada_zone *top_zone = NULL;
596 	struct reada_zone *top_locked_zone = NULL;
597 	u64 top_elems = 0;
598 	u64 top_locked_elems = 0;
599 	unsigned long index = 0;
600 	int ret;
601 
602 	if (dev->reada_curr_zone) {
603 		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
604 		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
605 		dev->reada_curr_zone = NULL;
606 	}
607 	/* pick the zone with the most elements */
608 	while (1) {
609 		struct reada_zone *zone;
610 
611 		ret = radix_tree_gang_lookup(&dev->reada_zones,
612 					     (void **)&zone, index, 1);
613 		if (ret == 0)
614 			break;
615 		index = (zone->end >> PAGE_SHIFT) + 1;
616 		if (zone->locked) {
617 			if (zone->elems > top_locked_elems) {
618 				top_locked_elems = zone->elems;
619 				top_locked_zone = zone;
620 			}
621 		} else {
622 			if (zone->elems > top_elems) {
623 				top_elems = zone->elems;
624 				top_zone = zone;
625 			}
626 		}
627 	}
628 	if (top_zone)
629 		dev->reada_curr_zone = top_zone;
630 	else if (top_locked_zone)
631 		dev->reada_curr_zone = top_locked_zone;
632 	else
633 		return 0;
634 
635 	dev->reada_next = dev->reada_curr_zone->start;
636 	kref_get(&dev->reada_curr_zone->refcnt);
637 	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
638 
639 	return 1;
640 }
641 
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,int mirror_num,struct extent_buffer ** eb)642 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
643 				    int mirror_num, struct extent_buffer **eb)
644 {
645 	struct extent_buffer *buf = NULL;
646 	int ret;
647 
648 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
649 	if (IS_ERR(buf))
650 		return 0;
651 
652 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
653 
654 	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
655 	if (ret) {
656 		free_extent_buffer_stale(buf);
657 		return ret;
658 	}
659 
660 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
661 		free_extent_buffer_stale(buf);
662 		return -EIO;
663 	} else if (extent_buffer_uptodate(buf)) {
664 		*eb = buf;
665 	} else {
666 		free_extent_buffer(buf);
667 	}
668 	return 0;
669 }
670 
reada_start_machine_dev(struct btrfs_device * dev)671 static int reada_start_machine_dev(struct btrfs_device *dev)
672 {
673 	struct btrfs_fs_info *fs_info = dev->fs_info;
674 	struct reada_extent *re = NULL;
675 	int mirror_num = 0;
676 	struct extent_buffer *eb = NULL;
677 	u64 logical;
678 	int ret;
679 	int i;
680 
681 	spin_lock(&fs_info->reada_lock);
682 	if (dev->reada_curr_zone == NULL) {
683 		ret = reada_pick_zone(dev);
684 		if (!ret) {
685 			spin_unlock(&fs_info->reada_lock);
686 			return 0;
687 		}
688 	}
689 	/*
690 	 * FIXME currently we issue the reads one extent at a time. If we have
691 	 * a contiguous block of extents, we could also coagulate them or use
692 	 * plugging to speed things up
693 	 */
694 	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
695 				     dev->reada_next >> PAGE_SHIFT, 1);
696 	if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
697 		ret = reada_pick_zone(dev);
698 		if (!ret) {
699 			spin_unlock(&fs_info->reada_lock);
700 			return 0;
701 		}
702 		re = NULL;
703 		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
704 					dev->reada_next >> PAGE_SHIFT, 1);
705 	}
706 	if (ret == 0) {
707 		spin_unlock(&fs_info->reada_lock);
708 		return 0;
709 	}
710 	dev->reada_next = re->logical + fs_info->nodesize;
711 	re->refcnt++;
712 
713 	spin_unlock(&fs_info->reada_lock);
714 
715 	spin_lock(&re->lock);
716 	if (re->scheduled || list_empty(&re->extctl)) {
717 		spin_unlock(&re->lock);
718 		reada_extent_put(fs_info, re);
719 		return 0;
720 	}
721 	re->scheduled = 1;
722 	spin_unlock(&re->lock);
723 
724 	/*
725 	 * find mirror num
726 	 */
727 	for (i = 0; i < re->nzones; ++i) {
728 		if (re->zones[i]->device == dev) {
729 			mirror_num = i + 1;
730 			break;
731 		}
732 	}
733 	logical = re->logical;
734 
735 	atomic_inc(&dev->reada_in_flight);
736 	ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
737 	if (ret)
738 		__readahead_hook(fs_info, re, NULL, ret);
739 	else if (eb)
740 		__readahead_hook(fs_info, re, eb, ret);
741 
742 	if (eb)
743 		free_extent_buffer(eb);
744 
745 	atomic_dec(&dev->reada_in_flight);
746 	reada_extent_put(fs_info, re);
747 
748 	return 1;
749 
750 }
751 
reada_start_machine_worker(struct btrfs_work * work)752 static void reada_start_machine_worker(struct btrfs_work *work)
753 {
754 	struct reada_machine_work *rmw;
755 	struct btrfs_fs_info *fs_info;
756 	int old_ioprio;
757 
758 	rmw = container_of(work, struct reada_machine_work, work);
759 	fs_info = rmw->fs_info;
760 
761 	kfree(rmw);
762 
763 	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
764 				       task_nice_ioprio(current));
765 	set_task_ioprio(current, BTRFS_IOPRIO_READA);
766 	__reada_start_machine(fs_info);
767 	set_task_ioprio(current, old_ioprio);
768 
769 	atomic_dec(&fs_info->reada_works_cnt);
770 }
771 
__reada_start_machine(struct btrfs_fs_info * fs_info)772 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
773 {
774 	struct btrfs_device *device;
775 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
776 	u64 enqueued;
777 	u64 total = 0;
778 	int i;
779 
780 again:
781 	do {
782 		enqueued = 0;
783 		mutex_lock(&fs_devices->device_list_mutex);
784 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
785 			if (atomic_read(&device->reada_in_flight) <
786 			    MAX_IN_FLIGHT)
787 				enqueued += reada_start_machine_dev(device);
788 		}
789 		mutex_unlock(&fs_devices->device_list_mutex);
790 		total += enqueued;
791 	} while (enqueued && total < 10000);
792 	if (fs_devices->seed) {
793 		fs_devices = fs_devices->seed;
794 		goto again;
795 	}
796 
797 	if (enqueued == 0)
798 		return;
799 
800 	/*
801 	 * If everything is already in the cache, this is effectively single
802 	 * threaded. To a) not hold the caller for too long and b) to utilize
803 	 * more cores, we broke the loop above after 10000 iterations and now
804 	 * enqueue to workers to finish it. This will distribute the load to
805 	 * the cores.
806 	 */
807 	for (i = 0; i < 2; ++i) {
808 		reada_start_machine(fs_info);
809 		if (atomic_read(&fs_info->reada_works_cnt) >
810 		    BTRFS_MAX_MIRRORS * 2)
811 			break;
812 	}
813 }
814 
reada_start_machine(struct btrfs_fs_info * fs_info)815 static void reada_start_machine(struct btrfs_fs_info *fs_info)
816 {
817 	struct reada_machine_work *rmw;
818 
819 	rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
820 	if (!rmw) {
821 		/* FIXME we cannot handle this properly right now */
822 		BUG();
823 	}
824 	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
825 			reada_start_machine_worker, NULL, NULL);
826 	rmw->fs_info = fs_info;
827 
828 	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
829 	atomic_inc(&fs_info->reada_works_cnt);
830 }
831 
832 #ifdef DEBUG
dump_devs(struct btrfs_fs_info * fs_info,int all)833 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
834 {
835 	struct btrfs_device *device;
836 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
837 	unsigned long index;
838 	int ret;
839 	int i;
840 	int j;
841 	int cnt;
842 
843 	spin_lock(&fs_info->reada_lock);
844 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
845 		btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
846 			atomic_read(&device->reada_in_flight));
847 		index = 0;
848 		while (1) {
849 			struct reada_zone *zone;
850 			ret = radix_tree_gang_lookup(&device->reada_zones,
851 						     (void **)&zone, index, 1);
852 			if (ret == 0)
853 				break;
854 			pr_debug("  zone %llu-%llu elems %llu locked %d devs",
855 				    zone->start, zone->end, zone->elems,
856 				    zone->locked);
857 			for (j = 0; j < zone->ndevs; ++j) {
858 				pr_cont(" %lld",
859 					zone->devs[j]->devid);
860 			}
861 			if (device->reada_curr_zone == zone)
862 				pr_cont(" curr off %llu",
863 					device->reada_next - zone->start);
864 			pr_cont("\n");
865 			index = (zone->end >> PAGE_SHIFT) + 1;
866 		}
867 		cnt = 0;
868 		index = 0;
869 		while (all) {
870 			struct reada_extent *re = NULL;
871 
872 			ret = radix_tree_gang_lookup(&device->reada_extents,
873 						     (void **)&re, index, 1);
874 			if (ret == 0)
875 				break;
876 			pr_debug("  re: logical %llu size %u empty %d scheduled %d",
877 				re->logical, fs_info->nodesize,
878 				list_empty(&re->extctl), re->scheduled);
879 
880 			for (i = 0; i < re->nzones; ++i) {
881 				pr_cont(" zone %llu-%llu devs",
882 					re->zones[i]->start,
883 					re->zones[i]->end);
884 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
885 					pr_cont(" %lld",
886 						re->zones[i]->devs[j]->devid);
887 				}
888 			}
889 			pr_cont("\n");
890 			index = (re->logical >> PAGE_SHIFT) + 1;
891 			if (++cnt > 15)
892 				break;
893 		}
894 	}
895 
896 	index = 0;
897 	cnt = 0;
898 	while (all) {
899 		struct reada_extent *re = NULL;
900 
901 		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
902 					     index, 1);
903 		if (ret == 0)
904 			break;
905 		if (!re->scheduled) {
906 			index = (re->logical >> PAGE_SHIFT) + 1;
907 			continue;
908 		}
909 		pr_debug("re: logical %llu size %u list empty %d scheduled %d",
910 			re->logical, fs_info->nodesize,
911 			list_empty(&re->extctl), re->scheduled);
912 		for (i = 0; i < re->nzones; ++i) {
913 			pr_cont(" zone %llu-%llu devs",
914 				re->zones[i]->start,
915 				re->zones[i]->end);
916 			for (j = 0; j < re->zones[i]->ndevs; ++j) {
917 				pr_cont(" %lld",
918 				       re->zones[i]->devs[j]->devid);
919 			}
920 		}
921 		pr_cont("\n");
922 		index = (re->logical >> PAGE_SHIFT) + 1;
923 	}
924 	spin_unlock(&fs_info->reada_lock);
925 }
926 #endif
927 
928 /*
929  * interface
930  */
btrfs_reada_add(struct btrfs_root * root,struct btrfs_key * key_start,struct btrfs_key * key_end)931 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
932 			struct btrfs_key *key_start, struct btrfs_key *key_end)
933 {
934 	struct reada_control *rc;
935 	u64 start;
936 	u64 generation;
937 	int ret;
938 	struct extent_buffer *node;
939 	static struct btrfs_key max_key = {
940 		.objectid = (u64)-1,
941 		.type = (u8)-1,
942 		.offset = (u64)-1
943 	};
944 
945 	rc = kzalloc(sizeof(*rc), GFP_KERNEL);
946 	if (!rc)
947 		return ERR_PTR(-ENOMEM);
948 
949 	rc->fs_info = root->fs_info;
950 	rc->key_start = *key_start;
951 	rc->key_end = *key_end;
952 	atomic_set(&rc->elems, 0);
953 	init_waitqueue_head(&rc->wait);
954 	kref_init(&rc->refcnt);
955 	kref_get(&rc->refcnt); /* one ref for having elements */
956 
957 	node = btrfs_root_node(root);
958 	start = node->start;
959 	generation = btrfs_header_generation(node);
960 	free_extent_buffer(node);
961 
962 	ret = reada_add_block(rc, start, &max_key, generation);
963 	if (ret) {
964 		kfree(rc);
965 		return ERR_PTR(ret);
966 	}
967 
968 	reada_start_machine(root->fs_info);
969 
970 	return rc;
971 }
972 
973 #ifdef DEBUG
btrfs_reada_wait(void * handle)974 int btrfs_reada_wait(void *handle)
975 {
976 	struct reada_control *rc = handle;
977 	struct btrfs_fs_info *fs_info = rc->fs_info;
978 
979 	while (atomic_read(&rc->elems)) {
980 		if (!atomic_read(&fs_info->reada_works_cnt))
981 			reada_start_machine(fs_info);
982 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
983 				   5 * HZ);
984 		dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
985 	}
986 
987 	dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
988 
989 	kref_put(&rc->refcnt, reada_control_release);
990 
991 	return 0;
992 }
993 #else
btrfs_reada_wait(void * handle)994 int btrfs_reada_wait(void *handle)
995 {
996 	struct reada_control *rc = handle;
997 	struct btrfs_fs_info *fs_info = rc->fs_info;
998 
999 	while (atomic_read(&rc->elems)) {
1000 		if (!atomic_read(&fs_info->reada_works_cnt))
1001 			reada_start_machine(fs_info);
1002 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1003 				   (HZ + 9) / 10);
1004 	}
1005 
1006 	kref_put(&rc->refcnt, reada_control_release);
1007 
1008 	return 0;
1009 }
1010 #endif
1011 
btrfs_reada_detach(void * handle)1012 void btrfs_reada_detach(void *handle)
1013 {
1014 	struct reada_control *rc = handle;
1015 
1016 	kref_put(&rc->refcnt, reada_control_release);
1017 }
1018