1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 
31 static struct kmem_cache *btrfs_inode_defrag_cachep;
32 /*
33  * when auto defrag is enabled we
34  * queue up these defrag structs to remember which
35  * inodes need defragging passes
36  */
37 struct inode_defrag {
38 	struct rb_node rb_node;
39 	/* objectid */
40 	u64 ino;
41 	/*
42 	 * transid where the defrag was added, we search for
43 	 * extents newer than this
44 	 */
45 	u64 transid;
46 
47 	/* root objectid */
48 	u64 root;
49 
50 	/* last offset we were able to defrag */
51 	u64 last_offset;
52 
53 	/* if we've wrapped around back to zero once already */
54 	int cycled;
55 };
56 
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)57 static int __compare_inode_defrag(struct inode_defrag *defrag1,
58 				  struct inode_defrag *defrag2)
59 {
60 	if (defrag1->root > defrag2->root)
61 		return 1;
62 	else if (defrag1->root < defrag2->root)
63 		return -1;
64 	else if (defrag1->ino > defrag2->ino)
65 		return 1;
66 	else if (defrag1->ino < defrag2->ino)
67 		return -1;
68 	else
69 		return 0;
70 }
71 
72 /* pop a record for an inode into the defrag tree.  The lock
73  * must be held already
74  *
75  * If you're inserting a record for an older transid than an
76  * existing record, the transid already in the tree is lowered
77  *
78  * If an existing record is found the defrag item you
79  * pass in is freed
80  */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)81 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
82 				    struct inode_defrag *defrag)
83 {
84 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
85 	struct inode_defrag *entry;
86 	struct rb_node **p;
87 	struct rb_node *parent = NULL;
88 	int ret;
89 
90 	p = &fs_info->defrag_inodes.rb_node;
91 	while (*p) {
92 		parent = *p;
93 		entry = rb_entry(parent, struct inode_defrag, rb_node);
94 
95 		ret = __compare_inode_defrag(defrag, entry);
96 		if (ret < 0)
97 			p = &parent->rb_left;
98 		else if (ret > 0)
99 			p = &parent->rb_right;
100 		else {
101 			/* if we're reinserting an entry for
102 			 * an old defrag run, make sure to
103 			 * lower the transid of our existing record
104 			 */
105 			if (defrag->transid < entry->transid)
106 				entry->transid = defrag->transid;
107 			if (defrag->last_offset > entry->last_offset)
108 				entry->last_offset = defrag->last_offset;
109 			return -EEXIST;
110 		}
111 	}
112 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
113 	rb_link_node(&defrag->rb_node, parent, p);
114 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
115 	return 0;
116 }
117 
__need_auto_defrag(struct btrfs_fs_info * fs_info)118 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
119 {
120 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
121 		return 0;
122 
123 	if (btrfs_fs_closing(fs_info))
124 		return 0;
125 
126 	return 1;
127 }
128 
129 /*
130  * insert a defrag record for this inode if auto defrag is
131  * enabled
132  */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)133 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
134 			   struct btrfs_inode *inode)
135 {
136 	struct btrfs_root *root = inode->root;
137 	struct btrfs_fs_info *fs_info = root->fs_info;
138 	struct inode_defrag *defrag;
139 	u64 transid;
140 	int ret;
141 
142 	if (!__need_auto_defrag(fs_info))
143 		return 0;
144 
145 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
146 		return 0;
147 
148 	if (trans)
149 		transid = trans->transid;
150 	else
151 		transid = inode->root->last_trans;
152 
153 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
154 	if (!defrag)
155 		return -ENOMEM;
156 
157 	defrag->ino = btrfs_ino(inode);
158 	defrag->transid = transid;
159 	defrag->root = root->root_key.objectid;
160 
161 	spin_lock(&fs_info->defrag_inodes_lock);
162 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
163 		/*
164 		 * If we set IN_DEFRAG flag and evict the inode from memory,
165 		 * and then re-read this inode, this new inode doesn't have
166 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 		 */
168 		ret = __btrfs_add_inode_defrag(inode, defrag);
169 		if (ret)
170 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171 	} else {
172 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 	}
174 	spin_unlock(&fs_info->defrag_inodes_lock);
175 	return 0;
176 }
177 
178 /*
179  * Requeue the defrag object. If there is a defrag object that points to
180  * the same inode in the tree, we will merge them together (by
181  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182  */
btrfs_requeue_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)183 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
184 				       struct inode_defrag *defrag)
185 {
186 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
187 	int ret;
188 
189 	if (!__need_auto_defrag(fs_info))
190 		goto out;
191 
192 	/*
193 	 * Here we don't check the IN_DEFRAG flag, because we need merge
194 	 * them together.
195 	 */
196 	spin_lock(&fs_info->defrag_inodes_lock);
197 	ret = __btrfs_add_inode_defrag(inode, defrag);
198 	spin_unlock(&fs_info->defrag_inodes_lock);
199 	if (ret)
200 		goto out;
201 	return;
202 out:
203 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204 }
205 
206 /*
207  * pick the defragable inode that we want, if it doesn't exist, we will get
208  * the next one.
209  */
210 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)211 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
212 {
213 	struct inode_defrag *entry = NULL;
214 	struct inode_defrag tmp;
215 	struct rb_node *p;
216 	struct rb_node *parent = NULL;
217 	int ret;
218 
219 	tmp.ino = ino;
220 	tmp.root = root;
221 
222 	spin_lock(&fs_info->defrag_inodes_lock);
223 	p = fs_info->defrag_inodes.rb_node;
224 	while (p) {
225 		parent = p;
226 		entry = rb_entry(parent, struct inode_defrag, rb_node);
227 
228 		ret = __compare_inode_defrag(&tmp, entry);
229 		if (ret < 0)
230 			p = parent->rb_left;
231 		else if (ret > 0)
232 			p = parent->rb_right;
233 		else
234 			goto out;
235 	}
236 
237 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238 		parent = rb_next(parent);
239 		if (parent)
240 			entry = rb_entry(parent, struct inode_defrag, rb_node);
241 		else
242 			entry = NULL;
243 	}
244 out:
245 	if (entry)
246 		rb_erase(parent, &fs_info->defrag_inodes);
247 	spin_unlock(&fs_info->defrag_inodes_lock);
248 	return entry;
249 }
250 
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)251 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
252 {
253 	struct inode_defrag *defrag;
254 	struct rb_node *node;
255 
256 	spin_lock(&fs_info->defrag_inodes_lock);
257 	node = rb_first(&fs_info->defrag_inodes);
258 	while (node) {
259 		rb_erase(node, &fs_info->defrag_inodes);
260 		defrag = rb_entry(node, struct inode_defrag, rb_node);
261 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262 
263 		cond_resched_lock(&fs_info->defrag_inodes_lock);
264 
265 		node = rb_first(&fs_info->defrag_inodes);
266 	}
267 	spin_unlock(&fs_info->defrag_inodes_lock);
268 }
269 
270 #define BTRFS_DEFRAG_BATCH	1024
271 
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)272 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273 				    struct inode_defrag *defrag)
274 {
275 	struct btrfs_root *inode_root;
276 	struct inode *inode;
277 	struct btrfs_key key;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int index;
281 	int ret;
282 
283 	/* get the inode */
284 	key.objectid = defrag->root;
285 	key.type = BTRFS_ROOT_ITEM_KEY;
286 	key.offset = (u64)-1;
287 
288 	index = srcu_read_lock(&fs_info->subvol_srcu);
289 
290 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291 	if (IS_ERR(inode_root)) {
292 		ret = PTR_ERR(inode_root);
293 		goto cleanup;
294 	}
295 
296 	key.objectid = defrag->ino;
297 	key.type = BTRFS_INODE_ITEM_KEY;
298 	key.offset = 0;
299 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
300 	if (IS_ERR(inode)) {
301 		ret = PTR_ERR(inode);
302 		goto cleanup;
303 	}
304 	srcu_read_unlock(&fs_info->subvol_srcu, index);
305 
306 	/* do a chunk of defrag */
307 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
308 	memset(&range, 0, sizeof(range));
309 	range.len = (u64)-1;
310 	range.start = defrag->last_offset;
311 
312 	sb_start_write(fs_info->sb);
313 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314 				       BTRFS_DEFRAG_BATCH);
315 	sb_end_write(fs_info->sb);
316 	/*
317 	 * if we filled the whole defrag batch, there
318 	 * must be more work to do.  Queue this defrag
319 	 * again
320 	 */
321 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
322 		defrag->last_offset = range.start;
323 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324 	} else if (defrag->last_offset && !defrag->cycled) {
325 		/*
326 		 * we didn't fill our defrag batch, but
327 		 * we didn't start at zero.  Make sure we loop
328 		 * around to the start of the file.
329 		 */
330 		defrag->last_offset = 0;
331 		defrag->cycled = 1;
332 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
333 	} else {
334 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 	}
336 
337 	iput(inode);
338 	return 0;
339 cleanup:
340 	srcu_read_unlock(&fs_info->subvol_srcu, index);
341 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342 	return ret;
343 }
344 
345 /*
346  * run through the list of inodes in the FS that need
347  * defragging
348  */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)349 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350 {
351 	struct inode_defrag *defrag;
352 	u64 first_ino = 0;
353 	u64 root_objectid = 0;
354 
355 	atomic_inc(&fs_info->defrag_running);
356 	while (1) {
357 		/* Pause the auto defragger. */
358 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359 			     &fs_info->fs_state))
360 			break;
361 
362 		if (!__need_auto_defrag(fs_info))
363 			break;
364 
365 		/* find an inode to defrag */
366 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367 						 first_ino);
368 		if (!defrag) {
369 			if (root_objectid || first_ino) {
370 				root_objectid = 0;
371 				first_ino = 0;
372 				continue;
373 			} else {
374 				break;
375 			}
376 		}
377 
378 		first_ino = defrag->ino + 1;
379 		root_objectid = defrag->root;
380 
381 		__btrfs_run_defrag_inode(fs_info, defrag);
382 	}
383 	atomic_dec(&fs_info->defrag_running);
384 
385 	/*
386 	 * during unmount, we use the transaction_wait queue to
387 	 * wait for the defragger to stop
388 	 */
389 	wake_up(&fs_info->transaction_wait);
390 	return 0;
391 }
392 
393 /* simple helper to fault in pages and copy.  This should go away
394  * and be replaced with calls into generic code.
395  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)396 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
397 					 struct page **prepared_pages,
398 					 struct iov_iter *i)
399 {
400 	size_t copied = 0;
401 	size_t total_copied = 0;
402 	int pg = 0;
403 	int offset = offset_in_page(pos);
404 
405 	while (write_bytes > 0) {
406 		size_t count = min_t(size_t,
407 				     PAGE_SIZE - offset, write_bytes);
408 		struct page *page = prepared_pages[pg];
409 		/*
410 		 * Copy data from userspace to the current page
411 		 */
412 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
413 
414 		/* Flush processor's dcache for this page */
415 		flush_dcache_page(page);
416 
417 		/*
418 		 * if we get a partial write, we can end up with
419 		 * partially up to date pages.  These add
420 		 * a lot of complexity, so make sure they don't
421 		 * happen by forcing this copy to be retried.
422 		 *
423 		 * The rest of the btrfs_file_write code will fall
424 		 * back to page at a time copies after we return 0.
425 		 */
426 		if (!PageUptodate(page) && copied < count)
427 			copied = 0;
428 
429 		iov_iter_advance(i, copied);
430 		write_bytes -= copied;
431 		total_copied += copied;
432 
433 		/* Return to btrfs_file_write_iter to fault page */
434 		if (unlikely(copied == 0))
435 			break;
436 
437 		if (copied < PAGE_SIZE - offset) {
438 			offset += copied;
439 		} else {
440 			pg++;
441 			offset = 0;
442 		}
443 	}
444 	return total_copied;
445 }
446 
447 /*
448  * unlocks pages after btrfs_file_write is done with them
449  */
btrfs_drop_pages(struct page ** pages,size_t num_pages)450 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
451 {
452 	size_t i;
453 	for (i = 0; i < num_pages; i++) {
454 		/* page checked is some magic around finding pages that
455 		 * have been modified without going through btrfs_set_page_dirty
456 		 * clear it here. There should be no need to mark the pages
457 		 * accessed as prepare_pages should have marked them accessed
458 		 * in prepare_pages via find_or_create_page()
459 		 */
460 		ClearPageChecked(pages[i]);
461 		unlock_page(pages[i]);
462 		put_page(pages[i]);
463 	}
464 }
465 
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)466 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467 					 const u64 start,
468 					 const u64 len,
469 					 struct extent_state **cached_state)
470 {
471 	u64 search_start = start;
472 	const u64 end = start + len - 1;
473 
474 	while (search_start < end) {
475 		const u64 search_len = end - search_start + 1;
476 		struct extent_map *em;
477 		u64 em_len;
478 		int ret = 0;
479 
480 		em = btrfs_get_extent(inode, NULL, 0, search_start,
481 				      search_len, 0);
482 		if (IS_ERR(em))
483 			return PTR_ERR(em);
484 
485 		if (em->block_start != EXTENT_MAP_HOLE)
486 			goto next;
487 
488 		em_len = em->len;
489 		if (em->start < search_start)
490 			em_len -= search_start - em->start;
491 		if (em_len > search_len)
492 			em_len = search_len;
493 
494 		ret = set_extent_bit(&inode->io_tree, search_start,
495 				     search_start + em_len - 1,
496 				     EXTENT_DELALLOC_NEW,
497 				     NULL, cached_state, GFP_NOFS);
498 next:
499 		search_start = extent_map_end(em);
500 		free_extent_map(em);
501 		if (ret)
502 			return ret;
503 	}
504 	return 0;
505 }
506 
507 /*
508  * after copy_from_user, pages need to be dirtied and we need to make
509  * sure holes are created between the current EOF and the start of
510  * any next extents (if required).
511  *
512  * this also makes the decision about creating an inline extent vs
513  * doing real data extents, marking pages dirty and delalloc as required.
514  */
btrfs_dirty_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)515 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516 		      size_t num_pages, loff_t pos, size_t write_bytes,
517 		      struct extent_state **cached)
518 {
519 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
520 	int err = 0;
521 	int i;
522 	u64 num_bytes;
523 	u64 start_pos;
524 	u64 end_of_last_block;
525 	u64 end_pos = pos + write_bytes;
526 	loff_t isize = i_size_read(inode);
527 	unsigned int extra_bits = 0;
528 
529 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
530 	num_bytes = round_up(write_bytes + pos - start_pos,
531 			     fs_info->sectorsize);
532 
533 	end_of_last_block = start_pos + num_bytes - 1;
534 
535 	/*
536 	 * The pages may have already been dirty, clear out old accounting so
537 	 * we can set things up properly
538 	 */
539 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
541 			 0, 0, cached);
542 
543 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544 		if (start_pos >= isize &&
545 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546 			/*
547 			 * There can't be any extents following eof in this case
548 			 * so just set the delalloc new bit for the range
549 			 * directly.
550 			 */
551 			extra_bits |= EXTENT_DELALLOC_NEW;
552 		} else {
553 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554 							    start_pos,
555 							    num_bytes, cached);
556 			if (err)
557 				return err;
558 		}
559 	}
560 
561 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
562 					extra_bits, cached);
563 	if (err)
564 		return err;
565 
566 	for (i = 0; i < num_pages; i++) {
567 		struct page *p = pages[i];
568 		SetPageUptodate(p);
569 		ClearPageChecked(p);
570 		set_page_dirty(p);
571 	}
572 
573 	/*
574 	 * we've only changed i_size in ram, and we haven't updated
575 	 * the disk i_size.  There is no need to log the inode
576 	 * at this time.
577 	 */
578 	if (end_pos > isize)
579 		i_size_write(inode, end_pos);
580 	return 0;
581 }
582 
583 /*
584  * this drops all the extents in the cache that intersect the range
585  * [start, end].  Existing extents are split as required.
586  */
btrfs_drop_extent_cache(struct btrfs_inode * inode,u64 start,u64 end,int skip_pinned)587 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
588 			     int skip_pinned)
589 {
590 	struct extent_map *em;
591 	struct extent_map *split = NULL;
592 	struct extent_map *split2 = NULL;
593 	struct extent_map_tree *em_tree = &inode->extent_tree;
594 	u64 len = end - start + 1;
595 	u64 gen;
596 	int ret;
597 	int testend = 1;
598 	unsigned long flags;
599 	int compressed = 0;
600 	bool modified;
601 
602 	WARN_ON(end < start);
603 	if (end == (u64)-1) {
604 		len = (u64)-1;
605 		testend = 0;
606 	}
607 	while (1) {
608 		int no_splits = 0;
609 
610 		modified = false;
611 		if (!split)
612 			split = alloc_extent_map();
613 		if (!split2)
614 			split2 = alloc_extent_map();
615 		if (!split || !split2)
616 			no_splits = 1;
617 
618 		write_lock(&em_tree->lock);
619 		em = lookup_extent_mapping(em_tree, start, len);
620 		if (!em) {
621 			write_unlock(&em_tree->lock);
622 			break;
623 		}
624 		flags = em->flags;
625 		gen = em->generation;
626 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
627 			if (testend && em->start + em->len >= start + len) {
628 				free_extent_map(em);
629 				write_unlock(&em_tree->lock);
630 				break;
631 			}
632 			start = em->start + em->len;
633 			if (testend)
634 				len = start + len - (em->start + em->len);
635 			free_extent_map(em);
636 			write_unlock(&em_tree->lock);
637 			continue;
638 		}
639 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
640 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
641 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
642 		modified = !list_empty(&em->list);
643 		if (no_splits)
644 			goto next;
645 
646 		if (em->start < start) {
647 			split->start = em->start;
648 			split->len = start - em->start;
649 
650 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651 				split->orig_start = em->orig_start;
652 				split->block_start = em->block_start;
653 
654 				if (compressed)
655 					split->block_len = em->block_len;
656 				else
657 					split->block_len = split->len;
658 				split->orig_block_len = max(split->block_len,
659 						em->orig_block_len);
660 				split->ram_bytes = em->ram_bytes;
661 			} else {
662 				split->orig_start = split->start;
663 				split->block_len = 0;
664 				split->block_start = em->block_start;
665 				split->orig_block_len = 0;
666 				split->ram_bytes = split->len;
667 			}
668 
669 			split->generation = gen;
670 			split->bdev = em->bdev;
671 			split->flags = flags;
672 			split->compress_type = em->compress_type;
673 			replace_extent_mapping(em_tree, em, split, modified);
674 			free_extent_map(split);
675 			split = split2;
676 			split2 = NULL;
677 		}
678 		if (testend && em->start + em->len > start + len) {
679 			u64 diff = start + len - em->start;
680 
681 			split->start = start + len;
682 			split->len = em->start + em->len - (start + len);
683 			split->bdev = em->bdev;
684 			split->flags = flags;
685 			split->compress_type = em->compress_type;
686 			split->generation = gen;
687 
688 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
689 				split->orig_block_len = max(em->block_len,
690 						    em->orig_block_len);
691 
692 				split->ram_bytes = em->ram_bytes;
693 				if (compressed) {
694 					split->block_len = em->block_len;
695 					split->block_start = em->block_start;
696 					split->orig_start = em->orig_start;
697 				} else {
698 					split->block_len = split->len;
699 					split->block_start = em->block_start
700 						+ diff;
701 					split->orig_start = em->orig_start;
702 				}
703 			} else {
704 				split->ram_bytes = split->len;
705 				split->orig_start = split->start;
706 				split->block_len = 0;
707 				split->block_start = em->block_start;
708 				split->orig_block_len = 0;
709 			}
710 
711 			if (extent_map_in_tree(em)) {
712 				replace_extent_mapping(em_tree, em, split,
713 						       modified);
714 			} else {
715 				ret = add_extent_mapping(em_tree, split,
716 							 modified);
717 				ASSERT(ret == 0); /* Logic error */
718 			}
719 			free_extent_map(split);
720 			split = NULL;
721 		}
722 next:
723 		if (extent_map_in_tree(em))
724 			remove_extent_mapping(em_tree, em);
725 		write_unlock(&em_tree->lock);
726 
727 		/* once for us */
728 		free_extent_map(em);
729 		/* once for the tree*/
730 		free_extent_map(em);
731 	}
732 	if (split)
733 		free_extent_map(split);
734 	if (split2)
735 		free_extent_map(split2);
736 }
737 
738 /*
739  * this is very complex, but the basic idea is to drop all extents
740  * in the range start - end.  hint_block is filled in with a block number
741  * that would be a good hint to the block allocator for this file.
742  *
743  * If an extent intersects the range but is not entirely inside the range
744  * it is either truncated or split.  Anything entirely inside the range
745  * is deleted from the tree.
746  */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)747 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
748 			 struct btrfs_root *root, struct inode *inode,
749 			 struct btrfs_path *path, u64 start, u64 end,
750 			 u64 *drop_end, int drop_cache,
751 			 int replace_extent,
752 			 u32 extent_item_size,
753 			 int *key_inserted)
754 {
755 	struct btrfs_fs_info *fs_info = root->fs_info;
756 	struct extent_buffer *leaf;
757 	struct btrfs_file_extent_item *fi;
758 	struct btrfs_ref ref = { 0 };
759 	struct btrfs_key key;
760 	struct btrfs_key new_key;
761 	u64 ino = btrfs_ino(BTRFS_I(inode));
762 	u64 search_start = start;
763 	u64 disk_bytenr = 0;
764 	u64 num_bytes = 0;
765 	u64 extent_offset = 0;
766 	u64 extent_end = 0;
767 	u64 last_end = start;
768 	int del_nr = 0;
769 	int del_slot = 0;
770 	int extent_type;
771 	int recow;
772 	int ret;
773 	int modify_tree = -1;
774 	int update_refs;
775 	int found = 0;
776 	int leafs_visited = 0;
777 
778 	if (drop_cache)
779 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
780 
781 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
782 		modify_tree = 0;
783 
784 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
785 		       root == fs_info->tree_root);
786 	while (1) {
787 		recow = 0;
788 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
789 					       search_start, modify_tree);
790 		if (ret < 0)
791 			break;
792 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
793 			leaf = path->nodes[0];
794 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
795 			if (key.objectid == ino &&
796 			    key.type == BTRFS_EXTENT_DATA_KEY)
797 				path->slots[0]--;
798 		}
799 		ret = 0;
800 		leafs_visited++;
801 next_slot:
802 		leaf = path->nodes[0];
803 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
804 			BUG_ON(del_nr > 0);
805 			ret = btrfs_next_leaf(root, path);
806 			if (ret < 0)
807 				break;
808 			if (ret > 0) {
809 				ret = 0;
810 				break;
811 			}
812 			leafs_visited++;
813 			leaf = path->nodes[0];
814 			recow = 1;
815 		}
816 
817 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
818 
819 		if (key.objectid > ino)
820 			break;
821 		if (WARN_ON_ONCE(key.objectid < ino) ||
822 		    key.type < BTRFS_EXTENT_DATA_KEY) {
823 			ASSERT(del_nr == 0);
824 			path->slots[0]++;
825 			goto next_slot;
826 		}
827 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
828 			break;
829 
830 		fi = btrfs_item_ptr(leaf, path->slots[0],
831 				    struct btrfs_file_extent_item);
832 		extent_type = btrfs_file_extent_type(leaf, fi);
833 
834 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
835 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
836 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
837 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
838 			extent_offset = btrfs_file_extent_offset(leaf, fi);
839 			extent_end = key.offset +
840 				btrfs_file_extent_num_bytes(leaf, fi);
841 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842 			extent_end = key.offset +
843 				btrfs_file_extent_ram_bytes(leaf, fi);
844 		} else {
845 			/* can't happen */
846 			BUG();
847 		}
848 
849 		/*
850 		 * Don't skip extent items representing 0 byte lengths. They
851 		 * used to be created (bug) if while punching holes we hit
852 		 * -ENOSPC condition. So if we find one here, just ensure we
853 		 * delete it, otherwise we would insert a new file extent item
854 		 * with the same key (offset) as that 0 bytes length file
855 		 * extent item in the call to setup_items_for_insert() later
856 		 * in this function.
857 		 */
858 		if (extent_end == key.offset && extent_end >= search_start) {
859 			last_end = extent_end;
860 			goto delete_extent_item;
861 		}
862 
863 		if (extent_end <= search_start) {
864 			path->slots[0]++;
865 			goto next_slot;
866 		}
867 
868 		found = 1;
869 		search_start = max(key.offset, start);
870 		if (recow || !modify_tree) {
871 			modify_tree = -1;
872 			btrfs_release_path(path);
873 			continue;
874 		}
875 
876 		/*
877 		 *     | - range to drop - |
878 		 *  | -------- extent -------- |
879 		 */
880 		if (start > key.offset && end < extent_end) {
881 			BUG_ON(del_nr > 0);
882 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
883 				ret = -EOPNOTSUPP;
884 				break;
885 			}
886 
887 			memcpy(&new_key, &key, sizeof(new_key));
888 			new_key.offset = start;
889 			ret = btrfs_duplicate_item(trans, root, path,
890 						   &new_key);
891 			if (ret == -EAGAIN) {
892 				btrfs_release_path(path);
893 				continue;
894 			}
895 			if (ret < 0)
896 				break;
897 
898 			leaf = path->nodes[0];
899 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
900 					    struct btrfs_file_extent_item);
901 			btrfs_set_file_extent_num_bytes(leaf, fi,
902 							start - key.offset);
903 
904 			fi = btrfs_item_ptr(leaf, path->slots[0],
905 					    struct btrfs_file_extent_item);
906 
907 			extent_offset += start - key.offset;
908 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909 			btrfs_set_file_extent_num_bytes(leaf, fi,
910 							extent_end - start);
911 			btrfs_mark_buffer_dirty(leaf);
912 
913 			if (update_refs && disk_bytenr > 0) {
914 				btrfs_init_generic_ref(&ref,
915 						BTRFS_ADD_DELAYED_REF,
916 						disk_bytenr, num_bytes, 0);
917 				btrfs_init_data_ref(&ref,
918 						root->root_key.objectid,
919 						new_key.objectid,
920 						start - extent_offset);
921 				ret = btrfs_inc_extent_ref(trans, &ref);
922 				BUG_ON(ret); /* -ENOMEM */
923 			}
924 			key.offset = start;
925 		}
926 		/*
927 		 * From here on out we will have actually dropped something, so
928 		 * last_end can be updated.
929 		 */
930 		last_end = extent_end;
931 
932 		/*
933 		 *  | ---- range to drop ----- |
934 		 *      | -------- extent -------- |
935 		 */
936 		if (start <= key.offset && end < extent_end) {
937 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 				ret = -EOPNOTSUPP;
939 				break;
940 			}
941 
942 			memcpy(&new_key, &key, sizeof(new_key));
943 			new_key.offset = end;
944 			btrfs_set_item_key_safe(fs_info, path, &new_key);
945 
946 			extent_offset += end - key.offset;
947 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
948 			btrfs_set_file_extent_num_bytes(leaf, fi,
949 							extent_end - end);
950 			btrfs_mark_buffer_dirty(leaf);
951 			if (update_refs && disk_bytenr > 0)
952 				inode_sub_bytes(inode, end - key.offset);
953 			break;
954 		}
955 
956 		search_start = extent_end;
957 		/*
958 		 *       | ---- range to drop ----- |
959 		 *  | -------- extent -------- |
960 		 */
961 		if (start > key.offset && end >= extent_end) {
962 			BUG_ON(del_nr > 0);
963 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
964 				ret = -EOPNOTSUPP;
965 				break;
966 			}
967 
968 			btrfs_set_file_extent_num_bytes(leaf, fi,
969 							start - key.offset);
970 			btrfs_mark_buffer_dirty(leaf);
971 			if (update_refs && disk_bytenr > 0)
972 				inode_sub_bytes(inode, extent_end - start);
973 			if (end == extent_end)
974 				break;
975 
976 			path->slots[0]++;
977 			goto next_slot;
978 		}
979 
980 		/*
981 		 *  | ---- range to drop ----- |
982 		 *    | ------ extent ------ |
983 		 */
984 		if (start <= key.offset && end >= extent_end) {
985 delete_extent_item:
986 			if (del_nr == 0) {
987 				del_slot = path->slots[0];
988 				del_nr = 1;
989 			} else {
990 				BUG_ON(del_slot + del_nr != path->slots[0]);
991 				del_nr++;
992 			}
993 
994 			if (update_refs &&
995 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
996 				inode_sub_bytes(inode,
997 						extent_end - key.offset);
998 				extent_end = ALIGN(extent_end,
999 						   fs_info->sectorsize);
1000 			} else if (update_refs && disk_bytenr > 0) {
1001 				btrfs_init_generic_ref(&ref,
1002 						BTRFS_DROP_DELAYED_REF,
1003 						disk_bytenr, num_bytes, 0);
1004 				btrfs_init_data_ref(&ref,
1005 						root->root_key.objectid,
1006 						key.objectid,
1007 						key.offset - extent_offset);
1008 				ret = btrfs_free_extent(trans, &ref);
1009 				BUG_ON(ret); /* -ENOMEM */
1010 				inode_sub_bytes(inode,
1011 						extent_end - key.offset);
1012 			}
1013 
1014 			if (end == extent_end)
1015 				break;
1016 
1017 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 				path->slots[0]++;
1019 				goto next_slot;
1020 			}
1021 
1022 			ret = btrfs_del_items(trans, root, path, del_slot,
1023 					      del_nr);
1024 			if (ret) {
1025 				btrfs_abort_transaction(trans, ret);
1026 				break;
1027 			}
1028 
1029 			del_nr = 0;
1030 			del_slot = 0;
1031 
1032 			btrfs_release_path(path);
1033 			continue;
1034 		}
1035 
1036 		BUG();
1037 	}
1038 
1039 	if (!ret && del_nr > 0) {
1040 		/*
1041 		 * Set path->slots[0] to first slot, so that after the delete
1042 		 * if items are move off from our leaf to its immediate left or
1043 		 * right neighbor leafs, we end up with a correct and adjusted
1044 		 * path->slots[0] for our insertion (if replace_extent != 0).
1045 		 */
1046 		path->slots[0] = del_slot;
1047 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048 		if (ret)
1049 			btrfs_abort_transaction(trans, ret);
1050 	}
1051 
1052 	leaf = path->nodes[0];
1053 	/*
1054 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 	 * which case it unlocked our path, so check path->locks[0] matches a
1056 	 * write lock.
1057 	 */
1058 	if (!ret && replace_extent && leafs_visited == 1 &&
1059 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1061 	    btrfs_leaf_free_space(leaf) >=
1062 	    sizeof(struct btrfs_item) + extent_item_size) {
1063 
1064 		key.objectid = ino;
1065 		key.type = BTRFS_EXTENT_DATA_KEY;
1066 		key.offset = start;
1067 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 			struct btrfs_key slot_key;
1069 
1070 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 				path->slots[0]++;
1073 		}
1074 		setup_items_for_insert(root, path, &key,
1075 				       &extent_item_size,
1076 				       extent_item_size,
1077 				       sizeof(struct btrfs_item) +
1078 				       extent_item_size, 1);
1079 		*key_inserted = 1;
1080 	}
1081 
1082 	if (!replace_extent || !(*key_inserted))
1083 		btrfs_release_path(path);
1084 	if (drop_end)
1085 		*drop_end = found ? min(end, last_end) : end;
1086 	return ret;
1087 }
1088 
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1089 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 		       struct btrfs_root *root, struct inode *inode, u64 start,
1091 		       u64 end, int drop_cache)
1092 {
1093 	struct btrfs_path *path;
1094 	int ret;
1095 
1096 	path = btrfs_alloc_path();
1097 	if (!path)
1098 		return -ENOMEM;
1099 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100 				   drop_cache, 0, 0, NULL);
1101 	btrfs_free_path(path);
1102 	return ret;
1103 }
1104 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1105 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106 			    u64 objectid, u64 bytenr, u64 orig_offset,
1107 			    u64 *start, u64 *end)
1108 {
1109 	struct btrfs_file_extent_item *fi;
1110 	struct btrfs_key key;
1111 	u64 extent_end;
1112 
1113 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 		return 0;
1115 
1116 	btrfs_item_key_to_cpu(leaf, &key, slot);
1117 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 		return 0;
1119 
1120 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124 	    btrfs_file_extent_compression(leaf, fi) ||
1125 	    btrfs_file_extent_encryption(leaf, fi) ||
1126 	    btrfs_file_extent_other_encoding(leaf, fi))
1127 		return 0;
1128 
1129 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 		return 0;
1132 
1133 	*start = key.offset;
1134 	*end = extent_end;
1135 	return 1;
1136 }
1137 
1138 /*
1139  * Mark extent in the range start - end as written.
1140  *
1141  * This changes extent type from 'pre-allocated' to 'regular'. If only
1142  * part of extent is marked as written, the extent will be split into
1143  * two or three.
1144  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)1145 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146 			      struct btrfs_inode *inode, u64 start, u64 end)
1147 {
1148 	struct btrfs_fs_info *fs_info = trans->fs_info;
1149 	struct btrfs_root *root = inode->root;
1150 	struct extent_buffer *leaf;
1151 	struct btrfs_path *path;
1152 	struct btrfs_file_extent_item *fi;
1153 	struct btrfs_ref ref = { 0 };
1154 	struct btrfs_key key;
1155 	struct btrfs_key new_key;
1156 	u64 bytenr;
1157 	u64 num_bytes;
1158 	u64 extent_end;
1159 	u64 orig_offset;
1160 	u64 other_start;
1161 	u64 other_end;
1162 	u64 split;
1163 	int del_nr = 0;
1164 	int del_slot = 0;
1165 	int recow;
1166 	int ret;
1167 	u64 ino = btrfs_ino(inode);
1168 
1169 	path = btrfs_alloc_path();
1170 	if (!path)
1171 		return -ENOMEM;
1172 again:
1173 	recow = 0;
1174 	split = start;
1175 	key.objectid = ino;
1176 	key.type = BTRFS_EXTENT_DATA_KEY;
1177 	key.offset = split;
1178 
1179 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 	if (ret < 0)
1181 		goto out;
1182 	if (ret > 0 && path->slots[0] > 0)
1183 		path->slots[0]--;
1184 
1185 	leaf = path->nodes[0];
1186 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187 	if (key.objectid != ino ||
1188 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1189 		ret = -EINVAL;
1190 		btrfs_abort_transaction(trans, ret);
1191 		goto out;
1192 	}
1193 	fi = btrfs_item_ptr(leaf, path->slots[0],
1194 			    struct btrfs_file_extent_item);
1195 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196 		ret = -EINVAL;
1197 		btrfs_abort_transaction(trans, ret);
1198 		goto out;
1199 	}
1200 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201 	if (key.offset > start || extent_end < end) {
1202 		ret = -EINVAL;
1203 		btrfs_abort_transaction(trans, ret);
1204 		goto out;
1205 	}
1206 
1207 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210 	memcpy(&new_key, &key, sizeof(new_key));
1211 
1212 	if (start == key.offset && end < extent_end) {
1213 		other_start = 0;
1214 		other_end = start;
1215 		if (extent_mergeable(leaf, path->slots[0] - 1,
1216 				     ino, bytenr, orig_offset,
1217 				     &other_start, &other_end)) {
1218 			new_key.offset = end;
1219 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1220 			fi = btrfs_item_ptr(leaf, path->slots[0],
1221 					    struct btrfs_file_extent_item);
1222 			btrfs_set_file_extent_generation(leaf, fi,
1223 							 trans->transid);
1224 			btrfs_set_file_extent_num_bytes(leaf, fi,
1225 							extent_end - end);
1226 			btrfs_set_file_extent_offset(leaf, fi,
1227 						     end - orig_offset);
1228 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 					    struct btrfs_file_extent_item);
1230 			btrfs_set_file_extent_generation(leaf, fi,
1231 							 trans->transid);
1232 			btrfs_set_file_extent_num_bytes(leaf, fi,
1233 							end - other_start);
1234 			btrfs_mark_buffer_dirty(leaf);
1235 			goto out;
1236 		}
1237 	}
1238 
1239 	if (start > key.offset && end == extent_end) {
1240 		other_start = end;
1241 		other_end = 0;
1242 		if (extent_mergeable(leaf, path->slots[0] + 1,
1243 				     ino, bytenr, orig_offset,
1244 				     &other_start, &other_end)) {
1245 			fi = btrfs_item_ptr(leaf, path->slots[0],
1246 					    struct btrfs_file_extent_item);
1247 			btrfs_set_file_extent_num_bytes(leaf, fi,
1248 							start - key.offset);
1249 			btrfs_set_file_extent_generation(leaf, fi,
1250 							 trans->transid);
1251 			path->slots[0]++;
1252 			new_key.offset = start;
1253 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1254 
1255 			fi = btrfs_item_ptr(leaf, path->slots[0],
1256 					    struct btrfs_file_extent_item);
1257 			btrfs_set_file_extent_generation(leaf, fi,
1258 							 trans->transid);
1259 			btrfs_set_file_extent_num_bytes(leaf, fi,
1260 							other_end - start);
1261 			btrfs_set_file_extent_offset(leaf, fi,
1262 						     start - orig_offset);
1263 			btrfs_mark_buffer_dirty(leaf);
1264 			goto out;
1265 		}
1266 	}
1267 
1268 	while (start > key.offset || end < extent_end) {
1269 		if (key.offset == start)
1270 			split = end;
1271 
1272 		new_key.offset = split;
1273 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 		if (ret == -EAGAIN) {
1275 			btrfs_release_path(path);
1276 			goto again;
1277 		}
1278 		if (ret < 0) {
1279 			btrfs_abort_transaction(trans, ret);
1280 			goto out;
1281 		}
1282 
1283 		leaf = path->nodes[0];
1284 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285 				    struct btrfs_file_extent_item);
1286 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287 		btrfs_set_file_extent_num_bytes(leaf, fi,
1288 						split - key.offset);
1289 
1290 		fi = btrfs_item_ptr(leaf, path->slots[0],
1291 				    struct btrfs_file_extent_item);
1292 
1293 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 		btrfs_set_file_extent_num_bytes(leaf, fi,
1296 						extent_end - split);
1297 		btrfs_mark_buffer_dirty(leaf);
1298 
1299 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300 				       num_bytes, 0);
1301 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302 				    orig_offset);
1303 		ret = btrfs_inc_extent_ref(trans, &ref);
1304 		if (ret) {
1305 			btrfs_abort_transaction(trans, ret);
1306 			goto out;
1307 		}
1308 
1309 		if (split == start) {
1310 			key.offset = start;
1311 		} else {
1312 			if (start != key.offset) {
1313 				ret = -EINVAL;
1314 				btrfs_abort_transaction(trans, ret);
1315 				goto out;
1316 			}
1317 			path->slots[0]--;
1318 			extent_end = end;
1319 		}
1320 		recow = 1;
1321 	}
1322 
1323 	other_start = end;
1324 	other_end = 0;
1325 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326 			       num_bytes, 0);
1327 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1328 	if (extent_mergeable(leaf, path->slots[0] + 1,
1329 			     ino, bytenr, orig_offset,
1330 			     &other_start, &other_end)) {
1331 		if (recow) {
1332 			btrfs_release_path(path);
1333 			goto again;
1334 		}
1335 		extent_end = other_end;
1336 		del_slot = path->slots[0] + 1;
1337 		del_nr++;
1338 		ret = btrfs_free_extent(trans, &ref);
1339 		if (ret) {
1340 			btrfs_abort_transaction(trans, ret);
1341 			goto out;
1342 		}
1343 	}
1344 	other_start = 0;
1345 	other_end = start;
1346 	if (extent_mergeable(leaf, path->slots[0] - 1,
1347 			     ino, bytenr, orig_offset,
1348 			     &other_start, &other_end)) {
1349 		if (recow) {
1350 			btrfs_release_path(path);
1351 			goto again;
1352 		}
1353 		key.offset = other_start;
1354 		del_slot = path->slots[0];
1355 		del_nr++;
1356 		ret = btrfs_free_extent(trans, &ref);
1357 		if (ret) {
1358 			btrfs_abort_transaction(trans, ret);
1359 			goto out;
1360 		}
1361 	}
1362 	if (del_nr == 0) {
1363 		fi = btrfs_item_ptr(leaf, path->slots[0],
1364 			   struct btrfs_file_extent_item);
1365 		btrfs_set_file_extent_type(leaf, fi,
1366 					   BTRFS_FILE_EXTENT_REG);
1367 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1368 		btrfs_mark_buffer_dirty(leaf);
1369 	} else {
1370 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1371 			   struct btrfs_file_extent_item);
1372 		btrfs_set_file_extent_type(leaf, fi,
1373 					   BTRFS_FILE_EXTENT_REG);
1374 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375 		btrfs_set_file_extent_num_bytes(leaf, fi,
1376 						extent_end - key.offset);
1377 		btrfs_mark_buffer_dirty(leaf);
1378 
1379 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380 		if (ret < 0) {
1381 			btrfs_abort_transaction(trans, ret);
1382 			goto out;
1383 		}
1384 	}
1385 out:
1386 	btrfs_free_path(path);
1387 	return 0;
1388 }
1389 
1390 /*
1391  * on error we return an unlocked page and the error value
1392  * on success we return a locked page and 0
1393  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1394 static int prepare_uptodate_page(struct inode *inode,
1395 				 struct page *page, u64 pos,
1396 				 bool force_uptodate)
1397 {
1398 	int ret = 0;
1399 
1400 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1401 	    !PageUptodate(page)) {
1402 		ret = btrfs_readpage(NULL, page);
1403 		if (ret)
1404 			return ret;
1405 		lock_page(page);
1406 		if (!PageUptodate(page)) {
1407 			unlock_page(page);
1408 			return -EIO;
1409 		}
1410 		if (page->mapping != inode->i_mapping) {
1411 			unlock_page(page);
1412 			return -EAGAIN;
1413 		}
1414 	}
1415 	return 0;
1416 }
1417 
1418 /*
1419  * this just gets pages into the page cache and locks them down.
1420  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1421 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422 				  size_t num_pages, loff_t pos,
1423 				  size_t write_bytes, bool force_uptodate)
1424 {
1425 	int i;
1426 	unsigned long index = pos >> PAGE_SHIFT;
1427 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1428 	int err = 0;
1429 	int faili;
1430 
1431 	for (i = 0; i < num_pages; i++) {
1432 again:
1433 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1434 					       mask | __GFP_WRITE);
1435 		if (!pages[i]) {
1436 			faili = i - 1;
1437 			err = -ENOMEM;
1438 			goto fail;
1439 		}
1440 
1441 		if (i == 0)
1442 			err = prepare_uptodate_page(inode, pages[i], pos,
1443 						    force_uptodate);
1444 		if (!err && i == num_pages - 1)
1445 			err = prepare_uptodate_page(inode, pages[i],
1446 						    pos + write_bytes, false);
1447 		if (err) {
1448 			put_page(pages[i]);
1449 			if (err == -EAGAIN) {
1450 				err = 0;
1451 				goto again;
1452 			}
1453 			faili = i - 1;
1454 			goto fail;
1455 		}
1456 		wait_on_page_writeback(pages[i]);
1457 	}
1458 
1459 	return 0;
1460 fail:
1461 	while (faili >= 0) {
1462 		unlock_page(pages[faili]);
1463 		put_page(pages[faili]);
1464 		faili--;
1465 	}
1466 	return err;
1467 
1468 }
1469 
1470 /*
1471  * This function locks the extent and properly waits for data=ordered extents
1472  * to finish before allowing the pages to be modified if need.
1473  *
1474  * The return value:
1475  * 1 - the extent is locked
1476  * 0 - the extent is not locked, and everything is OK
1477  * -EAGAIN - need re-prepare the pages
1478  * the other < 0 number - Something wrong happens
1479  */
1480 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1481 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1482 				size_t num_pages, loff_t pos,
1483 				size_t write_bytes,
1484 				u64 *lockstart, u64 *lockend,
1485 				struct extent_state **cached_state)
1486 {
1487 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488 	u64 start_pos;
1489 	u64 last_pos;
1490 	int i;
1491 	int ret = 0;
1492 
1493 	start_pos = round_down(pos, fs_info->sectorsize);
1494 	last_pos = start_pos
1495 		+ round_up(pos + write_bytes - start_pos,
1496 			   fs_info->sectorsize) - 1;
1497 
1498 	if (start_pos < inode->vfs_inode.i_size) {
1499 		struct btrfs_ordered_extent *ordered;
1500 
1501 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502 				cached_state);
1503 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504 						     last_pos - start_pos + 1);
1505 		if (ordered &&
1506 		    ordered->file_offset + ordered->len > start_pos &&
1507 		    ordered->file_offset <= last_pos) {
1508 			unlock_extent_cached(&inode->io_tree, start_pos,
1509 					last_pos, cached_state);
1510 			for (i = 0; i < num_pages; i++) {
1511 				unlock_page(pages[i]);
1512 				put_page(pages[i]);
1513 			}
1514 			btrfs_start_ordered_extent(&inode->vfs_inode,
1515 					ordered, 1);
1516 			btrfs_put_ordered_extent(ordered);
1517 			return -EAGAIN;
1518 		}
1519 		if (ordered)
1520 			btrfs_put_ordered_extent(ordered);
1521 
1522 		*lockstart = start_pos;
1523 		*lockend = last_pos;
1524 		ret = 1;
1525 	}
1526 
1527 	/*
1528 	 * It's possible the pages are dirty right now, but we don't want
1529 	 * to clean them yet because copy_from_user may catch a page fault
1530 	 * and we might have to fall back to one page at a time.  If that
1531 	 * happens, we'll unlock these pages and we'd have a window where
1532 	 * reclaim could sneak in and drop the once-dirty page on the floor
1533 	 * without writing it.
1534 	 *
1535 	 * We have the pages locked and the extent range locked, so there's
1536 	 * no way someone can start IO on any dirty pages in this range.
1537 	 *
1538 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1539 	 * delalloc bits and dirty the pages as required.
1540 	 */
1541 	for (i = 0; i < num_pages; i++) {
1542 		set_page_extent_mapped(pages[i]);
1543 		WARN_ON(!PageLocked(pages[i]));
1544 	}
1545 
1546 	return ret;
1547 }
1548 
check_can_nocow(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1549 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1550 				    size_t *write_bytes)
1551 {
1552 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1553 	struct btrfs_root *root = inode->root;
1554 	u64 lockstart, lockend;
1555 	u64 num_bytes;
1556 	int ret;
1557 
1558 	ret = btrfs_start_write_no_snapshotting(root);
1559 	if (!ret)
1560 		return -EAGAIN;
1561 
1562 	lockstart = round_down(pos, fs_info->sectorsize);
1563 	lockend = round_up(pos + *write_bytes,
1564 			   fs_info->sectorsize) - 1;
1565 
1566 	btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567 					   lockend, NULL);
1568 
1569 	num_bytes = lockend - lockstart + 1;
1570 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 			NULL, NULL, NULL);
1572 	if (ret <= 0) {
1573 		ret = 0;
1574 		btrfs_end_write_no_snapshotting(root);
1575 	} else {
1576 		*write_bytes = min_t(size_t, *write_bytes ,
1577 				     num_bytes - pos + lockstart);
1578 	}
1579 
1580 	unlock_extent(&inode->io_tree, lockstart, lockend);
1581 
1582 	return ret;
1583 }
1584 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1585 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 					       struct iov_iter *i)
1587 {
1588 	struct file *file = iocb->ki_filp;
1589 	loff_t pos = iocb->ki_pos;
1590 	struct inode *inode = file_inode(file);
1591 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 	struct btrfs_root *root = BTRFS_I(inode)->root;
1593 	struct page **pages = NULL;
1594 	struct extent_changeset *data_reserved = NULL;
1595 	u64 release_bytes = 0;
1596 	u64 lockstart;
1597 	u64 lockend;
1598 	size_t num_written = 0;
1599 	int nrptrs;
1600 	int ret = 0;
1601 	bool only_release_metadata = false;
1602 	bool force_page_uptodate = false;
1603 
1604 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 			PAGE_SIZE / (sizeof(struct page *)));
1606 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 	nrptrs = max(nrptrs, 8);
1608 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1609 	if (!pages)
1610 		return -ENOMEM;
1611 
1612 	while (iov_iter_count(i) > 0) {
1613 		struct extent_state *cached_state = NULL;
1614 		size_t offset = offset_in_page(pos);
1615 		size_t sector_offset;
1616 		size_t write_bytes = min(iov_iter_count(i),
1617 					 nrptrs * (size_t)PAGE_SIZE -
1618 					 offset);
1619 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 						PAGE_SIZE);
1621 		size_t reserve_bytes;
1622 		size_t dirty_pages;
1623 		size_t copied;
1624 		size_t dirty_sectors;
1625 		size_t num_sectors;
1626 		int extents_locked;
1627 
1628 		WARN_ON(num_pages > nrptrs);
1629 
1630 		/*
1631 		 * Fault pages before locking them in prepare_pages
1632 		 * to avoid recursive lock
1633 		 */
1634 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635 			ret = -EFAULT;
1636 			break;
1637 		}
1638 
1639 		sector_offset = pos & (fs_info->sectorsize - 1);
1640 		reserve_bytes = round_up(write_bytes + sector_offset,
1641 				fs_info->sectorsize);
1642 
1643 		extent_changeset_release(data_reserved);
1644 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645 						  write_bytes);
1646 		if (ret < 0) {
1647 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648 						      BTRFS_INODE_PREALLOC)) &&
1649 			    check_can_nocow(BTRFS_I(inode), pos,
1650 					&write_bytes) > 0) {
1651 				/*
1652 				 * For nodata cow case, no need to reserve
1653 				 * data space.
1654 				 */
1655 				only_release_metadata = true;
1656 				/*
1657 				 * our prealloc extent may be smaller than
1658 				 * write_bytes, so scale down.
1659 				 */
1660 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 							 PAGE_SIZE);
1662 				reserve_bytes = round_up(write_bytes +
1663 							 sector_offset,
1664 							 fs_info->sectorsize);
1665 			} else {
1666 				break;
1667 			}
1668 		}
1669 
1670 		WARN_ON(reserve_bytes == 0);
1671 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672 				reserve_bytes);
1673 		if (ret) {
1674 			if (!only_release_metadata)
1675 				btrfs_free_reserved_data_space(inode,
1676 						data_reserved, pos,
1677 						write_bytes);
1678 			else
1679 				btrfs_end_write_no_snapshotting(root);
1680 			break;
1681 		}
1682 
1683 		release_bytes = reserve_bytes;
1684 again:
1685 		/*
1686 		 * This is going to setup the pages array with the number of
1687 		 * pages we want, so we don't really need to worry about the
1688 		 * contents of pages from loop to loop
1689 		 */
1690 		ret = prepare_pages(inode, pages, num_pages,
1691 				    pos, write_bytes,
1692 				    force_page_uptodate);
1693 		if (ret) {
1694 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1695 						       reserve_bytes);
1696 			break;
1697 		}
1698 
1699 		extents_locked = lock_and_cleanup_extent_if_need(
1700 				BTRFS_I(inode), pages,
1701 				num_pages, pos, write_bytes, &lockstart,
1702 				&lockend, &cached_state);
1703 		if (extents_locked < 0) {
1704 			if (extents_locked == -EAGAIN)
1705 				goto again;
1706 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1707 						       reserve_bytes);
1708 			ret = extents_locked;
1709 			break;
1710 		}
1711 
1712 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713 
1714 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1715 		dirty_sectors = round_up(copied + sector_offset,
1716 					fs_info->sectorsize);
1717 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1718 
1719 		/*
1720 		 * if we have trouble faulting in the pages, fall
1721 		 * back to one page at a time
1722 		 */
1723 		if (copied < write_bytes)
1724 			nrptrs = 1;
1725 
1726 		if (copied == 0) {
1727 			force_page_uptodate = true;
1728 			dirty_sectors = 0;
1729 			dirty_pages = 0;
1730 		} else {
1731 			force_page_uptodate = false;
1732 			dirty_pages = DIV_ROUND_UP(copied + offset,
1733 						   PAGE_SIZE);
1734 		}
1735 
1736 		if (num_sectors > dirty_sectors) {
1737 			/* release everything except the sectors we dirtied */
1738 			release_bytes -= dirty_sectors <<
1739 						fs_info->sb->s_blocksize_bits;
1740 			if (only_release_metadata) {
1741 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1742 							release_bytes, true);
1743 			} else {
1744 				u64 __pos;
1745 
1746 				__pos = round_down(pos,
1747 						   fs_info->sectorsize) +
1748 					(dirty_pages << PAGE_SHIFT);
1749 				btrfs_delalloc_release_space(inode,
1750 						data_reserved, __pos,
1751 						release_bytes, true);
1752 			}
1753 		}
1754 
1755 		release_bytes = round_up(copied + sector_offset,
1756 					fs_info->sectorsize);
1757 
1758 		if (copied > 0)
1759 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1760 						pos, copied, &cached_state);
1761 
1762 		/*
1763 		 * If we have not locked the extent range, because the range's
1764 		 * start offset is >= i_size, we might still have a non-NULL
1765 		 * cached extent state, acquired while marking the extent range
1766 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1767 		 * possible cached extent state to avoid a memory leak.
1768 		 */
1769 		if (extents_locked)
1770 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1771 					     lockstart, lockend, &cached_state);
1772 		else
1773 			free_extent_state(cached_state);
1774 
1775 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1776 		if (ret) {
1777 			btrfs_drop_pages(pages, num_pages);
1778 			break;
1779 		}
1780 
1781 		release_bytes = 0;
1782 		if (only_release_metadata)
1783 			btrfs_end_write_no_snapshotting(root);
1784 
1785 		if (only_release_metadata && copied > 0) {
1786 			lockstart = round_down(pos,
1787 					       fs_info->sectorsize);
1788 			lockend = round_up(pos + copied,
1789 					   fs_info->sectorsize) - 1;
1790 
1791 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1792 				       lockend, EXTENT_NORESERVE, NULL,
1793 				       NULL, GFP_NOFS);
1794 			only_release_metadata = false;
1795 		}
1796 
1797 		btrfs_drop_pages(pages, num_pages);
1798 
1799 		cond_resched();
1800 
1801 		balance_dirty_pages_ratelimited(inode->i_mapping);
1802 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1803 			btrfs_btree_balance_dirty(fs_info);
1804 
1805 		pos += copied;
1806 		num_written += copied;
1807 	}
1808 
1809 	kfree(pages);
1810 
1811 	if (release_bytes) {
1812 		if (only_release_metadata) {
1813 			btrfs_end_write_no_snapshotting(root);
1814 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1815 					release_bytes, true);
1816 		} else {
1817 			btrfs_delalloc_release_space(inode, data_reserved,
1818 					round_down(pos, fs_info->sectorsize),
1819 					release_bytes, true);
1820 		}
1821 	}
1822 
1823 	extent_changeset_free(data_reserved);
1824 	return num_written ? num_written : ret;
1825 }
1826 
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1827 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1828 {
1829 	struct file *file = iocb->ki_filp;
1830 	struct inode *inode = file_inode(file);
1831 	loff_t pos;
1832 	ssize_t written;
1833 	ssize_t written_buffered;
1834 	loff_t endbyte;
1835 	int err;
1836 
1837 	written = generic_file_direct_write(iocb, from);
1838 
1839 	if (written < 0 || !iov_iter_count(from))
1840 		return written;
1841 
1842 	pos = iocb->ki_pos;
1843 	written_buffered = btrfs_buffered_write(iocb, from);
1844 	if (written_buffered < 0) {
1845 		err = written_buffered;
1846 		goto out;
1847 	}
1848 	/*
1849 	 * Ensure all data is persisted. We want the next direct IO read to be
1850 	 * able to read what was just written.
1851 	 */
1852 	endbyte = pos + written_buffered - 1;
1853 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1854 	if (err)
1855 		goto out;
1856 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1857 	if (err)
1858 		goto out;
1859 	written += written_buffered;
1860 	iocb->ki_pos = pos + written_buffered;
1861 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1862 				 endbyte >> PAGE_SHIFT);
1863 out:
1864 	return written ? written : err;
1865 }
1866 
update_time_for_write(struct inode * inode)1867 static void update_time_for_write(struct inode *inode)
1868 {
1869 	struct timespec64 now;
1870 
1871 	if (IS_NOCMTIME(inode))
1872 		return;
1873 
1874 	now = current_time(inode);
1875 	if (!timespec64_equal(&inode->i_mtime, &now))
1876 		inode->i_mtime = now;
1877 
1878 	if (!timespec64_equal(&inode->i_ctime, &now))
1879 		inode->i_ctime = now;
1880 
1881 	if (IS_I_VERSION(inode))
1882 		inode_inc_iversion(inode);
1883 }
1884 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1885 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1886 				    struct iov_iter *from)
1887 {
1888 	struct file *file = iocb->ki_filp;
1889 	struct inode *inode = file_inode(file);
1890 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1891 	struct btrfs_root *root = BTRFS_I(inode)->root;
1892 	u64 start_pos;
1893 	u64 end_pos;
1894 	ssize_t num_written = 0;
1895 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1896 	ssize_t err;
1897 	loff_t pos;
1898 	size_t count;
1899 	loff_t oldsize;
1900 	int clean_page = 0;
1901 
1902 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1903 	    (iocb->ki_flags & IOCB_NOWAIT))
1904 		return -EOPNOTSUPP;
1905 
1906 	if (!inode_trylock(inode)) {
1907 		if (iocb->ki_flags & IOCB_NOWAIT)
1908 			return -EAGAIN;
1909 		inode_lock(inode);
1910 	}
1911 
1912 	err = generic_write_checks(iocb, from);
1913 	if (err <= 0) {
1914 		inode_unlock(inode);
1915 		return err;
1916 	}
1917 
1918 	pos = iocb->ki_pos;
1919 	count = iov_iter_count(from);
1920 	if (iocb->ki_flags & IOCB_NOWAIT) {
1921 		/*
1922 		 * We will allocate space in case nodatacow is not set,
1923 		 * so bail
1924 		 */
1925 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1926 					      BTRFS_INODE_PREALLOC)) ||
1927 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1928 			inode_unlock(inode);
1929 			return -EAGAIN;
1930 		}
1931 	}
1932 
1933 	current->backing_dev_info = inode_to_bdi(inode);
1934 	err = file_remove_privs(file);
1935 	if (err) {
1936 		inode_unlock(inode);
1937 		goto out;
1938 	}
1939 
1940 	/*
1941 	 * If BTRFS flips readonly due to some impossible error
1942 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1943 	 * although we have opened a file as writable, we have
1944 	 * to stop this write operation to ensure FS consistency.
1945 	 */
1946 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1947 		inode_unlock(inode);
1948 		err = -EROFS;
1949 		goto out;
1950 	}
1951 
1952 	/*
1953 	 * We reserve space for updating the inode when we reserve space for the
1954 	 * extent we are going to write, so we will enospc out there.  We don't
1955 	 * need to start yet another transaction to update the inode as we will
1956 	 * update the inode when we finish writing whatever data we write.
1957 	 */
1958 	update_time_for_write(inode);
1959 
1960 	start_pos = round_down(pos, fs_info->sectorsize);
1961 	oldsize = i_size_read(inode);
1962 	if (start_pos > oldsize) {
1963 		/* Expand hole size to cover write data, preventing empty gap */
1964 		end_pos = round_up(pos + count,
1965 				   fs_info->sectorsize);
1966 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1967 		if (err) {
1968 			inode_unlock(inode);
1969 			goto out;
1970 		}
1971 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1972 			clean_page = 1;
1973 	}
1974 
1975 	if (sync)
1976 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1977 
1978 	if (iocb->ki_flags & IOCB_DIRECT) {
1979 		num_written = __btrfs_direct_write(iocb, from);
1980 	} else {
1981 		num_written = btrfs_buffered_write(iocb, from);
1982 		if (num_written > 0)
1983 			iocb->ki_pos = pos + num_written;
1984 		if (clean_page)
1985 			pagecache_isize_extended(inode, oldsize,
1986 						i_size_read(inode));
1987 	}
1988 
1989 	inode_unlock(inode);
1990 
1991 	/*
1992 	 * We also have to set last_sub_trans to the current log transid,
1993 	 * otherwise subsequent syncs to a file that's been synced in this
1994 	 * transaction will appear to have already occurred.
1995 	 */
1996 	spin_lock(&BTRFS_I(inode)->lock);
1997 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1998 	spin_unlock(&BTRFS_I(inode)->lock);
1999 	if (num_written > 0)
2000 		num_written = generic_write_sync(iocb, num_written);
2001 
2002 	if (sync)
2003 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2004 out:
2005 	current->backing_dev_info = NULL;
2006 	return num_written ? num_written : err;
2007 }
2008 
btrfs_release_file(struct inode * inode,struct file * filp)2009 int btrfs_release_file(struct inode *inode, struct file *filp)
2010 {
2011 	struct btrfs_file_private *private = filp->private_data;
2012 
2013 	if (private && private->filldir_buf)
2014 		kfree(private->filldir_buf);
2015 	kfree(private);
2016 	filp->private_data = NULL;
2017 
2018 	/*
2019 	 * ordered_data_close is set by setattr when we are about to truncate
2020 	 * a file from a non-zero size to a zero size.  This tries to
2021 	 * flush down new bytes that may have been written if the
2022 	 * application were using truncate to replace a file in place.
2023 	 */
2024 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2025 			       &BTRFS_I(inode)->runtime_flags))
2026 			filemap_flush(inode->i_mapping);
2027 	return 0;
2028 }
2029 
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2030 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2031 {
2032 	int ret;
2033 	struct blk_plug plug;
2034 
2035 	/*
2036 	 * This is only called in fsync, which would do synchronous writes, so
2037 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2038 	 * multiple disks using raid profile, a large IO can be split to
2039 	 * several segments of stripe length (currently 64K).
2040 	 */
2041 	blk_start_plug(&plug);
2042 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2043 	ret = btrfs_fdatawrite_range(inode, start, end);
2044 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2045 	blk_finish_plug(&plug);
2046 
2047 	return ret;
2048 }
2049 
2050 /*
2051  * fsync call for both files and directories.  This logs the inode into
2052  * the tree log instead of forcing full commits whenever possible.
2053  *
2054  * It needs to call filemap_fdatawait so that all ordered extent updates are
2055  * in the metadata btree are up to date for copying to the log.
2056  *
2057  * It drops the inode mutex before doing the tree log commit.  This is an
2058  * important optimization for directories because holding the mutex prevents
2059  * new operations on the dir while we write to disk.
2060  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2061 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2062 {
2063 	struct dentry *dentry = file_dentry(file);
2064 	struct inode *inode = d_inode(dentry);
2065 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2066 	struct btrfs_root *root = BTRFS_I(inode)->root;
2067 	struct btrfs_trans_handle *trans;
2068 	struct btrfs_log_ctx ctx;
2069 	int ret = 0, err;
2070 
2071 	trace_btrfs_sync_file(file, datasync);
2072 
2073 	btrfs_init_log_ctx(&ctx, inode);
2074 
2075 	/*
2076 	 * We write the dirty pages in the range and wait until they complete
2077 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2078 	 * multi-task, and make the performance up.  See
2079 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2080 	 */
2081 	ret = start_ordered_ops(inode, start, end);
2082 	if (ret)
2083 		goto out;
2084 
2085 	inode_lock(inode);
2086 
2087 	/*
2088 	 * We take the dio_sem here because the tree log stuff can race with
2089 	 * lockless dio writes and get an extent map logged for an extent we
2090 	 * never waited on.  We need it this high up for lockdep reasons.
2091 	 */
2092 	down_write(&BTRFS_I(inode)->dio_sem);
2093 
2094 	atomic_inc(&root->log_batch);
2095 
2096 	/*
2097 	 * If the inode needs a full sync, make sure we use a full range to
2098 	 * avoid log tree corruption, due to hole detection racing with ordered
2099 	 * extent completion for adjacent ranges, and assertion failures during
2100 	 * hole detection. Do this while holding the inode lock, to avoid races
2101 	 * with other tasks.
2102 	 */
2103 	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2104 		     &BTRFS_I(inode)->runtime_flags)) {
2105 		start = 0;
2106 		end = LLONG_MAX;
2107 	}
2108 
2109 	/*
2110 	 * Before we acquired the inode's lock, someone may have dirtied more
2111 	 * pages in the target range. We need to make sure that writeback for
2112 	 * any such pages does not start while we are logging the inode, because
2113 	 * if it does, any of the following might happen when we are not doing a
2114 	 * full inode sync:
2115 	 *
2116 	 * 1) We log an extent after its writeback finishes but before its
2117 	 *    checksums are added to the csum tree, leading to -EIO errors
2118 	 *    when attempting to read the extent after a log replay.
2119 	 *
2120 	 * 2) We can end up logging an extent before its writeback finishes.
2121 	 *    Therefore after the log replay we will have a file extent item
2122 	 *    pointing to an unwritten extent (and no data checksums as well).
2123 	 *
2124 	 * So trigger writeback for any eventual new dirty pages and then we
2125 	 * wait for all ordered extents to complete below.
2126 	 */
2127 	ret = start_ordered_ops(inode, start, end);
2128 	if (ret) {
2129 		inode_unlock(inode);
2130 		goto out;
2131 	}
2132 
2133 	/*
2134 	 * We have to do this here to avoid the priority inversion of waiting on
2135 	 * IO of a lower priority task while holding a transaction open.
2136 	 *
2137 	 * Also, the range length can be represented by u64, we have to do the
2138 	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2139 	 */
2140 	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2141 	if (ret) {
2142 		up_write(&BTRFS_I(inode)->dio_sem);
2143 		inode_unlock(inode);
2144 		goto out;
2145 	}
2146 	atomic_inc(&root->log_batch);
2147 
2148 	smp_mb();
2149 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2150 	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2151 		/*
2152 		 * We've had everything committed since the last time we were
2153 		 * modified so clear this flag in case it was set for whatever
2154 		 * reason, it's no longer relevant.
2155 		 */
2156 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2157 			  &BTRFS_I(inode)->runtime_flags);
2158 		/*
2159 		 * An ordered extent might have started before and completed
2160 		 * already with io errors, in which case the inode was not
2161 		 * updated and we end up here. So check the inode's mapping
2162 		 * for any errors that might have happened since we last
2163 		 * checked called fsync.
2164 		 */
2165 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2166 		up_write(&BTRFS_I(inode)->dio_sem);
2167 		inode_unlock(inode);
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * We use start here because we will need to wait on the IO to complete
2173 	 * in btrfs_sync_log, which could require joining a transaction (for
2174 	 * example checking cross references in the nocow path).  If we use join
2175 	 * here we could get into a situation where we're waiting on IO to
2176 	 * happen that is blocked on a transaction trying to commit.  With start
2177 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2178 	 * before we start blocking joiners.  This comment is to keep somebody
2179 	 * from thinking they are super smart and changing this to
2180 	 * btrfs_join_transaction *cough*Josef*cough*.
2181 	 */
2182 	trans = btrfs_start_transaction(root, 0);
2183 	if (IS_ERR(trans)) {
2184 		ret = PTR_ERR(trans);
2185 		up_write(&BTRFS_I(inode)->dio_sem);
2186 		inode_unlock(inode);
2187 		goto out;
2188 	}
2189 
2190 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2191 	if (ret < 0) {
2192 		/* Fallthrough and commit/free transaction. */
2193 		ret = 1;
2194 	}
2195 
2196 	/* we've logged all the items and now have a consistent
2197 	 * version of the file in the log.  It is possible that
2198 	 * someone will come in and modify the file, but that's
2199 	 * fine because the log is consistent on disk, and we
2200 	 * have references to all of the file's extents
2201 	 *
2202 	 * It is possible that someone will come in and log the
2203 	 * file again, but that will end up using the synchronization
2204 	 * inside btrfs_sync_log to keep things safe.
2205 	 */
2206 	up_write(&BTRFS_I(inode)->dio_sem);
2207 	inode_unlock(inode);
2208 
2209 	if (ret != BTRFS_NO_LOG_SYNC) {
2210 		if (!ret) {
2211 			ret = btrfs_sync_log(trans, root, &ctx);
2212 			if (!ret) {
2213 				ret = btrfs_end_transaction(trans);
2214 				goto out;
2215 			}
2216 		}
2217 		ret = btrfs_commit_transaction(trans);
2218 	} else {
2219 		ret = btrfs_end_transaction(trans);
2220 	}
2221 out:
2222 	ASSERT(list_empty(&ctx.list));
2223 	err = file_check_and_advance_wb_err(file);
2224 	if (!ret)
2225 		ret = err;
2226 	return ret > 0 ? -EIO : ret;
2227 }
2228 
2229 static const struct vm_operations_struct btrfs_file_vm_ops = {
2230 	.fault		= filemap_fault,
2231 	.map_pages	= filemap_map_pages,
2232 	.page_mkwrite	= btrfs_page_mkwrite,
2233 };
2234 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2235 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2236 {
2237 	struct address_space *mapping = filp->f_mapping;
2238 
2239 	if (!mapping->a_ops->readpage)
2240 		return -ENOEXEC;
2241 
2242 	file_accessed(filp);
2243 	vma->vm_ops = &btrfs_file_vm_ops;
2244 
2245 	return 0;
2246 }
2247 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2248 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2249 			  int slot, u64 start, u64 end)
2250 {
2251 	struct btrfs_file_extent_item *fi;
2252 	struct btrfs_key key;
2253 
2254 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2255 		return 0;
2256 
2257 	btrfs_item_key_to_cpu(leaf, &key, slot);
2258 	if (key.objectid != btrfs_ino(inode) ||
2259 	    key.type != BTRFS_EXTENT_DATA_KEY)
2260 		return 0;
2261 
2262 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2263 
2264 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2265 		return 0;
2266 
2267 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2268 		return 0;
2269 
2270 	if (key.offset == end)
2271 		return 1;
2272 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2273 		return 1;
2274 	return 0;
2275 }
2276 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2277 static int fill_holes(struct btrfs_trans_handle *trans,
2278 		struct btrfs_inode *inode,
2279 		struct btrfs_path *path, u64 offset, u64 end)
2280 {
2281 	struct btrfs_fs_info *fs_info = trans->fs_info;
2282 	struct btrfs_root *root = inode->root;
2283 	struct extent_buffer *leaf;
2284 	struct btrfs_file_extent_item *fi;
2285 	struct extent_map *hole_em;
2286 	struct extent_map_tree *em_tree = &inode->extent_tree;
2287 	struct btrfs_key key;
2288 	int ret;
2289 
2290 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2291 		goto out;
2292 
2293 	key.objectid = btrfs_ino(inode);
2294 	key.type = BTRFS_EXTENT_DATA_KEY;
2295 	key.offset = offset;
2296 
2297 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2298 	if (ret <= 0) {
2299 		/*
2300 		 * We should have dropped this offset, so if we find it then
2301 		 * something has gone horribly wrong.
2302 		 */
2303 		if (ret == 0)
2304 			ret = -EINVAL;
2305 		return ret;
2306 	}
2307 
2308 	leaf = path->nodes[0];
2309 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2310 		u64 num_bytes;
2311 
2312 		path->slots[0]--;
2313 		fi = btrfs_item_ptr(leaf, path->slots[0],
2314 				    struct btrfs_file_extent_item);
2315 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2316 			end - offset;
2317 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2318 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2319 		btrfs_set_file_extent_offset(leaf, fi, 0);
2320 		btrfs_mark_buffer_dirty(leaf);
2321 		goto out;
2322 	}
2323 
2324 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2325 		u64 num_bytes;
2326 
2327 		key.offset = offset;
2328 		btrfs_set_item_key_safe(fs_info, path, &key);
2329 		fi = btrfs_item_ptr(leaf, path->slots[0],
2330 				    struct btrfs_file_extent_item);
2331 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2332 			offset;
2333 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2334 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2335 		btrfs_set_file_extent_offset(leaf, fi, 0);
2336 		btrfs_mark_buffer_dirty(leaf);
2337 		goto out;
2338 	}
2339 	btrfs_release_path(path);
2340 
2341 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2342 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2343 	if (ret)
2344 		return ret;
2345 
2346 out:
2347 	btrfs_release_path(path);
2348 
2349 	hole_em = alloc_extent_map();
2350 	if (!hole_em) {
2351 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2352 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2353 	} else {
2354 		hole_em->start = offset;
2355 		hole_em->len = end - offset;
2356 		hole_em->ram_bytes = hole_em->len;
2357 		hole_em->orig_start = offset;
2358 
2359 		hole_em->block_start = EXTENT_MAP_HOLE;
2360 		hole_em->block_len = 0;
2361 		hole_em->orig_block_len = 0;
2362 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2363 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2364 		hole_em->generation = trans->transid;
2365 
2366 		do {
2367 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2368 			write_lock(&em_tree->lock);
2369 			ret = add_extent_mapping(em_tree, hole_em, 1);
2370 			write_unlock(&em_tree->lock);
2371 		} while (ret == -EEXIST);
2372 		free_extent_map(hole_em);
2373 		if (ret)
2374 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2375 					&inode->runtime_flags);
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  * Find a hole extent on given inode and change start/len to the end of hole
2383  * extent.(hole/vacuum extent whose em->start <= start &&
2384  *	   em->start + em->len > start)
2385  * When a hole extent is found, return 1 and modify start/len.
2386  */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2387 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2388 {
2389 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2390 	struct extent_map *em;
2391 	int ret = 0;
2392 
2393 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2394 			      round_down(*start, fs_info->sectorsize),
2395 			      round_up(*len, fs_info->sectorsize), 0);
2396 	if (IS_ERR(em))
2397 		return PTR_ERR(em);
2398 
2399 	/* Hole or vacuum extent(only exists in no-hole mode) */
2400 	if (em->block_start == EXTENT_MAP_HOLE) {
2401 		ret = 1;
2402 		*len = em->start + em->len > *start + *len ?
2403 		       0 : *start + *len - em->start - em->len;
2404 		*start = em->start + em->len;
2405 	}
2406 	free_extent_map(em);
2407 	return ret;
2408 }
2409 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2410 static int btrfs_punch_hole_lock_range(struct inode *inode,
2411 				       const u64 lockstart,
2412 				       const u64 lockend,
2413 				       struct extent_state **cached_state)
2414 {
2415 	while (1) {
2416 		struct btrfs_ordered_extent *ordered;
2417 		int ret;
2418 
2419 		truncate_pagecache_range(inode, lockstart, lockend);
2420 
2421 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422 				 cached_state);
2423 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424 
2425 		/*
2426 		 * We need to make sure we have no ordered extents in this range
2427 		 * and nobody raced in and read a page in this range, if we did
2428 		 * we need to try again.
2429 		 */
2430 		if ((!ordered ||
2431 		    (ordered->file_offset + ordered->len <= lockstart ||
2432 		     ordered->file_offset > lockend)) &&
2433 		     !filemap_range_has_page(inode->i_mapping,
2434 					     lockstart, lockend)) {
2435 			if (ordered)
2436 				btrfs_put_ordered_extent(ordered);
2437 			break;
2438 		}
2439 		if (ordered)
2440 			btrfs_put_ordered_extent(ordered);
2441 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2442 				     lockend, cached_state);
2443 		ret = btrfs_wait_ordered_range(inode, lockstart,
2444 					       lockend - lockstart + 1);
2445 		if (ret)
2446 			return ret;
2447 	}
2448 	return 0;
2449 }
2450 
btrfs_insert_clone_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,struct btrfs_clone_extent_info * clone_info,const u64 clone_len)2451 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2452 				     struct inode *inode,
2453 				     struct btrfs_path *path,
2454 				     struct btrfs_clone_extent_info *clone_info,
2455 				     const u64 clone_len)
2456 {
2457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2458 	struct btrfs_root *root = BTRFS_I(inode)->root;
2459 	struct btrfs_file_extent_item *extent;
2460 	struct extent_buffer *leaf;
2461 	struct btrfs_key key;
2462 	int slot;
2463 	struct btrfs_ref ref = { 0 };
2464 	u64 ref_offset;
2465 	int ret;
2466 
2467 	if (clone_len == 0)
2468 		return 0;
2469 
2470 	if (clone_info->disk_offset == 0 &&
2471 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2472 		return 0;
2473 
2474 	key.objectid = btrfs_ino(BTRFS_I(inode));
2475 	key.type = BTRFS_EXTENT_DATA_KEY;
2476 	key.offset = clone_info->file_offset;
2477 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2478 				      clone_info->item_size);
2479 	if (ret)
2480 		return ret;
2481 	leaf = path->nodes[0];
2482 	slot = path->slots[0];
2483 	write_extent_buffer(leaf, clone_info->extent_buf,
2484 			    btrfs_item_ptr_offset(leaf, slot),
2485 			    clone_info->item_size);
2486 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2487 	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2488 	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2489 	btrfs_mark_buffer_dirty(leaf);
2490 	btrfs_release_path(path);
2491 
2492 	/* If it's a hole, nothing more needs to be done. */
2493 	if (clone_info->disk_offset == 0)
2494 		return 0;
2495 
2496 	inode_add_bytes(inode, clone_len);
2497 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2498 			       clone_info->disk_offset,
2499 			       clone_info->disk_len, 0);
2500 	ref_offset = clone_info->file_offset - clone_info->data_offset;
2501 	btrfs_init_data_ref(&ref, root->root_key.objectid,
2502 			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2503 	ret = btrfs_inc_extent_ref(trans, &ref);
2504 
2505 	return ret;
2506 }
2507 
2508 /*
2509  * The respective range must have been previously locked, as well as the inode.
2510  * The end offset is inclusive (last byte of the range).
2511  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2512  * cloning.
2513  * When cloning, we don't want to end up in a state where we dropped extents
2514  * without inserting a new one, so we must abort the transaction to avoid a
2515  * corruption.
2516  */
btrfs_punch_hole_range(struct inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_clone_extent_info * clone_info,struct btrfs_trans_handle ** trans_out)2517 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2518 			   const u64 start, const u64 end,
2519 			   struct btrfs_clone_extent_info *clone_info,
2520 			   struct btrfs_trans_handle **trans_out)
2521 {
2522 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2523 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2524 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2525 	struct btrfs_root *root = BTRFS_I(inode)->root;
2526 	struct btrfs_trans_handle *trans = NULL;
2527 	struct btrfs_block_rsv *rsv;
2528 	unsigned int rsv_count;
2529 	u64 cur_offset;
2530 	u64 drop_end;
2531 	u64 len = end - start;
2532 	int ret = 0;
2533 
2534 	if (end <= start)
2535 		return -EINVAL;
2536 
2537 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2538 	if (!rsv) {
2539 		ret = -ENOMEM;
2540 		goto out;
2541 	}
2542 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2543 	rsv->failfast = 1;
2544 
2545 	/*
2546 	 * 1 - update the inode
2547 	 * 1 - removing the extents in the range
2548 	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2549 	 *     an extent
2550 	 */
2551 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2552 		rsv_count = 3;
2553 	else
2554 		rsv_count = 2;
2555 
2556 	trans = btrfs_start_transaction(root, rsv_count);
2557 	if (IS_ERR(trans)) {
2558 		ret = PTR_ERR(trans);
2559 		trans = NULL;
2560 		goto out_free;
2561 	}
2562 
2563 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2564 				      min_size, false);
2565 	BUG_ON(ret);
2566 	trans->block_rsv = rsv;
2567 
2568 	cur_offset = start;
2569 	while (cur_offset < end) {
2570 		ret = __btrfs_drop_extents(trans, root, inode, path,
2571 					   cur_offset, end + 1, &drop_end,
2572 					   1, 0, 0, NULL);
2573 		if (ret != -ENOSPC) {
2574 			/*
2575 			 * When cloning we want to avoid transaction aborts when
2576 			 * nothing was done and we are attempting to clone parts
2577 			 * of inline extents, in such cases -EOPNOTSUPP is
2578 			 * returned by __btrfs_drop_extents() without having
2579 			 * changed anything in the file.
2580 			 */
2581 			if (clone_info && ret && ret != -EOPNOTSUPP)
2582 				btrfs_abort_transaction(trans, ret);
2583 			break;
2584 		}
2585 
2586 		trans->block_rsv = &fs_info->trans_block_rsv;
2587 
2588 		if (!clone_info && cur_offset < drop_end &&
2589 		    cur_offset < ino_size) {
2590 			ret = fill_holes(trans, BTRFS_I(inode), path,
2591 					cur_offset, drop_end);
2592 			if (ret) {
2593 				/*
2594 				 * If we failed then we didn't insert our hole
2595 				 * entries for the area we dropped, so now the
2596 				 * fs is corrupted, so we must abort the
2597 				 * transaction.
2598 				 */
2599 				btrfs_abort_transaction(trans, ret);
2600 				break;
2601 			}
2602 		}
2603 
2604 		if (clone_info) {
2605 			u64 clone_len = drop_end - cur_offset;
2606 
2607 			ret = btrfs_insert_clone_extent(trans, inode, path,
2608 							clone_info, clone_len);
2609 			if (ret) {
2610 				btrfs_abort_transaction(trans, ret);
2611 				break;
2612 			}
2613 			clone_info->data_len -= clone_len;
2614 			clone_info->data_offset += clone_len;
2615 			clone_info->file_offset += clone_len;
2616 		}
2617 
2618 		cur_offset = drop_end;
2619 
2620 		ret = btrfs_update_inode(trans, root, inode);
2621 		if (ret)
2622 			break;
2623 
2624 		btrfs_end_transaction(trans);
2625 		btrfs_btree_balance_dirty(fs_info);
2626 
2627 		trans = btrfs_start_transaction(root, rsv_count);
2628 		if (IS_ERR(trans)) {
2629 			ret = PTR_ERR(trans);
2630 			trans = NULL;
2631 			break;
2632 		}
2633 
2634 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2635 					      rsv, min_size, false);
2636 		BUG_ON(ret);	/* shouldn't happen */
2637 		trans->block_rsv = rsv;
2638 
2639 		if (!clone_info) {
2640 			ret = find_first_non_hole(inode, &cur_offset, &len);
2641 			if (unlikely(ret < 0))
2642 				break;
2643 			if (ret && !len) {
2644 				ret = 0;
2645 				break;
2646 			}
2647 		}
2648 	}
2649 
2650 	/*
2651 	 * If we were cloning, force the next fsync to be a full one since we
2652 	 * we replaced (or just dropped in the case of cloning holes when
2653 	 * NO_HOLES is enabled) extents and extent maps.
2654 	 * This is for the sake of simplicity, and cloning into files larger
2655 	 * than 16Mb would force the full fsync any way (when
2656 	 * try_release_extent_mapping() is invoked during page cache truncation.
2657 	 */
2658 	if (clone_info)
2659 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2660 			&BTRFS_I(inode)->runtime_flags);
2661 
2662 	if (ret)
2663 		goto out_trans;
2664 
2665 	trans->block_rsv = &fs_info->trans_block_rsv;
2666 	/*
2667 	 * If we are using the NO_HOLES feature we might have had already an
2668 	 * hole that overlaps a part of the region [lockstart, lockend] and
2669 	 * ends at (or beyond) lockend. Since we have no file extent items to
2670 	 * represent holes, drop_end can be less than lockend and so we must
2671 	 * make sure we have an extent map representing the existing hole (the
2672 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2673 	 * map representing the existing hole), otherwise the fast fsync path
2674 	 * will not record the existence of the hole region
2675 	 * [existing_hole_start, lockend].
2676 	 */
2677 	if (drop_end <= end)
2678 		drop_end = end + 1;
2679 	/*
2680 	 * Don't insert file hole extent item if it's for a range beyond eof
2681 	 * (because it's useless) or if it represents a 0 bytes range (when
2682 	 * cur_offset == drop_end).
2683 	 */
2684 	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2685 		ret = fill_holes(trans, BTRFS_I(inode), path,
2686 				cur_offset, drop_end);
2687 		if (ret) {
2688 			/* Same comment as above. */
2689 			btrfs_abort_transaction(trans, ret);
2690 			goto out_trans;
2691 		}
2692 	}
2693 	if (clone_info) {
2694 		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2695 						clone_info->data_len);
2696 		if (ret) {
2697 			btrfs_abort_transaction(trans, ret);
2698 			goto out_trans;
2699 		}
2700 	}
2701 
2702 out_trans:
2703 	if (!trans)
2704 		goto out_free;
2705 
2706 	trans->block_rsv = &fs_info->trans_block_rsv;
2707 	if (ret)
2708 		btrfs_end_transaction(trans);
2709 	else
2710 		*trans_out = trans;
2711 out_free:
2712 	btrfs_free_block_rsv(fs_info, rsv);
2713 out:
2714 	return ret;
2715 }
2716 
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2717 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2718 {
2719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2720 	struct btrfs_root *root = BTRFS_I(inode)->root;
2721 	struct extent_state *cached_state = NULL;
2722 	struct btrfs_path *path;
2723 	struct btrfs_trans_handle *trans = NULL;
2724 	u64 lockstart;
2725 	u64 lockend;
2726 	u64 tail_start;
2727 	u64 tail_len;
2728 	u64 orig_start = offset;
2729 	int ret = 0;
2730 	bool same_block;
2731 	u64 ino_size;
2732 	bool truncated_block = false;
2733 	bool updated_inode = false;
2734 
2735 	ret = btrfs_wait_ordered_range(inode, offset, len);
2736 	if (ret)
2737 		return ret;
2738 
2739 	inode_lock(inode);
2740 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2741 	ret = find_first_non_hole(inode, &offset, &len);
2742 	if (ret < 0)
2743 		goto out_only_mutex;
2744 	if (ret && !len) {
2745 		/* Already in a large hole */
2746 		ret = 0;
2747 		goto out_only_mutex;
2748 	}
2749 
2750 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2751 	lockend = round_down(offset + len,
2752 			     btrfs_inode_sectorsize(inode)) - 1;
2753 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2754 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2755 	/*
2756 	 * We needn't truncate any block which is beyond the end of the file
2757 	 * because we are sure there is no data there.
2758 	 */
2759 	/*
2760 	 * Only do this if we are in the same block and we aren't doing the
2761 	 * entire block.
2762 	 */
2763 	if (same_block && len < fs_info->sectorsize) {
2764 		if (offset < ino_size) {
2765 			truncated_block = true;
2766 			ret = btrfs_truncate_block(inode, offset, len, 0);
2767 		} else {
2768 			ret = 0;
2769 		}
2770 		goto out_only_mutex;
2771 	}
2772 
2773 	/* zero back part of the first block */
2774 	if (offset < ino_size) {
2775 		truncated_block = true;
2776 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2777 		if (ret) {
2778 			inode_unlock(inode);
2779 			return ret;
2780 		}
2781 	}
2782 
2783 	/* Check the aligned pages after the first unaligned page,
2784 	 * if offset != orig_start, which means the first unaligned page
2785 	 * including several following pages are already in holes,
2786 	 * the extra check can be skipped */
2787 	if (offset == orig_start) {
2788 		/* after truncate page, check hole again */
2789 		len = offset + len - lockstart;
2790 		offset = lockstart;
2791 		ret = find_first_non_hole(inode, &offset, &len);
2792 		if (ret < 0)
2793 			goto out_only_mutex;
2794 		if (ret && !len) {
2795 			ret = 0;
2796 			goto out_only_mutex;
2797 		}
2798 		lockstart = offset;
2799 	}
2800 
2801 	/* Check the tail unaligned part is in a hole */
2802 	tail_start = lockend + 1;
2803 	tail_len = offset + len - tail_start;
2804 	if (tail_len) {
2805 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2806 		if (unlikely(ret < 0))
2807 			goto out_only_mutex;
2808 		if (!ret) {
2809 			/* zero the front end of the last page */
2810 			if (tail_start + tail_len < ino_size) {
2811 				truncated_block = true;
2812 				ret = btrfs_truncate_block(inode,
2813 							tail_start + tail_len,
2814 							0, 1);
2815 				if (ret)
2816 					goto out_only_mutex;
2817 			}
2818 		}
2819 	}
2820 
2821 	if (lockend < lockstart) {
2822 		ret = 0;
2823 		goto out_only_mutex;
2824 	}
2825 
2826 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2827 					  &cached_state);
2828 	if (ret)
2829 		goto out_only_mutex;
2830 
2831 	path = btrfs_alloc_path();
2832 	if (!path) {
2833 		ret = -ENOMEM;
2834 		goto out;
2835 	}
2836 
2837 	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2838 				     &trans);
2839 	btrfs_free_path(path);
2840 	if (ret)
2841 		goto out;
2842 
2843 	ASSERT(trans != NULL);
2844 	inode_inc_iversion(inode);
2845 	inode->i_mtime = inode->i_ctime = current_time(inode);
2846 	ret = btrfs_update_inode(trans, root, inode);
2847 	updated_inode = true;
2848 	btrfs_end_transaction(trans);
2849 	btrfs_btree_balance_dirty(fs_info);
2850 out:
2851 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2852 			     &cached_state);
2853 out_only_mutex:
2854 	if (!updated_inode && truncated_block && !ret) {
2855 		/*
2856 		 * If we only end up zeroing part of a page, we still need to
2857 		 * update the inode item, so that all the time fields are
2858 		 * updated as well as the necessary btrfs inode in memory fields
2859 		 * for detecting, at fsync time, if the inode isn't yet in the
2860 		 * log tree or it's there but not up to date.
2861 		 */
2862 		struct timespec64 now = current_time(inode);
2863 
2864 		inode_inc_iversion(inode);
2865 		inode->i_mtime = now;
2866 		inode->i_ctime = now;
2867 		trans = btrfs_start_transaction(root, 1);
2868 		if (IS_ERR(trans)) {
2869 			ret = PTR_ERR(trans);
2870 		} else {
2871 			int ret2;
2872 
2873 			ret = btrfs_update_inode(trans, root, inode);
2874 			ret2 = btrfs_end_transaction(trans);
2875 			if (!ret)
2876 				ret = ret2;
2877 		}
2878 	}
2879 	inode_unlock(inode);
2880 	return ret;
2881 }
2882 
2883 /* Helper structure to record which range is already reserved */
2884 struct falloc_range {
2885 	struct list_head list;
2886 	u64 start;
2887 	u64 len;
2888 };
2889 
2890 /*
2891  * Helper function to add falloc range
2892  *
2893  * Caller should have locked the larger range of extent containing
2894  * [start, len)
2895  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2896 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2897 {
2898 	struct falloc_range *prev = NULL;
2899 	struct falloc_range *range = NULL;
2900 
2901 	if (list_empty(head))
2902 		goto insert;
2903 
2904 	/*
2905 	 * As fallocate iterate by bytenr order, we only need to check
2906 	 * the last range.
2907 	 */
2908 	prev = list_entry(head->prev, struct falloc_range, list);
2909 	if (prev->start + prev->len == start) {
2910 		prev->len += len;
2911 		return 0;
2912 	}
2913 insert:
2914 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2915 	if (!range)
2916 		return -ENOMEM;
2917 	range->start = start;
2918 	range->len = len;
2919 	list_add_tail(&range->list, head);
2920 	return 0;
2921 }
2922 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2923 static int btrfs_fallocate_update_isize(struct inode *inode,
2924 					const u64 end,
2925 					const int mode)
2926 {
2927 	struct btrfs_trans_handle *trans;
2928 	struct btrfs_root *root = BTRFS_I(inode)->root;
2929 	int ret;
2930 	int ret2;
2931 
2932 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2933 		return 0;
2934 
2935 	trans = btrfs_start_transaction(root, 1);
2936 	if (IS_ERR(trans))
2937 		return PTR_ERR(trans);
2938 
2939 	inode->i_ctime = current_time(inode);
2940 	i_size_write(inode, end);
2941 	btrfs_ordered_update_i_size(inode, end, NULL);
2942 	ret = btrfs_update_inode(trans, root, inode);
2943 	ret2 = btrfs_end_transaction(trans);
2944 
2945 	return ret ? ret : ret2;
2946 }
2947 
2948 enum {
2949 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2950 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2951 	RANGE_BOUNDARY_HOLE,
2952 };
2953 
btrfs_zero_range_check_range_boundary(struct inode * inode,u64 offset)2954 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2955 						 u64 offset)
2956 {
2957 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2958 	struct extent_map *em;
2959 	int ret;
2960 
2961 	offset = round_down(offset, sectorsize);
2962 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2963 	if (IS_ERR(em))
2964 		return PTR_ERR(em);
2965 
2966 	if (em->block_start == EXTENT_MAP_HOLE)
2967 		ret = RANGE_BOUNDARY_HOLE;
2968 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2969 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2970 	else
2971 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2972 
2973 	free_extent_map(em);
2974 	return ret;
2975 }
2976 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2977 static int btrfs_zero_range(struct inode *inode,
2978 			    loff_t offset,
2979 			    loff_t len,
2980 			    const int mode)
2981 {
2982 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2983 	struct extent_map *em;
2984 	struct extent_changeset *data_reserved = NULL;
2985 	int ret;
2986 	u64 alloc_hint = 0;
2987 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2988 	u64 alloc_start = round_down(offset, sectorsize);
2989 	u64 alloc_end = round_up(offset + len, sectorsize);
2990 	u64 bytes_to_reserve = 0;
2991 	bool space_reserved = false;
2992 
2993 	inode_dio_wait(inode);
2994 
2995 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2996 			      alloc_start, alloc_end - alloc_start, 0);
2997 	if (IS_ERR(em)) {
2998 		ret = PTR_ERR(em);
2999 		goto out;
3000 	}
3001 
3002 	/*
3003 	 * Avoid hole punching and extent allocation for some cases. More cases
3004 	 * could be considered, but these are unlikely common and we keep things
3005 	 * as simple as possible for now. Also, intentionally, if the target
3006 	 * range contains one or more prealloc extents together with regular
3007 	 * extents and holes, we drop all the existing extents and allocate a
3008 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3009 	 */
3010 	if (em->start <= alloc_start &&
3011 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3012 		const u64 em_end = em->start + em->len;
3013 
3014 		if (em_end >= offset + len) {
3015 			/*
3016 			 * The whole range is already a prealloc extent,
3017 			 * do nothing except updating the inode's i_size if
3018 			 * needed.
3019 			 */
3020 			free_extent_map(em);
3021 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3022 							   mode);
3023 			goto out;
3024 		}
3025 		/*
3026 		 * Part of the range is already a prealloc extent, so operate
3027 		 * only on the remaining part of the range.
3028 		 */
3029 		alloc_start = em_end;
3030 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3031 		len = offset + len - alloc_start;
3032 		offset = alloc_start;
3033 		alloc_hint = em->block_start + em->len;
3034 	}
3035 	free_extent_map(em);
3036 
3037 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3038 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3039 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
3040 				      alloc_start, sectorsize, 0);
3041 		if (IS_ERR(em)) {
3042 			ret = PTR_ERR(em);
3043 			goto out;
3044 		}
3045 
3046 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3047 			free_extent_map(em);
3048 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3049 							   mode);
3050 			goto out;
3051 		}
3052 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3053 			free_extent_map(em);
3054 			ret = btrfs_truncate_block(inode, offset, len, 0);
3055 			if (!ret)
3056 				ret = btrfs_fallocate_update_isize(inode,
3057 								   offset + len,
3058 								   mode);
3059 			return ret;
3060 		}
3061 		free_extent_map(em);
3062 		alloc_start = round_down(offset, sectorsize);
3063 		alloc_end = alloc_start + sectorsize;
3064 		goto reserve_space;
3065 	}
3066 
3067 	alloc_start = round_up(offset, sectorsize);
3068 	alloc_end = round_down(offset + len, sectorsize);
3069 
3070 	/*
3071 	 * For unaligned ranges, check the pages at the boundaries, they might
3072 	 * map to an extent, in which case we need to partially zero them, or
3073 	 * they might map to a hole, in which case we need our allocation range
3074 	 * to cover them.
3075 	 */
3076 	if (!IS_ALIGNED(offset, sectorsize)) {
3077 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
3078 		if (ret < 0)
3079 			goto out;
3080 		if (ret == RANGE_BOUNDARY_HOLE) {
3081 			alloc_start = round_down(offset, sectorsize);
3082 			ret = 0;
3083 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3084 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3085 			if (ret)
3086 				goto out;
3087 		} else {
3088 			ret = 0;
3089 		}
3090 	}
3091 
3092 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3093 		ret = btrfs_zero_range_check_range_boundary(inode,
3094 							    offset + len);
3095 		if (ret < 0)
3096 			goto out;
3097 		if (ret == RANGE_BOUNDARY_HOLE) {
3098 			alloc_end = round_up(offset + len, sectorsize);
3099 			ret = 0;
3100 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3101 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3102 			if (ret)
3103 				goto out;
3104 		} else {
3105 			ret = 0;
3106 		}
3107 	}
3108 
3109 reserve_space:
3110 	if (alloc_start < alloc_end) {
3111 		struct extent_state *cached_state = NULL;
3112 		const u64 lockstart = alloc_start;
3113 		const u64 lockend = alloc_end - 1;
3114 
3115 		bytes_to_reserve = alloc_end - alloc_start;
3116 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3117 						      bytes_to_reserve);
3118 		if (ret < 0)
3119 			goto out;
3120 		space_reserved = true;
3121 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3122 						alloc_start, bytes_to_reserve);
3123 		if (ret)
3124 			goto out;
3125 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3126 						  &cached_state);
3127 		if (ret)
3128 			goto out;
3129 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3130 						alloc_end - alloc_start,
3131 						i_blocksize(inode),
3132 						offset + len, &alloc_hint);
3133 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3134 				     lockend, &cached_state);
3135 		/* btrfs_prealloc_file_range releases reserved space on error */
3136 		if (ret) {
3137 			space_reserved = false;
3138 			goto out;
3139 		}
3140 	}
3141 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3142  out:
3143 	if (ret && space_reserved)
3144 		btrfs_free_reserved_data_space(inode, data_reserved,
3145 					       alloc_start, bytes_to_reserve);
3146 	extent_changeset_free(data_reserved);
3147 
3148 	return ret;
3149 }
3150 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3151 static long btrfs_fallocate(struct file *file, int mode,
3152 			    loff_t offset, loff_t len)
3153 {
3154 	struct inode *inode = file_inode(file);
3155 	struct extent_state *cached_state = NULL;
3156 	struct extent_changeset *data_reserved = NULL;
3157 	struct falloc_range *range;
3158 	struct falloc_range *tmp;
3159 	struct list_head reserve_list;
3160 	u64 cur_offset;
3161 	u64 last_byte;
3162 	u64 alloc_start;
3163 	u64 alloc_end;
3164 	u64 alloc_hint = 0;
3165 	u64 locked_end;
3166 	u64 actual_end = 0;
3167 	struct extent_map *em;
3168 	int blocksize = btrfs_inode_sectorsize(inode);
3169 	int ret;
3170 
3171 	alloc_start = round_down(offset, blocksize);
3172 	alloc_end = round_up(offset + len, blocksize);
3173 	cur_offset = alloc_start;
3174 
3175 	/* Make sure we aren't being give some crap mode */
3176 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3177 		     FALLOC_FL_ZERO_RANGE))
3178 		return -EOPNOTSUPP;
3179 
3180 	if (mode & FALLOC_FL_PUNCH_HOLE)
3181 		return btrfs_punch_hole(inode, offset, len);
3182 
3183 	/*
3184 	 * Only trigger disk allocation, don't trigger qgroup reserve
3185 	 *
3186 	 * For qgroup space, it will be checked later.
3187 	 */
3188 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3189 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3190 						      alloc_end - alloc_start);
3191 		if (ret < 0)
3192 			return ret;
3193 	}
3194 
3195 	inode_lock(inode);
3196 
3197 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3198 		ret = inode_newsize_ok(inode, offset + len);
3199 		if (ret)
3200 			goto out;
3201 	}
3202 
3203 	/*
3204 	 * TODO: Move these two operations after we have checked
3205 	 * accurate reserved space, or fallocate can still fail but
3206 	 * with page truncated or size expanded.
3207 	 *
3208 	 * But that's a minor problem and won't do much harm BTW.
3209 	 */
3210 	if (alloc_start > inode->i_size) {
3211 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3212 					alloc_start);
3213 		if (ret)
3214 			goto out;
3215 	} else if (offset + len > inode->i_size) {
3216 		/*
3217 		 * If we are fallocating from the end of the file onward we
3218 		 * need to zero out the end of the block if i_size lands in the
3219 		 * middle of a block.
3220 		 */
3221 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3222 		if (ret)
3223 			goto out;
3224 	}
3225 
3226 	/*
3227 	 * wait for ordered IO before we have any locks.  We'll loop again
3228 	 * below with the locks held.
3229 	 */
3230 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3231 				       alloc_end - alloc_start);
3232 	if (ret)
3233 		goto out;
3234 
3235 	if (mode & FALLOC_FL_ZERO_RANGE) {
3236 		ret = btrfs_zero_range(inode, offset, len, mode);
3237 		inode_unlock(inode);
3238 		return ret;
3239 	}
3240 
3241 	locked_end = alloc_end - 1;
3242 	while (1) {
3243 		struct btrfs_ordered_extent *ordered;
3244 
3245 		/* the extent lock is ordered inside the running
3246 		 * transaction
3247 		 */
3248 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3249 				 locked_end, &cached_state);
3250 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3251 
3252 		if (ordered &&
3253 		    ordered->file_offset + ordered->len > alloc_start &&
3254 		    ordered->file_offset < alloc_end) {
3255 			btrfs_put_ordered_extent(ordered);
3256 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3257 					     alloc_start, locked_end,
3258 					     &cached_state);
3259 			/*
3260 			 * we can't wait on the range with the transaction
3261 			 * running or with the extent lock held
3262 			 */
3263 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3264 						       alloc_end - alloc_start);
3265 			if (ret)
3266 				goto out;
3267 		} else {
3268 			if (ordered)
3269 				btrfs_put_ordered_extent(ordered);
3270 			break;
3271 		}
3272 	}
3273 
3274 	/* First, check if we exceed the qgroup limit */
3275 	INIT_LIST_HEAD(&reserve_list);
3276 	while (cur_offset < alloc_end) {
3277 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3278 				      alloc_end - cur_offset, 0);
3279 		if (IS_ERR(em)) {
3280 			ret = PTR_ERR(em);
3281 			break;
3282 		}
3283 		last_byte = min(extent_map_end(em), alloc_end);
3284 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3285 		last_byte = ALIGN(last_byte, blocksize);
3286 		if (em->block_start == EXTENT_MAP_HOLE ||
3287 		    (cur_offset >= inode->i_size &&
3288 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3289 			ret = add_falloc_range(&reserve_list, cur_offset,
3290 					       last_byte - cur_offset);
3291 			if (ret < 0) {
3292 				free_extent_map(em);
3293 				break;
3294 			}
3295 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3296 					cur_offset, last_byte - cur_offset);
3297 			if (ret < 0) {
3298 				cur_offset = last_byte;
3299 				free_extent_map(em);
3300 				break;
3301 			}
3302 		} else {
3303 			/*
3304 			 * Do not need to reserve unwritten extent for this
3305 			 * range, free reserved data space first, otherwise
3306 			 * it'll result in false ENOSPC error.
3307 			 */
3308 			btrfs_free_reserved_data_space(inode, data_reserved,
3309 					cur_offset, last_byte - cur_offset);
3310 		}
3311 		free_extent_map(em);
3312 		cur_offset = last_byte;
3313 	}
3314 
3315 	/*
3316 	 * If ret is still 0, means we're OK to fallocate.
3317 	 * Or just cleanup the list and exit.
3318 	 */
3319 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3320 		if (!ret)
3321 			ret = btrfs_prealloc_file_range(inode, mode,
3322 					range->start,
3323 					range->len, i_blocksize(inode),
3324 					offset + len, &alloc_hint);
3325 		else
3326 			btrfs_free_reserved_data_space(inode,
3327 					data_reserved, range->start,
3328 					range->len);
3329 		list_del(&range->list);
3330 		kfree(range);
3331 	}
3332 	if (ret < 0)
3333 		goto out_unlock;
3334 
3335 	/*
3336 	 * We didn't need to allocate any more space, but we still extended the
3337 	 * size of the file so we need to update i_size and the inode item.
3338 	 */
3339 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3340 out_unlock:
3341 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3342 			     &cached_state);
3343 out:
3344 	inode_unlock(inode);
3345 	/* Let go of our reservation. */
3346 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3347 		btrfs_free_reserved_data_space(inode, data_reserved,
3348 				cur_offset, alloc_end - cur_offset);
3349 	extent_changeset_free(data_reserved);
3350 	return ret;
3351 }
3352 
find_desired_extent(struct inode * inode,loff_t * offset,int whence)3353 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3354 {
3355 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3356 	struct extent_map *em = NULL;
3357 	struct extent_state *cached_state = NULL;
3358 	u64 lockstart;
3359 	u64 lockend;
3360 	u64 start;
3361 	u64 len;
3362 	int ret = 0;
3363 
3364 	if (inode->i_size == 0)
3365 		return -ENXIO;
3366 
3367 	/*
3368 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3369 	 * the very start of the file.
3370 	 */
3371 	start = max_t(loff_t, 0, *offset);
3372 
3373 	lockstart = round_down(start, fs_info->sectorsize);
3374 	lockend = round_up(i_size_read(inode),
3375 			   fs_info->sectorsize);
3376 	if (lockend <= lockstart)
3377 		lockend = lockstart + fs_info->sectorsize;
3378 	lockend--;
3379 	len = lockend - lockstart + 1;
3380 
3381 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3382 			 &cached_state);
3383 
3384 	while (start < inode->i_size) {
3385 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3386 		if (IS_ERR(em)) {
3387 			ret = PTR_ERR(em);
3388 			em = NULL;
3389 			break;
3390 		}
3391 
3392 		if (whence == SEEK_HOLE &&
3393 		    (em->block_start == EXTENT_MAP_HOLE ||
3394 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3395 			break;
3396 		else if (whence == SEEK_DATA &&
3397 			   (em->block_start != EXTENT_MAP_HOLE &&
3398 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3399 			break;
3400 
3401 		start = em->start + em->len;
3402 		free_extent_map(em);
3403 		em = NULL;
3404 		cond_resched();
3405 	}
3406 	free_extent_map(em);
3407 	if (!ret) {
3408 		if (whence == SEEK_DATA && start >= inode->i_size)
3409 			ret = -ENXIO;
3410 		else
3411 			*offset = min_t(loff_t, start, inode->i_size);
3412 	}
3413 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3414 			     &cached_state);
3415 	return ret;
3416 }
3417 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3418 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3419 {
3420 	struct inode *inode = file->f_mapping->host;
3421 	int ret;
3422 
3423 	inode_lock(inode);
3424 	switch (whence) {
3425 	case SEEK_END:
3426 	case SEEK_CUR:
3427 		offset = generic_file_llseek(file, offset, whence);
3428 		goto out;
3429 	case SEEK_DATA:
3430 	case SEEK_HOLE:
3431 		if (offset >= i_size_read(inode)) {
3432 			inode_unlock(inode);
3433 			return -ENXIO;
3434 		}
3435 
3436 		ret = find_desired_extent(inode, &offset, whence);
3437 		if (ret) {
3438 			inode_unlock(inode);
3439 			return ret;
3440 		}
3441 	}
3442 
3443 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3444 out:
3445 	inode_unlock(inode);
3446 	return offset;
3447 }
3448 
btrfs_file_open(struct inode * inode,struct file * filp)3449 static int btrfs_file_open(struct inode *inode, struct file *filp)
3450 {
3451 	filp->f_mode |= FMODE_NOWAIT;
3452 	return generic_file_open(inode, filp);
3453 }
3454 
3455 const struct file_operations btrfs_file_operations = {
3456 	.llseek		= btrfs_file_llseek,
3457 	.read_iter      = generic_file_read_iter,
3458 	.splice_read	= generic_file_splice_read,
3459 	.write_iter	= btrfs_file_write_iter,
3460 	.mmap		= btrfs_file_mmap,
3461 	.open		= btrfs_file_open,
3462 	.release	= btrfs_release_file,
3463 	.fsync		= btrfs_sync_file,
3464 	.fallocate	= btrfs_fallocate,
3465 	.unlocked_ioctl	= btrfs_ioctl,
3466 #ifdef CONFIG_COMPAT
3467 	.compat_ioctl	= btrfs_compat_ioctl,
3468 #endif
3469 	.remap_file_range = btrfs_remap_file_range,
3470 };
3471 
btrfs_auto_defrag_exit(void)3472 void __cold btrfs_auto_defrag_exit(void)
3473 {
3474 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3475 }
3476 
btrfs_auto_defrag_init(void)3477 int __init btrfs_auto_defrag_init(void)
3478 {
3479 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3480 					sizeof(struct inode_defrag), 0,
3481 					SLAB_MEM_SPREAD,
3482 					NULL);
3483 	if (!btrfs_inode_defrag_cachep)
3484 		return -ENOMEM;
3485 
3486 	return 0;
3487 }
3488 
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3489 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3490 {
3491 	int ret;
3492 
3493 	/*
3494 	 * So with compression we will find and lock a dirty page and clear the
3495 	 * first one as dirty, setup an async extent, and immediately return
3496 	 * with the entire range locked but with nobody actually marked with
3497 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3498 	 * expect it to work since it will just kick off a thread to do the
3499 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3500 	 * since it will wait on the page lock, which won't be unlocked until
3501 	 * after the pages have been marked as writeback and so we're good to go
3502 	 * from there.  We have to do this otherwise we'll miss the ordered
3503 	 * extents and that results in badness.  Please Josef, do not think you
3504 	 * know better and pull this out at some point in the future, it is
3505 	 * right and you are wrong.
3506 	 */
3507 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3508 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3509 			     &BTRFS_I(inode)->runtime_flags))
3510 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3511 
3512 	return ret;
3513 }
3514