1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple PWM based backlight control, board code has to setup
4 * 1) pin configuration so PWM waveforms can output
5 * 2) platform_data being correctly configured
6 */
7
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/gpio.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/fb.h>
16 #include <linux/backlight.h>
17 #include <linux/err.h>
18 #include <linux/pwm.h>
19 #include <linux/pwm_backlight.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/slab.h>
22
23 struct pwm_bl_data {
24 struct pwm_device *pwm;
25 struct device *dev;
26 unsigned int lth_brightness;
27 unsigned int *levels;
28 bool enabled;
29 struct regulator *power_supply;
30 struct gpio_desc *enable_gpio;
31 unsigned int scale;
32 bool legacy;
33 unsigned int post_pwm_on_delay;
34 unsigned int pwm_off_delay;
35 int (*notify)(struct device *,
36 int brightness);
37 void (*notify_after)(struct device *,
38 int brightness);
39 int (*check_fb)(struct device *, struct fb_info *);
40 void (*exit)(struct device *);
41 };
42
pwm_backlight_power_on(struct pwm_bl_data * pb)43 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
44 {
45 struct pwm_state state;
46 int err;
47
48 pwm_get_state(pb->pwm, &state);
49 if (pb->enabled)
50 return;
51
52 err = regulator_enable(pb->power_supply);
53 if (err < 0)
54 dev_err(pb->dev, "failed to enable power supply\n");
55
56 state.enabled = true;
57 pwm_apply_state(pb->pwm, &state);
58
59 if (pb->post_pwm_on_delay)
60 msleep(pb->post_pwm_on_delay);
61
62 if (pb->enable_gpio)
63 gpiod_set_value_cansleep(pb->enable_gpio, 1);
64
65 pb->enabled = true;
66 }
67
pwm_backlight_power_off(struct pwm_bl_data * pb)68 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
69 {
70 struct pwm_state state;
71
72 pwm_get_state(pb->pwm, &state);
73 if (!pb->enabled)
74 return;
75
76 if (pb->enable_gpio)
77 gpiod_set_value_cansleep(pb->enable_gpio, 0);
78
79 if (pb->pwm_off_delay)
80 msleep(pb->pwm_off_delay);
81
82 state.enabled = false;
83 state.duty_cycle = 0;
84 pwm_apply_state(pb->pwm, &state);
85
86 regulator_disable(pb->power_supply);
87 pb->enabled = false;
88 }
89
compute_duty_cycle(struct pwm_bl_data * pb,int brightness)90 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
91 {
92 unsigned int lth = pb->lth_brightness;
93 struct pwm_state state;
94 u64 duty_cycle;
95
96 pwm_get_state(pb->pwm, &state);
97
98 if (pb->levels)
99 duty_cycle = pb->levels[brightness];
100 else
101 duty_cycle = brightness;
102
103 duty_cycle *= state.period - lth;
104 do_div(duty_cycle, pb->scale);
105
106 return duty_cycle + lth;
107 }
108
pwm_backlight_update_status(struct backlight_device * bl)109 static int pwm_backlight_update_status(struct backlight_device *bl)
110 {
111 struct pwm_bl_data *pb = bl_get_data(bl);
112 int brightness = bl->props.brightness;
113 struct pwm_state state;
114
115 if (bl->props.power != FB_BLANK_UNBLANK ||
116 bl->props.fb_blank != FB_BLANK_UNBLANK ||
117 bl->props.state & BL_CORE_FBBLANK)
118 brightness = 0;
119
120 if (pb->notify)
121 brightness = pb->notify(pb->dev, brightness);
122
123 if (brightness > 0) {
124 pwm_get_state(pb->pwm, &state);
125 state.duty_cycle = compute_duty_cycle(pb, brightness);
126 pwm_apply_state(pb->pwm, &state);
127 pwm_backlight_power_on(pb);
128 } else
129 pwm_backlight_power_off(pb);
130
131 if (pb->notify_after)
132 pb->notify_after(pb->dev, brightness);
133
134 return 0;
135 }
136
pwm_backlight_check_fb(struct backlight_device * bl,struct fb_info * info)137 static int pwm_backlight_check_fb(struct backlight_device *bl,
138 struct fb_info *info)
139 {
140 struct pwm_bl_data *pb = bl_get_data(bl);
141
142 return !pb->check_fb || pb->check_fb(pb->dev, info);
143 }
144
145 static const struct backlight_ops pwm_backlight_ops = {
146 .update_status = pwm_backlight_update_status,
147 .check_fb = pwm_backlight_check_fb,
148 };
149
150 #ifdef CONFIG_OF
151 #define PWM_LUMINANCE_SCALE 10000 /* luminance scale */
152
153 /*
154 * CIE lightness to PWM conversion.
155 *
156 * The CIE 1931 lightness formula is what actually describes how we perceive
157 * light:
158 * Y = (L* / 902.3) if L* ≤ 0.08856
159 * Y = ((L* + 16) / 116)^3 if L* > 0.08856
160 *
161 * Where Y is the luminance, the amount of light coming out of the screen, and
162 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
163 * perceives the screen to be, and is a number between 0 and 100.
164 *
165 * The following function does the fixed point maths needed to implement the
166 * above formula.
167 */
cie1931(unsigned int lightness,unsigned int scale)168 static u64 cie1931(unsigned int lightness, unsigned int scale)
169 {
170 u64 retval;
171
172 lightness *= 100;
173 if (lightness <= (8 * scale)) {
174 retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023);
175 } else {
176 retval = int_pow((lightness + (16 * scale)) / 116, 3);
177 retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale));
178 }
179
180 return retval;
181 }
182
183 /*
184 * Create a default correction table for PWM values to create linear brightness
185 * for LED based backlights using the CIE1931 algorithm.
186 */
187 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)188 int pwm_backlight_brightness_default(struct device *dev,
189 struct platform_pwm_backlight_data *data,
190 unsigned int period)
191 {
192 unsigned int i;
193 u64 retval;
194
195 /*
196 * Once we have 4096 levels there's little point going much higher...
197 * neither interactive sliders nor animation benefits from having
198 * more values in the table.
199 */
200 data->max_brightness =
201 min((int)DIV_ROUND_UP(period, fls(period)), 4096);
202
203 data->levels = devm_kcalloc(dev, data->max_brightness,
204 sizeof(*data->levels), GFP_KERNEL);
205 if (!data->levels)
206 return -ENOMEM;
207
208 /* Fill the table using the cie1931 algorithm */
209 for (i = 0; i < data->max_brightness; i++) {
210 retval = cie1931((i * PWM_LUMINANCE_SCALE) /
211 data->max_brightness, PWM_LUMINANCE_SCALE) *
212 period;
213 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
214 if (retval > UINT_MAX)
215 return -EINVAL;
216 data->levels[i] = (unsigned int)retval;
217 }
218
219 data->dft_brightness = data->max_brightness / 2;
220 data->max_brightness--;
221
222 return 0;
223 }
224
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)225 static int pwm_backlight_parse_dt(struct device *dev,
226 struct platform_pwm_backlight_data *data)
227 {
228 struct device_node *node = dev->of_node;
229 unsigned int num_levels = 0;
230 unsigned int levels_count;
231 unsigned int num_steps = 0;
232 struct property *prop;
233 unsigned int *table;
234 int length;
235 u32 value;
236 int ret;
237
238 if (!node)
239 return -ENODEV;
240
241 memset(data, 0, sizeof(*data));
242
243 /*
244 * These values are optional and set as 0 by default, the out values
245 * are modified only if a valid u32 value can be decoded.
246 */
247 of_property_read_u32(node, "post-pwm-on-delay-ms",
248 &data->post_pwm_on_delay);
249 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
250
251 data->enable_gpio = -EINVAL;
252
253 /*
254 * Determine the number of brightness levels, if this property is not
255 * set a default table of brightness levels will be used.
256 */
257 prop = of_find_property(node, "brightness-levels", &length);
258 if (!prop)
259 return 0;
260
261 data->max_brightness = length / sizeof(u32);
262
263 /* read brightness levels from DT property */
264 if (data->max_brightness > 0) {
265 size_t size = sizeof(*data->levels) * data->max_brightness;
266 unsigned int i, j, n = 0;
267
268 data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
269 if (!data->levels)
270 return -ENOMEM;
271
272 ret = of_property_read_u32_array(node, "brightness-levels",
273 data->levels,
274 data->max_brightness);
275 if (ret < 0)
276 return ret;
277
278 ret = of_property_read_u32(node, "default-brightness-level",
279 &value);
280 if (ret < 0)
281 return ret;
282
283 data->dft_brightness = value;
284
285 /*
286 * This property is optional, if is set enables linear
287 * interpolation between each of the values of brightness levels
288 * and creates a new pre-computed table.
289 */
290 of_property_read_u32(node, "num-interpolated-steps",
291 &num_steps);
292
293 /*
294 * Make sure that there is at least two entries in the
295 * brightness-levels table, otherwise we can't interpolate
296 * between two points.
297 */
298 if (num_steps) {
299 if (data->max_brightness < 2) {
300 dev_err(dev, "can't interpolate\n");
301 return -EINVAL;
302 }
303
304 /*
305 * Recalculate the number of brightness levels, now
306 * taking in consideration the number of interpolated
307 * steps between two levels.
308 */
309 for (i = 0; i < data->max_brightness - 1; i++) {
310 if ((data->levels[i + 1] - data->levels[i]) /
311 num_steps)
312 num_levels += num_steps;
313 else
314 num_levels++;
315 }
316 num_levels++;
317 dev_dbg(dev, "new number of brightness levels: %d\n",
318 num_levels);
319
320 /*
321 * Create a new table of brightness levels with all the
322 * interpolated steps.
323 */
324 size = sizeof(*table) * num_levels;
325 table = devm_kzalloc(dev, size, GFP_KERNEL);
326 if (!table)
327 return -ENOMEM;
328
329 /* Fill the interpolated table. */
330 levels_count = 0;
331 for (i = 0; i < data->max_brightness - 1; i++) {
332 value = data->levels[i];
333 n = (data->levels[i + 1] - value) / num_steps;
334 if (n > 0) {
335 for (j = 0; j < num_steps; j++) {
336 table[levels_count] = value;
337 value += n;
338 levels_count++;
339 }
340 } else {
341 table[levels_count] = data->levels[i];
342 levels_count++;
343 }
344 }
345 table[levels_count] = data->levels[i];
346
347 /*
348 * As we use interpolation lets remove current
349 * brightness levels table and replace for the
350 * new interpolated table.
351 */
352 devm_kfree(dev, data->levels);
353 data->levels = table;
354
355 /*
356 * Reassign max_brightness value to the new total number
357 * of brightness levels.
358 */
359 data->max_brightness = num_levels;
360 }
361
362 data->max_brightness--;
363 }
364
365 return 0;
366 }
367
368 static const struct of_device_id pwm_backlight_of_match[] = {
369 { .compatible = "pwm-backlight" },
370 { }
371 };
372
373 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
374 #else
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)375 static int pwm_backlight_parse_dt(struct device *dev,
376 struct platform_pwm_backlight_data *data)
377 {
378 return -ENODEV;
379 }
380
381 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)382 int pwm_backlight_brightness_default(struct device *dev,
383 struct platform_pwm_backlight_data *data,
384 unsigned int period)
385 {
386 return -ENODEV;
387 }
388 #endif
389
pwm_backlight_is_linear(struct platform_pwm_backlight_data * data)390 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
391 {
392 unsigned int nlevels = data->max_brightness + 1;
393 unsigned int min_val = data->levels[0];
394 unsigned int max_val = data->levels[nlevels - 1];
395 /*
396 * Multiplying by 128 means that even in pathological cases such
397 * as (max_val - min_val) == nlevels the error at max_val is less
398 * than 1%.
399 */
400 unsigned int slope = (128 * (max_val - min_val)) / nlevels;
401 unsigned int margin = (max_val - min_val) / 20; /* 5% */
402 int i;
403
404 for (i = 1; i < nlevels; i++) {
405 unsigned int linear_value = min_val + ((i * slope) / 128);
406 unsigned int delta = abs(linear_value - data->levels[i]);
407
408 if (delta > margin)
409 return false;
410 }
411
412 return true;
413 }
414
pwm_backlight_initial_power_state(const struct pwm_bl_data * pb)415 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
416 {
417 struct device_node *node = pb->dev->of_node;
418
419 /* Not booted with device tree or no phandle link to the node */
420 if (!node || !node->phandle)
421 return FB_BLANK_UNBLANK;
422
423 /*
424 * If the driver is probed from the device tree and there is a
425 * phandle link pointing to the backlight node, it is safe to
426 * assume that another driver will enable the backlight at the
427 * appropriate time. Therefore, if it is disabled, keep it so.
428 */
429
430 /* if the enable GPIO is disabled, do not enable the backlight */
431 if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
432 return FB_BLANK_POWERDOWN;
433
434 /* The regulator is disabled, do not enable the backlight */
435 if (!regulator_is_enabled(pb->power_supply))
436 return FB_BLANK_POWERDOWN;
437
438 /* The PWM is disabled, keep it like this */
439 if (!pwm_is_enabled(pb->pwm))
440 return FB_BLANK_POWERDOWN;
441
442 return FB_BLANK_UNBLANK;
443 }
444
pwm_backlight_probe(struct platform_device * pdev)445 static int pwm_backlight_probe(struct platform_device *pdev)
446 {
447 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
448 struct platform_pwm_backlight_data defdata;
449 struct backlight_properties props;
450 struct backlight_device *bl;
451 struct device_node *node = pdev->dev.of_node;
452 struct pwm_bl_data *pb;
453 struct pwm_state state;
454 unsigned int i;
455 int ret;
456
457 if (!data) {
458 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
459 if (ret < 0) {
460 dev_err(&pdev->dev, "failed to find platform data\n");
461 return ret;
462 }
463
464 data = &defdata;
465 }
466
467 if (data->init) {
468 ret = data->init(&pdev->dev);
469 if (ret < 0)
470 return ret;
471 }
472
473 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
474 if (!pb) {
475 ret = -ENOMEM;
476 goto err_alloc;
477 }
478
479 pb->notify = data->notify;
480 pb->notify_after = data->notify_after;
481 pb->check_fb = data->check_fb;
482 pb->exit = data->exit;
483 pb->dev = &pdev->dev;
484 pb->enabled = false;
485 pb->post_pwm_on_delay = data->post_pwm_on_delay;
486 pb->pwm_off_delay = data->pwm_off_delay;
487
488 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
489 GPIOD_ASIS);
490 if (IS_ERR(pb->enable_gpio)) {
491 ret = PTR_ERR(pb->enable_gpio);
492 goto err_alloc;
493 }
494
495 /*
496 * Compatibility fallback for drivers still using the integer GPIO
497 * platform data. Must go away soon.
498 */
499 if (!pb->enable_gpio && gpio_is_valid(data->enable_gpio)) {
500 ret = devm_gpio_request_one(&pdev->dev, data->enable_gpio,
501 GPIOF_OUT_INIT_HIGH, "enable");
502 if (ret < 0) {
503 dev_err(&pdev->dev, "failed to request GPIO#%d: %d\n",
504 data->enable_gpio, ret);
505 goto err_alloc;
506 }
507
508 pb->enable_gpio = gpio_to_desc(data->enable_gpio);
509 }
510
511 /*
512 * If the GPIO is not known to be already configured as output, that
513 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the
514 * direction to output and set the GPIO as active.
515 * Do not force the GPIO to active when it was already output as it
516 * could cause backlight flickering or we would enable the backlight too
517 * early. Leave the decision of the initial backlight state for later.
518 */
519 if (pb->enable_gpio &&
520 gpiod_get_direction(pb->enable_gpio) != 0)
521 gpiod_direction_output(pb->enable_gpio, 1);
522
523 pb->power_supply = devm_regulator_get(&pdev->dev, "power");
524 if (IS_ERR(pb->power_supply)) {
525 ret = PTR_ERR(pb->power_supply);
526 goto err_alloc;
527 }
528
529 pb->pwm = devm_pwm_get(&pdev->dev, NULL);
530 if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
531 dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
532 pb->legacy = true;
533 pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
534 }
535
536 if (IS_ERR(pb->pwm)) {
537 ret = PTR_ERR(pb->pwm);
538 if (ret != -EPROBE_DEFER)
539 dev_err(&pdev->dev, "unable to request PWM\n");
540 goto err_alloc;
541 }
542
543 dev_dbg(&pdev->dev, "got pwm for backlight\n");
544
545 /* Sync up PWM state. */
546 pwm_init_state(pb->pwm, &state);
547
548 /*
549 * The DT case will set the pwm_period_ns field to 0 and store the
550 * period, parsed from the DT, in the PWM device. For the non-DT case,
551 * set the period from platform data if it has not already been set
552 * via the PWM lookup table.
553 */
554 if (!state.period && (data->pwm_period_ns > 0))
555 state.period = data->pwm_period_ns;
556
557 ret = pwm_apply_state(pb->pwm, &state);
558 if (ret) {
559 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
560 ret);
561 goto err_alloc;
562 }
563
564 memset(&props, 0, sizeof(struct backlight_properties));
565
566 if (data->levels) {
567 /*
568 * For the DT case, only when brightness levels is defined
569 * data->levels is filled. For the non-DT case, data->levels
570 * can come from platform data, however is not usual.
571 */
572 for (i = 0; i <= data->max_brightness; i++) {
573 if (data->levels[i] > pb->scale)
574 pb->scale = data->levels[i];
575
576 pb->levels = data->levels;
577 }
578
579 if (pwm_backlight_is_linear(data))
580 props.scale = BACKLIGHT_SCALE_LINEAR;
581 else
582 props.scale = BACKLIGHT_SCALE_NON_LINEAR;
583 } else if (!data->max_brightness) {
584 /*
585 * If no brightness levels are provided and max_brightness is
586 * not set, use the default brightness table. For the DT case,
587 * max_brightness is set to 0 when brightness levels is not
588 * specified. For the non-DT case, max_brightness is usually
589 * set to some value.
590 */
591
592 /* Get the PWM period (in nanoseconds) */
593 pwm_get_state(pb->pwm, &state);
594
595 ret = pwm_backlight_brightness_default(&pdev->dev, data,
596 state.period);
597 if (ret < 0) {
598 dev_err(&pdev->dev,
599 "failed to setup default brightness table\n");
600 goto err_alloc;
601 }
602
603 for (i = 0; i <= data->max_brightness; i++) {
604 if (data->levels[i] > pb->scale)
605 pb->scale = data->levels[i];
606
607 pb->levels = data->levels;
608 }
609
610 props.scale = BACKLIGHT_SCALE_NON_LINEAR;
611 } else {
612 /*
613 * That only happens for the non-DT case, where platform data
614 * sets the max_brightness value.
615 */
616 pb->scale = data->max_brightness;
617 }
618
619 pb->lth_brightness = data->lth_brightness * (state.period / pb->scale);
620
621 props.type = BACKLIGHT_RAW;
622 props.max_brightness = data->max_brightness;
623 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
624 &pwm_backlight_ops, &props);
625 if (IS_ERR(bl)) {
626 dev_err(&pdev->dev, "failed to register backlight\n");
627 ret = PTR_ERR(bl);
628 if (pb->legacy)
629 pwm_free(pb->pwm);
630 goto err_alloc;
631 }
632
633 if (data->dft_brightness > data->max_brightness) {
634 dev_warn(&pdev->dev,
635 "invalid default brightness level: %u, using %u\n",
636 data->dft_brightness, data->max_brightness);
637 data->dft_brightness = data->max_brightness;
638 }
639
640 bl->props.brightness = data->dft_brightness;
641 bl->props.power = pwm_backlight_initial_power_state(pb);
642 backlight_update_status(bl);
643
644 platform_set_drvdata(pdev, bl);
645 return 0;
646
647 err_alloc:
648 if (data->exit)
649 data->exit(&pdev->dev);
650 return ret;
651 }
652
pwm_backlight_remove(struct platform_device * pdev)653 static int pwm_backlight_remove(struct platform_device *pdev)
654 {
655 struct backlight_device *bl = platform_get_drvdata(pdev);
656 struct pwm_bl_data *pb = bl_get_data(bl);
657
658 backlight_device_unregister(bl);
659 pwm_backlight_power_off(pb);
660
661 if (pb->exit)
662 pb->exit(&pdev->dev);
663 if (pb->legacy)
664 pwm_free(pb->pwm);
665
666 return 0;
667 }
668
pwm_backlight_shutdown(struct platform_device * pdev)669 static void pwm_backlight_shutdown(struct platform_device *pdev)
670 {
671 struct backlight_device *bl = platform_get_drvdata(pdev);
672 struct pwm_bl_data *pb = bl_get_data(bl);
673
674 pwm_backlight_power_off(pb);
675 }
676
677 #ifdef CONFIG_PM_SLEEP
pwm_backlight_suspend(struct device * dev)678 static int pwm_backlight_suspend(struct device *dev)
679 {
680 struct backlight_device *bl = dev_get_drvdata(dev);
681 struct pwm_bl_data *pb = bl_get_data(bl);
682
683 if (pb->notify)
684 pb->notify(pb->dev, 0);
685
686 pwm_backlight_power_off(pb);
687
688 if (pb->notify_after)
689 pb->notify_after(pb->dev, 0);
690
691 return 0;
692 }
693
pwm_backlight_resume(struct device * dev)694 static int pwm_backlight_resume(struct device *dev)
695 {
696 struct backlight_device *bl = dev_get_drvdata(dev);
697
698 backlight_update_status(bl);
699
700 return 0;
701 }
702 #endif
703
704 static const struct dev_pm_ops pwm_backlight_pm_ops = {
705 #ifdef CONFIG_PM_SLEEP
706 .suspend = pwm_backlight_suspend,
707 .resume = pwm_backlight_resume,
708 .poweroff = pwm_backlight_suspend,
709 .restore = pwm_backlight_resume,
710 #endif
711 };
712
713 static struct platform_driver pwm_backlight_driver = {
714 .driver = {
715 .name = "pwm-backlight",
716 .pm = &pwm_backlight_pm_ops,
717 .of_match_table = of_match_ptr(pwm_backlight_of_match),
718 },
719 .probe = pwm_backlight_probe,
720 .remove = pwm_backlight_remove,
721 .shutdown = pwm_backlight_shutdown,
722 };
723
724 module_platform_driver(pwm_backlight_driver);
725
726 MODULE_DESCRIPTION("PWM based Backlight Driver");
727 MODULE_LICENSE("GPL v2");
728 MODULE_ALIAS("platform:pwm-backlight");
729