1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userpsace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/iommu.h>
28 #include <linux/module.h>
29 #include <linux/mm.h>
30 #include <linux/rbtree.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 #include <linux/slab.h>
34 #include <linux/uaccess.h>
35 #include <linux/vfio.h>
36 #include <linux/workqueue.h>
37 #include <linux/mdev.h>
38 #include <linux/notifier.h>
39 #include <linux/dma-iommu.h>
40 #include <linux/irqdomain.h>
41
42 #define DRIVER_VERSION "0.2"
43 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
45
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
62
63 struct vfio_iommu {
64 struct list_head domain_list;
65 struct list_head iova_list;
66 struct vfio_domain *external_domain; /* domain for external user */
67 struct mutex lock;
68 struct rb_root dma_list;
69 struct blocking_notifier_head notifier;
70 unsigned int dma_avail;
71 bool v2;
72 bool nesting;
73 };
74
75 struct vfio_domain {
76 struct iommu_domain *domain;
77 struct list_head next;
78 struct list_head group_list;
79 int prot; /* IOMMU_CACHE */
80 bool fgsp; /* Fine-grained super pages */
81 };
82
83 struct vfio_dma {
84 struct rb_node node;
85 dma_addr_t iova; /* Device address */
86 unsigned long vaddr; /* Process virtual addr */
87 size_t size; /* Map size (bytes) */
88 int prot; /* IOMMU_READ/WRITE */
89 bool iommu_mapped;
90 bool lock_cap; /* capable(CAP_IPC_LOCK) */
91 struct task_struct *task;
92 struct rb_root pfn_list; /* Ex-user pinned pfn list */
93 };
94
95 struct vfio_group {
96 struct iommu_group *iommu_group;
97 struct list_head next;
98 bool mdev_group; /* An mdev group */
99 };
100
101 struct vfio_iova {
102 struct list_head list;
103 dma_addr_t start;
104 dma_addr_t end;
105 };
106
107 /*
108 * Guest RAM pinning working set or DMA target
109 */
110 struct vfio_pfn {
111 struct rb_node node;
112 dma_addr_t iova; /* Device address */
113 unsigned long pfn; /* Host pfn */
114 atomic_t ref_count;
115 };
116
117 struct vfio_regions {
118 struct list_head list;
119 dma_addr_t iova;
120 phys_addr_t phys;
121 size_t len;
122 };
123
124 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
125 (!list_empty(&iommu->domain_list))
126
127 static int put_pfn(unsigned long pfn, int prot);
128
129 /*
130 * This code handles mapping and unmapping of user data buffers
131 * into DMA'ble space using the IOMMU
132 */
133
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)134 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
135 dma_addr_t start, size_t size)
136 {
137 struct rb_node *node = iommu->dma_list.rb_node;
138
139 while (node) {
140 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
141
142 if (start + size <= dma->iova)
143 node = node->rb_left;
144 else if (start >= dma->iova + dma->size)
145 node = node->rb_right;
146 else
147 return dma;
148 }
149
150 return NULL;
151 }
152
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)153 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
154 {
155 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
156 struct vfio_dma *dma;
157
158 while (*link) {
159 parent = *link;
160 dma = rb_entry(parent, struct vfio_dma, node);
161
162 if (new->iova + new->size <= dma->iova)
163 link = &(*link)->rb_left;
164 else
165 link = &(*link)->rb_right;
166 }
167
168 rb_link_node(&new->node, parent, link);
169 rb_insert_color(&new->node, &iommu->dma_list);
170 }
171
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)172 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
173 {
174 rb_erase(&old->node, &iommu->dma_list);
175 }
176
177 /*
178 * Helper Functions for host iova-pfn list
179 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)180 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
181 {
182 struct vfio_pfn *vpfn;
183 struct rb_node *node = dma->pfn_list.rb_node;
184
185 while (node) {
186 vpfn = rb_entry(node, struct vfio_pfn, node);
187
188 if (iova < vpfn->iova)
189 node = node->rb_left;
190 else if (iova > vpfn->iova)
191 node = node->rb_right;
192 else
193 return vpfn;
194 }
195 return NULL;
196 }
197
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)198 static void vfio_link_pfn(struct vfio_dma *dma,
199 struct vfio_pfn *new)
200 {
201 struct rb_node **link, *parent = NULL;
202 struct vfio_pfn *vpfn;
203
204 link = &dma->pfn_list.rb_node;
205 while (*link) {
206 parent = *link;
207 vpfn = rb_entry(parent, struct vfio_pfn, node);
208
209 if (new->iova < vpfn->iova)
210 link = &(*link)->rb_left;
211 else
212 link = &(*link)->rb_right;
213 }
214
215 rb_link_node(&new->node, parent, link);
216 rb_insert_color(&new->node, &dma->pfn_list);
217 }
218
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)219 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
220 {
221 rb_erase(&old->node, &dma->pfn_list);
222 }
223
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)224 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
225 unsigned long pfn)
226 {
227 struct vfio_pfn *vpfn;
228
229 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
230 if (!vpfn)
231 return -ENOMEM;
232
233 vpfn->iova = iova;
234 vpfn->pfn = pfn;
235 atomic_set(&vpfn->ref_count, 1);
236 vfio_link_pfn(dma, vpfn);
237 return 0;
238 }
239
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)240 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
241 struct vfio_pfn *vpfn)
242 {
243 vfio_unlink_pfn(dma, vpfn);
244 kfree(vpfn);
245 }
246
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)247 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
248 unsigned long iova)
249 {
250 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
251
252 if (vpfn)
253 atomic_inc(&vpfn->ref_count);
254 return vpfn;
255 }
256
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)257 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
258 {
259 int ret = 0;
260
261 if (atomic_dec_and_test(&vpfn->ref_count)) {
262 ret = put_pfn(vpfn->pfn, dma->prot);
263 vfio_remove_from_pfn_list(dma, vpfn);
264 }
265 return ret;
266 }
267
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)268 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
269 {
270 struct mm_struct *mm;
271 int ret;
272
273 if (!npage)
274 return 0;
275
276 mm = async ? get_task_mm(dma->task) : dma->task->mm;
277 if (!mm)
278 return -ESRCH; /* process exited */
279
280 ret = down_write_killable(&mm->mmap_sem);
281 if (!ret) {
282 ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
283 dma->lock_cap);
284 up_write(&mm->mmap_sem);
285 }
286
287 if (async)
288 mmput(mm);
289
290 return ret;
291 }
292
293 /*
294 * Some mappings aren't backed by a struct page, for example an mmap'd
295 * MMIO range for our own or another device. These use a different
296 * pfn conversion and shouldn't be tracked as locked pages.
297 */
is_invalid_reserved_pfn(unsigned long pfn)298 static bool is_invalid_reserved_pfn(unsigned long pfn)
299 {
300 if (pfn_valid(pfn)) {
301 bool reserved;
302 struct page *tail = pfn_to_page(pfn);
303 struct page *head = compound_head(tail);
304 reserved = !!(PageReserved(head));
305 if (head != tail) {
306 /*
307 * "head" is not a dangling pointer
308 * (compound_head takes care of that)
309 * but the hugepage may have been split
310 * from under us (and we may not hold a
311 * reference count on the head page so it can
312 * be reused before we run PageReferenced), so
313 * we've to check PageTail before returning
314 * what we just read.
315 */
316 smp_rmb();
317 if (PageTail(tail))
318 return reserved;
319 }
320 return PageReserved(tail);
321 }
322
323 return true;
324 }
325
put_pfn(unsigned long pfn,int prot)326 static int put_pfn(unsigned long pfn, int prot)
327 {
328 if (!is_invalid_reserved_pfn(pfn)) {
329 struct page *page = pfn_to_page(pfn);
330 if (prot & IOMMU_WRITE)
331 SetPageDirty(page);
332 put_page(page);
333 return 1;
334 }
335 return 0;
336 }
337
vaddr_get_pfn(struct mm_struct * mm,unsigned long vaddr,int prot,unsigned long * pfn)338 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
339 int prot, unsigned long *pfn)
340 {
341 struct page *page[1];
342 struct vm_area_struct *vma;
343 struct vm_area_struct *vmas[1];
344 unsigned int flags = 0;
345 int ret;
346
347 if (prot & IOMMU_WRITE)
348 flags |= FOLL_WRITE;
349
350 down_read(&mm->mmap_sem);
351 if (mm == current->mm) {
352 ret = get_user_pages(vaddr, 1, flags | FOLL_LONGTERM, page,
353 vmas);
354 } else {
355 ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
356 vmas, NULL);
357 /*
358 * The lifetime of a vaddr_get_pfn() page pin is
359 * userspace-controlled. In the fs-dax case this could
360 * lead to indefinite stalls in filesystem operations.
361 * Disallow attempts to pin fs-dax pages via this
362 * interface.
363 */
364 if (ret > 0 && vma_is_fsdax(vmas[0])) {
365 ret = -EOPNOTSUPP;
366 put_page(page[0]);
367 }
368 }
369 up_read(&mm->mmap_sem);
370
371 if (ret == 1) {
372 *pfn = page_to_pfn(page[0]);
373 return 0;
374 }
375
376 down_read(&mm->mmap_sem);
377
378 vaddr = untagged_addr(vaddr);
379
380 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
381
382 if (vma && vma->vm_flags & VM_PFNMAP) {
383 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
384 if (is_invalid_reserved_pfn(*pfn))
385 ret = 0;
386 }
387
388 up_read(&mm->mmap_sem);
389 return ret;
390 }
391
392 /*
393 * Attempt to pin pages. We really don't want to track all the pfns and
394 * the iommu can only map chunks of consecutive pfns anyway, so get the
395 * first page and all consecutive pages with the same locking.
396 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit)397 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
398 long npage, unsigned long *pfn_base,
399 unsigned long limit)
400 {
401 unsigned long pfn = 0;
402 long ret, pinned = 0, lock_acct = 0;
403 bool rsvd;
404 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
405
406 /* This code path is only user initiated */
407 if (!current->mm)
408 return -ENODEV;
409
410 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
411 if (ret)
412 return ret;
413
414 pinned++;
415 rsvd = is_invalid_reserved_pfn(*pfn_base);
416
417 /*
418 * Reserved pages aren't counted against the user, externally pinned
419 * pages are already counted against the user.
420 */
421 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
422 if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
423 put_pfn(*pfn_base, dma->prot);
424 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
425 limit << PAGE_SHIFT);
426 return -ENOMEM;
427 }
428 lock_acct++;
429 }
430
431 if (unlikely(disable_hugepages))
432 goto out;
433
434 /* Lock all the consecutive pages from pfn_base */
435 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
436 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
437 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
438 if (ret)
439 break;
440
441 if (pfn != *pfn_base + pinned ||
442 rsvd != is_invalid_reserved_pfn(pfn)) {
443 put_pfn(pfn, dma->prot);
444 break;
445 }
446
447 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
448 if (!dma->lock_cap &&
449 current->mm->locked_vm + lock_acct + 1 > limit) {
450 put_pfn(pfn, dma->prot);
451 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
452 __func__, limit << PAGE_SHIFT);
453 ret = -ENOMEM;
454 goto unpin_out;
455 }
456 lock_acct++;
457 }
458 }
459
460 out:
461 ret = vfio_lock_acct(dma, lock_acct, false);
462
463 unpin_out:
464 if (ret) {
465 if (!rsvd) {
466 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
467 put_pfn(pfn, dma->prot);
468 }
469
470 return ret;
471 }
472
473 return pinned;
474 }
475
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)476 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
477 unsigned long pfn, long npage,
478 bool do_accounting)
479 {
480 long unlocked = 0, locked = 0;
481 long i;
482
483 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
484 if (put_pfn(pfn++, dma->prot)) {
485 unlocked++;
486 if (vfio_find_vpfn(dma, iova))
487 locked++;
488 }
489 }
490
491 if (do_accounting)
492 vfio_lock_acct(dma, locked - unlocked, true);
493
494 return unlocked;
495 }
496
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)497 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
498 unsigned long *pfn_base, bool do_accounting)
499 {
500 struct mm_struct *mm;
501 int ret;
502
503 mm = get_task_mm(dma->task);
504 if (!mm)
505 return -ENODEV;
506
507 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
508 if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
509 ret = vfio_lock_acct(dma, 1, true);
510 if (ret) {
511 put_pfn(*pfn_base, dma->prot);
512 if (ret == -ENOMEM)
513 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
514 "(%ld) exceeded\n", __func__,
515 dma->task->comm, task_pid_nr(dma->task),
516 task_rlimit(dma->task, RLIMIT_MEMLOCK));
517 }
518 }
519
520 mmput(mm);
521 return ret;
522 }
523
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)524 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
525 bool do_accounting)
526 {
527 int unlocked;
528 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
529
530 if (!vpfn)
531 return 0;
532
533 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
534
535 if (do_accounting)
536 vfio_lock_acct(dma, -unlocked, true);
537
538 return unlocked;
539 }
540
vfio_iommu_type1_pin_pages(void * iommu_data,unsigned long * user_pfn,int npage,int prot,unsigned long * phys_pfn)541 static int vfio_iommu_type1_pin_pages(void *iommu_data,
542 unsigned long *user_pfn,
543 int npage, int prot,
544 unsigned long *phys_pfn)
545 {
546 struct vfio_iommu *iommu = iommu_data;
547 int i, j, ret;
548 unsigned long remote_vaddr;
549 struct vfio_dma *dma;
550 bool do_accounting;
551
552 if (!iommu || !user_pfn || !phys_pfn)
553 return -EINVAL;
554
555 /* Supported for v2 version only */
556 if (!iommu->v2)
557 return -EACCES;
558
559 mutex_lock(&iommu->lock);
560
561 /* Fail if notifier list is empty */
562 if (!iommu->notifier.head) {
563 ret = -EINVAL;
564 goto pin_done;
565 }
566
567 /*
568 * If iommu capable domain exist in the container then all pages are
569 * already pinned and accounted. Accouting should be done if there is no
570 * iommu capable domain in the container.
571 */
572 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
573
574 for (i = 0; i < npage; i++) {
575 dma_addr_t iova;
576 struct vfio_pfn *vpfn;
577
578 iova = user_pfn[i] << PAGE_SHIFT;
579 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
580 if (!dma) {
581 ret = -EINVAL;
582 goto pin_unwind;
583 }
584
585 if ((dma->prot & prot) != prot) {
586 ret = -EPERM;
587 goto pin_unwind;
588 }
589
590 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
591 if (vpfn) {
592 phys_pfn[i] = vpfn->pfn;
593 continue;
594 }
595
596 remote_vaddr = dma->vaddr + iova - dma->iova;
597 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
598 do_accounting);
599 if (ret)
600 goto pin_unwind;
601
602 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
603 if (ret) {
604 vfio_unpin_page_external(dma, iova, do_accounting);
605 goto pin_unwind;
606 }
607 }
608
609 ret = i;
610 goto pin_done;
611
612 pin_unwind:
613 phys_pfn[i] = 0;
614 for (j = 0; j < i; j++) {
615 dma_addr_t iova;
616
617 iova = user_pfn[j] << PAGE_SHIFT;
618 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
619 vfio_unpin_page_external(dma, iova, do_accounting);
620 phys_pfn[j] = 0;
621 }
622 pin_done:
623 mutex_unlock(&iommu->lock);
624 return ret;
625 }
626
vfio_iommu_type1_unpin_pages(void * iommu_data,unsigned long * user_pfn,int npage)627 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
628 unsigned long *user_pfn,
629 int npage)
630 {
631 struct vfio_iommu *iommu = iommu_data;
632 bool do_accounting;
633 int i;
634
635 if (!iommu || !user_pfn)
636 return -EINVAL;
637
638 /* Supported for v2 version only */
639 if (!iommu->v2)
640 return -EACCES;
641
642 mutex_lock(&iommu->lock);
643
644 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
645 for (i = 0; i < npage; i++) {
646 struct vfio_dma *dma;
647 dma_addr_t iova;
648
649 iova = user_pfn[i] << PAGE_SHIFT;
650 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
651 if (!dma)
652 goto unpin_exit;
653 vfio_unpin_page_external(dma, iova, do_accounting);
654 }
655
656 unpin_exit:
657 mutex_unlock(&iommu->lock);
658 return i > npage ? npage : (i > 0 ? i : -EINVAL);
659 }
660
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)661 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
662 struct list_head *regions,
663 struct iommu_iotlb_gather *iotlb_gather)
664 {
665 long unlocked = 0;
666 struct vfio_regions *entry, *next;
667
668 iommu_tlb_sync(domain->domain, iotlb_gather);
669
670 list_for_each_entry_safe(entry, next, regions, list) {
671 unlocked += vfio_unpin_pages_remote(dma,
672 entry->iova,
673 entry->phys >> PAGE_SHIFT,
674 entry->len >> PAGE_SHIFT,
675 false);
676 list_del(&entry->list);
677 kfree(entry);
678 }
679
680 cond_resched();
681
682 return unlocked;
683 }
684
685 /*
686 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
687 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
688 * of these regions (currently using a list).
689 *
690 * This value specifies maximum number of regions for each IOTLB flush sync.
691 */
692 #define VFIO_IOMMU_TLB_SYNC_MAX 512
693
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)694 static size_t unmap_unpin_fast(struct vfio_domain *domain,
695 struct vfio_dma *dma, dma_addr_t *iova,
696 size_t len, phys_addr_t phys, long *unlocked,
697 struct list_head *unmapped_list,
698 int *unmapped_cnt,
699 struct iommu_iotlb_gather *iotlb_gather)
700 {
701 size_t unmapped = 0;
702 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
703
704 if (entry) {
705 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
706 iotlb_gather);
707
708 if (!unmapped) {
709 kfree(entry);
710 } else {
711 entry->iova = *iova;
712 entry->phys = phys;
713 entry->len = unmapped;
714 list_add_tail(&entry->list, unmapped_list);
715
716 *iova += unmapped;
717 (*unmapped_cnt)++;
718 }
719 }
720
721 /*
722 * Sync if the number of fast-unmap regions hits the limit
723 * or in case of errors.
724 */
725 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
726 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
727 iotlb_gather);
728 *unmapped_cnt = 0;
729 }
730
731 return unmapped;
732 }
733
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)734 static size_t unmap_unpin_slow(struct vfio_domain *domain,
735 struct vfio_dma *dma, dma_addr_t *iova,
736 size_t len, phys_addr_t phys,
737 long *unlocked)
738 {
739 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
740
741 if (unmapped) {
742 *unlocked += vfio_unpin_pages_remote(dma, *iova,
743 phys >> PAGE_SHIFT,
744 unmapped >> PAGE_SHIFT,
745 false);
746 *iova += unmapped;
747 cond_resched();
748 }
749 return unmapped;
750 }
751
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)752 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
753 bool do_accounting)
754 {
755 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
756 struct vfio_domain *domain, *d;
757 LIST_HEAD(unmapped_region_list);
758 struct iommu_iotlb_gather iotlb_gather;
759 int unmapped_region_cnt = 0;
760 long unlocked = 0;
761
762 if (!dma->size)
763 return 0;
764
765 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
766 return 0;
767
768 /*
769 * We use the IOMMU to track the physical addresses, otherwise we'd
770 * need a much more complicated tracking system. Unfortunately that
771 * means we need to use one of the iommu domains to figure out the
772 * pfns to unpin. The rest need to be unmapped in advance so we have
773 * no iommu translations remaining when the pages are unpinned.
774 */
775 domain = d = list_first_entry(&iommu->domain_list,
776 struct vfio_domain, next);
777
778 list_for_each_entry_continue(d, &iommu->domain_list, next) {
779 iommu_unmap(d->domain, dma->iova, dma->size);
780 cond_resched();
781 }
782
783 iommu_iotlb_gather_init(&iotlb_gather);
784 while (iova < end) {
785 size_t unmapped, len;
786 phys_addr_t phys, next;
787
788 phys = iommu_iova_to_phys(domain->domain, iova);
789 if (WARN_ON(!phys)) {
790 iova += PAGE_SIZE;
791 continue;
792 }
793
794 /*
795 * To optimize for fewer iommu_unmap() calls, each of which
796 * may require hardware cache flushing, try to find the
797 * largest contiguous physical memory chunk to unmap.
798 */
799 for (len = PAGE_SIZE;
800 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
801 next = iommu_iova_to_phys(domain->domain, iova + len);
802 if (next != phys + len)
803 break;
804 }
805
806 /*
807 * First, try to use fast unmap/unpin. In case of failure,
808 * switch to slow unmap/unpin path.
809 */
810 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
811 &unlocked, &unmapped_region_list,
812 &unmapped_region_cnt,
813 &iotlb_gather);
814 if (!unmapped) {
815 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
816 phys, &unlocked);
817 if (WARN_ON(!unmapped))
818 break;
819 }
820 }
821
822 dma->iommu_mapped = false;
823
824 if (unmapped_region_cnt) {
825 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
826 &iotlb_gather);
827 }
828
829 if (do_accounting) {
830 vfio_lock_acct(dma, -unlocked, true);
831 return 0;
832 }
833 return unlocked;
834 }
835
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)836 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
837 {
838 vfio_unmap_unpin(iommu, dma, true);
839 vfio_unlink_dma(iommu, dma);
840 put_task_struct(dma->task);
841 kfree(dma);
842 iommu->dma_avail++;
843 }
844
vfio_pgsize_bitmap(struct vfio_iommu * iommu)845 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
846 {
847 struct vfio_domain *domain;
848 unsigned long bitmap = ULONG_MAX;
849
850 mutex_lock(&iommu->lock);
851 list_for_each_entry(domain, &iommu->domain_list, next)
852 bitmap &= domain->domain->pgsize_bitmap;
853 mutex_unlock(&iommu->lock);
854
855 /*
856 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
857 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
858 * That way the user will be able to map/unmap buffers whose size/
859 * start address is aligned with PAGE_SIZE. Pinning code uses that
860 * granularity while iommu driver can use the sub-PAGE_SIZE size
861 * to map the buffer.
862 */
863 if (bitmap & ~PAGE_MASK) {
864 bitmap &= PAGE_MASK;
865 bitmap |= PAGE_SIZE;
866 }
867
868 return bitmap;
869 }
870
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap)871 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
872 struct vfio_iommu_type1_dma_unmap *unmap)
873 {
874 uint64_t mask;
875 struct vfio_dma *dma, *dma_last = NULL;
876 size_t unmapped = 0;
877 int ret = 0, retries = 0;
878
879 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
880
881 if (unmap->iova & mask)
882 return -EINVAL;
883 if (!unmap->size || unmap->size & mask)
884 return -EINVAL;
885 if (unmap->iova + unmap->size - 1 < unmap->iova ||
886 unmap->size > SIZE_MAX)
887 return -EINVAL;
888
889 WARN_ON(mask & PAGE_MASK);
890 again:
891 mutex_lock(&iommu->lock);
892
893 /*
894 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
895 * avoid tracking individual mappings. This means that the granularity
896 * of the original mapping was lost and the user was allowed to attempt
897 * to unmap any range. Depending on the contiguousness of physical
898 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
899 * or may not have worked. We only guaranteed unmap granularity
900 * matching the original mapping; even though it was untracked here,
901 * the original mappings are reflected in IOMMU mappings. This
902 * resulted in a couple unusual behaviors. First, if a range is not
903 * able to be unmapped, ex. a set of 4k pages that was mapped as a
904 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
905 * a zero sized unmap. Also, if an unmap request overlaps the first
906 * address of a hugepage, the IOMMU will unmap the entire hugepage.
907 * This also returns success and the returned unmap size reflects the
908 * actual size unmapped.
909 *
910 * We attempt to maintain compatibility with this "v1" interface, but
911 * we take control out of the hands of the IOMMU. Therefore, an unmap
912 * request offset from the beginning of the original mapping will
913 * return success with zero sized unmap. And an unmap request covering
914 * the first iova of mapping will unmap the entire range.
915 *
916 * The v2 version of this interface intends to be more deterministic.
917 * Unmap requests must fully cover previous mappings. Multiple
918 * mappings may still be unmaped by specifying large ranges, but there
919 * must not be any previous mappings bisected by the range. An error
920 * will be returned if these conditions are not met. The v2 interface
921 * will only return success and a size of zero if there were no
922 * mappings within the range.
923 */
924 if (iommu->v2) {
925 dma = vfio_find_dma(iommu, unmap->iova, 1);
926 if (dma && dma->iova != unmap->iova) {
927 ret = -EINVAL;
928 goto unlock;
929 }
930 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
931 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
932 ret = -EINVAL;
933 goto unlock;
934 }
935 }
936
937 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
938 if (!iommu->v2 && unmap->iova > dma->iova)
939 break;
940 /*
941 * Task with same address space who mapped this iova range is
942 * allowed to unmap the iova range.
943 */
944 if (dma->task->mm != current->mm)
945 break;
946
947 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
948 struct vfio_iommu_type1_dma_unmap nb_unmap;
949
950 if (dma_last == dma) {
951 BUG_ON(++retries > 10);
952 } else {
953 dma_last = dma;
954 retries = 0;
955 }
956
957 nb_unmap.iova = dma->iova;
958 nb_unmap.size = dma->size;
959
960 /*
961 * Notify anyone (mdev vendor drivers) to invalidate and
962 * unmap iovas within the range we're about to unmap.
963 * Vendor drivers MUST unpin pages in response to an
964 * invalidation.
965 */
966 mutex_unlock(&iommu->lock);
967 blocking_notifier_call_chain(&iommu->notifier,
968 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
969 &nb_unmap);
970 goto again;
971 }
972 unmapped += dma->size;
973 vfio_remove_dma(iommu, dma);
974 }
975
976 unlock:
977 mutex_unlock(&iommu->lock);
978
979 /* Report how much was unmapped */
980 unmap->size = unmapped;
981
982 return ret;
983 }
984
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)985 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
986 unsigned long pfn, long npage, int prot)
987 {
988 struct vfio_domain *d;
989 int ret;
990
991 list_for_each_entry(d, &iommu->domain_list, next) {
992 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
993 npage << PAGE_SHIFT, prot | d->prot);
994 if (ret)
995 goto unwind;
996
997 cond_resched();
998 }
999
1000 return 0;
1001
1002 unwind:
1003 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
1004 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1005
1006 return ret;
1007 }
1008
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1009 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1010 size_t map_size)
1011 {
1012 dma_addr_t iova = dma->iova;
1013 unsigned long vaddr = dma->vaddr;
1014 size_t size = map_size;
1015 long npage;
1016 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1017 int ret = 0;
1018
1019 while (size) {
1020 /* Pin a contiguous chunk of memory */
1021 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1022 size >> PAGE_SHIFT, &pfn, limit);
1023 if (npage <= 0) {
1024 WARN_ON(!npage);
1025 ret = (int)npage;
1026 break;
1027 }
1028
1029 /* Map it! */
1030 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1031 dma->prot);
1032 if (ret) {
1033 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1034 npage, true);
1035 break;
1036 }
1037
1038 size -= npage << PAGE_SHIFT;
1039 dma->size += npage << PAGE_SHIFT;
1040 }
1041
1042 dma->iommu_mapped = true;
1043
1044 if (ret)
1045 vfio_remove_dma(iommu, dma);
1046
1047 return ret;
1048 }
1049
1050 /*
1051 * Check dma map request is within a valid iova range
1052 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1053 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1054 dma_addr_t start, dma_addr_t end)
1055 {
1056 struct list_head *iova = &iommu->iova_list;
1057 struct vfio_iova *node;
1058
1059 list_for_each_entry(node, iova, list) {
1060 if (start >= node->start && end <= node->end)
1061 return true;
1062 }
1063
1064 /*
1065 * Check for list_empty() as well since a container with
1066 * a single mdev device will have an empty list.
1067 */
1068 return list_empty(iova);
1069 }
1070
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1071 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1072 struct vfio_iommu_type1_dma_map *map)
1073 {
1074 dma_addr_t iova = map->iova;
1075 unsigned long vaddr = map->vaddr;
1076 size_t size = map->size;
1077 int ret = 0, prot = 0;
1078 uint64_t mask;
1079 struct vfio_dma *dma;
1080
1081 /* Verify that none of our __u64 fields overflow */
1082 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1083 return -EINVAL;
1084
1085 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
1086
1087 WARN_ON(mask & PAGE_MASK);
1088
1089 /* READ/WRITE from device perspective */
1090 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1091 prot |= IOMMU_WRITE;
1092 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1093 prot |= IOMMU_READ;
1094
1095 if (!prot || !size || (size | iova | vaddr) & mask)
1096 return -EINVAL;
1097
1098 /* Don't allow IOVA or virtual address wrap */
1099 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
1100 return -EINVAL;
1101
1102 mutex_lock(&iommu->lock);
1103
1104 if (vfio_find_dma(iommu, iova, size)) {
1105 ret = -EEXIST;
1106 goto out_unlock;
1107 }
1108
1109 if (!iommu->dma_avail) {
1110 ret = -ENOSPC;
1111 goto out_unlock;
1112 }
1113
1114 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1115 ret = -EINVAL;
1116 goto out_unlock;
1117 }
1118
1119 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1120 if (!dma) {
1121 ret = -ENOMEM;
1122 goto out_unlock;
1123 }
1124
1125 iommu->dma_avail--;
1126 dma->iova = iova;
1127 dma->vaddr = vaddr;
1128 dma->prot = prot;
1129
1130 /*
1131 * We need to be able to both add to a task's locked memory and test
1132 * against the locked memory limit and we need to be able to do both
1133 * outside of this call path as pinning can be asynchronous via the
1134 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1135 * task_struct and VM locked pages requires an mm_struct, however
1136 * holding an indefinite mm reference is not recommended, therefore we
1137 * only hold a reference to a task. We could hold a reference to
1138 * current, however QEMU uses this call path through vCPU threads,
1139 * which can be killed resulting in a NULL mm and failure in the unmap
1140 * path when called via a different thread. Avoid this problem by
1141 * using the group_leader as threads within the same group require
1142 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1143 * mm_struct.
1144 *
1145 * Previously we also used the task for testing CAP_IPC_LOCK at the
1146 * time of pinning and accounting, however has_capability() makes use
1147 * of real_cred, a copy-on-write field, so we can't guarantee that it
1148 * matches group_leader, or in fact that it might not change by the
1149 * time it's evaluated. If a process were to call MAP_DMA with
1150 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1151 * possibly see different results for an iommu_mapped vfio_dma vs
1152 * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the
1153 * time of calling MAP_DMA.
1154 */
1155 get_task_struct(current->group_leader);
1156 dma->task = current->group_leader;
1157 dma->lock_cap = capable(CAP_IPC_LOCK);
1158
1159 dma->pfn_list = RB_ROOT;
1160
1161 /* Insert zero-sized and grow as we map chunks of it */
1162 vfio_link_dma(iommu, dma);
1163
1164 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1165 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1166 dma->size = size;
1167 else
1168 ret = vfio_pin_map_dma(iommu, dma, size);
1169
1170 out_unlock:
1171 mutex_unlock(&iommu->lock);
1172 return ret;
1173 }
1174
vfio_bus_type(struct device * dev,void * data)1175 static int vfio_bus_type(struct device *dev, void *data)
1176 {
1177 struct bus_type **bus = data;
1178
1179 if (*bus && *bus != dev->bus)
1180 return -EINVAL;
1181
1182 *bus = dev->bus;
1183
1184 return 0;
1185 }
1186
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1187 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1188 struct vfio_domain *domain)
1189 {
1190 struct vfio_domain *d;
1191 struct rb_node *n;
1192 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1193 int ret;
1194
1195 /* Arbitrarily pick the first domain in the list for lookups */
1196 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1197 n = rb_first(&iommu->dma_list);
1198
1199 for (; n; n = rb_next(n)) {
1200 struct vfio_dma *dma;
1201 dma_addr_t iova;
1202
1203 dma = rb_entry(n, struct vfio_dma, node);
1204 iova = dma->iova;
1205
1206 while (iova < dma->iova + dma->size) {
1207 phys_addr_t phys;
1208 size_t size;
1209
1210 if (dma->iommu_mapped) {
1211 phys_addr_t p;
1212 dma_addr_t i;
1213
1214 phys = iommu_iova_to_phys(d->domain, iova);
1215
1216 if (WARN_ON(!phys)) {
1217 iova += PAGE_SIZE;
1218 continue;
1219 }
1220
1221 size = PAGE_SIZE;
1222 p = phys + size;
1223 i = iova + size;
1224 while (i < dma->iova + dma->size &&
1225 p == iommu_iova_to_phys(d->domain, i)) {
1226 size += PAGE_SIZE;
1227 p += PAGE_SIZE;
1228 i += PAGE_SIZE;
1229 }
1230 } else {
1231 unsigned long pfn;
1232 unsigned long vaddr = dma->vaddr +
1233 (iova - dma->iova);
1234 size_t n = dma->iova + dma->size - iova;
1235 long npage;
1236
1237 npage = vfio_pin_pages_remote(dma, vaddr,
1238 n >> PAGE_SHIFT,
1239 &pfn, limit);
1240 if (npage <= 0) {
1241 WARN_ON(!npage);
1242 ret = (int)npage;
1243 return ret;
1244 }
1245
1246 phys = pfn << PAGE_SHIFT;
1247 size = npage << PAGE_SHIFT;
1248 }
1249
1250 ret = iommu_map(domain->domain, iova, phys,
1251 size, dma->prot | domain->prot);
1252 if (ret)
1253 return ret;
1254
1255 iova += size;
1256 }
1257 dma->iommu_mapped = true;
1258 }
1259 return 0;
1260 }
1261
1262 /*
1263 * We change our unmap behavior slightly depending on whether the IOMMU
1264 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1265 * for practically any contiguous power-of-two mapping we give it. This means
1266 * we don't need to look for contiguous chunks ourselves to make unmapping
1267 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1268 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1269 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1270 * hugetlbfs is in use.
1271 */
vfio_test_domain_fgsp(struct vfio_domain * domain)1272 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1273 {
1274 struct page *pages;
1275 int ret, order = get_order(PAGE_SIZE * 2);
1276
1277 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1278 if (!pages)
1279 return;
1280
1281 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1282 IOMMU_READ | IOMMU_WRITE | domain->prot);
1283 if (!ret) {
1284 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1285
1286 if (unmapped == PAGE_SIZE)
1287 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1288 else
1289 domain->fgsp = true;
1290 }
1291
1292 __free_pages(pages, order);
1293 }
1294
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1295 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1296 struct iommu_group *iommu_group)
1297 {
1298 struct vfio_group *g;
1299
1300 list_for_each_entry(g, &domain->group_list, next) {
1301 if (g->iommu_group == iommu_group)
1302 return g;
1303 }
1304
1305 return NULL;
1306 }
1307
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1308 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1309 phys_addr_t *base)
1310 {
1311 struct iommu_resv_region *region;
1312 bool ret = false;
1313
1314 list_for_each_entry(region, group_resv_regions, list) {
1315 /*
1316 * The presence of any 'real' MSI regions should take
1317 * precedence over the software-managed one if the
1318 * IOMMU driver happens to advertise both types.
1319 */
1320 if (region->type == IOMMU_RESV_MSI) {
1321 ret = false;
1322 break;
1323 }
1324
1325 if (region->type == IOMMU_RESV_SW_MSI) {
1326 *base = region->start;
1327 ret = true;
1328 }
1329 }
1330
1331 return ret;
1332 }
1333
vfio_mdev_get_iommu_device(struct device * dev)1334 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1335 {
1336 struct device *(*fn)(struct device *dev);
1337 struct device *iommu_device;
1338
1339 fn = symbol_get(mdev_get_iommu_device);
1340 if (fn) {
1341 iommu_device = fn(dev);
1342 symbol_put(mdev_get_iommu_device);
1343
1344 return iommu_device;
1345 }
1346
1347 return NULL;
1348 }
1349
vfio_mdev_attach_domain(struct device * dev,void * data)1350 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1351 {
1352 struct iommu_domain *domain = data;
1353 struct device *iommu_device;
1354
1355 iommu_device = vfio_mdev_get_iommu_device(dev);
1356 if (iommu_device) {
1357 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1358 return iommu_aux_attach_device(domain, iommu_device);
1359 else
1360 return iommu_attach_device(domain, iommu_device);
1361 }
1362
1363 return -EINVAL;
1364 }
1365
vfio_mdev_detach_domain(struct device * dev,void * data)1366 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1367 {
1368 struct iommu_domain *domain = data;
1369 struct device *iommu_device;
1370
1371 iommu_device = vfio_mdev_get_iommu_device(dev);
1372 if (iommu_device) {
1373 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1374 iommu_aux_detach_device(domain, iommu_device);
1375 else
1376 iommu_detach_device(domain, iommu_device);
1377 }
1378
1379 return 0;
1380 }
1381
vfio_iommu_attach_group(struct vfio_domain * domain,struct vfio_group * group)1382 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1383 struct vfio_group *group)
1384 {
1385 if (group->mdev_group)
1386 return iommu_group_for_each_dev(group->iommu_group,
1387 domain->domain,
1388 vfio_mdev_attach_domain);
1389 else
1390 return iommu_attach_group(domain->domain, group->iommu_group);
1391 }
1392
vfio_iommu_detach_group(struct vfio_domain * domain,struct vfio_group * group)1393 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1394 struct vfio_group *group)
1395 {
1396 if (group->mdev_group)
1397 iommu_group_for_each_dev(group->iommu_group, domain->domain,
1398 vfio_mdev_detach_domain);
1399 else
1400 iommu_detach_group(domain->domain, group->iommu_group);
1401 }
1402
vfio_bus_is_mdev(struct bus_type * bus)1403 static bool vfio_bus_is_mdev(struct bus_type *bus)
1404 {
1405 struct bus_type *mdev_bus;
1406 bool ret = false;
1407
1408 mdev_bus = symbol_get(mdev_bus_type);
1409 if (mdev_bus) {
1410 ret = (bus == mdev_bus);
1411 symbol_put(mdev_bus_type);
1412 }
1413
1414 return ret;
1415 }
1416
vfio_mdev_iommu_device(struct device * dev,void * data)1417 static int vfio_mdev_iommu_device(struct device *dev, void *data)
1418 {
1419 struct device **old = data, *new;
1420
1421 new = vfio_mdev_get_iommu_device(dev);
1422 if (!new || (*old && *old != new))
1423 return -EINVAL;
1424
1425 *old = new;
1426
1427 return 0;
1428 }
1429
1430 /*
1431 * This is a helper function to insert an address range to iova list.
1432 * The list is initially created with a single entry corresponding to
1433 * the IOMMU domain geometry to which the device group is attached.
1434 * The list aperture gets modified when a new domain is added to the
1435 * container if the new aperture doesn't conflict with the current one
1436 * or with any existing dma mappings. The list is also modified to
1437 * exclude any reserved regions associated with the device group.
1438 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1439 static int vfio_iommu_iova_insert(struct list_head *head,
1440 dma_addr_t start, dma_addr_t end)
1441 {
1442 struct vfio_iova *region;
1443
1444 region = kmalloc(sizeof(*region), GFP_KERNEL);
1445 if (!region)
1446 return -ENOMEM;
1447
1448 INIT_LIST_HEAD(®ion->list);
1449 region->start = start;
1450 region->end = end;
1451
1452 list_add_tail(®ion->list, head);
1453 return 0;
1454 }
1455
1456 /*
1457 * Check the new iommu aperture conflicts with existing aper or with any
1458 * existing dma mappings.
1459 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1460 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1461 dma_addr_t start, dma_addr_t end)
1462 {
1463 struct vfio_iova *first, *last;
1464 struct list_head *iova = &iommu->iova_list;
1465
1466 if (list_empty(iova))
1467 return false;
1468
1469 /* Disjoint sets, return conflict */
1470 first = list_first_entry(iova, struct vfio_iova, list);
1471 last = list_last_entry(iova, struct vfio_iova, list);
1472 if (start > last->end || end < first->start)
1473 return true;
1474
1475 /* Check for any existing dma mappings below the new start */
1476 if (start > first->start) {
1477 if (vfio_find_dma(iommu, first->start, start - first->start))
1478 return true;
1479 }
1480
1481 /* Check for any existing dma mappings beyond the new end */
1482 if (end < last->end) {
1483 if (vfio_find_dma(iommu, end + 1, last->end - end))
1484 return true;
1485 }
1486
1487 return false;
1488 }
1489
1490 /*
1491 * Resize iommu iova aperture window. This is called only if the new
1492 * aperture has no conflict with existing aperture and dma mappings.
1493 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1494 static int vfio_iommu_aper_resize(struct list_head *iova,
1495 dma_addr_t start, dma_addr_t end)
1496 {
1497 struct vfio_iova *node, *next;
1498
1499 if (list_empty(iova))
1500 return vfio_iommu_iova_insert(iova, start, end);
1501
1502 /* Adjust iova list start */
1503 list_for_each_entry_safe(node, next, iova, list) {
1504 if (start < node->start)
1505 break;
1506 if (start >= node->start && start < node->end) {
1507 node->start = start;
1508 break;
1509 }
1510 /* Delete nodes before new start */
1511 list_del(&node->list);
1512 kfree(node);
1513 }
1514
1515 /* Adjust iova list end */
1516 list_for_each_entry_safe(node, next, iova, list) {
1517 if (end > node->end)
1518 continue;
1519 if (end > node->start && end <= node->end) {
1520 node->end = end;
1521 continue;
1522 }
1523 /* Delete nodes after new end */
1524 list_del(&node->list);
1525 kfree(node);
1526 }
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Check reserved region conflicts with existing dma mappings
1533 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)1534 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
1535 struct list_head *resv_regions)
1536 {
1537 struct iommu_resv_region *region;
1538
1539 /* Check for conflict with existing dma mappings */
1540 list_for_each_entry(region, resv_regions, list) {
1541 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
1542 continue;
1543
1544 if (vfio_find_dma(iommu, region->start, region->length))
1545 return true;
1546 }
1547
1548 return false;
1549 }
1550
1551 /*
1552 * Check iova region overlap with reserved regions and
1553 * exclude them from the iommu iova range
1554 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)1555 static int vfio_iommu_resv_exclude(struct list_head *iova,
1556 struct list_head *resv_regions)
1557 {
1558 struct iommu_resv_region *resv;
1559 struct vfio_iova *n, *next;
1560
1561 list_for_each_entry(resv, resv_regions, list) {
1562 phys_addr_t start, end;
1563
1564 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
1565 continue;
1566
1567 start = resv->start;
1568 end = resv->start + resv->length - 1;
1569
1570 list_for_each_entry_safe(n, next, iova, list) {
1571 int ret = 0;
1572
1573 /* No overlap */
1574 if (start > n->end || end < n->start)
1575 continue;
1576 /*
1577 * Insert a new node if current node overlaps with the
1578 * reserve region to exlude that from valid iova range.
1579 * Note that, new node is inserted before the current
1580 * node and finally the current node is deleted keeping
1581 * the list updated and sorted.
1582 */
1583 if (start > n->start)
1584 ret = vfio_iommu_iova_insert(&n->list, n->start,
1585 start - 1);
1586 if (!ret && end < n->end)
1587 ret = vfio_iommu_iova_insert(&n->list, end + 1,
1588 n->end);
1589 if (ret)
1590 return ret;
1591
1592 list_del(&n->list);
1593 kfree(n);
1594 }
1595 }
1596
1597 if (list_empty(iova))
1598 return -EINVAL;
1599
1600 return 0;
1601 }
1602
vfio_iommu_resv_free(struct list_head * resv_regions)1603 static void vfio_iommu_resv_free(struct list_head *resv_regions)
1604 {
1605 struct iommu_resv_region *n, *next;
1606
1607 list_for_each_entry_safe(n, next, resv_regions, list) {
1608 list_del(&n->list);
1609 kfree(n);
1610 }
1611 }
1612
vfio_iommu_iova_free(struct list_head * iova)1613 static void vfio_iommu_iova_free(struct list_head *iova)
1614 {
1615 struct vfio_iova *n, *next;
1616
1617 list_for_each_entry_safe(n, next, iova, list) {
1618 list_del(&n->list);
1619 kfree(n);
1620 }
1621 }
1622
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)1623 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
1624 struct list_head *iova_copy)
1625 {
1626 struct list_head *iova = &iommu->iova_list;
1627 struct vfio_iova *n;
1628 int ret;
1629
1630 list_for_each_entry(n, iova, list) {
1631 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
1632 if (ret)
1633 goto out_free;
1634 }
1635
1636 return 0;
1637
1638 out_free:
1639 vfio_iommu_iova_free(iova_copy);
1640 return ret;
1641 }
1642
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)1643 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
1644 struct list_head *iova_copy)
1645 {
1646 struct list_head *iova = &iommu->iova_list;
1647
1648 vfio_iommu_iova_free(iova);
1649
1650 list_splice_tail(iova_copy, iova);
1651 }
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group)1652 static int vfio_iommu_type1_attach_group(void *iommu_data,
1653 struct iommu_group *iommu_group)
1654 {
1655 struct vfio_iommu *iommu = iommu_data;
1656 struct vfio_group *group;
1657 struct vfio_domain *domain, *d;
1658 struct bus_type *bus = NULL;
1659 int ret;
1660 bool resv_msi, msi_remap;
1661 phys_addr_t resv_msi_base = 0;
1662 struct iommu_domain_geometry geo;
1663 LIST_HEAD(iova_copy);
1664 LIST_HEAD(group_resv_regions);
1665
1666 mutex_lock(&iommu->lock);
1667
1668 list_for_each_entry(d, &iommu->domain_list, next) {
1669 if (find_iommu_group(d, iommu_group)) {
1670 mutex_unlock(&iommu->lock);
1671 return -EINVAL;
1672 }
1673 }
1674
1675 if (iommu->external_domain) {
1676 if (find_iommu_group(iommu->external_domain, iommu_group)) {
1677 mutex_unlock(&iommu->lock);
1678 return -EINVAL;
1679 }
1680 }
1681
1682 group = kzalloc(sizeof(*group), GFP_KERNEL);
1683 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1684 if (!group || !domain) {
1685 ret = -ENOMEM;
1686 goto out_free;
1687 }
1688
1689 group->iommu_group = iommu_group;
1690
1691 /* Determine bus_type in order to allocate a domain */
1692 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1693 if (ret)
1694 goto out_free;
1695
1696 if (vfio_bus_is_mdev(bus)) {
1697 struct device *iommu_device = NULL;
1698
1699 group->mdev_group = true;
1700
1701 /* Determine the isolation type */
1702 ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
1703 vfio_mdev_iommu_device);
1704 if (ret || !iommu_device) {
1705 if (!iommu->external_domain) {
1706 INIT_LIST_HEAD(&domain->group_list);
1707 iommu->external_domain = domain;
1708 } else {
1709 kfree(domain);
1710 }
1711
1712 list_add(&group->next,
1713 &iommu->external_domain->group_list);
1714 mutex_unlock(&iommu->lock);
1715
1716 return 0;
1717 }
1718
1719 bus = iommu_device->bus;
1720 }
1721
1722 domain->domain = iommu_domain_alloc(bus);
1723 if (!domain->domain) {
1724 ret = -EIO;
1725 goto out_free;
1726 }
1727
1728 if (iommu->nesting) {
1729 int attr = 1;
1730
1731 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1732 &attr);
1733 if (ret)
1734 goto out_domain;
1735 }
1736
1737 ret = vfio_iommu_attach_group(domain, group);
1738 if (ret)
1739 goto out_domain;
1740
1741 /* Get aperture info */
1742 iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
1743
1744 if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
1745 geo.aperture_end)) {
1746 ret = -EINVAL;
1747 goto out_detach;
1748 }
1749
1750 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
1751 if (ret)
1752 goto out_detach;
1753
1754 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
1755 ret = -EINVAL;
1756 goto out_detach;
1757 }
1758
1759 /*
1760 * We don't want to work on the original iova list as the list
1761 * gets modified and in case of failure we have to retain the
1762 * original list. Get a copy here.
1763 */
1764 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
1765 if (ret)
1766 goto out_detach;
1767
1768 ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
1769 geo.aperture_end);
1770 if (ret)
1771 goto out_detach;
1772
1773 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
1774 if (ret)
1775 goto out_detach;
1776
1777 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
1778
1779 INIT_LIST_HEAD(&domain->group_list);
1780 list_add(&group->next, &domain->group_list);
1781
1782 msi_remap = irq_domain_check_msi_remap() ||
1783 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1784
1785 if (!allow_unsafe_interrupts && !msi_remap) {
1786 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1787 __func__);
1788 ret = -EPERM;
1789 goto out_detach;
1790 }
1791
1792 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1793 domain->prot |= IOMMU_CACHE;
1794
1795 /*
1796 * Try to match an existing compatible domain. We don't want to
1797 * preclude an IOMMU driver supporting multiple bus_types and being
1798 * able to include different bus_types in the same IOMMU domain, so
1799 * we test whether the domains use the same iommu_ops rather than
1800 * testing if they're on the same bus_type.
1801 */
1802 list_for_each_entry(d, &iommu->domain_list, next) {
1803 if (d->domain->ops == domain->domain->ops &&
1804 d->prot == domain->prot) {
1805 vfio_iommu_detach_group(domain, group);
1806 if (!vfio_iommu_attach_group(d, group)) {
1807 list_add(&group->next, &d->group_list);
1808 iommu_domain_free(domain->domain);
1809 kfree(domain);
1810 goto done;
1811 }
1812
1813 ret = vfio_iommu_attach_group(domain, group);
1814 if (ret)
1815 goto out_domain;
1816 }
1817 }
1818
1819 vfio_test_domain_fgsp(domain);
1820
1821 /* replay mappings on new domains */
1822 ret = vfio_iommu_replay(iommu, domain);
1823 if (ret)
1824 goto out_detach;
1825
1826 if (resv_msi) {
1827 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1828 if (ret)
1829 goto out_detach;
1830 }
1831
1832 list_add(&domain->next, &iommu->domain_list);
1833 done:
1834 /* Delete the old one and insert new iova list */
1835 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
1836 mutex_unlock(&iommu->lock);
1837 vfio_iommu_resv_free(&group_resv_regions);
1838
1839 return 0;
1840
1841 out_detach:
1842 vfio_iommu_detach_group(domain, group);
1843 out_domain:
1844 iommu_domain_free(domain->domain);
1845 vfio_iommu_iova_free(&iova_copy);
1846 vfio_iommu_resv_free(&group_resv_regions);
1847 out_free:
1848 kfree(domain);
1849 kfree(group);
1850 mutex_unlock(&iommu->lock);
1851 return ret;
1852 }
1853
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)1854 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1855 {
1856 struct rb_node *node;
1857
1858 while ((node = rb_first(&iommu->dma_list)))
1859 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1860 }
1861
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)1862 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1863 {
1864 struct rb_node *n, *p;
1865
1866 n = rb_first(&iommu->dma_list);
1867 for (; n; n = rb_next(n)) {
1868 struct vfio_dma *dma;
1869 long locked = 0, unlocked = 0;
1870
1871 dma = rb_entry(n, struct vfio_dma, node);
1872 unlocked += vfio_unmap_unpin(iommu, dma, false);
1873 p = rb_first(&dma->pfn_list);
1874 for (; p; p = rb_next(p)) {
1875 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1876 node);
1877
1878 if (!is_invalid_reserved_pfn(vpfn->pfn))
1879 locked++;
1880 }
1881 vfio_lock_acct(dma, locked - unlocked, true);
1882 }
1883 }
1884
vfio_sanity_check_pfn_list(struct vfio_iommu * iommu)1885 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1886 {
1887 struct rb_node *n;
1888
1889 n = rb_first(&iommu->dma_list);
1890 for (; n; n = rb_next(n)) {
1891 struct vfio_dma *dma;
1892
1893 dma = rb_entry(n, struct vfio_dma, node);
1894
1895 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1896 break;
1897 }
1898 /* mdev vendor driver must unregister notifier */
1899 WARN_ON(iommu->notifier.head);
1900 }
1901
1902 /*
1903 * Called when a domain is removed in detach. It is possible that
1904 * the removed domain decided the iova aperture window. Modify the
1905 * iova aperture with the smallest window among existing domains.
1906 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)1907 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
1908 struct list_head *iova_copy)
1909 {
1910 struct vfio_domain *domain;
1911 struct iommu_domain_geometry geo;
1912 struct vfio_iova *node;
1913 dma_addr_t start = 0;
1914 dma_addr_t end = (dma_addr_t)~0;
1915
1916 if (list_empty(iova_copy))
1917 return;
1918
1919 list_for_each_entry(domain, &iommu->domain_list, next) {
1920 iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY,
1921 &geo);
1922 if (geo.aperture_start > start)
1923 start = geo.aperture_start;
1924 if (geo.aperture_end < end)
1925 end = geo.aperture_end;
1926 }
1927
1928 /* Modify aperture limits. The new aper is either same or bigger */
1929 node = list_first_entry(iova_copy, struct vfio_iova, list);
1930 node->start = start;
1931 node = list_last_entry(iova_copy, struct vfio_iova, list);
1932 node->end = end;
1933 }
1934
1935 /*
1936 * Called when a group is detached. The reserved regions for that
1937 * group can be part of valid iova now. But since reserved regions
1938 * may be duplicated among groups, populate the iova valid regions
1939 * list again.
1940 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)1941 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
1942 struct list_head *iova_copy)
1943 {
1944 struct vfio_domain *d;
1945 struct vfio_group *g;
1946 struct vfio_iova *node;
1947 dma_addr_t start, end;
1948 LIST_HEAD(resv_regions);
1949 int ret;
1950
1951 if (list_empty(iova_copy))
1952 return -EINVAL;
1953
1954 list_for_each_entry(d, &iommu->domain_list, next) {
1955 list_for_each_entry(g, &d->group_list, next) {
1956 ret = iommu_get_group_resv_regions(g->iommu_group,
1957 &resv_regions);
1958 if (ret)
1959 goto done;
1960 }
1961 }
1962
1963 node = list_first_entry(iova_copy, struct vfio_iova, list);
1964 start = node->start;
1965 node = list_last_entry(iova_copy, struct vfio_iova, list);
1966 end = node->end;
1967
1968 /* purge the iova list and create new one */
1969 vfio_iommu_iova_free(iova_copy);
1970
1971 ret = vfio_iommu_aper_resize(iova_copy, start, end);
1972 if (ret)
1973 goto done;
1974
1975 /* Exclude current reserved regions from iova ranges */
1976 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
1977 done:
1978 vfio_iommu_resv_free(&resv_regions);
1979 return ret;
1980 }
1981
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)1982 static void vfio_iommu_type1_detach_group(void *iommu_data,
1983 struct iommu_group *iommu_group)
1984 {
1985 struct vfio_iommu *iommu = iommu_data;
1986 struct vfio_domain *domain;
1987 struct vfio_group *group;
1988 LIST_HEAD(iova_copy);
1989
1990 mutex_lock(&iommu->lock);
1991
1992 if (iommu->external_domain) {
1993 group = find_iommu_group(iommu->external_domain, iommu_group);
1994 if (group) {
1995 list_del(&group->next);
1996 kfree(group);
1997
1998 if (list_empty(&iommu->external_domain->group_list)) {
1999 vfio_sanity_check_pfn_list(iommu);
2000
2001 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
2002 vfio_iommu_unmap_unpin_all(iommu);
2003
2004 kfree(iommu->external_domain);
2005 iommu->external_domain = NULL;
2006 }
2007 goto detach_group_done;
2008 }
2009 }
2010
2011 /*
2012 * Get a copy of iova list. This will be used to update
2013 * and to replace the current one later. Please note that
2014 * we will leave the original list as it is if update fails.
2015 */
2016 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2017
2018 list_for_each_entry(domain, &iommu->domain_list, next) {
2019 group = find_iommu_group(domain, iommu_group);
2020 if (!group)
2021 continue;
2022
2023 vfio_iommu_detach_group(domain, group);
2024 list_del(&group->next);
2025 kfree(group);
2026 /*
2027 * Group ownership provides privilege, if the group list is
2028 * empty, the domain goes away. If it's the last domain with
2029 * iommu and external domain doesn't exist, then all the
2030 * mappings go away too. If it's the last domain with iommu and
2031 * external domain exist, update accounting
2032 */
2033 if (list_empty(&domain->group_list)) {
2034 if (list_is_singular(&iommu->domain_list)) {
2035 if (!iommu->external_domain)
2036 vfio_iommu_unmap_unpin_all(iommu);
2037 else
2038 vfio_iommu_unmap_unpin_reaccount(iommu);
2039 }
2040 iommu_domain_free(domain->domain);
2041 list_del(&domain->next);
2042 kfree(domain);
2043 vfio_iommu_aper_expand(iommu, &iova_copy);
2044 }
2045 break;
2046 }
2047
2048 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2049 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2050 else
2051 vfio_iommu_iova_free(&iova_copy);
2052
2053 detach_group_done:
2054 mutex_unlock(&iommu->lock);
2055 }
2056
vfio_iommu_type1_open(unsigned long arg)2057 static void *vfio_iommu_type1_open(unsigned long arg)
2058 {
2059 struct vfio_iommu *iommu;
2060
2061 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2062 if (!iommu)
2063 return ERR_PTR(-ENOMEM);
2064
2065 switch (arg) {
2066 case VFIO_TYPE1_IOMMU:
2067 break;
2068 case VFIO_TYPE1_NESTING_IOMMU:
2069 iommu->nesting = true;
2070 /* fall through */
2071 case VFIO_TYPE1v2_IOMMU:
2072 iommu->v2 = true;
2073 break;
2074 default:
2075 kfree(iommu);
2076 return ERR_PTR(-EINVAL);
2077 }
2078
2079 INIT_LIST_HEAD(&iommu->domain_list);
2080 INIT_LIST_HEAD(&iommu->iova_list);
2081 iommu->dma_list = RB_ROOT;
2082 iommu->dma_avail = dma_entry_limit;
2083 mutex_init(&iommu->lock);
2084 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2085
2086 return iommu;
2087 }
2088
vfio_release_domain(struct vfio_domain * domain,bool external)2089 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2090 {
2091 struct vfio_group *group, *group_tmp;
2092
2093 list_for_each_entry_safe(group, group_tmp,
2094 &domain->group_list, next) {
2095 if (!external)
2096 vfio_iommu_detach_group(domain, group);
2097 list_del(&group->next);
2098 kfree(group);
2099 }
2100
2101 if (!external)
2102 iommu_domain_free(domain->domain);
2103 }
2104
vfio_iommu_type1_release(void * iommu_data)2105 static void vfio_iommu_type1_release(void *iommu_data)
2106 {
2107 struct vfio_iommu *iommu = iommu_data;
2108 struct vfio_domain *domain, *domain_tmp;
2109
2110 if (iommu->external_domain) {
2111 vfio_release_domain(iommu->external_domain, true);
2112 vfio_sanity_check_pfn_list(iommu);
2113 kfree(iommu->external_domain);
2114 }
2115
2116 vfio_iommu_unmap_unpin_all(iommu);
2117
2118 list_for_each_entry_safe(domain, domain_tmp,
2119 &iommu->domain_list, next) {
2120 vfio_release_domain(domain, false);
2121 list_del(&domain->next);
2122 kfree(domain);
2123 }
2124
2125 vfio_iommu_iova_free(&iommu->iova_list);
2126
2127 kfree(iommu);
2128 }
2129
vfio_domains_have_iommu_cache(struct vfio_iommu * iommu)2130 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2131 {
2132 struct vfio_domain *domain;
2133 int ret = 1;
2134
2135 mutex_lock(&iommu->lock);
2136 list_for_each_entry(domain, &iommu->domain_list, next) {
2137 if (!(domain->prot & IOMMU_CACHE)) {
2138 ret = 0;
2139 break;
2140 }
2141 }
2142 mutex_unlock(&iommu->lock);
2143
2144 return ret;
2145 }
2146
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2147 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2148 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2149 size_t size)
2150 {
2151 struct vfio_info_cap_header *header;
2152 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2153
2154 header = vfio_info_cap_add(caps, size,
2155 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2156 if (IS_ERR(header))
2157 return PTR_ERR(header);
2158
2159 iova_cap = container_of(header,
2160 struct vfio_iommu_type1_info_cap_iova_range,
2161 header);
2162 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2163 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2164 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2165 return 0;
2166 }
2167
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2168 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2169 struct vfio_info_cap *caps)
2170 {
2171 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2172 struct vfio_iova *iova;
2173 size_t size;
2174 int iovas = 0, i = 0, ret;
2175
2176 mutex_lock(&iommu->lock);
2177
2178 list_for_each_entry(iova, &iommu->iova_list, list)
2179 iovas++;
2180
2181 if (!iovas) {
2182 /*
2183 * Return 0 as a container with a single mdev device
2184 * will have an empty list
2185 */
2186 ret = 0;
2187 goto out_unlock;
2188 }
2189
2190 size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
2191
2192 cap_iovas = kzalloc(size, GFP_KERNEL);
2193 if (!cap_iovas) {
2194 ret = -ENOMEM;
2195 goto out_unlock;
2196 }
2197
2198 cap_iovas->nr_iovas = iovas;
2199
2200 list_for_each_entry(iova, &iommu->iova_list, list) {
2201 cap_iovas->iova_ranges[i].start = iova->start;
2202 cap_iovas->iova_ranges[i].end = iova->end;
2203 i++;
2204 }
2205
2206 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2207
2208 kfree(cap_iovas);
2209 out_unlock:
2210 mutex_unlock(&iommu->lock);
2211 return ret;
2212 }
2213
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2214 static long vfio_iommu_type1_ioctl(void *iommu_data,
2215 unsigned int cmd, unsigned long arg)
2216 {
2217 struct vfio_iommu *iommu = iommu_data;
2218 unsigned long minsz;
2219
2220 if (cmd == VFIO_CHECK_EXTENSION) {
2221 switch (arg) {
2222 case VFIO_TYPE1_IOMMU:
2223 case VFIO_TYPE1v2_IOMMU:
2224 case VFIO_TYPE1_NESTING_IOMMU:
2225 return 1;
2226 case VFIO_DMA_CC_IOMMU:
2227 if (!iommu)
2228 return 0;
2229 return vfio_domains_have_iommu_cache(iommu);
2230 default:
2231 return 0;
2232 }
2233 } else if (cmd == VFIO_IOMMU_GET_INFO) {
2234 struct vfio_iommu_type1_info info;
2235 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2236 unsigned long capsz;
2237 int ret;
2238
2239 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2240
2241 /* For backward compatibility, cannot require this */
2242 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2243
2244 if (copy_from_user(&info, (void __user *)arg, minsz))
2245 return -EFAULT;
2246
2247 if (info.argsz < minsz)
2248 return -EINVAL;
2249
2250 if (info.argsz >= capsz) {
2251 minsz = capsz;
2252 info.cap_offset = 0; /* output, no-recopy necessary */
2253 }
2254
2255 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2256
2257 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
2258
2259 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2260 if (ret)
2261 return ret;
2262
2263 if (caps.size) {
2264 info.flags |= VFIO_IOMMU_INFO_CAPS;
2265
2266 if (info.argsz < sizeof(info) + caps.size) {
2267 info.argsz = sizeof(info) + caps.size;
2268 } else {
2269 vfio_info_cap_shift(&caps, sizeof(info));
2270 if (copy_to_user((void __user *)arg +
2271 sizeof(info), caps.buf,
2272 caps.size)) {
2273 kfree(caps.buf);
2274 return -EFAULT;
2275 }
2276 info.cap_offset = sizeof(info);
2277 }
2278
2279 kfree(caps.buf);
2280 }
2281
2282 return copy_to_user((void __user *)arg, &info, minsz) ?
2283 -EFAULT : 0;
2284
2285 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
2286 struct vfio_iommu_type1_dma_map map;
2287 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
2288 VFIO_DMA_MAP_FLAG_WRITE;
2289
2290 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2291
2292 if (copy_from_user(&map, (void __user *)arg, minsz))
2293 return -EFAULT;
2294
2295 if (map.argsz < minsz || map.flags & ~mask)
2296 return -EINVAL;
2297
2298 return vfio_dma_do_map(iommu, &map);
2299
2300 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
2301 struct vfio_iommu_type1_dma_unmap unmap;
2302 long ret;
2303
2304 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2305
2306 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2307 return -EFAULT;
2308
2309 if (unmap.argsz < minsz || unmap.flags)
2310 return -EINVAL;
2311
2312 ret = vfio_dma_do_unmap(iommu, &unmap);
2313 if (ret)
2314 return ret;
2315
2316 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2317 -EFAULT : 0;
2318 }
2319
2320 return -ENOTTY;
2321 }
2322
vfio_iommu_type1_register_notifier(void * iommu_data,unsigned long * events,struct notifier_block * nb)2323 static int vfio_iommu_type1_register_notifier(void *iommu_data,
2324 unsigned long *events,
2325 struct notifier_block *nb)
2326 {
2327 struct vfio_iommu *iommu = iommu_data;
2328
2329 /* clear known events */
2330 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
2331
2332 /* refuse to register if still events remaining */
2333 if (*events)
2334 return -EINVAL;
2335
2336 return blocking_notifier_chain_register(&iommu->notifier, nb);
2337 }
2338
vfio_iommu_type1_unregister_notifier(void * iommu_data,struct notifier_block * nb)2339 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
2340 struct notifier_block *nb)
2341 {
2342 struct vfio_iommu *iommu = iommu_data;
2343
2344 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
2345 }
2346
2347 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
2348 .name = "vfio-iommu-type1",
2349 .owner = THIS_MODULE,
2350 .open = vfio_iommu_type1_open,
2351 .release = vfio_iommu_type1_release,
2352 .ioctl = vfio_iommu_type1_ioctl,
2353 .attach_group = vfio_iommu_type1_attach_group,
2354 .detach_group = vfio_iommu_type1_detach_group,
2355 .pin_pages = vfio_iommu_type1_pin_pages,
2356 .unpin_pages = vfio_iommu_type1_unpin_pages,
2357 .register_notifier = vfio_iommu_type1_register_notifier,
2358 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
2359 };
2360
vfio_iommu_type1_init(void)2361 static int __init vfio_iommu_type1_init(void)
2362 {
2363 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
2364 }
2365
vfio_iommu_type1_cleanup(void)2366 static void __exit vfio_iommu_type1_cleanup(void)
2367 {
2368 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
2369 }
2370
2371 module_init(vfio_iommu_type1_init);
2372 module_exit(vfio_iommu_type1_cleanup);
2373
2374 MODULE_VERSION(DRIVER_VERSION);
2375 MODULE_LICENSE("GPL v2");
2376 MODULE_AUTHOR(DRIVER_AUTHOR);
2377 MODULE_DESCRIPTION(DRIVER_DESC);
2378