1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author:
5 * Zhigang.Wei <zhigang.wei@mediatek.com>
6 * Chunfeng.Yun <chunfeng.yun@mediatek.com>
7 */
8
9 #ifndef _XHCI_MTK_H_
10 #define _XHCI_MTK_H_
11
12 #include "xhci.h"
13
14 /**
15 * To simplify scheduler algorithm, set a upper limit for ESIT,
16 * if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT,
17 * round down to the limit value, that means allocating more
18 * bandwidth to it.
19 */
20 #define XHCI_MTK_MAX_ESIT 64
21
22 /**
23 * @split_bit_map: used to avoid split microframes overlay
24 * @ep_list: Endpoints using this TT
25 * @usb_tt: usb TT related
26 * @tt_port: TT port number
27 */
28 struct mu3h_sch_tt {
29 DECLARE_BITMAP(split_bit_map, XHCI_MTK_MAX_ESIT);
30 struct list_head ep_list;
31 struct usb_tt *usb_tt;
32 int tt_port;
33 };
34
35 /**
36 * struct mu3h_sch_bw_info: schedule information for bandwidth domain
37 *
38 * @bus_bw: array to keep track of bandwidth already used at each uframes
39 * @bw_ep_list: eps in the bandwidth domain
40 *
41 * treat a HS root port as a bandwidth domain, but treat a SS root port as
42 * two bandwidth domains, one for IN eps and another for OUT eps.
43 */
44 struct mu3h_sch_bw_info {
45 u32 bus_bw[XHCI_MTK_MAX_ESIT];
46 struct list_head bw_ep_list;
47 };
48
49 /**
50 * struct mu3h_sch_ep_info: schedule information for endpoint
51 *
52 * @esit: unit is 125us, equal to 2 << Interval field in ep-context
53 * @num_budget_microframes: number of continuous uframes
54 * (@repeat==1) scheduled within the interval
55 * @bw_cost_per_microframe: bandwidth cost per microframe
56 * @endpoint: linked into bandwidth domain which it belongs to
57 * @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to
58 * @sch_tt: mu3h_sch_tt linked into
59 * @ep_type: endpoint type
60 * @maxpkt: max packet size of endpoint
61 * @ep: address of usb_host_endpoint struct
62 * @offset: which uframe of the interval that transfer should be
63 * scheduled first time within the interval
64 * @repeat: the time gap between two uframes that transfers are
65 * scheduled within a interval. in the simple algorithm, only
66 * assign 0 or 1 to it; 0 means using only one uframe in a
67 * interval, and 1 means using @num_budget_microframes
68 * continuous uframes
69 * @pkts: number of packets to be transferred in the scheduled uframes
70 * @cs_count: number of CS that host will trigger
71 * @burst_mode: burst mode for scheduling. 0: normal burst mode,
72 * distribute the bMaxBurst+1 packets for a single burst
73 * according to @pkts and @repeat, repeate the burst multiple
74 * times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets
75 * according to @pkts and @repeat. normal mode is used by
76 * default
77 * @bw_budget_table: table to record bandwidth budget per microframe
78 */
79 struct mu3h_sch_ep_info {
80 u32 esit;
81 u32 num_budget_microframes;
82 u32 bw_cost_per_microframe;
83 struct list_head endpoint;
84 struct list_head tt_endpoint;
85 struct mu3h_sch_tt *sch_tt;
86 u32 ep_type;
87 u32 maxpkt;
88 void *ep;
89 /*
90 * mtk xHCI scheduling information put into reserved DWs
91 * in ep context
92 */
93 u32 offset;
94 u32 repeat;
95 u32 pkts;
96 u32 cs_count;
97 u32 burst_mode;
98 u32 bw_budget_table[0];
99 };
100
101 #define MU3C_U3_PORT_MAX 4
102 #define MU3C_U2_PORT_MAX 5
103
104 /**
105 * struct mu3c_ippc_regs: MTK ssusb ip port control registers
106 * @ip_pw_ctr0~3: ip power and clock control registers
107 * @ip_pw_sts1~2: ip power and clock status registers
108 * @ip_xhci_cap: ip xHCI capability register
109 * @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used
110 * @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used
111 * @u2_phy_pll: usb2 phy pll control register
112 */
113 struct mu3c_ippc_regs {
114 __le32 ip_pw_ctr0;
115 __le32 ip_pw_ctr1;
116 __le32 ip_pw_ctr2;
117 __le32 ip_pw_ctr3;
118 __le32 ip_pw_sts1;
119 __le32 ip_pw_sts2;
120 __le32 reserved0[3];
121 __le32 ip_xhci_cap;
122 __le32 reserved1[2];
123 __le64 u3_ctrl_p[MU3C_U3_PORT_MAX];
124 __le64 u2_ctrl_p[MU3C_U2_PORT_MAX];
125 __le32 reserved2;
126 __le32 u2_phy_pll;
127 __le32 reserved3[33]; /* 0x80 ~ 0xff */
128 };
129
130 struct xhci_hcd_mtk {
131 struct device *dev;
132 struct usb_hcd *hcd;
133 struct mu3h_sch_bw_info *sch_array;
134 struct mu3c_ippc_regs __iomem *ippc_regs;
135 bool has_ippc;
136 int num_u2_ports;
137 int num_u3_ports;
138 int u3p_dis_msk;
139 struct regulator *vusb33;
140 struct regulator *vbus;
141 struct clk *sys_clk; /* sys and mac clock */
142 struct clk *xhci_clk;
143 struct clk *ref_clk;
144 struct clk *mcu_clk;
145 struct clk *dma_clk;
146 struct regmap *pericfg;
147 struct phy **phys;
148 int num_phys;
149 bool lpm_support;
150 /* usb remote wakeup */
151 bool uwk_en;
152 struct regmap *uwk;
153 u32 uwk_reg_base;
154 u32 uwk_vers;
155 };
156
hcd_to_mtk(struct usb_hcd * hcd)157 static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd)
158 {
159 return dev_get_drvdata(hcd->self.controller);
160 }
161
162 #if IS_ENABLED(CONFIG_USB_XHCI_MTK)
163 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk);
164 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk);
165 int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
166 struct usb_host_endpoint *ep);
167 void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
168 struct usb_host_endpoint *ep);
169
170 #else
xhci_mtk_add_ep_quirk(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)171 static inline int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd,
172 struct usb_device *udev, struct usb_host_endpoint *ep)
173 {
174 return 0;
175 }
176
xhci_mtk_drop_ep_quirk(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)177 static inline void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd,
178 struct usb_device *udev, struct usb_host_endpoint *ep)
179 {
180 }
181
182 #endif
183
184 #endif /* _XHCI_MTK_H_ */
185