1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/clk.h>
36
37 #include <asm/byteorder.h>
38 #include <asm/irq.h>
39 #include <asm/unaligned.h>
40
41 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
42 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
43 static const char hcd_name[] = "fotg210_hcd";
44
45 #undef FOTG210_URB_TRACE
46 #define FOTG210_STATS
47
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT 0
52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT 1
54
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code). In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
59 */
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62 /* Initial IRQ latency: faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67 /* initial park setting: slower than hw default */
68 static unsigned park;
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79 #include "fotg210.h"
80
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
92 */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 {
95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98 HCS_N_PORTS(params));
99 }
100
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
103 */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109 params,
110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111 HCC_CANPARK(params) ? " park" : "");
112 }
113
114 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 {
117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118 hc32_to_cpup(fotg210, &qtd->hw_next),
119 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120 hc32_to_cpup(fotg210, &qtd->hw_token),
121 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122 if (qtd->hw_buf[1])
123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 }
129
130 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 {
133 struct fotg210_qh_hw *hw = qh->hw;
134
135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136 hw->hw_next, hw->hw_info1, hw->hw_info2,
137 hw->hw_current);
138
139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 }
141
142 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 {
145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147 itd->urb);
148
149 fotg210_dbg(fotg210,
150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160 fotg210_dbg(fotg210,
161 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
171 itd->index[0], itd->index[1], itd->index[2],
172 itd->index[3], itd->index[4], itd->index[5],
173 itd->index[6], itd->index[7]);
174 }
175
176 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 {
179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 label, label[0] ? " " : "", status,
181 (status & STS_ASS) ? " Async" : "",
182 (status & STS_PSS) ? " Periodic" : "",
183 (status & STS_RECL) ? " Recl" : "",
184 (status & STS_HALT) ? " Halt" : "",
185 (status & STS_IAA) ? " IAA" : "",
186 (status & STS_FATAL) ? " FATAL" : "",
187 (status & STS_FLR) ? " FLR" : "",
188 (status & STS_PCD) ? " PCD" : "",
189 (status & STS_ERR) ? " ERR" : "",
190 (status & STS_INT) ? " INT" : "");
191 }
192
193 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 {
196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197 label, label[0] ? " " : "", enable,
198 (enable & STS_IAA) ? " IAA" : "",
199 (enable & STS_FATAL) ? " FATAL" : "",
200 (enable & STS_FLR) ? " FLR" : "",
201 (enable & STS_PCD) ? " PCD" : "",
202 (enable & STS_ERR) ? " ERR" : "",
203 (enable & STS_INT) ? " INT" : "");
204 }
205
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
209 u32 command)
210 {
211 return scnprintf(buf, len,
212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 label, label[0] ? " " : "", command,
214 (command & CMD_PARK) ? " park" : "(park)",
215 CMD_PARK_CNT(command),
216 (command >> 16) & 0x3f,
217 (command & CMD_IAAD) ? " IAAD" : "",
218 (command & CMD_ASE) ? " Async" : "",
219 (command & CMD_PSE) ? " Periodic" : "",
220 fls_strings[(command >> 2) & 0x3],
221 (command & CMD_RESET) ? " Reset" : "",
222 (command & CMD_RUN) ? "RUN" : "HALT");
223 }
224
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226 u32 status)
227 {
228 char *sig;
229
230 /* signaling state */
231 switch (status & (3 << 10)) {
232 case 0 << 10:
233 sig = "se0";
234 break;
235 case 1 << 10:
236 sig = "k";
237 break; /* low speed */
238 case 2 << 10:
239 sig = "j";
240 break;
241 default:
242 sig = "?";
243 break;
244 }
245
246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 label, label[0] ? " " : "", port, status,
248 status >> 25, /*device address */
249 sig,
250 (status & PORT_RESET) ? " RESET" : "",
251 (status & PORT_SUSPEND) ? " SUSPEND" : "",
252 (status & PORT_RESUME) ? " RESUME" : "",
253 (status & PORT_PEC) ? " PEC" : "",
254 (status & PORT_PE) ? " PE" : "",
255 (status & PORT_CSC) ? " CSC" : "",
256 (status & PORT_CONNECT) ? " CONNECT" : "");
257
258 return buf;
259 }
260
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) { \
263 char _buf[80]; \
264 dbg_status_buf(_buf, sizeof(_buf), label, status); \
265 fotg210_dbg(fotg210, "%s\n", _buf); \
266 }
267
268 #define dbg_cmd(fotg210, label, command) { \
269 char _buf[80]; \
270 dbg_command_buf(_buf, sizeof(_buf), label, command); \
271 fotg210_dbg(fotg210, "%s\n", _buf); \
272 }
273
274 #define dbg_port(fotg210, label, port, status) { \
275 char _buf[80]; \
276 fotg210_dbg(fotg210, "%s\n", \
277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 }
279
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
285
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
288
289 static const struct file_operations debug_async_fops = {
290 .owner = THIS_MODULE,
291 .open = debug_async_open,
292 .read = debug_output,
293 .release = debug_close,
294 .llseek = default_llseek,
295 };
296 static const struct file_operations debug_periodic_fops = {
297 .owner = THIS_MODULE,
298 .open = debug_periodic_open,
299 .read = debug_output,
300 .release = debug_close,
301 .llseek = default_llseek,
302 };
303 static const struct file_operations debug_registers_fops = {
304 .owner = THIS_MODULE,
305 .open = debug_registers_open,
306 .read = debug_output,
307 .release = debug_close,
308 .llseek = default_llseek,
309 };
310
311 static struct dentry *fotg210_debug_root;
312
313 struct debug_buffer {
314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
315 struct usb_bus *bus;
316 struct mutex mutex; /* protect filling of buffer */
317 size_t count; /* number of characters filled into buffer */
318 char *output_buf;
319 size_t alloc_size;
320 };
321
speed_char(u32 scratch)322 static inline char speed_char(u32 scratch)
323 {
324 switch (scratch & (3 << 12)) {
325 case QH_FULL_SPEED:
326 return 'f';
327
328 case QH_LOW_SPEED:
329 return 'l';
330
331 case QH_HIGH_SPEED:
332 return 'h';
333
334 default:
335 return '?';
336 }
337 }
338
token_mark(struct fotg210_hcd * fotg210,__hc32 token)339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 {
341 __u32 v = hc32_to_cpu(fotg210, token);
342
343 if (v & QTD_STS_ACTIVE)
344 return '*';
345 if (v & QTD_STS_HALT)
346 return '-';
347 if (!IS_SHORT_READ(v))
348 return ' ';
349 /* tries to advance through hw_alt_next */
350 return '/';
351 }
352
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354 char **nextp, unsigned *sizep)
355 {
356 u32 scratch;
357 u32 hw_curr;
358 struct fotg210_qtd *td;
359 unsigned temp;
360 unsigned size = *sizep;
361 char *next = *nextp;
362 char mark;
363 __le32 list_end = FOTG210_LIST_END(fotg210);
364 struct fotg210_qh_hw *hw = qh->hw;
365
366 if (hw->hw_qtd_next == list_end) /* NEC does this */
367 mark = '@';
368 else
369 mark = token_mark(fotg210, hw->hw_token);
370 if (mark == '/') { /* qh_alt_next controls qh advance? */
371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372 fotg210->async->hw->hw_alt_next)
373 mark = '#'; /* blocked */
374 else if (hw->hw_alt_next == list_end)
375 mark = '.'; /* use hw_qtd_next */
376 /* else alt_next points to some other qtd */
377 }
378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380 temp = scnprintf(next, size,
381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 qh, scratch & 0x007f,
383 speed_char(scratch),
384 (scratch >> 8) & 0x000f,
385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386 hc32_to_cpup(fotg210, &hw->hw_token), mark,
387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388 ? "data1" : "data0",
389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390 size -= temp;
391 next += temp;
392
393 /* hc may be modifying the list as we read it ... */
394 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395 scratch = hc32_to_cpup(fotg210, &td->hw_token);
396 mark = ' ';
397 if (hw_curr == td->qtd_dma)
398 mark = '*';
399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400 mark = '+';
401 else if (QTD_LENGTH(scratch)) {
402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403 mark = '#';
404 else if (td->hw_alt_next != list_end)
405 mark = '/';
406 }
407 temp = snprintf(next, size,
408 "\n\t%p%c%s len=%d %08x urb %p",
409 td, mark, ({ char *tmp;
410 switch ((scratch>>8)&0x03) {
411 case 0:
412 tmp = "out";
413 break;
414 case 1:
415 tmp = "in";
416 break;
417 case 2:
418 tmp = "setup";
419 break;
420 default:
421 tmp = "?";
422 break;
423 } tmp; }),
424 (scratch >> 16) & 0x7fff,
425 scratch,
426 td->urb);
427 if (size < temp)
428 temp = size;
429 size -= temp;
430 next += temp;
431 if (temp == size)
432 goto done;
433 }
434
435 temp = snprintf(next, size, "\n");
436 if (size < temp)
437 temp = size;
438
439 size -= temp;
440 next += temp;
441
442 done:
443 *sizep = size;
444 *nextp = next;
445 }
446
fill_async_buffer(struct debug_buffer * buf)447 static ssize_t fill_async_buffer(struct debug_buffer *buf)
448 {
449 struct usb_hcd *hcd;
450 struct fotg210_hcd *fotg210;
451 unsigned long flags;
452 unsigned temp, size;
453 char *next;
454 struct fotg210_qh *qh;
455
456 hcd = bus_to_hcd(buf->bus);
457 fotg210 = hcd_to_fotg210(hcd);
458 next = buf->output_buf;
459 size = buf->alloc_size;
460
461 *next = 0;
462
463 /* dumps a snapshot of the async schedule.
464 * usually empty except for long-term bulk reads, or head.
465 * one QH per line, and TDs we know about
466 */
467 spin_lock_irqsave(&fotg210->lock, flags);
468 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
469 qh = qh->qh_next.qh)
470 qh_lines(fotg210, qh, &next, &size);
471 if (fotg210->async_unlink && size > 0) {
472 temp = scnprintf(next, size, "\nunlink =\n");
473 size -= temp;
474 next += temp;
475
476 for (qh = fotg210->async_unlink; size > 0 && qh;
477 qh = qh->unlink_next)
478 qh_lines(fotg210, qh, &next, &size);
479 }
480 spin_unlock_irqrestore(&fotg210->lock, flags);
481
482 return strlen(buf->output_buf);
483 }
484
485 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
487 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
488 {
489 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
490 struct fotg210_qtd *qtd;
491 char *type = "";
492 unsigned temp = 0;
493
494 /* count tds, get ep direction */
495 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
496 temp++;
497 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
498 case 0:
499 type = "out";
500 continue;
501 case 1:
502 type = "in";
503 continue;
504 }
505 }
506
507 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
508 speed_char(scratch), scratch & 0x007f,
509 (scratch >> 8) & 0x000f, type, qh->usecs,
510 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 }
512
513 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
515 {
516 struct usb_hcd *hcd;
517 struct fotg210_hcd *fotg210;
518 unsigned long flags;
519 union fotg210_shadow p, *seen;
520 unsigned temp, size, seen_count;
521 char *next;
522 unsigned i;
523 __hc32 tag;
524
525 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
526 if (!seen)
527 return 0;
528
529 seen_count = 0;
530
531 hcd = bus_to_hcd(buf->bus);
532 fotg210 = hcd_to_fotg210(hcd);
533 next = buf->output_buf;
534 size = buf->alloc_size;
535
536 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
537 size -= temp;
538 next += temp;
539
540 /* dump a snapshot of the periodic schedule.
541 * iso changes, interrupt usually doesn't.
542 */
543 spin_lock_irqsave(&fotg210->lock, flags);
544 for (i = 0; i < fotg210->periodic_size; i++) {
545 p = fotg210->pshadow[i];
546 if (likely(!p.ptr))
547 continue;
548
549 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
550
551 temp = scnprintf(next, size, "%4d: ", i);
552 size -= temp;
553 next += temp;
554
555 do {
556 struct fotg210_qh_hw *hw;
557
558 switch (hc32_to_cpu(fotg210, tag)) {
559 case Q_TYPE_QH:
560 hw = p.qh->hw;
561 temp = scnprintf(next, size, " qh%d-%04x/%p",
562 p.qh->period,
563 hc32_to_cpup(fotg210,
564 &hw->hw_info2)
565 /* uframe masks */
566 & (QH_CMASK | QH_SMASK),
567 p.qh);
568 size -= temp;
569 next += temp;
570 /* don't repeat what follows this qh */
571 for (temp = 0; temp < seen_count; temp++) {
572 if (seen[temp].ptr != p.ptr)
573 continue;
574 if (p.qh->qh_next.ptr) {
575 temp = scnprintf(next, size,
576 " ...");
577 size -= temp;
578 next += temp;
579 }
580 break;
581 }
582 /* show more info the first time around */
583 if (temp == seen_count) {
584 temp = output_buf_tds_dir(next,
585 fotg210, hw,
586 p.qh, size);
587
588 if (seen_count < DBG_SCHED_LIMIT)
589 seen[seen_count++].qh = p.qh;
590 } else
591 temp = 0;
592 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
593 p = p.qh->qh_next;
594 break;
595 case Q_TYPE_FSTN:
596 temp = scnprintf(next, size,
597 " fstn-%8x/%p",
598 p.fstn->hw_prev, p.fstn);
599 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
600 p = p.fstn->fstn_next;
601 break;
602 case Q_TYPE_ITD:
603 temp = scnprintf(next, size,
604 " itd/%p", p.itd);
605 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
606 p = p.itd->itd_next;
607 break;
608 }
609 size -= temp;
610 next += temp;
611 } while (p.ptr);
612
613 temp = scnprintf(next, size, "\n");
614 size -= temp;
615 next += temp;
616 }
617 spin_unlock_irqrestore(&fotg210->lock, flags);
618 kfree(seen);
619
620 return buf->alloc_size - size;
621 }
622 #undef DBG_SCHED_LIMIT
623
rh_state_string(struct fotg210_hcd * fotg210)624 static const char *rh_state_string(struct fotg210_hcd *fotg210)
625 {
626 switch (fotg210->rh_state) {
627 case FOTG210_RH_HALTED:
628 return "halted";
629 case FOTG210_RH_SUSPENDED:
630 return "suspended";
631 case FOTG210_RH_RUNNING:
632 return "running";
633 case FOTG210_RH_STOPPING:
634 return "stopping";
635 }
636 return "?";
637 }
638
fill_registers_buffer(struct debug_buffer * buf)639 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
640 {
641 struct usb_hcd *hcd;
642 struct fotg210_hcd *fotg210;
643 unsigned long flags;
644 unsigned temp, size, i;
645 char *next, scratch[80];
646 static const char fmt[] = "%*s\n";
647 static const char label[] = "";
648
649 hcd = bus_to_hcd(buf->bus);
650 fotg210 = hcd_to_fotg210(hcd);
651 next = buf->output_buf;
652 size = buf->alloc_size;
653
654 spin_lock_irqsave(&fotg210->lock, flags);
655
656 if (!HCD_HW_ACCESSIBLE(hcd)) {
657 size = scnprintf(next, size,
658 "bus %s, device %s\n"
659 "%s\n"
660 "SUSPENDED(no register access)\n",
661 hcd->self.controller->bus->name,
662 dev_name(hcd->self.controller),
663 hcd->product_desc);
664 goto done;
665 }
666
667 /* Capability Registers */
668 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
669 &fotg210->caps->hc_capbase));
670 temp = scnprintf(next, size,
671 "bus %s, device %s\n"
672 "%s\n"
673 "EHCI %x.%02x, rh state %s\n",
674 hcd->self.controller->bus->name,
675 dev_name(hcd->self.controller),
676 hcd->product_desc,
677 i >> 8, i & 0x0ff, rh_state_string(fotg210));
678 size -= temp;
679 next += temp;
680
681 /* FIXME interpret both types of params */
682 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
683 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
684 size -= temp;
685 next += temp;
686
687 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
688 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
689 size -= temp;
690 next += temp;
691
692 /* Operational Registers */
693 temp = dbg_status_buf(scratch, sizeof(scratch), label,
694 fotg210_readl(fotg210, &fotg210->regs->status));
695 temp = scnprintf(next, size, fmt, temp, scratch);
696 size -= temp;
697 next += temp;
698
699 temp = dbg_command_buf(scratch, sizeof(scratch), label,
700 fotg210_readl(fotg210, &fotg210->regs->command));
701 temp = scnprintf(next, size, fmt, temp, scratch);
702 size -= temp;
703 next += temp;
704
705 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
706 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
707 temp = scnprintf(next, size, fmt, temp, scratch);
708 size -= temp;
709 next += temp;
710
711 temp = scnprintf(next, size, "uframe %04x\n",
712 fotg210_read_frame_index(fotg210));
713 size -= temp;
714 next += temp;
715
716 if (fotg210->async_unlink) {
717 temp = scnprintf(next, size, "async unlink qh %p\n",
718 fotg210->async_unlink);
719 size -= temp;
720 next += temp;
721 }
722
723 #ifdef FOTG210_STATS
724 temp = scnprintf(next, size,
725 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
726 fotg210->stats.normal, fotg210->stats.error,
727 fotg210->stats.iaa, fotg210->stats.lost_iaa);
728 size -= temp;
729 next += temp;
730
731 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
732 fotg210->stats.complete, fotg210->stats.unlink);
733 size -= temp;
734 next += temp;
735 #endif
736
737 done:
738 spin_unlock_irqrestore(&fotg210->lock, flags);
739
740 return buf->alloc_size - size;
741 }
742
743 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
745 {
746 struct debug_buffer *buf;
747
748 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
749
750 if (buf) {
751 buf->bus = bus;
752 buf->fill_func = fill_func;
753 mutex_init(&buf->mutex);
754 buf->alloc_size = PAGE_SIZE;
755 }
756
757 return buf;
758 }
759
fill_buffer(struct debug_buffer * buf)760 static int fill_buffer(struct debug_buffer *buf)
761 {
762 int ret = 0;
763
764 if (!buf->output_buf)
765 buf->output_buf = vmalloc(buf->alloc_size);
766
767 if (!buf->output_buf) {
768 ret = -ENOMEM;
769 goto out;
770 }
771
772 ret = buf->fill_func(buf);
773
774 if (ret >= 0) {
775 buf->count = ret;
776 ret = 0;
777 }
778
779 out:
780 return ret;
781 }
782
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)783 static ssize_t debug_output(struct file *file, char __user *user_buf,
784 size_t len, loff_t *offset)
785 {
786 struct debug_buffer *buf = file->private_data;
787 int ret = 0;
788
789 mutex_lock(&buf->mutex);
790 if (buf->count == 0) {
791 ret = fill_buffer(buf);
792 if (ret != 0) {
793 mutex_unlock(&buf->mutex);
794 goto out;
795 }
796 }
797 mutex_unlock(&buf->mutex);
798
799 ret = simple_read_from_buffer(user_buf, len, offset,
800 buf->output_buf, buf->count);
801
802 out:
803 return ret;
804
805 }
806
debug_close(struct inode * inode,struct file * file)807 static int debug_close(struct inode *inode, struct file *file)
808 {
809 struct debug_buffer *buf = file->private_data;
810
811 if (buf) {
812 vfree(buf->output_buf);
813 kfree(buf);
814 }
815
816 return 0;
817 }
debug_async_open(struct inode * inode,struct file * file)818 static int debug_async_open(struct inode *inode, struct file *file)
819 {
820 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
821
822 return file->private_data ? 0 : -ENOMEM;
823 }
824
debug_periodic_open(struct inode * inode,struct file * file)825 static int debug_periodic_open(struct inode *inode, struct file *file)
826 {
827 struct debug_buffer *buf;
828
829 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
830 if (!buf)
831 return -ENOMEM;
832
833 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
834 file->private_data = buf;
835 return 0;
836 }
837
debug_registers_open(struct inode * inode,struct file * file)838 static int debug_registers_open(struct inode *inode, struct file *file)
839 {
840 file->private_data = alloc_buffer(inode->i_private,
841 fill_registers_buffer);
842
843 return file->private_data ? 0 : -ENOMEM;
844 }
845
create_debug_files(struct fotg210_hcd * fotg210)846 static inline void create_debug_files(struct fotg210_hcd *fotg210)
847 {
848 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
849 struct dentry *root;
850
851 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
852 fotg210->debug_dir = root;
853
854 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
855 debugfs_create_file("periodic", S_IRUGO, root, bus,
856 &debug_periodic_fops);
857 debugfs_create_file("registers", S_IRUGO, root, bus,
858 &debug_registers_fops);
859 }
860
remove_debug_files(struct fotg210_hcd * fotg210)861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
862 {
863 debugfs_remove_recursive(fotg210->debug_dir);
864 }
865
866 /* handshake - spin reading hc until handshake completes or fails
867 * @ptr: address of hc register to be read
868 * @mask: bits to look at in result of read
869 * @done: value of those bits when handshake succeeds
870 * @usec: timeout in microseconds
871 *
872 * Returns negative errno, or zero on success
873 *
874 * Success happens when the "mask" bits have the specified value (hardware
875 * handshake done). There are two failure modes: "usec" have passed (major
876 * hardware flakeout), or the register reads as all-ones (hardware removed).
877 *
878 * That last failure should_only happen in cases like physical cardbus eject
879 * before driver shutdown. But it also seems to be caused by bugs in cardbus
880 * bridge shutdown: shutting down the bridge before the devices using it.
881 */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)882 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
883 u32 mask, u32 done, int usec)
884 {
885 u32 result;
886
887 do {
888 result = fotg210_readl(fotg210, ptr);
889 if (result == ~(u32)0) /* card removed */
890 return -ENODEV;
891 result &= mask;
892 if (result == done)
893 return 0;
894 udelay(1);
895 usec--;
896 } while (usec > 0);
897 return -ETIMEDOUT;
898 }
899
900 /* Force HC to halt state from unknown (EHCI spec section 2.3).
901 * Must be called with interrupts enabled and the lock not held.
902 */
fotg210_halt(struct fotg210_hcd * fotg210)903 static int fotg210_halt(struct fotg210_hcd *fotg210)
904 {
905 u32 temp;
906
907 spin_lock_irq(&fotg210->lock);
908
909 /* disable any irqs left enabled by previous code */
910 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
911
912 /*
913 * This routine gets called during probe before fotg210->command
914 * has been initialized, so we can't rely on its value.
915 */
916 fotg210->command &= ~CMD_RUN;
917 temp = fotg210_readl(fotg210, &fotg210->regs->command);
918 temp &= ~(CMD_RUN | CMD_IAAD);
919 fotg210_writel(fotg210, temp, &fotg210->regs->command);
920
921 spin_unlock_irq(&fotg210->lock);
922 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
923
924 return handshake(fotg210, &fotg210->regs->status,
925 STS_HALT, STS_HALT, 16 * 125);
926 }
927
928 /* Reset a non-running (STS_HALT == 1) controller.
929 * Must be called with interrupts enabled and the lock not held.
930 */
fotg210_reset(struct fotg210_hcd * fotg210)931 static int fotg210_reset(struct fotg210_hcd *fotg210)
932 {
933 int retval;
934 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
935
936 /* If the EHCI debug controller is active, special care must be
937 * taken before and after a host controller reset
938 */
939 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
940 fotg210->debug = NULL;
941
942 command |= CMD_RESET;
943 dbg_cmd(fotg210, "reset", command);
944 fotg210_writel(fotg210, command, &fotg210->regs->command);
945 fotg210->rh_state = FOTG210_RH_HALTED;
946 fotg210->next_statechange = jiffies;
947 retval = handshake(fotg210, &fotg210->regs->command,
948 CMD_RESET, 0, 250 * 1000);
949
950 if (retval)
951 return retval;
952
953 if (fotg210->debug)
954 dbgp_external_startup(fotg210_to_hcd(fotg210));
955
956 fotg210->port_c_suspend = fotg210->suspended_ports =
957 fotg210->resuming_ports = 0;
958 return retval;
959 }
960
961 /* Idle the controller (turn off the schedules).
962 * Must be called with interrupts enabled and the lock not held.
963 */
fotg210_quiesce(struct fotg210_hcd * fotg210)964 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
965 {
966 u32 temp;
967
968 if (fotg210->rh_state != FOTG210_RH_RUNNING)
969 return;
970
971 /* wait for any schedule enables/disables to take effect */
972 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
973 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
974 16 * 125);
975
976 /* then disable anything that's still active */
977 spin_lock_irq(&fotg210->lock);
978 fotg210->command &= ~(CMD_ASE | CMD_PSE);
979 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
980 spin_unlock_irq(&fotg210->lock);
981
982 /* hardware can take 16 microframes to turn off ... */
983 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
984 16 * 125);
985 }
986
987 static void end_unlink_async(struct fotg210_hcd *fotg210);
988 static void unlink_empty_async(struct fotg210_hcd *fotg210);
989 static void fotg210_work(struct fotg210_hcd *fotg210);
990 static void start_unlink_intr(struct fotg210_hcd *fotg210,
991 struct fotg210_qh *qh);
992 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
993
994 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)995 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
996 {
997 fotg210->command |= bit;
998 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
999
1000 /* unblock posted write */
1001 fotg210_readl(fotg210, &fotg210->regs->command);
1002 }
1003
1004 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1005 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006 {
1007 fotg210->command &= ~bit;
1008 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009
1010 /* unblock posted write */
1011 fotg210_readl(fotg210, &fotg210->regs->command);
1012 }
1013
1014 /* EHCI timer support... Now using hrtimers.
1015 *
1016 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1017 * the timer routine runs, it checks each possible event; events that are
1018 * currently enabled and whose expiration time has passed get handled.
1019 * The set of enabled events is stored as a collection of bitflags in
1020 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021 * increasing delay values (ranging between 1 ms and 100 ms).
1022 *
1023 * Rather than implementing a sorted list or tree of all pending events,
1024 * we keep track only of the lowest-numbered pending event, in
1025 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1026 * expiration time is set to the timeout value for this event.
1027 *
1028 * As a result, events might not get handled right away; the actual delay
1029 * could be anywhere up to twice the requested delay. This doesn't
1030 * matter, because none of the events are especially time-critical. The
1031 * ones that matter most all have a delay of 1 ms, so they will be
1032 * handled after 2 ms at most, which is okay. In addition to this, we
1033 * allow for an expiration range of 1 ms.
1034 */
1035
1036 /* Delay lengths for the hrtimer event types.
1037 * Keep this list sorted by delay length, in the same order as
1038 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 */
1040 static unsigned event_delays_ns[] = {
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1042 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1043 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1044 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1045 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1046 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1048 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1050 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1051 };
1052
1053 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1054 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1055 bool resched)
1056 {
1057 ktime_t *timeout = &fotg210->hr_timeouts[event];
1058
1059 if (resched)
1060 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061 fotg210->enabled_hrtimer_events |= (1 << event);
1062
1063 /* Track only the lowest-numbered pending event */
1064 if (event < fotg210->next_hrtimer_event) {
1065 fotg210->next_hrtimer_event = event;
1066 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1068 }
1069 }
1070
1071
1072 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1073 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074 {
1075 unsigned actual, want;
1076
1077 /* Don't enable anything if the controller isn't running (e.g., died) */
1078 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1079 return;
1080
1081 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083
1084 if (want != actual) {
1085
1086 /* Poll again later, but give up after about 20 ms */
1087 if (fotg210->ASS_poll_count++ < 20) {
1088 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1089 true);
1090 return;
1091 }
1092 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093 want, actual);
1094 }
1095 fotg210->ASS_poll_count = 0;
1096
1097 /* The status is up-to-date; restart or stop the schedule as needed */
1098 if (want == 0) { /* Stopped */
1099 if (fotg210->async_count > 0)
1100 fotg210_set_command_bit(fotg210, CMD_ASE);
1101
1102 } else { /* Running */
1103 if (fotg210->async_count == 0) {
1104
1105 /* Turn off the schedule after a while */
1106 fotg210_enable_event(fotg210,
1107 FOTG210_HRTIMER_DISABLE_ASYNC,
1108 true);
1109 }
1110 }
1111 }
1112
1113 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1114 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115 {
1116 fotg210_clear_command_bit(fotg210, CMD_ASE);
1117 }
1118
1119
1120 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1121 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122 {
1123 unsigned actual, want;
1124
1125 /* Don't do anything if the controller isn't running (e.g., died) */
1126 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1127 return;
1128
1129 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131
1132 if (want != actual) {
1133
1134 /* Poll again later, but give up after about 20 ms */
1135 if (fotg210->PSS_poll_count++ < 20) {
1136 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1137 true);
1138 return;
1139 }
1140 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141 want, actual);
1142 }
1143 fotg210->PSS_poll_count = 0;
1144
1145 /* The status is up-to-date; restart or stop the schedule as needed */
1146 if (want == 0) { /* Stopped */
1147 if (fotg210->periodic_count > 0)
1148 fotg210_set_command_bit(fotg210, CMD_PSE);
1149
1150 } else { /* Running */
1151 if (fotg210->periodic_count == 0) {
1152
1153 /* Turn off the schedule after a while */
1154 fotg210_enable_event(fotg210,
1155 FOTG210_HRTIMER_DISABLE_PERIODIC,
1156 true);
1157 }
1158 }
1159 }
1160
1161 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1162 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163 {
1164 fotg210_clear_command_bit(fotg210, CMD_PSE);
1165 }
1166
1167
1168 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1169 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170 {
1171 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172
1173 /* Give up after a few milliseconds */
1174 if (fotg210->died_poll_count++ < 5) {
1175 /* Try again later */
1176 fotg210_enable_event(fotg210,
1177 FOTG210_HRTIMER_POLL_DEAD, true);
1178 return;
1179 }
1180 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181 }
1182
1183 /* Clean up the mess */
1184 fotg210->rh_state = FOTG210_RH_HALTED;
1185 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186 fotg210_work(fotg210);
1187 end_unlink_async(fotg210);
1188
1189 /* Not in process context, so don't try to reset the controller */
1190 }
1191
1192
1193 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1194 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195 {
1196 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197
1198 /*
1199 * Process all the QHs on the intr_unlink list that were added
1200 * before the current unlink cycle began. The list is in
1201 * temporal order, so stop when we reach the first entry in the
1202 * current cycle. But if the root hub isn't running then
1203 * process all the QHs on the list.
1204 */
1205 fotg210->intr_unlinking = true;
1206 while (fotg210->intr_unlink) {
1207 struct fotg210_qh *qh = fotg210->intr_unlink;
1208
1209 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210 break;
1211 fotg210->intr_unlink = qh->unlink_next;
1212 qh->unlink_next = NULL;
1213 end_unlink_intr(fotg210, qh);
1214 }
1215
1216 /* Handle remaining entries later */
1217 if (fotg210->intr_unlink) {
1218 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219 true);
1220 ++fotg210->intr_unlink_cycle;
1221 }
1222 fotg210->intr_unlinking = false;
1223 }
1224
1225
1226 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1227 static void start_free_itds(struct fotg210_hcd *fotg210)
1228 {
1229 if (!(fotg210->enabled_hrtimer_events &
1230 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231 fotg210->last_itd_to_free = list_entry(
1232 fotg210->cached_itd_list.prev,
1233 struct fotg210_itd, itd_list);
1234 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1235 }
1236 }
1237
1238 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1239 static void end_free_itds(struct fotg210_hcd *fotg210)
1240 {
1241 struct fotg210_itd *itd, *n;
1242
1243 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244 fotg210->last_itd_to_free = NULL;
1245
1246 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247 list_del(&itd->itd_list);
1248 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249 if (itd == fotg210->last_itd_to_free)
1250 break;
1251 }
1252
1253 if (!list_empty(&fotg210->cached_itd_list))
1254 start_free_itds(fotg210);
1255 }
1256
1257
1258 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1259 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260 {
1261 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1262 return;
1263
1264 /*
1265 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266 * So we need this watchdog, but must protect it against both
1267 * (a) SMP races against real IAA firing and retriggering, and
1268 * (b) clean HC shutdown, when IAA watchdog was pending.
1269 */
1270 if (fotg210->async_iaa) {
1271 u32 cmd, status;
1272
1273 /* If we get here, IAA is *REALLY* late. It's barely
1274 * conceivable that the system is so busy that CMD_IAAD
1275 * is still legitimately set, so let's be sure it's
1276 * clear before we read STS_IAA. (The HC should clear
1277 * CMD_IAAD when it sets STS_IAA.)
1278 */
1279 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280
1281 /*
1282 * If IAA is set here it either legitimately triggered
1283 * after the watchdog timer expired (_way_ late, so we'll
1284 * still count it as lost) ... or a silicon erratum:
1285 * - VIA seems to set IAA without triggering the IRQ;
1286 * - IAAD potentially cleared without setting IAA.
1287 */
1288 status = fotg210_readl(fotg210, &fotg210->regs->status);
1289 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290 INCR(fotg210->stats.lost_iaa);
1291 fotg210_writel(fotg210, STS_IAA,
1292 &fotg210->regs->status);
1293 }
1294
1295 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296 status, cmd);
1297 end_unlink_async(fotg210);
1298 }
1299 }
1300
1301
1302 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1303 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304 {
1305 /* Not needed if the controller isn't running or it's already enabled */
1306 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307 (fotg210->enabled_hrtimer_events &
1308 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1309 return;
1310
1311 /*
1312 * Isochronous transfers always need the watchdog.
1313 * For other sorts we use it only if the flag is set.
1314 */
1315 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316 fotg210->async_count + fotg210->intr_count > 0))
1317 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1318 true);
1319 }
1320
1321
1322 /* Handler functions for the hrtimer event types.
1323 * Keep this array in the same order as the event types indexed by
1324 * enum fotg210_hrtimer_event in fotg210.h.
1325 */
1326 static void (*event_handlers[])(struct fotg210_hcd *) = {
1327 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1328 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1329 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1330 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1331 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1332 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1334 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1336 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1337 };
1338
fotg210_hrtimer_func(struct hrtimer * t)1339 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340 {
1341 struct fotg210_hcd *fotg210 =
1342 container_of(t, struct fotg210_hcd, hrtimer);
1343 ktime_t now;
1344 unsigned long events;
1345 unsigned long flags;
1346 unsigned e;
1347
1348 spin_lock_irqsave(&fotg210->lock, flags);
1349
1350 events = fotg210->enabled_hrtimer_events;
1351 fotg210->enabled_hrtimer_events = 0;
1352 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353
1354 /*
1355 * Check each pending event. If its time has expired, handle
1356 * the event; otherwise re-enable it.
1357 */
1358 now = ktime_get();
1359 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361 event_handlers[e](fotg210);
1362 else
1363 fotg210_enable_event(fotg210, e, false);
1364 }
1365
1366 spin_unlock_irqrestore(&fotg210->lock, flags);
1367 return HRTIMER_NORESTART;
1368 }
1369
1370 #define fotg210_bus_suspend NULL
1371 #define fotg210_bus_resume NULL
1372
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1373 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374 u32 __iomem *status_reg, int port_status)
1375 {
1376 if (!(port_status & PORT_CONNECT))
1377 return port_status;
1378
1379 /* if reset finished and it's still not enabled -- handoff */
1380 if (!(port_status & PORT_PE))
1381 /* with integrated TT, there's nobody to hand it to! */
1382 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1383 index + 1);
1384 else
1385 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1386 index + 1);
1387
1388 return port_status;
1389 }
1390
1391
1392 /* build "status change" packet (one or two bytes) from HC registers */
1393
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1394 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395 {
1396 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1397 u32 temp, status;
1398 u32 mask;
1399 int retval = 1;
1400 unsigned long flags;
1401
1402 /* init status to no-changes */
1403 buf[0] = 0;
1404
1405 /* Inform the core about resumes-in-progress by returning
1406 * a non-zero value even if there are no status changes.
1407 */
1408 status = fotg210->resuming_ports;
1409
1410 mask = PORT_CSC | PORT_PEC;
1411 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412
1413 /* no hub change reports (bit 0) for now (power, ...) */
1414
1415 /* port N changes (bit N)? */
1416 spin_lock_irqsave(&fotg210->lock, flags);
1417
1418 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419
1420 /*
1421 * Return status information even for ports with OWNER set.
1422 * Otherwise hub_wq wouldn't see the disconnect event when a
1423 * high-speed device is switched over to the companion
1424 * controller by the user.
1425 */
1426
1427 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428 (fotg210->reset_done[0] &&
1429 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1430 buf[0] |= 1 << 1;
1431 status = STS_PCD;
1432 }
1433 /* FIXME autosuspend idle root hubs */
1434 spin_unlock_irqrestore(&fotg210->lock, flags);
1435 return status ? retval : 0;
1436 }
1437
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1438 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439 struct usb_hub_descriptor *desc)
1440 {
1441 int ports = HCS_N_PORTS(fotg210->hcs_params);
1442 u16 temp;
1443
1444 desc->bDescriptorType = USB_DT_HUB;
1445 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1446 desc->bHubContrCurrent = 0;
1447
1448 desc->bNbrPorts = ports;
1449 temp = 1 + (ports / 8);
1450 desc->bDescLength = 7 + 2 * temp;
1451
1452 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455
1456 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1457 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1458 desc->wHubCharacteristics = cpu_to_le16(temp);
1459 }
1460
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1461 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462 u16 wIndex, char *buf, u16 wLength)
1463 {
1464 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465 int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 u32 __iomem *status_reg = &fotg210->regs->port_status;
1467 u32 temp, temp1, status;
1468 unsigned long flags;
1469 int retval = 0;
1470 unsigned selector;
1471
1472 /*
1473 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475 * (track current state ourselves) ... blink for diagnostics,
1476 * power, "this is the one", etc. EHCI spec supports this.
1477 */
1478
1479 spin_lock_irqsave(&fotg210->lock, flags);
1480 switch (typeReq) {
1481 case ClearHubFeature:
1482 switch (wValue) {
1483 case C_HUB_LOCAL_POWER:
1484 case C_HUB_OVER_CURRENT:
1485 /* no hub-wide feature/status flags */
1486 break;
1487 default:
1488 goto error;
1489 }
1490 break;
1491 case ClearPortFeature:
1492 if (!wIndex || wIndex > ports)
1493 goto error;
1494 wIndex--;
1495 temp = fotg210_readl(fotg210, status_reg);
1496 temp &= ~PORT_RWC_BITS;
1497
1498 /*
1499 * Even if OWNER is set, so the port is owned by the
1500 * companion controller, hub_wq needs to be able to clear
1501 * the port-change status bits (especially
1502 * USB_PORT_STAT_C_CONNECTION).
1503 */
1504
1505 switch (wValue) {
1506 case USB_PORT_FEAT_ENABLE:
1507 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508 break;
1509 case USB_PORT_FEAT_C_ENABLE:
1510 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511 break;
1512 case USB_PORT_FEAT_SUSPEND:
1513 if (temp & PORT_RESET)
1514 goto error;
1515 if (!(temp & PORT_SUSPEND))
1516 break;
1517 if ((temp & PORT_PE) == 0)
1518 goto error;
1519
1520 /* resume signaling for 20 msec */
1521 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522 fotg210->reset_done[wIndex] = jiffies
1523 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524 break;
1525 case USB_PORT_FEAT_C_SUSPEND:
1526 clear_bit(wIndex, &fotg210->port_c_suspend);
1527 break;
1528 case USB_PORT_FEAT_C_CONNECTION:
1529 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530 break;
1531 case USB_PORT_FEAT_C_OVER_CURRENT:
1532 fotg210_writel(fotg210, temp | OTGISR_OVC,
1533 &fotg210->regs->otgisr);
1534 break;
1535 case USB_PORT_FEAT_C_RESET:
1536 /* GetPortStatus clears reset */
1537 break;
1538 default:
1539 goto error;
1540 }
1541 fotg210_readl(fotg210, &fotg210->regs->command);
1542 break;
1543 case GetHubDescriptor:
1544 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1545 buf);
1546 break;
1547 case GetHubStatus:
1548 /* no hub-wide feature/status flags */
1549 memset(buf, 0, 4);
1550 /*cpu_to_le32s ((u32 *) buf); */
1551 break;
1552 case GetPortStatus:
1553 if (!wIndex || wIndex > ports)
1554 goto error;
1555 wIndex--;
1556 status = 0;
1557 temp = fotg210_readl(fotg210, status_reg);
1558
1559 /* wPortChange bits */
1560 if (temp & PORT_CSC)
1561 status |= USB_PORT_STAT_C_CONNECTION << 16;
1562 if (temp & PORT_PEC)
1563 status |= USB_PORT_STAT_C_ENABLE << 16;
1564
1565 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566 if (temp1 & OTGISR_OVC)
1567 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568
1569 /* whoever resumes must GetPortStatus to complete it!! */
1570 if (temp & PORT_RESUME) {
1571
1572 /* Remote Wakeup received? */
1573 if (!fotg210->reset_done[wIndex]) {
1574 /* resume signaling for 20 msec */
1575 fotg210->reset_done[wIndex] = jiffies
1576 + msecs_to_jiffies(20);
1577 /* check the port again */
1578 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579 fotg210->reset_done[wIndex]);
1580 }
1581
1582 /* resume completed? */
1583 else if (time_after_eq(jiffies,
1584 fotg210->reset_done[wIndex])) {
1585 clear_bit(wIndex, &fotg210->suspended_ports);
1586 set_bit(wIndex, &fotg210->port_c_suspend);
1587 fotg210->reset_done[wIndex] = 0;
1588
1589 /* stop resume signaling */
1590 temp = fotg210_readl(fotg210, status_reg);
1591 fotg210_writel(fotg210, temp &
1592 ~(PORT_RWC_BITS | PORT_RESUME),
1593 status_reg);
1594 clear_bit(wIndex, &fotg210->resuming_ports);
1595 retval = handshake(fotg210, status_reg,
1596 PORT_RESUME, 0, 2000);/* 2ms */
1597 if (retval != 0) {
1598 fotg210_err(fotg210,
1599 "port %d resume error %d\n",
1600 wIndex + 1, retval);
1601 goto error;
1602 }
1603 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1604 }
1605 }
1606
1607 /* whoever resets must GetPortStatus to complete it!! */
1608 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609 fotg210->reset_done[wIndex])) {
1610 status |= USB_PORT_STAT_C_RESET << 16;
1611 fotg210->reset_done[wIndex] = 0;
1612 clear_bit(wIndex, &fotg210->resuming_ports);
1613
1614 /* force reset to complete */
1615 fotg210_writel(fotg210,
1616 temp & ~(PORT_RWC_BITS | PORT_RESET),
1617 status_reg);
1618 /* REVISIT: some hardware needs 550+ usec to clear
1619 * this bit; seems too long to spin routinely...
1620 */
1621 retval = handshake(fotg210, status_reg,
1622 PORT_RESET, 0, 1000);
1623 if (retval != 0) {
1624 fotg210_err(fotg210, "port %d reset error %d\n",
1625 wIndex + 1, retval);
1626 goto error;
1627 }
1628
1629 /* see what we found out */
1630 temp = check_reset_complete(fotg210, wIndex, status_reg,
1631 fotg210_readl(fotg210, status_reg));
1632
1633 /* restart schedule */
1634 fotg210->command |= CMD_RUN;
1635 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636 }
1637
1638 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1639 fotg210->reset_done[wIndex] = 0;
1640 clear_bit(wIndex, &fotg210->resuming_ports);
1641 }
1642
1643 /* transfer dedicated ports to the companion hc */
1644 if ((temp & PORT_CONNECT) &&
1645 test_bit(wIndex, &fotg210->companion_ports)) {
1646 temp &= ~PORT_RWC_BITS;
1647 fotg210_writel(fotg210, temp, status_reg);
1648 fotg210_dbg(fotg210, "port %d --> companion\n",
1649 wIndex + 1);
1650 temp = fotg210_readl(fotg210, status_reg);
1651 }
1652
1653 /*
1654 * Even if OWNER is set, there's no harm letting hub_wq
1655 * see the wPortStatus values (they should all be 0 except
1656 * for PORT_POWER anyway).
1657 */
1658
1659 if (temp & PORT_CONNECT) {
1660 status |= USB_PORT_STAT_CONNECTION;
1661 status |= fotg210_port_speed(fotg210, temp);
1662 }
1663 if (temp & PORT_PE)
1664 status |= USB_PORT_STAT_ENABLE;
1665
1666 /* maybe the port was unsuspended without our knowledge */
1667 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1668 status |= USB_PORT_STAT_SUSPEND;
1669 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1670 clear_bit(wIndex, &fotg210->suspended_ports);
1671 clear_bit(wIndex, &fotg210->resuming_ports);
1672 fotg210->reset_done[wIndex] = 0;
1673 if (temp & PORT_PE)
1674 set_bit(wIndex, &fotg210->port_c_suspend);
1675 }
1676
1677 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1678 if (temp1 & OTGISR_OVC)
1679 status |= USB_PORT_STAT_OVERCURRENT;
1680 if (temp & PORT_RESET)
1681 status |= USB_PORT_STAT_RESET;
1682 if (test_bit(wIndex, &fotg210->port_c_suspend))
1683 status |= USB_PORT_STAT_C_SUSPEND << 16;
1684
1685 if (status & ~0xffff) /* only if wPortChange is interesting */
1686 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1687 put_unaligned_le32(status, buf);
1688 break;
1689 case SetHubFeature:
1690 switch (wValue) {
1691 case C_HUB_LOCAL_POWER:
1692 case C_HUB_OVER_CURRENT:
1693 /* no hub-wide feature/status flags */
1694 break;
1695 default:
1696 goto error;
1697 }
1698 break;
1699 case SetPortFeature:
1700 selector = wIndex >> 8;
1701 wIndex &= 0xff;
1702
1703 if (!wIndex || wIndex > ports)
1704 goto error;
1705 wIndex--;
1706 temp = fotg210_readl(fotg210, status_reg);
1707 temp &= ~PORT_RWC_BITS;
1708 switch (wValue) {
1709 case USB_PORT_FEAT_SUSPEND:
1710 if ((temp & PORT_PE) == 0
1711 || (temp & PORT_RESET) != 0)
1712 goto error;
1713
1714 /* After above check the port must be connected.
1715 * Set appropriate bit thus could put phy into low power
1716 * mode if we have hostpc feature
1717 */
1718 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719 status_reg);
1720 set_bit(wIndex, &fotg210->suspended_ports);
1721 break;
1722 case USB_PORT_FEAT_RESET:
1723 if (temp & PORT_RESUME)
1724 goto error;
1725 /* line status bits may report this as low speed,
1726 * which can be fine if this root hub has a
1727 * transaction translator built in.
1728 */
1729 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730 temp |= PORT_RESET;
1731 temp &= ~PORT_PE;
1732
1733 /*
1734 * caller must wait, then call GetPortStatus
1735 * usb 2.0 spec says 50 ms resets on root
1736 */
1737 fotg210->reset_done[wIndex] = jiffies
1738 + msecs_to_jiffies(50);
1739 fotg210_writel(fotg210, temp, status_reg);
1740 break;
1741
1742 /* For downstream facing ports (these): one hub port is put
1743 * into test mode according to USB2 11.24.2.13, then the hub
1744 * must be reset (which for root hub now means rmmod+modprobe,
1745 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1746 * about the EHCI-specific stuff.
1747 */
1748 case USB_PORT_FEAT_TEST:
1749 if (!selector || selector > 5)
1750 goto error;
1751 spin_unlock_irqrestore(&fotg210->lock, flags);
1752 fotg210_quiesce(fotg210);
1753 spin_lock_irqsave(&fotg210->lock, flags);
1754
1755 /* Put all enabled ports into suspend */
1756 temp = fotg210_readl(fotg210, status_reg) &
1757 ~PORT_RWC_BITS;
1758 if (temp & PORT_PE)
1759 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1760 status_reg);
1761
1762 spin_unlock_irqrestore(&fotg210->lock, flags);
1763 fotg210_halt(fotg210);
1764 spin_lock_irqsave(&fotg210->lock, flags);
1765
1766 temp = fotg210_readl(fotg210, status_reg);
1767 temp |= selector << 16;
1768 fotg210_writel(fotg210, temp, status_reg);
1769 break;
1770
1771 default:
1772 goto error;
1773 }
1774 fotg210_readl(fotg210, &fotg210->regs->command);
1775 break;
1776
1777 default:
1778 error:
1779 /* "stall" on error */
1780 retval = -EPIPE;
1781 }
1782 spin_unlock_irqrestore(&fotg210->lock, flags);
1783 return retval;
1784 }
1785
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1786 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1787 int portnum)
1788 {
1789 return;
1790 }
1791
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1792 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1793 int portnum)
1794 {
1795 return 0;
1796 }
1797
1798 /* There's basically three types of memory:
1799 * - data used only by the HCD ... kmalloc is fine
1800 * - async and periodic schedules, shared by HC and HCD ... these
1801 * need to use dma_pool or dma_alloc_coherent
1802 * - driver buffers, read/written by HC ... single shot DMA mapped
1803 *
1804 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1805 * No memory seen by this driver is pageable.
1806 */
1807
1808 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1809 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1810 struct fotg210_qtd *qtd, dma_addr_t dma)
1811 {
1812 memset(qtd, 0, sizeof(*qtd));
1813 qtd->qtd_dma = dma;
1814 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1815 qtd->hw_next = FOTG210_LIST_END(fotg210);
1816 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1817 INIT_LIST_HEAD(&qtd->qtd_list);
1818 }
1819
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1820 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1821 gfp_t flags)
1822 {
1823 struct fotg210_qtd *qtd;
1824 dma_addr_t dma;
1825
1826 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827 if (qtd != NULL)
1828 fotg210_qtd_init(fotg210, qtd, dma);
1829
1830 return qtd;
1831 }
1832
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1833 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1834 struct fotg210_qtd *qtd)
1835 {
1836 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1837 }
1838
1839
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1840 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841 {
1842 /* clean qtds first, and know this is not linked */
1843 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1844 fotg210_dbg(fotg210, "unused qh not empty!\n");
1845 BUG();
1846 }
1847 if (qh->dummy)
1848 fotg210_qtd_free(fotg210, qh->dummy);
1849 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1850 kfree(qh);
1851 }
1852
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1853 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1854 gfp_t flags)
1855 {
1856 struct fotg210_qh *qh;
1857 dma_addr_t dma;
1858
1859 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1860 if (!qh)
1861 goto done;
1862 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863 if (!qh->hw)
1864 goto fail;
1865 qh->qh_dma = dma;
1866 INIT_LIST_HEAD(&qh->qtd_list);
1867
1868 /* dummy td enables safe urb queuing */
1869 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870 if (qh->dummy == NULL) {
1871 fotg210_dbg(fotg210, "no dummy td\n");
1872 goto fail1;
1873 }
1874 done:
1875 return qh;
1876 fail1:
1877 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878 fail:
1879 kfree(qh);
1880 return NULL;
1881 }
1882
1883 /* The queue heads and transfer descriptors are managed from pools tied
1884 * to each of the "per device" structures.
1885 * This is the initialisation and cleanup code.
1886 */
1887
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1888 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889 {
1890 if (fotg210->async)
1891 qh_destroy(fotg210, fotg210->async);
1892 fotg210->async = NULL;
1893
1894 if (fotg210->dummy)
1895 qh_destroy(fotg210, fotg210->dummy);
1896 fotg210->dummy = NULL;
1897
1898 /* DMA consistent memory and pools */
1899 dma_pool_destroy(fotg210->qtd_pool);
1900 fotg210->qtd_pool = NULL;
1901
1902 dma_pool_destroy(fotg210->qh_pool);
1903 fotg210->qh_pool = NULL;
1904
1905 dma_pool_destroy(fotg210->itd_pool);
1906 fotg210->itd_pool = NULL;
1907
1908 if (fotg210->periodic)
1909 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910 fotg210->periodic_size * sizeof(u32),
1911 fotg210->periodic, fotg210->periodic_dma);
1912 fotg210->periodic = NULL;
1913
1914 /* shadow periodic table */
1915 kfree(fotg210->pshadow);
1916 fotg210->pshadow = NULL;
1917 }
1918
1919 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1920 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921 {
1922 int i;
1923
1924 /* QTDs for control/bulk/intr transfers */
1925 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926 fotg210_to_hcd(fotg210)->self.controller,
1927 sizeof(struct fotg210_qtd),
1928 32 /* byte alignment (for hw parts) */,
1929 4096 /* can't cross 4K */);
1930 if (!fotg210->qtd_pool)
1931 goto fail;
1932
1933 /* QHs for control/bulk/intr transfers */
1934 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935 fotg210_to_hcd(fotg210)->self.controller,
1936 sizeof(struct fotg210_qh_hw),
1937 32 /* byte alignment (for hw parts) */,
1938 4096 /* can't cross 4K */);
1939 if (!fotg210->qh_pool)
1940 goto fail;
1941
1942 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943 if (!fotg210->async)
1944 goto fail;
1945
1946 /* ITD for high speed ISO transfers */
1947 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948 fotg210_to_hcd(fotg210)->self.controller,
1949 sizeof(struct fotg210_itd),
1950 64 /* byte alignment (for hw parts) */,
1951 4096 /* can't cross 4K */);
1952 if (!fotg210->itd_pool)
1953 goto fail;
1954
1955 /* Hardware periodic table */
1956 fotg210->periodic = (__le32 *)
1957 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958 fotg210->periodic_size * sizeof(__le32),
1959 &fotg210->periodic_dma, 0);
1960 if (fotg210->periodic == NULL)
1961 goto fail;
1962
1963 for (i = 0; i < fotg210->periodic_size; i++)
1964 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965
1966 /* software shadow of hardware table */
1967 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968 flags);
1969 if (fotg210->pshadow != NULL)
1970 return 0;
1971
1972 fail:
1973 fotg210_dbg(fotg210, "couldn't init memory\n");
1974 fotg210_mem_cleanup(fotg210);
1975 return -ENOMEM;
1976 }
1977 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1978 *
1979 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1980 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981 * buffers needed for the larger number). We use one QH per endpoint, queue
1982 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1983 *
1984 * ISO traffic uses "ISO TD" (itd) records, and (along with
1985 * interrupts) needs careful scheduling. Performance improvements can be
1986 * an ongoing challenge. That's in "ehci-sched.c".
1987 *
1988 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990 * (b) special fields in qh entries or (c) split iso entries. TTs will
1991 * buffer low/full speed data so the host collects it at high speed.
1992 */
1993
1994 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1995 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996 dma_addr_t buf, size_t len, int token, int maxpacket)
1997 {
1998 int i, count;
1999 u64 addr = buf;
2000
2001 /* one buffer entry per 4K ... first might be short or unaligned */
2002 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2005 if (likely(len < count)) /* ... iff needed */
2006 count = len;
2007 else {
2008 buf += 0x1000;
2009 buf &= ~0x0fff;
2010
2011 /* per-qtd limit: from 16K to 20K (best alignment) */
2012 for (i = 1; count < len && i < 5; i++) {
2013 addr = buf;
2014 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016 (u32)(addr >> 32));
2017 buf += 0x1000;
2018 if ((count + 0x1000) < len)
2019 count += 0x1000;
2020 else
2021 count = len;
2022 }
2023
2024 /* short packets may only terminate transfers */
2025 if (count != len)
2026 count -= (count % maxpacket);
2027 }
2028 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029 qtd->length = count;
2030
2031 return count;
2032 }
2033
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2034 static inline void qh_update(struct fotg210_hcd *fotg210,
2035 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036 {
2037 struct fotg210_qh_hw *hw = qh->hw;
2038
2039 /* writes to an active overlay are unsafe */
2040 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041
2042 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044
2045 /* Except for control endpoints, we make hardware maintain data
2046 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048 * ever clear it.
2049 */
2050 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051 unsigned is_out, epnum;
2052
2053 is_out = qh->is_out;
2054 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057 usb_settoggle(qh->dev, epnum, is_out, 1);
2058 }
2059 }
2060
2061 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062 }
2063
2064 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2065 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066 * recovery (including urb dequeue) would need software changes to a QH...
2067 */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2068 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069 {
2070 struct fotg210_qtd *qtd;
2071
2072 if (list_empty(&qh->qtd_list))
2073 qtd = qh->dummy;
2074 else {
2075 qtd = list_entry(qh->qtd_list.next,
2076 struct fotg210_qtd, qtd_list);
2077 /*
2078 * first qtd may already be partially processed.
2079 * If we come here during unlink, the QH overlay region
2080 * might have reference to the just unlinked qtd. The
2081 * qtd is updated in qh_completions(). Update the QH
2082 * overlay here.
2083 */
2084 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085 qh->hw->hw_qtd_next = qtd->hw_next;
2086 qtd = NULL;
2087 }
2088 }
2089
2090 if (qtd)
2091 qh_update(fotg210, qh, qtd);
2092 }
2093
2094 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2096 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097 struct usb_host_endpoint *ep)
2098 {
2099 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100 struct fotg210_qh *qh = ep->hcpriv;
2101 unsigned long flags;
2102
2103 spin_lock_irqsave(&fotg210->lock, flags);
2104 qh->clearing_tt = 0;
2105 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106 && fotg210->rh_state == FOTG210_RH_RUNNING)
2107 qh_link_async(fotg210, qh);
2108 spin_unlock_irqrestore(&fotg210->lock, flags);
2109 }
2110
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2111 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112 struct fotg210_qh *qh, struct urb *urb, u32 token)
2113 {
2114
2115 /* If an async split transaction gets an error or is unlinked,
2116 * the TT buffer may be left in an indeterminate state. We
2117 * have to clear the TT buffer.
2118 *
2119 * Note: this routine is never called for Isochronous transfers.
2120 */
2121 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122 struct usb_device *tt = urb->dev->tt->hub;
2123
2124 dev_dbg(&tt->dev,
2125 "clear tt buffer port %d, a%d ep%d t%08x\n",
2126 urb->dev->ttport, urb->dev->devnum,
2127 usb_pipeendpoint(urb->pipe), token);
2128
2129 if (urb->dev->tt->hub !=
2130 fotg210_to_hcd(fotg210)->self.root_hub) {
2131 if (usb_hub_clear_tt_buffer(urb) == 0)
2132 qh->clearing_tt = 1;
2133 }
2134 }
2135 }
2136
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2137 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138 size_t length, u32 token)
2139 {
2140 int status = -EINPROGRESS;
2141
2142 /* count IN/OUT bytes, not SETUP (even short packets) */
2143 if (likely(QTD_PID(token) != 2))
2144 urb->actual_length += length - QTD_LENGTH(token);
2145
2146 /* don't modify error codes */
2147 if (unlikely(urb->unlinked))
2148 return status;
2149
2150 /* force cleanup after short read; not always an error */
2151 if (unlikely(IS_SHORT_READ(token)))
2152 status = -EREMOTEIO;
2153
2154 /* serious "can't proceed" faults reported by the hardware */
2155 if (token & QTD_STS_HALT) {
2156 if (token & QTD_STS_BABBLE) {
2157 /* FIXME "must" disable babbling device's port too */
2158 status = -EOVERFLOW;
2159 /* CERR nonzero + halt --> stall */
2160 } else if (QTD_CERR(token)) {
2161 status = -EPIPE;
2162
2163 /* In theory, more than one of the following bits can be set
2164 * since they are sticky and the transaction is retried.
2165 * Which to test first is rather arbitrary.
2166 */
2167 } else if (token & QTD_STS_MMF) {
2168 /* fs/ls interrupt xfer missed the complete-split */
2169 status = -EPROTO;
2170 } else if (token & QTD_STS_DBE) {
2171 status = (QTD_PID(token) == 1) /* IN ? */
2172 ? -ENOSR /* hc couldn't read data */
2173 : -ECOMM; /* hc couldn't write data */
2174 } else if (token & QTD_STS_XACT) {
2175 /* timeout, bad CRC, wrong PID, etc */
2176 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177 urb->dev->devpath,
2178 usb_pipeendpoint(urb->pipe),
2179 usb_pipein(urb->pipe) ? "in" : "out");
2180 status = -EPROTO;
2181 } else { /* unknown */
2182 status = -EPROTO;
2183 }
2184
2185 fotg210_dbg(fotg210,
2186 "dev%d ep%d%s qtd token %08x --> status %d\n",
2187 usb_pipedevice(urb->pipe),
2188 usb_pipeendpoint(urb->pipe),
2189 usb_pipein(urb->pipe) ? "in" : "out",
2190 token, status);
2191 }
2192
2193 return status;
2194 }
2195
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2196 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197 int status)
2198 __releases(fotg210->lock)
2199 __acquires(fotg210->lock)
2200 {
2201 if (likely(urb->hcpriv != NULL)) {
2202 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203
2204 /* S-mask in a QH means it's an interrupt urb */
2205 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206
2207 /* ... update hc-wide periodic stats (for usbfs) */
2208 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209 }
2210 }
2211
2212 if (unlikely(urb->unlinked)) {
2213 INCR(fotg210->stats.unlink);
2214 } else {
2215 /* report non-error and short read status as zero */
2216 if (status == -EINPROGRESS || status == -EREMOTEIO)
2217 status = 0;
2218 INCR(fotg210->stats.complete);
2219 }
2220
2221 #ifdef FOTG210_URB_TRACE
2222 fotg210_dbg(fotg210,
2223 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2224 __func__, urb->dev->devpath, urb,
2225 usb_pipeendpoint(urb->pipe),
2226 usb_pipein(urb->pipe) ? "in" : "out",
2227 status,
2228 urb->actual_length, urb->transfer_buffer_length);
2229 #endif
2230
2231 /* complete() can reenter this HCD */
2232 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233 spin_unlock(&fotg210->lock);
2234 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235 spin_lock(&fotg210->lock);
2236 }
2237
2238 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239
2240 /* Process and free completed qtds for a qh, returning URBs to drivers.
2241 * Chases up to qh->hw_current. Returns number of completions called,
2242 * indicating how much "real" work we did.
2243 */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2244 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245 struct fotg210_qh *qh)
2246 {
2247 struct fotg210_qtd *last, *end = qh->dummy;
2248 struct fotg210_qtd *qtd, *tmp;
2249 int last_status;
2250 int stopped;
2251 unsigned count = 0;
2252 u8 state;
2253 struct fotg210_qh_hw *hw = qh->hw;
2254
2255 if (unlikely(list_empty(&qh->qtd_list)))
2256 return count;
2257
2258 /* completions (or tasks on other cpus) must never clobber HALT
2259 * till we've gone through and cleaned everything up, even when
2260 * they add urbs to this qh's queue or mark them for unlinking.
2261 *
2262 * NOTE: unlinking expects to be done in queue order.
2263 *
2264 * It's a bug for qh->qh_state to be anything other than
2265 * QH_STATE_IDLE, unless our caller is scan_async() or
2266 * scan_intr().
2267 */
2268 state = qh->qh_state;
2269 qh->qh_state = QH_STATE_COMPLETING;
2270 stopped = (state == QH_STATE_IDLE);
2271
2272 rescan:
2273 last = NULL;
2274 last_status = -EINPROGRESS;
2275 qh->needs_rescan = 0;
2276
2277 /* remove de-activated QTDs from front of queue.
2278 * after faults (including short reads), cleanup this urb
2279 * then let the queue advance.
2280 * if queue is stopped, handles unlinks.
2281 */
2282 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283 struct urb *urb;
2284 u32 token = 0;
2285
2286 urb = qtd->urb;
2287
2288 /* clean up any state from previous QTD ...*/
2289 if (last) {
2290 if (likely(last->urb != urb)) {
2291 fotg210_urb_done(fotg210, last->urb,
2292 last_status);
2293 count++;
2294 last_status = -EINPROGRESS;
2295 }
2296 fotg210_qtd_free(fotg210, last);
2297 last = NULL;
2298 }
2299
2300 /* ignore urbs submitted during completions we reported */
2301 if (qtd == end)
2302 break;
2303
2304 /* hardware copies qtd out of qh overlay */
2305 rmb();
2306 token = hc32_to_cpu(fotg210, qtd->hw_token);
2307
2308 /* always clean up qtds the hc de-activated */
2309 retry_xacterr:
2310 if ((token & QTD_STS_ACTIVE) == 0) {
2311
2312 /* Report Data Buffer Error: non-fatal but useful */
2313 if (token & QTD_STS_DBE)
2314 fotg210_dbg(fotg210,
2315 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316 urb, usb_endpoint_num(&urb->ep->desc),
2317 usb_endpoint_dir_in(&urb->ep->desc)
2318 ? "in" : "out",
2319 urb->transfer_buffer_length, qtd, qh);
2320
2321 /* on STALL, error, and short reads this urb must
2322 * complete and all its qtds must be recycled.
2323 */
2324 if ((token & QTD_STS_HALT) != 0) {
2325
2326 /* retry transaction errors until we
2327 * reach the software xacterr limit
2328 */
2329 if ((token & QTD_STS_XACT) &&
2330 QTD_CERR(token) == 0 &&
2331 ++qh->xacterrs < QH_XACTERR_MAX &&
2332 !urb->unlinked) {
2333 fotg210_dbg(fotg210,
2334 "detected XactErr len %zu/%zu retry %d\n",
2335 qtd->length - QTD_LENGTH(token),
2336 qtd->length,
2337 qh->xacterrs);
2338
2339 /* reset the token in the qtd and the
2340 * qh overlay (which still contains
2341 * the qtd) so that we pick up from
2342 * where we left off
2343 */
2344 token &= ~QTD_STS_HALT;
2345 token |= QTD_STS_ACTIVE |
2346 (FOTG210_TUNE_CERR << 10);
2347 qtd->hw_token = cpu_to_hc32(fotg210,
2348 token);
2349 wmb();
2350 hw->hw_token = cpu_to_hc32(fotg210,
2351 token);
2352 goto retry_xacterr;
2353 }
2354 stopped = 1;
2355
2356 /* magic dummy for some short reads; qh won't advance.
2357 * that silicon quirk can kick in with this dummy too.
2358 *
2359 * other short reads won't stop the queue, including
2360 * control transfers (status stage handles that) or
2361 * most other single-qtd reads ... the queue stops if
2362 * URB_SHORT_NOT_OK was set so the driver submitting
2363 * the urbs could clean it up.
2364 */
2365 } else if (IS_SHORT_READ(token) &&
2366 !(qtd->hw_alt_next &
2367 FOTG210_LIST_END(fotg210))) {
2368 stopped = 1;
2369 }
2370
2371 /* stop scanning when we reach qtds the hc is using */
2372 } else if (likely(!stopped
2373 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374 break;
2375
2376 /* scan the whole queue for unlinks whenever it stops */
2377 } else {
2378 stopped = 1;
2379
2380 /* cancel everything if we halt, suspend, etc */
2381 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382 last_status = -ESHUTDOWN;
2383
2384 /* this qtd is active; skip it unless a previous qtd
2385 * for its urb faulted, or its urb was canceled.
2386 */
2387 else if (last_status == -EINPROGRESS && !urb->unlinked)
2388 continue;
2389
2390 /* qh unlinked; token in overlay may be most current */
2391 if (state == QH_STATE_IDLE &&
2392 cpu_to_hc32(fotg210, qtd->qtd_dma)
2393 == hw->hw_current) {
2394 token = hc32_to_cpu(fotg210, hw->hw_token);
2395
2396 /* An unlink may leave an incomplete
2397 * async transaction in the TT buffer.
2398 * We have to clear it.
2399 */
2400 fotg210_clear_tt_buffer(fotg210, qh, urb,
2401 token);
2402 }
2403 }
2404
2405 /* unless we already know the urb's status, collect qtd status
2406 * and update count of bytes transferred. in common short read
2407 * cases with only one data qtd (including control transfers),
2408 * queue processing won't halt. but with two or more qtds (for
2409 * example, with a 32 KB transfer), when the first qtd gets a
2410 * short read the second must be removed by hand.
2411 */
2412 if (last_status == -EINPROGRESS) {
2413 last_status = qtd_copy_status(fotg210, urb,
2414 qtd->length, token);
2415 if (last_status == -EREMOTEIO &&
2416 (qtd->hw_alt_next &
2417 FOTG210_LIST_END(fotg210)))
2418 last_status = -EINPROGRESS;
2419
2420 /* As part of low/full-speed endpoint-halt processing
2421 * we must clear the TT buffer (11.17.5).
2422 */
2423 if (unlikely(last_status != -EINPROGRESS &&
2424 last_status != -EREMOTEIO)) {
2425 /* The TT's in some hubs malfunction when they
2426 * receive this request following a STALL (they
2427 * stop sending isochronous packets). Since a
2428 * STALL can't leave the TT buffer in a busy
2429 * state (if you believe Figures 11-48 - 11-51
2430 * in the USB 2.0 spec), we won't clear the TT
2431 * buffer in this case. Strictly speaking this
2432 * is a violation of the spec.
2433 */
2434 if (last_status != -EPIPE)
2435 fotg210_clear_tt_buffer(fotg210, qh,
2436 urb, token);
2437 }
2438 }
2439
2440 /* if we're removing something not at the queue head,
2441 * patch the hardware queue pointer.
2442 */
2443 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444 last = list_entry(qtd->qtd_list.prev,
2445 struct fotg210_qtd, qtd_list);
2446 last->hw_next = qtd->hw_next;
2447 }
2448
2449 /* remove qtd; it's recycled after possible urb completion */
2450 list_del(&qtd->qtd_list);
2451 last = qtd;
2452
2453 /* reinit the xacterr counter for the next qtd */
2454 qh->xacterrs = 0;
2455 }
2456
2457 /* last urb's completion might still need calling */
2458 if (likely(last != NULL)) {
2459 fotg210_urb_done(fotg210, last->urb, last_status);
2460 count++;
2461 fotg210_qtd_free(fotg210, last);
2462 }
2463
2464 /* Do we need to rescan for URBs dequeued during a giveback? */
2465 if (unlikely(qh->needs_rescan)) {
2466 /* If the QH is already unlinked, do the rescan now. */
2467 if (state == QH_STATE_IDLE)
2468 goto rescan;
2469
2470 /* Otherwise we have to wait until the QH is fully unlinked.
2471 * Our caller will start an unlink if qh->needs_rescan is
2472 * set. But if an unlink has already started, nothing needs
2473 * to be done.
2474 */
2475 if (state != QH_STATE_LINKED)
2476 qh->needs_rescan = 0;
2477 }
2478
2479 /* restore original state; caller must unlink or relink */
2480 qh->qh_state = state;
2481
2482 /* be sure the hardware's done with the qh before refreshing
2483 * it after fault cleanup, or recovering from silicon wrongly
2484 * overlaying the dummy qtd (which reduces DMA chatter).
2485 */
2486 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487 switch (state) {
2488 case QH_STATE_IDLE:
2489 qh_refresh(fotg210, qh);
2490 break;
2491 case QH_STATE_LINKED:
2492 /* We won't refresh a QH that's linked (after the HC
2493 * stopped the queue). That avoids a race:
2494 * - HC reads first part of QH;
2495 * - CPU updates that first part and the token;
2496 * - HC reads rest of that QH, including token
2497 * Result: HC gets an inconsistent image, and then
2498 * DMAs to/from the wrong memory (corrupting it).
2499 *
2500 * That should be rare for interrupt transfers,
2501 * except maybe high bandwidth ...
2502 */
2503
2504 /* Tell the caller to start an unlink */
2505 qh->needs_rescan = 1;
2506 break;
2507 /* otherwise, unlink already started */
2508 }
2509 }
2510
2511 return count;
2512 }
2513
2514 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2515 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2516 /* ... and packet size, for any kind of endpoint descriptor */
2517 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2518
2519 /* reverse of qh_urb_transaction: free a list of TDs.
2520 * used for cleanup after errors, before HC sees an URB's TDs.
2521 */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2522 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2523 struct list_head *head)
2524 {
2525 struct fotg210_qtd *qtd, *temp;
2526
2527 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2528 list_del(&qtd->qtd_list);
2529 fotg210_qtd_free(fotg210, qtd);
2530 }
2531 }
2532
2533 /* create a list of filled qtds for this URB; won't link into qh.
2534 */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2535 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2536 struct urb *urb, struct list_head *head, gfp_t flags)
2537 {
2538 struct fotg210_qtd *qtd, *qtd_prev;
2539 dma_addr_t buf;
2540 int len, this_sg_len, maxpacket;
2541 int is_input;
2542 u32 token;
2543 int i;
2544 struct scatterlist *sg;
2545
2546 /*
2547 * URBs map to sequences of QTDs: one logical transaction
2548 */
2549 qtd = fotg210_qtd_alloc(fotg210, flags);
2550 if (unlikely(!qtd))
2551 return NULL;
2552 list_add_tail(&qtd->qtd_list, head);
2553 qtd->urb = urb;
2554
2555 token = QTD_STS_ACTIVE;
2556 token |= (FOTG210_TUNE_CERR << 10);
2557 /* for split transactions, SplitXState initialized to zero */
2558
2559 len = urb->transfer_buffer_length;
2560 is_input = usb_pipein(urb->pipe);
2561 if (usb_pipecontrol(urb->pipe)) {
2562 /* SETUP pid */
2563 qtd_fill(fotg210, qtd, urb->setup_dma,
2564 sizeof(struct usb_ctrlrequest),
2565 token | (2 /* "setup" */ << 8), 8);
2566
2567 /* ... and always at least one more pid */
2568 token ^= QTD_TOGGLE;
2569 qtd_prev = qtd;
2570 qtd = fotg210_qtd_alloc(fotg210, flags);
2571 if (unlikely(!qtd))
2572 goto cleanup;
2573 qtd->urb = urb;
2574 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2575 list_add_tail(&qtd->qtd_list, head);
2576
2577 /* for zero length DATA stages, STATUS is always IN */
2578 if (len == 0)
2579 token |= (1 /* "in" */ << 8);
2580 }
2581
2582 /*
2583 * data transfer stage: buffer setup
2584 */
2585 i = urb->num_mapped_sgs;
2586 if (len > 0 && i > 0) {
2587 sg = urb->sg;
2588 buf = sg_dma_address(sg);
2589
2590 /* urb->transfer_buffer_length may be smaller than the
2591 * size of the scatterlist (or vice versa)
2592 */
2593 this_sg_len = min_t(int, sg_dma_len(sg), len);
2594 } else {
2595 sg = NULL;
2596 buf = urb->transfer_dma;
2597 this_sg_len = len;
2598 }
2599
2600 if (is_input)
2601 token |= (1 /* "in" */ << 8);
2602 /* else it's already initted to "out" pid (0 << 8) */
2603
2604 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605
2606 /*
2607 * buffer gets wrapped in one or more qtds;
2608 * last one may be "short" (including zero len)
2609 * and may serve as a control status ack
2610 */
2611 for (;;) {
2612 int this_qtd_len;
2613
2614 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2615 maxpacket);
2616 this_sg_len -= this_qtd_len;
2617 len -= this_qtd_len;
2618 buf += this_qtd_len;
2619
2620 /*
2621 * short reads advance to a "magic" dummy instead of the next
2622 * qtd ... that forces the queue to stop, for manual cleanup.
2623 * (this will usually be overridden later.)
2624 */
2625 if (is_input)
2626 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2627
2628 /* qh makes control packets use qtd toggle; maybe switch it */
2629 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2630 token ^= QTD_TOGGLE;
2631
2632 if (likely(this_sg_len <= 0)) {
2633 if (--i <= 0 || len <= 0)
2634 break;
2635 sg = sg_next(sg);
2636 buf = sg_dma_address(sg);
2637 this_sg_len = min_t(int, sg_dma_len(sg), len);
2638 }
2639
2640 qtd_prev = qtd;
2641 qtd = fotg210_qtd_alloc(fotg210, flags);
2642 if (unlikely(!qtd))
2643 goto cleanup;
2644 qtd->urb = urb;
2645 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2646 list_add_tail(&qtd->qtd_list, head);
2647 }
2648
2649 /*
2650 * unless the caller requires manual cleanup after short reads,
2651 * have the alt_next mechanism keep the queue running after the
2652 * last data qtd (the only one, for control and most other cases).
2653 */
2654 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2655 usb_pipecontrol(urb->pipe)))
2656 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657
2658 /*
2659 * control requests may need a terminating data "status" ack;
2660 * other OUT ones may need a terminating short packet
2661 * (zero length).
2662 */
2663 if (likely(urb->transfer_buffer_length != 0)) {
2664 int one_more = 0;
2665
2666 if (usb_pipecontrol(urb->pipe)) {
2667 one_more = 1;
2668 token ^= 0x0100; /* "in" <--> "out" */
2669 token |= QTD_TOGGLE; /* force DATA1 */
2670 } else if (usb_pipeout(urb->pipe)
2671 && (urb->transfer_flags & URB_ZERO_PACKET)
2672 && !(urb->transfer_buffer_length % maxpacket)) {
2673 one_more = 1;
2674 }
2675 if (one_more) {
2676 qtd_prev = qtd;
2677 qtd = fotg210_qtd_alloc(fotg210, flags);
2678 if (unlikely(!qtd))
2679 goto cleanup;
2680 qtd->urb = urb;
2681 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2682 list_add_tail(&qtd->qtd_list, head);
2683
2684 /* never any data in such packets */
2685 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2686 }
2687 }
2688
2689 /* by default, enable interrupt on urb completion */
2690 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2691 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2692 return head;
2693
2694 cleanup:
2695 qtd_list_free(fotg210, urb, head);
2696 return NULL;
2697 }
2698
2699 /* Would be best to create all qh's from config descriptors,
2700 * when each interface/altsetting is established. Unlink
2701 * any previous qh and cancel its urbs first; endpoints are
2702 * implicitly reset then (data toggle too).
2703 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2704 */
2705
2706
2707 /* Each QH holds a qtd list; a QH is used for everything except iso.
2708 *
2709 * For interrupt urbs, the scheduler must set the microframe scheduling
2710 * mask(s) each time the QH gets scheduled. For highspeed, that's
2711 * just one microframe in the s-mask. For split interrupt transactions
2712 * there are additional complications: c-mask, maybe FSTNs.
2713 */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2714 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2715 gfp_t flags)
2716 {
2717 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2718 u32 info1 = 0, info2 = 0;
2719 int is_input, type;
2720 int maxp = 0;
2721 struct usb_tt *tt = urb->dev->tt;
2722 struct fotg210_qh_hw *hw;
2723
2724 if (!qh)
2725 return qh;
2726
2727 /*
2728 * init endpoint/device data for this QH
2729 */
2730 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2731 info1 |= usb_pipedevice(urb->pipe) << 0;
2732
2733 is_input = usb_pipein(urb->pipe);
2734 type = usb_pipetype(urb->pipe);
2735 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2736
2737 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2738 * acts like up to 3KB, but is built from smaller packets.
2739 */
2740 if (max_packet(maxp) > 1024) {
2741 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742 max_packet(maxp));
2743 goto done;
2744 }
2745
2746 /* Compute interrupt scheduling parameters just once, and save.
2747 * - allowing for high bandwidth, how many nsec/uframe are used?
2748 * - split transactions need a second CSPLIT uframe; same question
2749 * - splits also need a schedule gap (for full/low speed I/O)
2750 * - qh has a polling interval
2751 *
2752 * For control/bulk requests, the HC or TT handles these.
2753 */
2754 if (type == PIPE_INTERRUPT) {
2755 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2756 is_input, 0,
2757 hb_mult(maxp) * max_packet(maxp)));
2758 qh->start = NO_FRAME;
2759
2760 if (urb->dev->speed == USB_SPEED_HIGH) {
2761 qh->c_usecs = 0;
2762 qh->gap_uf = 0;
2763
2764 qh->period = urb->interval >> 3;
2765 if (qh->period == 0 && urb->interval != 1) {
2766 /* NOTE interval 2 or 4 uframes could work.
2767 * But interval 1 scheduling is simpler, and
2768 * includes high bandwidth.
2769 */
2770 urb->interval = 1;
2771 } else if (qh->period > fotg210->periodic_size) {
2772 qh->period = fotg210->periodic_size;
2773 urb->interval = qh->period << 3;
2774 }
2775 } else {
2776 int think_time;
2777
2778 /* gap is f(FS/LS transfer times) */
2779 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2780 is_input, 0, maxp) / (125 * 1000);
2781
2782 /* FIXME this just approximates SPLIT/CSPLIT times */
2783 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2784 qh->c_usecs = qh->usecs + HS_USECS(0);
2785 qh->usecs = HS_USECS(1);
2786 } else { /* SPLIT+DATA, gap, CSPLIT */
2787 qh->usecs += HS_USECS(1);
2788 qh->c_usecs = HS_USECS(0);
2789 }
2790
2791 think_time = tt ? tt->think_time : 0;
2792 qh->tt_usecs = NS_TO_US(think_time +
2793 usb_calc_bus_time(urb->dev->speed,
2794 is_input, 0, max_packet(maxp)));
2795 qh->period = urb->interval;
2796 if (qh->period > fotg210->periodic_size) {
2797 qh->period = fotg210->periodic_size;
2798 urb->interval = qh->period;
2799 }
2800 }
2801 }
2802
2803 /* support for tt scheduling, and access to toggles */
2804 qh->dev = urb->dev;
2805
2806 /* using TT? */
2807 switch (urb->dev->speed) {
2808 case USB_SPEED_LOW:
2809 info1 |= QH_LOW_SPEED;
2810 /* FALL THROUGH */
2811
2812 case USB_SPEED_FULL:
2813 /* EPS 0 means "full" */
2814 if (type != PIPE_INTERRUPT)
2815 info1 |= (FOTG210_TUNE_RL_TT << 28);
2816 if (type == PIPE_CONTROL) {
2817 info1 |= QH_CONTROL_EP; /* for TT */
2818 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2819 }
2820 info1 |= maxp << 16;
2821
2822 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2823
2824 /* Some Freescale processors have an erratum in which the
2825 * port number in the queue head was 0..N-1 instead of 1..N.
2826 */
2827 if (fotg210_has_fsl_portno_bug(fotg210))
2828 info2 |= (urb->dev->ttport-1) << 23;
2829 else
2830 info2 |= urb->dev->ttport << 23;
2831
2832 /* set the address of the TT; for TDI's integrated
2833 * root hub tt, leave it zeroed.
2834 */
2835 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2836 info2 |= tt->hub->devnum << 16;
2837
2838 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2839
2840 break;
2841
2842 case USB_SPEED_HIGH: /* no TT involved */
2843 info1 |= QH_HIGH_SPEED;
2844 if (type == PIPE_CONTROL) {
2845 info1 |= (FOTG210_TUNE_RL_HS << 28);
2846 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2847 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2848 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2849 } else if (type == PIPE_BULK) {
2850 info1 |= (FOTG210_TUNE_RL_HS << 28);
2851 /* The USB spec says that high speed bulk endpoints
2852 * always use 512 byte maxpacket. But some device
2853 * vendors decided to ignore that, and MSFT is happy
2854 * to help them do so. So now people expect to use
2855 * such nonconformant devices with Linux too; sigh.
2856 */
2857 info1 |= max_packet(maxp) << 16;
2858 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2859 } else { /* PIPE_INTERRUPT */
2860 info1 |= max_packet(maxp) << 16;
2861 info2 |= hb_mult(maxp) << 30;
2862 }
2863 break;
2864 default:
2865 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866 urb->dev->speed);
2867 done:
2868 qh_destroy(fotg210, qh);
2869 return NULL;
2870 }
2871
2872 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2873
2874 /* init as live, toggle clear, advance to dummy */
2875 qh->qh_state = QH_STATE_IDLE;
2876 hw = qh->hw;
2877 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2878 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2879 qh->is_out = !is_input;
2880 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2881 qh_refresh(fotg210, qh);
2882 return qh;
2883 }
2884
enable_async(struct fotg210_hcd * fotg210)2885 static void enable_async(struct fotg210_hcd *fotg210)
2886 {
2887 if (fotg210->async_count++)
2888 return;
2889
2890 /* Stop waiting to turn off the async schedule */
2891 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2892
2893 /* Don't start the schedule until ASS is 0 */
2894 fotg210_poll_ASS(fotg210);
2895 turn_on_io_watchdog(fotg210);
2896 }
2897
disable_async(struct fotg210_hcd * fotg210)2898 static void disable_async(struct fotg210_hcd *fotg210)
2899 {
2900 if (--fotg210->async_count)
2901 return;
2902
2903 /* The async schedule and async_unlink list are supposed to be empty */
2904 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2905
2906 /* Don't turn off the schedule until ASS is 1 */
2907 fotg210_poll_ASS(fotg210);
2908 }
2909
2910 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2911
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2912 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2913 {
2914 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2915 struct fotg210_qh *head;
2916
2917 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2918 if (unlikely(qh->clearing_tt))
2919 return;
2920
2921 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2922
2923 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2924 qh_refresh(fotg210, qh);
2925
2926 /* splice right after start */
2927 head = fotg210->async;
2928 qh->qh_next = head->qh_next;
2929 qh->hw->hw_next = head->hw->hw_next;
2930 wmb();
2931
2932 head->qh_next.qh = qh;
2933 head->hw->hw_next = dma;
2934
2935 qh->xacterrs = 0;
2936 qh->qh_state = QH_STATE_LINKED;
2937 /* qtd completions reported later by interrupt */
2938
2939 enable_async(fotg210);
2940 }
2941
2942 /* For control/bulk/interrupt, return QH with these TDs appended.
2943 * Allocates and initializes the QH if necessary.
2944 * Returns null if it can't allocate a QH it needs to.
2945 * If the QH has TDs (urbs) already, that's great.
2946 */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2947 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2948 struct urb *urb, struct list_head *qtd_list,
2949 int epnum, void **ptr)
2950 {
2951 struct fotg210_qh *qh = NULL;
2952 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2953
2954 qh = (struct fotg210_qh *) *ptr;
2955 if (unlikely(qh == NULL)) {
2956 /* can't sleep here, we have fotg210->lock... */
2957 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958 *ptr = qh;
2959 }
2960 if (likely(qh != NULL)) {
2961 struct fotg210_qtd *qtd;
2962
2963 if (unlikely(list_empty(qtd_list)))
2964 qtd = NULL;
2965 else
2966 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967 qtd_list);
2968
2969 /* control qh may need patching ... */
2970 if (unlikely(epnum == 0)) {
2971 /* usb_reset_device() briefly reverts to address 0 */
2972 if (usb_pipedevice(urb->pipe) == 0)
2973 qh->hw->hw_info1 &= ~qh_addr_mask;
2974 }
2975
2976 /* just one way to queue requests: swap with the dummy qtd.
2977 * only hc or qh_refresh() ever modify the overlay.
2978 */
2979 if (likely(qtd != NULL)) {
2980 struct fotg210_qtd *dummy;
2981 dma_addr_t dma;
2982 __hc32 token;
2983
2984 /* to avoid racing the HC, use the dummy td instead of
2985 * the first td of our list (becomes new dummy). both
2986 * tds stay deactivated until we're done, when the
2987 * HC is allowed to fetch the old dummy (4.10.2).
2988 */
2989 token = qtd->hw_token;
2990 qtd->hw_token = HALT_BIT(fotg210);
2991
2992 dummy = qh->dummy;
2993
2994 dma = dummy->qtd_dma;
2995 *dummy = *qtd;
2996 dummy->qtd_dma = dma;
2997
2998 list_del(&qtd->qtd_list);
2999 list_add(&dummy->qtd_list, qtd_list);
3000 list_splice_tail(qtd_list, &qh->qtd_list);
3001
3002 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003 qh->dummy = qtd;
3004
3005 /* hc must see the new dummy at list end */
3006 dma = qtd->qtd_dma;
3007 qtd = list_entry(qh->qtd_list.prev,
3008 struct fotg210_qtd, qtd_list);
3009 qtd->hw_next = QTD_NEXT(fotg210, dma);
3010
3011 /* let the hc process these next qtds */
3012 wmb();
3013 dummy->hw_token = token;
3014
3015 urb->hcpriv = qh;
3016 }
3017 }
3018 return qh;
3019 }
3020
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3021 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3022 struct list_head *qtd_list, gfp_t mem_flags)
3023 {
3024 int epnum;
3025 unsigned long flags;
3026 struct fotg210_qh *qh = NULL;
3027 int rc;
3028
3029 epnum = urb->ep->desc.bEndpointAddress;
3030
3031 #ifdef FOTG210_URB_TRACE
3032 {
3033 struct fotg210_qtd *qtd;
3034
3035 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3036 fotg210_dbg(fotg210,
3037 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3038 __func__, urb->dev->devpath, urb,
3039 epnum & 0x0f, (epnum & USB_DIR_IN)
3040 ? "in" : "out",
3041 urb->transfer_buffer_length,
3042 qtd, urb->ep->hcpriv);
3043 }
3044 #endif
3045
3046 spin_lock_irqsave(&fotg210->lock, flags);
3047 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3048 rc = -ESHUTDOWN;
3049 goto done;
3050 }
3051 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3052 if (unlikely(rc))
3053 goto done;
3054
3055 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3056 if (unlikely(qh == NULL)) {
3057 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058 rc = -ENOMEM;
3059 goto done;
3060 }
3061
3062 /* Control/bulk operations through TTs don't need scheduling,
3063 * the HC and TT handle it when the TT has a buffer ready.
3064 */
3065 if (likely(qh->qh_state == QH_STATE_IDLE))
3066 qh_link_async(fotg210, qh);
3067 done:
3068 spin_unlock_irqrestore(&fotg210->lock, flags);
3069 if (unlikely(qh == NULL))
3070 qtd_list_free(fotg210, urb, qtd_list);
3071 return rc;
3072 }
3073
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3074 static void single_unlink_async(struct fotg210_hcd *fotg210,
3075 struct fotg210_qh *qh)
3076 {
3077 struct fotg210_qh *prev;
3078
3079 /* Add to the end of the list of QHs waiting for the next IAAD */
3080 qh->qh_state = QH_STATE_UNLINK;
3081 if (fotg210->async_unlink)
3082 fotg210->async_unlink_last->unlink_next = qh;
3083 else
3084 fotg210->async_unlink = qh;
3085 fotg210->async_unlink_last = qh;
3086
3087 /* Unlink it from the schedule */
3088 prev = fotg210->async;
3089 while (prev->qh_next.qh != qh)
3090 prev = prev->qh_next.qh;
3091
3092 prev->hw->hw_next = qh->hw->hw_next;
3093 prev->qh_next = qh->qh_next;
3094 if (fotg210->qh_scan_next == qh)
3095 fotg210->qh_scan_next = qh->qh_next.qh;
3096 }
3097
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3098 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099 {
3100 /*
3101 * Do nothing if an IAA cycle is already running or
3102 * if one will be started shortly.
3103 */
3104 if (fotg210->async_iaa || fotg210->async_unlinking)
3105 return;
3106
3107 /* Do all the waiting QHs at once */
3108 fotg210->async_iaa = fotg210->async_unlink;
3109 fotg210->async_unlink = NULL;
3110
3111 /* If the controller isn't running, we don't have to wait for it */
3112 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3113 if (!nested) /* Avoid recursion */
3114 end_unlink_async(fotg210);
3115
3116 /* Otherwise start a new IAA cycle */
3117 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3118 /* Make sure the unlinks are all visible to the hardware */
3119 wmb();
3120
3121 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3122 &fotg210->regs->command);
3123 fotg210_readl(fotg210, &fotg210->regs->command);
3124 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125 true);
3126 }
3127 }
3128
3129 /* the async qh for the qtds being unlinked are now gone from the HC */
3130
end_unlink_async(struct fotg210_hcd * fotg210)3131 static void end_unlink_async(struct fotg210_hcd *fotg210)
3132 {
3133 struct fotg210_qh *qh;
3134
3135 /* Process the idle QHs */
3136 restart:
3137 fotg210->async_unlinking = true;
3138 while (fotg210->async_iaa) {
3139 qh = fotg210->async_iaa;
3140 fotg210->async_iaa = qh->unlink_next;
3141 qh->unlink_next = NULL;
3142
3143 qh->qh_state = QH_STATE_IDLE;
3144 qh->qh_next.qh = NULL;
3145
3146 qh_completions(fotg210, qh);
3147 if (!list_empty(&qh->qtd_list) &&
3148 fotg210->rh_state == FOTG210_RH_RUNNING)
3149 qh_link_async(fotg210, qh);
3150 disable_async(fotg210);
3151 }
3152 fotg210->async_unlinking = false;
3153
3154 /* Start a new IAA cycle if any QHs are waiting for it */
3155 if (fotg210->async_unlink) {
3156 start_iaa_cycle(fotg210, true);
3157 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158 goto restart;
3159 }
3160 }
3161
unlink_empty_async(struct fotg210_hcd * fotg210)3162 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3163 {
3164 struct fotg210_qh *qh, *next;
3165 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3166 bool check_unlinks_later = false;
3167
3168 /* Unlink all the async QHs that have been empty for a timer cycle */
3169 next = fotg210->async->qh_next.qh;
3170 while (next) {
3171 qh = next;
3172 next = qh->qh_next.qh;
3173
3174 if (list_empty(&qh->qtd_list) &&
3175 qh->qh_state == QH_STATE_LINKED) {
3176 if (!stopped && qh->unlink_cycle ==
3177 fotg210->async_unlink_cycle)
3178 check_unlinks_later = true;
3179 else
3180 single_unlink_async(fotg210, qh);
3181 }
3182 }
3183
3184 /* Start a new IAA cycle if any QHs are waiting for it */
3185 if (fotg210->async_unlink)
3186 start_iaa_cycle(fotg210, false);
3187
3188 /* QHs that haven't been empty for long enough will be handled later */
3189 if (check_unlinks_later) {
3190 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3191 true);
3192 ++fotg210->async_unlink_cycle;
3193 }
3194 }
3195
3196 /* makes sure the async qh will become idle */
3197 /* caller must own fotg210->lock */
3198
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3199 static void start_unlink_async(struct fotg210_hcd *fotg210,
3200 struct fotg210_qh *qh)
3201 {
3202 /*
3203 * If the QH isn't linked then there's nothing we can do
3204 * unless we were called during a giveback, in which case
3205 * qh_completions() has to deal with it.
3206 */
3207 if (qh->qh_state != QH_STATE_LINKED) {
3208 if (qh->qh_state == QH_STATE_COMPLETING)
3209 qh->needs_rescan = 1;
3210 return;
3211 }
3212
3213 single_unlink_async(fotg210, qh);
3214 start_iaa_cycle(fotg210, false);
3215 }
3216
scan_async(struct fotg210_hcd * fotg210)3217 static void scan_async(struct fotg210_hcd *fotg210)
3218 {
3219 struct fotg210_qh *qh;
3220 bool check_unlinks_later = false;
3221
3222 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3223 while (fotg210->qh_scan_next) {
3224 qh = fotg210->qh_scan_next;
3225 fotg210->qh_scan_next = qh->qh_next.qh;
3226 rescan:
3227 /* clean any finished work for this qh */
3228 if (!list_empty(&qh->qtd_list)) {
3229 int temp;
3230
3231 /*
3232 * Unlinks could happen here; completion reporting
3233 * drops the lock. That's why fotg210->qh_scan_next
3234 * always holds the next qh to scan; if the next qh
3235 * gets unlinked then fotg210->qh_scan_next is adjusted
3236 * in single_unlink_async().
3237 */
3238 temp = qh_completions(fotg210, qh);
3239 if (qh->needs_rescan) {
3240 start_unlink_async(fotg210, qh);
3241 } else if (list_empty(&qh->qtd_list)
3242 && qh->qh_state == QH_STATE_LINKED) {
3243 qh->unlink_cycle = fotg210->async_unlink_cycle;
3244 check_unlinks_later = true;
3245 } else if (temp != 0)
3246 goto rescan;
3247 }
3248 }
3249
3250 /*
3251 * Unlink empty entries, reducing DMA usage as well
3252 * as HCD schedule-scanning costs. Delay for any qh
3253 * we just scanned, there's a not-unusual case that it
3254 * doesn't stay idle for long.
3255 */
3256 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3257 !(fotg210->enabled_hrtimer_events &
3258 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3259 fotg210_enable_event(fotg210,
3260 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3261 ++fotg210->async_unlink_cycle;
3262 }
3263 }
3264 /* EHCI scheduled transaction support: interrupt, iso, split iso
3265 * These are called "periodic" transactions in the EHCI spec.
3266 *
3267 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3268 * with the "asynchronous" transaction support (control/bulk transfers).
3269 * The only real difference is in how interrupt transfers are scheduled.
3270 *
3271 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3272 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3273 * pre-calculated schedule data to make appending to the queue be quick.
3274 */
3275 static int fotg210_get_frame(struct usb_hcd *hcd);
3276
3277 /* periodic_next_shadow - return "next" pointer on shadow list
3278 * @periodic: host pointer to qh/itd
3279 * @tag: hardware tag for type of this record
3280 */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3281 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3282 union fotg210_shadow *periodic, __hc32 tag)
3283 {
3284 switch (hc32_to_cpu(fotg210, tag)) {
3285 case Q_TYPE_QH:
3286 return &periodic->qh->qh_next;
3287 case Q_TYPE_FSTN:
3288 return &periodic->fstn->fstn_next;
3289 default:
3290 return &periodic->itd->itd_next;
3291 }
3292 }
3293
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3294 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3295 union fotg210_shadow *periodic, __hc32 tag)
3296 {
3297 switch (hc32_to_cpu(fotg210, tag)) {
3298 /* our fotg210_shadow.qh is actually software part */
3299 case Q_TYPE_QH:
3300 return &periodic->qh->hw->hw_next;
3301 /* others are hw parts */
3302 default:
3303 return periodic->hw_next;
3304 }
3305 }
3306
3307 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3308 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309 void *ptr)
3310 {
3311 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3312 __hc32 *hw_p = &fotg210->periodic[frame];
3313 union fotg210_shadow here = *prev_p;
3314
3315 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3316 while (here.ptr && here.ptr != ptr) {
3317 prev_p = periodic_next_shadow(fotg210, prev_p,
3318 Q_NEXT_TYPE(fotg210, *hw_p));
3319 hw_p = shadow_next_periodic(fotg210, &here,
3320 Q_NEXT_TYPE(fotg210, *hw_p));
3321 here = *prev_p;
3322 }
3323 /* an interrupt entry (at list end) could have been shared */
3324 if (!here.ptr)
3325 return;
3326
3327 /* update shadow and hardware lists ... the old "next" pointers
3328 * from ptr may still be in use, the caller updates them.
3329 */
3330 *prev_p = *periodic_next_shadow(fotg210, &here,
3331 Q_NEXT_TYPE(fotg210, *hw_p));
3332
3333 *hw_p = *shadow_next_periodic(fotg210, &here,
3334 Q_NEXT_TYPE(fotg210, *hw_p));
3335 }
3336
3337 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3338 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3339 unsigned frame, unsigned uframe)
3340 {
3341 __hc32 *hw_p = &fotg210->periodic[frame];
3342 union fotg210_shadow *q = &fotg210->pshadow[frame];
3343 unsigned usecs = 0;
3344 struct fotg210_qh_hw *hw;
3345
3346 while (q->ptr) {
3347 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348 case Q_TYPE_QH:
3349 hw = q->qh->hw;
3350 /* is it in the S-mask? */
3351 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3352 usecs += q->qh->usecs;
3353 /* ... or C-mask? */
3354 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3355 1 << (8 + uframe)))
3356 usecs += q->qh->c_usecs;
3357 hw_p = &hw->hw_next;
3358 q = &q->qh->qh_next;
3359 break;
3360 /* case Q_TYPE_FSTN: */
3361 default:
3362 /* for "save place" FSTNs, count the relevant INTR
3363 * bandwidth from the previous frame
3364 */
3365 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3366 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3367
3368 hw_p = &q->fstn->hw_next;
3369 q = &q->fstn->fstn_next;
3370 break;
3371 case Q_TYPE_ITD:
3372 if (q->itd->hw_transaction[uframe])
3373 usecs += q->itd->stream->usecs;
3374 hw_p = &q->itd->hw_next;
3375 q = &q->itd->itd_next;
3376 break;
3377 }
3378 }
3379 if (usecs > fotg210->uframe_periodic_max)
3380 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3381 frame * 8 + uframe, usecs);
3382 return usecs;
3383 }
3384
same_tt(struct usb_device * dev1,struct usb_device * dev2)3385 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3386 {
3387 if (!dev1->tt || !dev2->tt)
3388 return 0;
3389 if (dev1->tt != dev2->tt)
3390 return 0;
3391 if (dev1->tt->multi)
3392 return dev1->ttport == dev2->ttport;
3393 else
3394 return 1;
3395 }
3396
3397 /* return true iff the device's transaction translator is available
3398 * for a periodic transfer starting at the specified frame, using
3399 * all the uframes in the mask.
3400 */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3401 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3402 struct usb_device *dev, unsigned frame, u32 uf_mask)
3403 {
3404 if (period == 0) /* error */
3405 return 0;
3406
3407 /* note bandwidth wastage: split never follows csplit
3408 * (different dev or endpoint) until the next uframe.
3409 * calling convention doesn't make that distinction.
3410 */
3411 for (; frame < fotg210->periodic_size; frame += period) {
3412 union fotg210_shadow here;
3413 __hc32 type;
3414 struct fotg210_qh_hw *hw;
3415
3416 here = fotg210->pshadow[frame];
3417 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3418 while (here.ptr) {
3419 switch (hc32_to_cpu(fotg210, type)) {
3420 case Q_TYPE_ITD:
3421 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3422 here = here.itd->itd_next;
3423 continue;
3424 case Q_TYPE_QH:
3425 hw = here.qh->hw;
3426 if (same_tt(dev, here.qh->dev)) {
3427 u32 mask;
3428
3429 mask = hc32_to_cpu(fotg210,
3430 hw->hw_info2);
3431 /* "knows" no gap is needed */
3432 mask |= mask >> 8;
3433 if (mask & uf_mask)
3434 break;
3435 }
3436 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3437 here = here.qh->qh_next;
3438 continue;
3439 /* case Q_TYPE_FSTN: */
3440 default:
3441 fotg210_dbg(fotg210,
3442 "periodic frame %d bogus type %d\n",
3443 frame, type);
3444 }
3445
3446 /* collision or error */
3447 return 0;
3448 }
3449 }
3450
3451 /* no collision */
3452 return 1;
3453 }
3454
enable_periodic(struct fotg210_hcd * fotg210)3455 static void enable_periodic(struct fotg210_hcd *fotg210)
3456 {
3457 if (fotg210->periodic_count++)
3458 return;
3459
3460 /* Stop waiting to turn off the periodic schedule */
3461 fotg210->enabled_hrtimer_events &=
3462 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3463
3464 /* Don't start the schedule until PSS is 0 */
3465 fotg210_poll_PSS(fotg210);
3466 turn_on_io_watchdog(fotg210);
3467 }
3468
disable_periodic(struct fotg210_hcd * fotg210)3469 static void disable_periodic(struct fotg210_hcd *fotg210)
3470 {
3471 if (--fotg210->periodic_count)
3472 return;
3473
3474 /* Don't turn off the schedule until PSS is 1 */
3475 fotg210_poll_PSS(fotg210);
3476 }
3477
3478 /* periodic schedule slots have iso tds (normal or split) first, then a
3479 * sparse tree for active interrupt transfers.
3480 *
3481 * this just links in a qh; caller guarantees uframe masks are set right.
3482 * no FSTN support (yet; fotg210 0.96+)
3483 */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3484 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485 {
3486 unsigned i;
3487 unsigned period = qh->period;
3488
3489 dev_dbg(&qh->dev->dev,
3490 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3491 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3492 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493 qh->c_usecs);
3494
3495 /* high bandwidth, or otherwise every microframe */
3496 if (period == 0)
3497 period = 1;
3498
3499 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3500 union fotg210_shadow *prev = &fotg210->pshadow[i];
3501 __hc32 *hw_p = &fotg210->periodic[i];
3502 union fotg210_shadow here = *prev;
3503 __hc32 type = 0;
3504
3505 /* skip the iso nodes at list head */
3506 while (here.ptr) {
3507 type = Q_NEXT_TYPE(fotg210, *hw_p);
3508 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3509 break;
3510 prev = periodic_next_shadow(fotg210, prev, type);
3511 hw_p = shadow_next_periodic(fotg210, &here, type);
3512 here = *prev;
3513 }
3514
3515 /* sorting each branch by period (slow-->fast)
3516 * enables sharing interior tree nodes
3517 */
3518 while (here.ptr && qh != here.qh) {
3519 if (qh->period > here.qh->period)
3520 break;
3521 prev = &here.qh->qh_next;
3522 hw_p = &here.qh->hw->hw_next;
3523 here = *prev;
3524 }
3525 /* link in this qh, unless some earlier pass did that */
3526 if (qh != here.qh) {
3527 qh->qh_next = here;
3528 if (here.qh)
3529 qh->hw->hw_next = *hw_p;
3530 wmb();
3531 prev->qh = qh;
3532 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533 }
3534 }
3535 qh->qh_state = QH_STATE_LINKED;
3536 qh->xacterrs = 0;
3537
3538 /* update per-qh bandwidth for usbfs */
3539 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3540 ? ((qh->usecs + qh->c_usecs) / qh->period)
3541 : (qh->usecs * 8);
3542
3543 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3544
3545 /* maybe enable periodic schedule processing */
3546 ++fotg210->intr_count;
3547 enable_periodic(fotg210);
3548 }
3549
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3550 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3551 struct fotg210_qh *qh)
3552 {
3553 unsigned i;
3554 unsigned period;
3555
3556 /*
3557 * If qh is for a low/full-speed device, simply unlinking it
3558 * could interfere with an ongoing split transaction. To unlink
3559 * it safely would require setting the QH_INACTIVATE bit and
3560 * waiting at least one frame, as described in EHCI 4.12.2.5.
3561 *
3562 * We won't bother with any of this. Instead, we assume that the
3563 * only reason for unlinking an interrupt QH while the current URB
3564 * is still active is to dequeue all the URBs (flush the whole
3565 * endpoint queue).
3566 *
3567 * If rebalancing the periodic schedule is ever implemented, this
3568 * approach will no longer be valid.
3569 */
3570
3571 /* high bandwidth, or otherwise part of every microframe */
3572 period = qh->period;
3573 if (!period)
3574 period = 1;
3575
3576 for (i = qh->start; i < fotg210->periodic_size; i += period)
3577 periodic_unlink(fotg210, i, qh);
3578
3579 /* update per-qh bandwidth for usbfs */
3580 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3581 ? ((qh->usecs + qh->c_usecs) / qh->period)
3582 : (qh->usecs * 8);
3583
3584 dev_dbg(&qh->dev->dev,
3585 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3586 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3587 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588 qh->c_usecs);
3589
3590 /* qh->qh_next still "live" to HC */
3591 qh->qh_state = QH_STATE_UNLINK;
3592 qh->qh_next.ptr = NULL;
3593
3594 if (fotg210->qh_scan_next == qh)
3595 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3596 struct fotg210_qh, intr_node);
3597 list_del(&qh->intr_node);
3598 }
3599
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3600 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3601 struct fotg210_qh *qh)
3602 {
3603 /* If the QH isn't linked then there's nothing we can do
3604 * unless we were called during a giveback, in which case
3605 * qh_completions() has to deal with it.
3606 */
3607 if (qh->qh_state != QH_STATE_LINKED) {
3608 if (qh->qh_state == QH_STATE_COMPLETING)
3609 qh->needs_rescan = 1;
3610 return;
3611 }
3612
3613 qh_unlink_periodic(fotg210, qh);
3614
3615 /* Make sure the unlinks are visible before starting the timer */
3616 wmb();
3617
3618 /*
3619 * The EHCI spec doesn't say how long it takes the controller to
3620 * stop accessing an unlinked interrupt QH. The timer delay is
3621 * 9 uframes; presumably that will be long enough.
3622 */
3623 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3624
3625 /* New entries go at the end of the intr_unlink list */
3626 if (fotg210->intr_unlink)
3627 fotg210->intr_unlink_last->unlink_next = qh;
3628 else
3629 fotg210->intr_unlink = qh;
3630 fotg210->intr_unlink_last = qh;
3631
3632 if (fotg210->intr_unlinking)
3633 ; /* Avoid recursive calls */
3634 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3635 fotg210_handle_intr_unlinks(fotg210);
3636 else if (fotg210->intr_unlink == qh) {
3637 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3638 true);
3639 ++fotg210->intr_unlink_cycle;
3640 }
3641 }
3642
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3643 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644 {
3645 struct fotg210_qh_hw *hw = qh->hw;
3646 int rc;
3647
3648 qh->qh_state = QH_STATE_IDLE;
3649 hw->hw_next = FOTG210_LIST_END(fotg210);
3650
3651 qh_completions(fotg210, qh);
3652
3653 /* reschedule QH iff another request is queued */
3654 if (!list_empty(&qh->qtd_list) &&
3655 fotg210->rh_state == FOTG210_RH_RUNNING) {
3656 rc = qh_schedule(fotg210, qh);
3657
3658 /* An error here likely indicates handshake failure
3659 * or no space left in the schedule. Neither fault
3660 * should happen often ...
3661 *
3662 * FIXME kill the now-dysfunctional queued urbs
3663 */
3664 if (rc != 0)
3665 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3666 qh, rc);
3667 }
3668
3669 /* maybe turn off periodic schedule */
3670 --fotg210->intr_count;
3671 disable_periodic(fotg210);
3672 }
3673
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3674 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3675 unsigned uframe, unsigned period, unsigned usecs)
3676 {
3677 int claimed;
3678
3679 /* complete split running into next frame?
3680 * given FSTN support, we could sometimes check...
3681 */
3682 if (uframe >= 8)
3683 return 0;
3684
3685 /* convert "usecs we need" to "max already claimed" */
3686 usecs = fotg210->uframe_periodic_max - usecs;
3687
3688 /* we "know" 2 and 4 uframe intervals were rejected; so
3689 * for period 0, check _every_ microframe in the schedule.
3690 */
3691 if (unlikely(period == 0)) {
3692 do {
3693 for (uframe = 0; uframe < 7; uframe++) {
3694 claimed = periodic_usecs(fotg210, frame,
3695 uframe);
3696 if (claimed > usecs)
3697 return 0;
3698 }
3699 } while ((frame += 1) < fotg210->periodic_size);
3700
3701 /* just check the specified uframe, at that period */
3702 } else {
3703 do {
3704 claimed = periodic_usecs(fotg210, frame, uframe);
3705 if (claimed > usecs)
3706 return 0;
3707 } while ((frame += period) < fotg210->periodic_size);
3708 }
3709
3710 /* success! */
3711 return 1;
3712 }
3713
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3714 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3715 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3716 {
3717 int retval = -ENOSPC;
3718 u8 mask = 0;
3719
3720 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3721 goto done;
3722
3723 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3724 goto done;
3725 if (!qh->c_usecs) {
3726 retval = 0;
3727 *c_maskp = 0;
3728 goto done;
3729 }
3730
3731 /* Make sure this tt's buffer is also available for CSPLITs.
3732 * We pessimize a bit; probably the typical full speed case
3733 * doesn't need the second CSPLIT.
3734 *
3735 * NOTE: both SPLIT and CSPLIT could be checked in just
3736 * one smart pass...
3737 */
3738 mask = 0x03 << (uframe + qh->gap_uf);
3739 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3740
3741 mask |= 1 << uframe;
3742 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3743 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3744 qh->period, qh->c_usecs))
3745 goto done;
3746 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3747 qh->period, qh->c_usecs))
3748 goto done;
3749 retval = 0;
3750 }
3751 done:
3752 return retval;
3753 }
3754
3755 /* "first fit" scheduling policy used the first time through,
3756 * or when the previous schedule slot can't be re-used.
3757 */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3758 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759 {
3760 int status;
3761 unsigned uframe;
3762 __hc32 c_mask;
3763 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3764 struct fotg210_qh_hw *hw = qh->hw;
3765
3766 qh_refresh(fotg210, qh);
3767 hw->hw_next = FOTG210_LIST_END(fotg210);
3768 frame = qh->start;
3769
3770 /* reuse the previous schedule slots, if we can */
3771 if (frame < qh->period) {
3772 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3773 status = check_intr_schedule(fotg210, frame, --uframe,
3774 qh, &c_mask);
3775 } else {
3776 uframe = 0;
3777 c_mask = 0;
3778 status = -ENOSPC;
3779 }
3780
3781 /* else scan the schedule to find a group of slots such that all
3782 * uframes have enough periodic bandwidth available.
3783 */
3784 if (status) {
3785 /* "normal" case, uframing flexible except with splits */
3786 if (qh->period) {
3787 int i;
3788
3789 for (i = qh->period; status && i > 0; --i) {
3790 frame = ++fotg210->random_frame % qh->period;
3791 for (uframe = 0; uframe < 8; uframe++) {
3792 status = check_intr_schedule(fotg210,
3793 frame, uframe, qh,
3794 &c_mask);
3795 if (status == 0)
3796 break;
3797 }
3798 }
3799
3800 /* qh->period == 0 means every uframe */
3801 } else {
3802 frame = 0;
3803 status = check_intr_schedule(fotg210, 0, 0, qh,
3804 &c_mask);
3805 }
3806 if (status)
3807 goto done;
3808 qh->start = frame;
3809
3810 /* reset S-frame and (maybe) C-frame masks */
3811 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3812 hw->hw_info2 |= qh->period
3813 ? cpu_to_hc32(fotg210, 1 << uframe)
3814 : cpu_to_hc32(fotg210, QH_SMASK);
3815 hw->hw_info2 |= c_mask;
3816 } else
3817 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3818
3819 /* stuff into the periodic schedule */
3820 qh_link_periodic(fotg210, qh);
3821 done:
3822 return status;
3823 }
3824
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3825 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3826 struct list_head *qtd_list, gfp_t mem_flags)
3827 {
3828 unsigned epnum;
3829 unsigned long flags;
3830 struct fotg210_qh *qh;
3831 int status;
3832 struct list_head empty;
3833
3834 /* get endpoint and transfer/schedule data */
3835 epnum = urb->ep->desc.bEndpointAddress;
3836
3837 spin_lock_irqsave(&fotg210->lock, flags);
3838
3839 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3840 status = -ESHUTDOWN;
3841 goto done_not_linked;
3842 }
3843 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3844 if (unlikely(status))
3845 goto done_not_linked;
3846
3847 /* get qh and force any scheduling errors */
3848 INIT_LIST_HEAD(&empty);
3849 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850 if (qh == NULL) {
3851 status = -ENOMEM;
3852 goto done;
3853 }
3854 if (qh->qh_state == QH_STATE_IDLE) {
3855 status = qh_schedule(fotg210, qh);
3856 if (status)
3857 goto done;
3858 }
3859
3860 /* then queue the urb's tds to the qh */
3861 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862 BUG_ON(qh == NULL);
3863
3864 /* ... update usbfs periodic stats */
3865 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866
3867 done:
3868 if (unlikely(status))
3869 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3870 done_not_linked:
3871 spin_unlock_irqrestore(&fotg210->lock, flags);
3872 if (status)
3873 qtd_list_free(fotg210, urb, qtd_list);
3874
3875 return status;
3876 }
3877
scan_intr(struct fotg210_hcd * fotg210)3878 static void scan_intr(struct fotg210_hcd *fotg210)
3879 {
3880 struct fotg210_qh *qh;
3881
3882 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3883 &fotg210->intr_qh_list, intr_node) {
3884 rescan:
3885 /* clean any finished work for this qh */
3886 if (!list_empty(&qh->qtd_list)) {
3887 int temp;
3888
3889 /*
3890 * Unlinks could happen here; completion reporting
3891 * drops the lock. That's why fotg210->qh_scan_next
3892 * always holds the next qh to scan; if the next qh
3893 * gets unlinked then fotg210->qh_scan_next is adjusted
3894 * in qh_unlink_periodic().
3895 */
3896 temp = qh_completions(fotg210, qh);
3897 if (unlikely(qh->needs_rescan ||
3898 (list_empty(&qh->qtd_list) &&
3899 qh->qh_state == QH_STATE_LINKED)))
3900 start_unlink_intr(fotg210, qh);
3901 else if (temp != 0)
3902 goto rescan;
3903 }
3904 }
3905 }
3906
3907 /* fotg210_iso_stream ops work with both ITD and SITD */
3908
iso_stream_alloc(gfp_t mem_flags)3909 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3910 {
3911 struct fotg210_iso_stream *stream;
3912
3913 stream = kzalloc(sizeof(*stream), mem_flags);
3914 if (likely(stream != NULL)) {
3915 INIT_LIST_HEAD(&stream->td_list);
3916 INIT_LIST_HEAD(&stream->free_list);
3917 stream->next_uframe = -1;
3918 }
3919 return stream;
3920 }
3921
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3922 static void iso_stream_init(struct fotg210_hcd *fotg210,
3923 struct fotg210_iso_stream *stream, struct usb_device *dev,
3924 int pipe, unsigned interval)
3925 {
3926 u32 buf1;
3927 unsigned epnum, maxp;
3928 int is_input;
3929 long bandwidth;
3930 unsigned multi;
3931
3932 /*
3933 * this might be a "high bandwidth" highspeed endpoint,
3934 * as encoded in the ep descriptor's wMaxPacket field
3935 */
3936 epnum = usb_pipeendpoint(pipe);
3937 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3938 maxp = usb_maxpacket(dev, pipe, !is_input);
3939 if (is_input)
3940 buf1 = (1 << 11);
3941 else
3942 buf1 = 0;
3943
3944 maxp = max_packet(maxp);
3945 multi = hb_mult(maxp);
3946 buf1 |= maxp;
3947 maxp *= multi;
3948
3949 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3950 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3951 stream->buf2 = cpu_to_hc32(fotg210, multi);
3952
3953 /* usbfs wants to report the average usecs per frame tied up
3954 * when transfers on this endpoint are scheduled ...
3955 */
3956 if (dev->speed == USB_SPEED_FULL) {
3957 interval <<= 3;
3958 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3959 is_input, 1, maxp));
3960 stream->usecs /= 8;
3961 } else {
3962 stream->highspeed = 1;
3963 stream->usecs = HS_USECS_ISO(maxp);
3964 }
3965 bandwidth = stream->usecs * 8;
3966 bandwidth /= interval;
3967
3968 stream->bandwidth = bandwidth;
3969 stream->udev = dev;
3970 stream->bEndpointAddress = is_input | epnum;
3971 stream->interval = interval;
3972 stream->maxp = maxp;
3973 }
3974
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3975 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3976 struct urb *urb)
3977 {
3978 unsigned epnum;
3979 struct fotg210_iso_stream *stream;
3980 struct usb_host_endpoint *ep;
3981 unsigned long flags;
3982
3983 epnum = usb_pipeendpoint(urb->pipe);
3984 if (usb_pipein(urb->pipe))
3985 ep = urb->dev->ep_in[epnum];
3986 else
3987 ep = urb->dev->ep_out[epnum];
3988
3989 spin_lock_irqsave(&fotg210->lock, flags);
3990 stream = ep->hcpriv;
3991
3992 if (unlikely(stream == NULL)) {
3993 stream = iso_stream_alloc(GFP_ATOMIC);
3994 if (likely(stream != NULL)) {
3995 ep->hcpriv = stream;
3996 stream->ep = ep;
3997 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3998 urb->interval);
3999 }
4000
4001 /* if dev->ep[epnum] is a QH, hw is set */
4002 } else if (unlikely(stream->hw != NULL)) {
4003 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4004 urb->dev->devpath, epnum,
4005 usb_pipein(urb->pipe) ? "in" : "out");
4006 stream = NULL;
4007 }
4008
4009 spin_unlock_irqrestore(&fotg210->lock, flags);
4010 return stream;
4011 }
4012
4013 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4015 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4016 gfp_t mem_flags)
4017 {
4018 struct fotg210_iso_sched *iso_sched;
4019 int size = sizeof(*iso_sched);
4020
4021 size += packets * sizeof(struct fotg210_iso_packet);
4022 iso_sched = kzalloc(size, mem_flags);
4023 if (likely(iso_sched != NULL))
4024 INIT_LIST_HEAD(&iso_sched->td_list);
4025
4026 return iso_sched;
4027 }
4028
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4029 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4030 struct fotg210_iso_sched *iso_sched,
4031 struct fotg210_iso_stream *stream, struct urb *urb)
4032 {
4033 unsigned i;
4034 dma_addr_t dma = urb->transfer_dma;
4035
4036 /* how many uframes are needed for these transfers */
4037 iso_sched->span = urb->number_of_packets * stream->interval;
4038
4039 /* figure out per-uframe itd fields that we'll need later
4040 * when we fit new itds into the schedule.
4041 */
4042 for (i = 0; i < urb->number_of_packets; i++) {
4043 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044 unsigned length;
4045 dma_addr_t buf;
4046 u32 trans;
4047
4048 length = urb->iso_frame_desc[i].length;
4049 buf = dma + urb->iso_frame_desc[i].offset;
4050
4051 trans = FOTG210_ISOC_ACTIVE;
4052 trans |= buf & 0x0fff;
4053 if (unlikely(((i + 1) == urb->number_of_packets))
4054 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4055 trans |= FOTG210_ITD_IOC;
4056 trans |= length << 16;
4057 uframe->transaction = cpu_to_hc32(fotg210, trans);
4058
4059 /* might need to cross a buffer page within a uframe */
4060 uframe->bufp = (buf & ~(u64)0x0fff);
4061 buf += length;
4062 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063 uframe->cross = 1;
4064 }
4065 }
4066
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4067 static void iso_sched_free(struct fotg210_iso_stream *stream,
4068 struct fotg210_iso_sched *iso_sched)
4069 {
4070 if (!iso_sched)
4071 return;
4072 /* caller must hold fotg210->lock!*/
4073 list_splice(&iso_sched->td_list, &stream->free_list);
4074 kfree(iso_sched);
4075 }
4076
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4077 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4078 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079 {
4080 struct fotg210_itd *itd;
4081 dma_addr_t itd_dma;
4082 int i;
4083 unsigned num_itds;
4084 struct fotg210_iso_sched *sched;
4085 unsigned long flags;
4086
4087 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4088 if (unlikely(sched == NULL))
4089 return -ENOMEM;
4090
4091 itd_sched_init(fotg210, sched, stream, urb);
4092
4093 if (urb->interval < 8)
4094 num_itds = 1 + (sched->span + 7) / 8;
4095 else
4096 num_itds = urb->number_of_packets;
4097
4098 /* allocate/init ITDs */
4099 spin_lock_irqsave(&fotg210->lock, flags);
4100 for (i = 0; i < num_itds; i++) {
4101
4102 /*
4103 * Use iTDs from the free list, but not iTDs that may
4104 * still be in use by the hardware.
4105 */
4106 if (likely(!list_empty(&stream->free_list))) {
4107 itd = list_first_entry(&stream->free_list,
4108 struct fotg210_itd, itd_list);
4109 if (itd->frame == fotg210->now_frame)
4110 goto alloc_itd;
4111 list_del(&itd->itd_list);
4112 itd_dma = itd->itd_dma;
4113 } else {
4114 alloc_itd:
4115 spin_unlock_irqrestore(&fotg210->lock, flags);
4116 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4117 &itd_dma);
4118 spin_lock_irqsave(&fotg210->lock, flags);
4119 if (!itd) {
4120 iso_sched_free(stream, sched);
4121 spin_unlock_irqrestore(&fotg210->lock, flags);
4122 return -ENOMEM;
4123 }
4124 }
4125
4126 itd->itd_dma = itd_dma;
4127 list_add(&itd->itd_list, &sched->td_list);
4128 }
4129 spin_unlock_irqrestore(&fotg210->lock, flags);
4130
4131 /* temporarily store schedule info in hcpriv */
4132 urb->hcpriv = sched;
4133 urb->error_count = 0;
4134 return 0;
4135 }
4136
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4137 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138 u8 usecs, u32 period)
4139 {
4140 uframe %= period;
4141 do {
4142 /* can't commit more than uframe_periodic_max usec */
4143 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144 > (fotg210->uframe_periodic_max - usecs))
4145 return 0;
4146
4147 /* we know urb->interval is 2^N uframes */
4148 uframe += period;
4149 } while (uframe < mod);
4150 return 1;
4151 }
4152
4153 /* This scheduler plans almost as far into the future as it has actual
4154 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4155 * "as small as possible" to be cache-friendlier.) That limits the size
4156 * transfers you can stream reliably; avoid more than 64 msec per urb.
4157 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159 * and other factors); or more than about 230 msec total (for portability,
4160 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4161 */
4162
4163 #define SCHEDULE_SLOP 80 /* microframes */
4164
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4165 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166 struct fotg210_iso_stream *stream)
4167 {
4168 u32 now, next, start, period, span;
4169 int status;
4170 unsigned mod = fotg210->periodic_size << 3;
4171 struct fotg210_iso_sched *sched = urb->hcpriv;
4172
4173 period = urb->interval;
4174 span = sched->span;
4175
4176 if (span > mod - SCHEDULE_SLOP) {
4177 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178 status = -EFBIG;
4179 goto fail;
4180 }
4181
4182 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4183
4184 /* Typical case: reuse current schedule, stream is still active.
4185 * Hopefully there are no gaps from the host falling behind
4186 * (irq delays etc), but if there are we'll take the next
4187 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4188 */
4189 if (likely(!list_empty(&stream->td_list))) {
4190 u32 excess;
4191
4192 /* For high speed devices, allow scheduling within the
4193 * isochronous scheduling threshold. For full speed devices
4194 * and Intel PCI-based controllers, don't (work around for
4195 * Intel ICH9 bug).
4196 */
4197 if (!stream->highspeed && fotg210->fs_i_thresh)
4198 next = now + fotg210->i_thresh;
4199 else
4200 next = now;
4201
4202 /* Fell behind (by up to twice the slop amount)?
4203 * We decide based on the time of the last currently-scheduled
4204 * slot, not the time of the next available slot.
4205 */
4206 excess = (stream->next_uframe - period - next) & (mod - 1);
4207 if (excess >= mod - 2 * SCHEDULE_SLOP)
4208 start = next + excess - mod + period *
4209 DIV_ROUND_UP(mod - excess, period);
4210 else
4211 start = next + excess + period;
4212 if (start - now >= mod) {
4213 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214 urb, start - now - period, period,
4215 mod);
4216 status = -EFBIG;
4217 goto fail;
4218 }
4219 }
4220
4221 /* need to schedule; when's the next (u)frame we could start?
4222 * this is bigger than fotg210->i_thresh allows; scheduling itself
4223 * isn't free, the slop should handle reasonably slow cpus. it
4224 * can also help high bandwidth if the dma and irq loads don't
4225 * jump until after the queue is primed.
4226 */
4227 else {
4228 int done = 0;
4229
4230 start = SCHEDULE_SLOP + (now & ~0x07);
4231
4232 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4233
4234 /* find a uframe slot with enough bandwidth.
4235 * Early uframes are more precious because full-speed
4236 * iso IN transfers can't use late uframes,
4237 * and therefore they should be allocated last.
4238 */
4239 next = start;
4240 start += period;
4241 do {
4242 start--;
4243 /* check schedule: enough space? */
4244 if (itd_slot_ok(fotg210, mod, start,
4245 stream->usecs, period))
4246 done = 1;
4247 } while (start > next && !done);
4248
4249 /* no room in the schedule */
4250 if (!done) {
4251 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252 urb, now, now + mod);
4253 status = -ENOSPC;
4254 goto fail;
4255 }
4256 }
4257
4258 /* Tried to schedule too far into the future? */
4259 if (unlikely(start - now + span - period >=
4260 mod - 2 * SCHEDULE_SLOP)) {
4261 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262 urb, start - now, span - period,
4263 mod - 2 * SCHEDULE_SLOP);
4264 status = -EFBIG;
4265 goto fail;
4266 }
4267
4268 stream->next_uframe = start & (mod - 1);
4269
4270 /* report high speed start in uframes; full speed, in frames */
4271 urb->start_frame = stream->next_uframe;
4272 if (!stream->highspeed)
4273 urb->start_frame >>= 3;
4274
4275 /* Make sure scan_isoc() sees these */
4276 if (fotg210->isoc_count == 0)
4277 fotg210->next_frame = now >> 3;
4278 return 0;
4279
4280 fail:
4281 iso_sched_free(stream, sched);
4282 urb->hcpriv = NULL;
4283 return status;
4284 }
4285
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4286 static inline void itd_init(struct fotg210_hcd *fotg210,
4287 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4288 {
4289 int i;
4290
4291 /* it's been recently zeroed */
4292 itd->hw_next = FOTG210_LIST_END(fotg210);
4293 itd->hw_bufp[0] = stream->buf0;
4294 itd->hw_bufp[1] = stream->buf1;
4295 itd->hw_bufp[2] = stream->buf2;
4296
4297 for (i = 0; i < 8; i++)
4298 itd->index[i] = -1;
4299
4300 /* All other fields are filled when scheduling */
4301 }
4302
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4303 static inline void itd_patch(struct fotg210_hcd *fotg210,
4304 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305 unsigned index, u16 uframe)
4306 {
4307 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308 unsigned pg = itd->pg;
4309
4310 uframe &= 0x07;
4311 itd->index[uframe] = index;
4312
4313 itd->hw_transaction[uframe] = uf->transaction;
4314 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4317
4318 /* iso_frame_desc[].offset must be strictly increasing */
4319 if (unlikely(uf->cross)) {
4320 u64 bufp = uf->bufp + 4096;
4321
4322 itd->pg = ++pg;
4323 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4325 }
4326 }
4327
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4328 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329 struct fotg210_itd *itd)
4330 {
4331 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332 __hc32 *hw_p = &fotg210->periodic[frame];
4333 union fotg210_shadow here = *prev;
4334 __hc32 type = 0;
4335
4336 /* skip any iso nodes which might belong to previous microframes */
4337 while (here.ptr) {
4338 type = Q_NEXT_TYPE(fotg210, *hw_p);
4339 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4340 break;
4341 prev = periodic_next_shadow(fotg210, prev, type);
4342 hw_p = shadow_next_periodic(fotg210, &here, type);
4343 here = *prev;
4344 }
4345
4346 itd->itd_next = here;
4347 itd->hw_next = *hw_p;
4348 prev->itd = itd;
4349 itd->frame = frame;
4350 wmb();
4351 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352 }
4353
4354 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4355 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356 unsigned mod, struct fotg210_iso_stream *stream)
4357 {
4358 int packet;
4359 unsigned next_uframe, uframe, frame;
4360 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361 struct fotg210_itd *itd;
4362
4363 next_uframe = stream->next_uframe & (mod - 1);
4364
4365 if (unlikely(list_empty(&stream->td_list))) {
4366 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367 += stream->bandwidth;
4368 fotg210_dbg(fotg210,
4369 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4372 urb->interval,
4373 next_uframe >> 3, next_uframe & 0x7);
4374 }
4375
4376 /* fill iTDs uframe by uframe */
4377 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4378 if (itd == NULL) {
4379 /* ASSERT: we have all necessary itds */
4380
4381 /* ASSERT: no itds for this endpoint in this uframe */
4382
4383 itd = list_entry(iso_sched->td_list.next,
4384 struct fotg210_itd, itd_list);
4385 list_move_tail(&itd->itd_list, &stream->td_list);
4386 itd->stream = stream;
4387 itd->urb = urb;
4388 itd_init(fotg210, stream, itd);
4389 }
4390
4391 uframe = next_uframe & 0x07;
4392 frame = next_uframe >> 3;
4393
4394 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4395
4396 next_uframe += stream->interval;
4397 next_uframe &= mod - 1;
4398 packet++;
4399
4400 /* link completed itds into the schedule */
4401 if (((next_uframe >> 3) != frame)
4402 || packet == urb->number_of_packets) {
4403 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404 itd);
4405 itd = NULL;
4406 }
4407 }
4408 stream->next_uframe = next_uframe;
4409
4410 /* don't need that schedule data any more */
4411 iso_sched_free(stream, iso_sched);
4412 urb->hcpriv = NULL;
4413
4414 ++fotg210->isoc_count;
4415 enable_periodic(fotg210);
4416 }
4417
4418 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419 FOTG210_ISOC_XACTERR)
4420
4421 /* Process and recycle a completed ITD. Return true iff its urb completed,
4422 * and hence its completion callback probably added things to the hardware
4423 * schedule.
4424 *
4425 * Note that we carefully avoid recycling this descriptor until after any
4426 * completion callback runs, so that it won't be reused quickly. That is,
4427 * assuming (a) no more than two urbs per frame on this endpoint, and also
4428 * (b) only this endpoint's completions submit URBs. It seems some silicon
4429 * corrupts things if you reuse completed descriptors very quickly...
4430 */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4431 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4432 {
4433 struct urb *urb = itd->urb;
4434 struct usb_iso_packet_descriptor *desc;
4435 u32 t;
4436 unsigned uframe;
4437 int urb_index = -1;
4438 struct fotg210_iso_stream *stream = itd->stream;
4439 struct usb_device *dev;
4440 bool retval = false;
4441
4442 /* for each uframe with a packet */
4443 for (uframe = 0; uframe < 8; uframe++) {
4444 if (likely(itd->index[uframe] == -1))
4445 continue;
4446 urb_index = itd->index[uframe];
4447 desc = &urb->iso_frame_desc[urb_index];
4448
4449 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450 itd->hw_transaction[uframe] = 0;
4451
4452 /* report transfer status */
4453 if (unlikely(t & ISO_ERRS)) {
4454 urb->error_count++;
4455 if (t & FOTG210_ISOC_BUF_ERR)
4456 desc->status = usb_pipein(urb->pipe)
4457 ? -ENOSR /* hc couldn't read */
4458 : -ECOMM; /* hc couldn't write */
4459 else if (t & FOTG210_ISOC_BABBLE)
4460 desc->status = -EOVERFLOW;
4461 else /* (t & FOTG210_ISOC_XACTERR) */
4462 desc->status = -EPROTO;
4463
4464 /* HC need not update length with this error */
4465 if (!(t & FOTG210_ISOC_BABBLE)) {
4466 desc->actual_length =
4467 fotg210_itdlen(urb, desc, t);
4468 urb->actual_length += desc->actual_length;
4469 }
4470 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471 desc->status = 0;
4472 desc->actual_length = fotg210_itdlen(urb, desc, t);
4473 urb->actual_length += desc->actual_length;
4474 } else {
4475 /* URB was too late */
4476 desc->status = -EXDEV;
4477 }
4478 }
4479
4480 /* handle completion now? */
4481 if (likely((urb_index + 1) != urb->number_of_packets))
4482 goto done;
4483
4484 /* ASSERT: it's really the last itd for this urb
4485 * list_for_each_entry (itd, &stream->td_list, itd_list)
4486 * BUG_ON (itd->urb == urb);
4487 */
4488
4489 /* give urb back to the driver; completion often (re)submits */
4490 dev = urb->dev;
4491 fotg210_urb_done(fotg210, urb, 0);
4492 retval = true;
4493 urb = NULL;
4494
4495 --fotg210->isoc_count;
4496 disable_periodic(fotg210);
4497
4498 if (unlikely(list_is_singular(&stream->td_list))) {
4499 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4500 -= stream->bandwidth;
4501 fotg210_dbg(fotg210,
4502 "deschedule devp %s ep%d%s-iso\n",
4503 dev->devpath, stream->bEndpointAddress & 0x0f,
4504 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505 }
4506
4507 done:
4508 itd->urb = NULL;
4509
4510 /* Add to the end of the free list for later reuse */
4511 list_move_tail(&itd->itd_list, &stream->free_list);
4512
4513 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4514 if (list_empty(&stream->td_list)) {
4515 list_splice_tail_init(&stream->free_list,
4516 &fotg210->cached_itd_list);
4517 start_free_itds(fotg210);
4518 }
4519
4520 return retval;
4521 }
4522
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4523 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4524 gfp_t mem_flags)
4525 {
4526 int status = -EINVAL;
4527 unsigned long flags;
4528 struct fotg210_iso_stream *stream;
4529
4530 /* Get iso_stream head */
4531 stream = iso_stream_find(fotg210, urb);
4532 if (unlikely(stream == NULL)) {
4533 fotg210_dbg(fotg210, "can't get iso stream\n");
4534 return -ENOMEM;
4535 }
4536 if (unlikely(urb->interval != stream->interval &&
4537 fotg210_port_speed(fotg210, 0) ==
4538 USB_PORT_STAT_HIGH_SPEED)) {
4539 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4540 stream->interval, urb->interval);
4541 goto done;
4542 }
4543
4544 #ifdef FOTG210_URB_TRACE
4545 fotg210_dbg(fotg210,
4546 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4547 __func__, urb->dev->devpath, urb,
4548 usb_pipeendpoint(urb->pipe),
4549 usb_pipein(urb->pipe) ? "in" : "out",
4550 urb->transfer_buffer_length,
4551 urb->number_of_packets, urb->interval,
4552 stream);
4553 #endif
4554
4555 /* allocate ITDs w/o locking anything */
4556 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4557 if (unlikely(status < 0)) {
4558 fotg210_dbg(fotg210, "can't init itds\n");
4559 goto done;
4560 }
4561
4562 /* schedule ... need to lock */
4563 spin_lock_irqsave(&fotg210->lock, flags);
4564 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4565 status = -ESHUTDOWN;
4566 goto done_not_linked;
4567 }
4568 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4569 if (unlikely(status))
4570 goto done_not_linked;
4571 status = iso_stream_schedule(fotg210, urb, stream);
4572 if (likely(status == 0))
4573 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574 else
4575 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576 done_not_linked:
4577 spin_unlock_irqrestore(&fotg210->lock, flags);
4578 done:
4579 return status;
4580 }
4581
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4582 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4583 unsigned now_frame, bool live)
4584 {
4585 unsigned uf;
4586 bool modified;
4587 union fotg210_shadow q, *q_p;
4588 __hc32 type, *hw_p;
4589
4590 /* scan each element in frame's queue for completions */
4591 q_p = &fotg210->pshadow[frame];
4592 hw_p = &fotg210->periodic[frame];
4593 q.ptr = q_p->ptr;
4594 type = Q_NEXT_TYPE(fotg210, *hw_p);
4595 modified = false;
4596
4597 while (q.ptr) {
4598 switch (hc32_to_cpu(fotg210, type)) {
4599 case Q_TYPE_ITD:
4600 /* If this ITD is still active, leave it for
4601 * later processing ... check the next entry.
4602 * No need to check for activity unless the
4603 * frame is current.
4604 */
4605 if (frame == now_frame && live) {
4606 rmb();
4607 for (uf = 0; uf < 8; uf++) {
4608 if (q.itd->hw_transaction[uf] &
4609 ITD_ACTIVE(fotg210))
4610 break;
4611 }
4612 if (uf < 8) {
4613 q_p = &q.itd->itd_next;
4614 hw_p = &q.itd->hw_next;
4615 type = Q_NEXT_TYPE(fotg210,
4616 q.itd->hw_next);
4617 q = *q_p;
4618 break;
4619 }
4620 }
4621
4622 /* Take finished ITDs out of the schedule
4623 * and process them: recycle, maybe report
4624 * URB completion. HC won't cache the
4625 * pointer for much longer, if at all.
4626 */
4627 *q_p = q.itd->itd_next;
4628 *hw_p = q.itd->hw_next;
4629 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630 wmb();
4631 modified = itd_complete(fotg210, q.itd);
4632 q = *q_p;
4633 break;
4634 default:
4635 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4636 type, frame, q.ptr);
4637 /* FALL THROUGH */
4638 case Q_TYPE_QH:
4639 case Q_TYPE_FSTN:
4640 /* End of the iTDs and siTDs */
4641 q.ptr = NULL;
4642 break;
4643 }
4644
4645 /* assume completion callbacks modify the queue */
4646 if (unlikely(modified && fotg210->isoc_count > 0))
4647 return -EINVAL;
4648 }
4649 return 0;
4650 }
4651
scan_isoc(struct fotg210_hcd * fotg210)4652 static void scan_isoc(struct fotg210_hcd *fotg210)
4653 {
4654 unsigned uf, now_frame, frame, ret;
4655 unsigned fmask = fotg210->periodic_size - 1;
4656 bool live;
4657
4658 /*
4659 * When running, scan from last scan point up to "now"
4660 * else clean up by scanning everything that's left.
4661 * Touches as few pages as possible: cache-friendly.
4662 */
4663 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4664 uf = fotg210_read_frame_index(fotg210);
4665 now_frame = (uf >> 3) & fmask;
4666 live = true;
4667 } else {
4668 now_frame = (fotg210->next_frame - 1) & fmask;
4669 live = false;
4670 }
4671 fotg210->now_frame = now_frame;
4672
4673 frame = fotg210->next_frame;
4674 for (;;) {
4675 ret = 1;
4676 while (ret != 0)
4677 ret = scan_frame_queue(fotg210, frame,
4678 now_frame, live);
4679
4680 /* Stop when we have reached the current frame */
4681 if (frame == now_frame)
4682 break;
4683 frame = (frame + 1) & fmask;
4684 }
4685 fotg210->next_frame = now_frame;
4686 }
4687
4688 /* Display / Set uframe_periodic_max
4689 */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4690 static ssize_t uframe_periodic_max_show(struct device *dev,
4691 struct device_attribute *attr, char *buf)
4692 {
4693 struct fotg210_hcd *fotg210;
4694 int n;
4695
4696 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4697 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698 return n;
4699 }
4700
4701
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4702 static ssize_t uframe_periodic_max_store(struct device *dev,
4703 struct device_attribute *attr, const char *buf, size_t count)
4704 {
4705 struct fotg210_hcd *fotg210;
4706 unsigned uframe_periodic_max;
4707 unsigned frame, uframe;
4708 unsigned short allocated_max;
4709 unsigned long flags;
4710 ssize_t ret;
4711
4712 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4713 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4714 return -EINVAL;
4715
4716 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4717 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4718 uframe_periodic_max);
4719 return -EINVAL;
4720 }
4721
4722 ret = -EINVAL;
4723
4724 /*
4725 * lock, so that our checking does not race with possible periodic
4726 * bandwidth allocation through submitting new urbs.
4727 */
4728 spin_lock_irqsave(&fotg210->lock, flags);
4729
4730 /*
4731 * for request to decrease max periodic bandwidth, we have to check
4732 * every microframe in the schedule to see whether the decrease is
4733 * possible.
4734 */
4735 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4736 allocated_max = 0;
4737
4738 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4739 for (uframe = 0; uframe < 7; ++uframe)
4740 allocated_max = max(allocated_max,
4741 periodic_usecs(fotg210, frame,
4742 uframe));
4743
4744 if (allocated_max > uframe_periodic_max) {
4745 fotg210_info(fotg210,
4746 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4747 allocated_max, uframe_periodic_max);
4748 goto out_unlock;
4749 }
4750 }
4751
4752 /* increasing is always ok */
4753
4754 fotg210_info(fotg210,
4755 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4756 100 * uframe_periodic_max/125, uframe_periodic_max);
4757
4758 if (uframe_periodic_max != 100)
4759 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760
4761 fotg210->uframe_periodic_max = uframe_periodic_max;
4762 ret = count;
4763
4764 out_unlock:
4765 spin_unlock_irqrestore(&fotg210->lock, flags);
4766 return ret;
4767 }
4768
4769 static DEVICE_ATTR_RW(uframe_periodic_max);
4770
create_sysfs_files(struct fotg210_hcd * fotg210)4771 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772 {
4773 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774
4775 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776 }
4777
remove_sysfs_files(struct fotg210_hcd * fotg210)4778 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779 {
4780 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781
4782 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783 }
4784 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4785 * The firmware seems to think that powering off is a wakeup event!
4786 * This routine turns off remote wakeup and everything else, on all ports.
4787 */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4788 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789 {
4790 u32 __iomem *status_reg = &fotg210->regs->port_status;
4791
4792 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793 }
4794
4795 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4796 * Must be called with interrupts enabled and the lock not held.
4797 */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4798 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799 {
4800 fotg210_halt(fotg210);
4801
4802 spin_lock_irq(&fotg210->lock);
4803 fotg210->rh_state = FOTG210_RH_HALTED;
4804 fotg210_turn_off_all_ports(fotg210);
4805 spin_unlock_irq(&fotg210->lock);
4806 }
4807
4808 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4809 * This forcibly disables dma and IRQs, helping kexec and other cases
4810 * where the next system software may expect clean state.
4811 */
fotg210_shutdown(struct usb_hcd * hcd)4812 static void fotg210_shutdown(struct usb_hcd *hcd)
4813 {
4814 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815
4816 spin_lock_irq(&fotg210->lock);
4817 fotg210->shutdown = true;
4818 fotg210->rh_state = FOTG210_RH_STOPPING;
4819 fotg210->enabled_hrtimer_events = 0;
4820 spin_unlock_irq(&fotg210->lock);
4821
4822 fotg210_silence_controller(fotg210);
4823
4824 hrtimer_cancel(&fotg210->hrtimer);
4825 }
4826
4827 /* fotg210_work is called from some interrupts, timers, and so on.
4828 * it calls driver completion functions, after dropping fotg210->lock.
4829 */
fotg210_work(struct fotg210_hcd * fotg210)4830 static void fotg210_work(struct fotg210_hcd *fotg210)
4831 {
4832 /* another CPU may drop fotg210->lock during a schedule scan while
4833 * it reports urb completions. this flag guards against bogus
4834 * attempts at re-entrant schedule scanning.
4835 */
4836 if (fotg210->scanning) {
4837 fotg210->need_rescan = true;
4838 return;
4839 }
4840 fotg210->scanning = true;
4841
4842 rescan:
4843 fotg210->need_rescan = false;
4844 if (fotg210->async_count)
4845 scan_async(fotg210);
4846 if (fotg210->intr_count > 0)
4847 scan_intr(fotg210);
4848 if (fotg210->isoc_count > 0)
4849 scan_isoc(fotg210);
4850 if (fotg210->need_rescan)
4851 goto rescan;
4852 fotg210->scanning = false;
4853
4854 /* the IO watchdog guards against hardware or driver bugs that
4855 * misplace IRQs, and should let us run completely without IRQs.
4856 * such lossage has been observed on both VT6202 and VT8235.
4857 */
4858 turn_on_io_watchdog(fotg210);
4859 }
4860
4861 /* Called when the fotg210_hcd module is removed.
4862 */
fotg210_stop(struct usb_hcd * hcd)4863 static void fotg210_stop(struct usb_hcd *hcd)
4864 {
4865 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866
4867 fotg210_dbg(fotg210, "stop\n");
4868
4869 /* no more interrupts ... */
4870
4871 spin_lock_irq(&fotg210->lock);
4872 fotg210->enabled_hrtimer_events = 0;
4873 spin_unlock_irq(&fotg210->lock);
4874
4875 fotg210_quiesce(fotg210);
4876 fotg210_silence_controller(fotg210);
4877 fotg210_reset(fotg210);
4878
4879 hrtimer_cancel(&fotg210->hrtimer);
4880 remove_sysfs_files(fotg210);
4881 remove_debug_files(fotg210);
4882
4883 /* root hub is shut down separately (first, when possible) */
4884 spin_lock_irq(&fotg210->lock);
4885 end_free_itds(fotg210);
4886 spin_unlock_irq(&fotg210->lock);
4887 fotg210_mem_cleanup(fotg210);
4888
4889 #ifdef FOTG210_STATS
4890 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4891 fotg210->stats.normal, fotg210->stats.error,
4892 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4893 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4894 fotg210->stats.complete, fotg210->stats.unlink);
4895 #endif
4896
4897 dbg_status(fotg210, "fotg210_stop completed",
4898 fotg210_readl(fotg210, &fotg210->regs->status));
4899 }
4900
4901 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4902 static int hcd_fotg210_init(struct usb_hcd *hcd)
4903 {
4904 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4905 u32 temp;
4906 int retval;
4907 u32 hcc_params;
4908 struct fotg210_qh_hw *hw;
4909
4910 spin_lock_init(&fotg210->lock);
4911
4912 /*
4913 * keep io watchdog by default, those good HCDs could turn off it later
4914 */
4915 fotg210->need_io_watchdog = 1;
4916
4917 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4918 fotg210->hrtimer.function = fotg210_hrtimer_func;
4919 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920
4921 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922
4923 /*
4924 * by default set standard 80% (== 100 usec/uframe) max periodic
4925 * bandwidth as required by USB 2.0
4926 */
4927 fotg210->uframe_periodic_max = 100;
4928
4929 /*
4930 * hw default: 1K periodic list heads, one per frame.
4931 * periodic_size can shrink by USBCMD update if hcc_params allows.
4932 */
4933 fotg210->periodic_size = DEFAULT_I_TDPS;
4934 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4935 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936
4937 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4938 /* periodic schedule size can be smaller than default */
4939 switch (FOTG210_TUNE_FLS) {
4940 case 0:
4941 fotg210->periodic_size = 1024;
4942 break;
4943 case 1:
4944 fotg210->periodic_size = 512;
4945 break;
4946 case 2:
4947 fotg210->periodic_size = 256;
4948 break;
4949 default:
4950 BUG();
4951 }
4952 }
4953 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4954 if (retval < 0)
4955 return retval;
4956
4957 /* controllers may cache some of the periodic schedule ... */
4958 fotg210->i_thresh = 2;
4959
4960 /*
4961 * dedicate a qh for the async ring head, since we couldn't unlink
4962 * a 'real' qh without stopping the async schedule [4.8]. use it
4963 * as the 'reclamation list head' too.
4964 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4965 * from automatically advancing to the next td after short reads.
4966 */
4967 fotg210->async->qh_next.qh = NULL;
4968 hw = fotg210->async->hw;
4969 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4970 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4971 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4972 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4973 fotg210->async->qh_state = QH_STATE_LINKED;
4974 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975
4976 /* clear interrupt enables, set irq latency */
4977 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4978 log2_irq_thresh = 0;
4979 temp = 1 << (16 + log2_irq_thresh);
4980 if (HCC_CANPARK(hcc_params)) {
4981 /* HW default park == 3, on hardware that supports it (like
4982 * NVidia and ALI silicon), maximizes throughput on the async
4983 * schedule by avoiding QH fetches between transfers.
4984 *
4985 * With fast usb storage devices and NForce2, "park" seems to
4986 * make problems: throughput reduction (!), data errors...
4987 */
4988 if (park) {
4989 park = min_t(unsigned, park, 3);
4990 temp |= CMD_PARK;
4991 temp |= park << 8;
4992 }
4993 fotg210_dbg(fotg210, "park %d\n", park);
4994 }
4995 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4996 /* periodic schedule size can be smaller than default */
4997 temp &= ~(3 << 2);
4998 temp |= (FOTG210_TUNE_FLS << 2);
4999 }
5000 fotg210->command = temp;
5001
5002 /* Accept arbitrarily long scatter-gather lists */
5003 if (!hcd->localmem_pool)
5004 hcd->self.sg_tablesize = ~0;
5005 return 0;
5006 }
5007
5008 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5009 static int fotg210_run(struct usb_hcd *hcd)
5010 {
5011 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5012 u32 temp;
5013 u32 hcc_params;
5014
5015 hcd->uses_new_polling = 1;
5016
5017 /* EHCI spec section 4.1 */
5018
5019 fotg210_writel(fotg210, fotg210->periodic_dma,
5020 &fotg210->regs->frame_list);
5021 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5022 &fotg210->regs->async_next);
5023
5024 /*
5025 * hcc_params controls whether fotg210->regs->segment must (!!!)
5026 * be used; it constrains QH/ITD/SITD and QTD locations.
5027 * dma_pool consistent memory always uses segment zero.
5028 * streaming mappings for I/O buffers, like pci_map_single(),
5029 * can return segments above 4GB, if the device allows.
5030 *
5031 * NOTE: the dma mask is visible through dev->dma_mask, so
5032 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5033 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5034 * host side drivers though.
5035 */
5036 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037
5038 /*
5039 * Philips, Intel, and maybe others need CMD_RUN before the
5040 * root hub will detect new devices (why?); NEC doesn't
5041 */
5042 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5043 fotg210->command |= CMD_RUN;
5044 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5045 dbg_cmd(fotg210, "init", fotg210->command);
5046
5047 /*
5048 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5049 * are explicitly handed to companion controller(s), so no TT is
5050 * involved with the root hub. (Except where one is integrated,
5051 * and there's no companion controller unless maybe for USB OTG.)
5052 *
5053 * Turning on the CF flag will transfer ownership of all ports
5054 * from the companions to the EHCI controller. If any of the
5055 * companions are in the middle of a port reset at the time, it
5056 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5057 * guarantees that no resets are in progress. After we set CF,
5058 * a short delay lets the hardware catch up; new resets shouldn't
5059 * be started before the port switching actions could complete.
5060 */
5061 down_write(&ehci_cf_port_reset_rwsem);
5062 fotg210->rh_state = FOTG210_RH_RUNNING;
5063 /* unblock posted writes */
5064 fotg210_readl(fotg210, &fotg210->regs->command);
5065 usleep_range(5000, 10000);
5066 up_write(&ehci_cf_port_reset_rwsem);
5067 fotg210->last_periodic_enable = ktime_get_real();
5068
5069 temp = HC_VERSION(fotg210,
5070 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5071 fotg210_info(fotg210,
5072 "USB %x.%x started, EHCI %x.%02x\n",
5073 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5074 temp >> 8, temp & 0xff);
5075
5076 fotg210_writel(fotg210, INTR_MASK,
5077 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5078
5079 /* GRR this is run-once init(), being done every time the HC starts.
5080 * So long as they're part of class devices, we can't do it init()
5081 * since the class device isn't created that early.
5082 */
5083 create_debug_files(fotg210);
5084 create_sysfs_files(fotg210);
5085
5086 return 0;
5087 }
5088
fotg210_setup(struct usb_hcd * hcd)5089 static int fotg210_setup(struct usb_hcd *hcd)
5090 {
5091 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5092 int retval;
5093
5094 fotg210->regs = (void __iomem *)fotg210->caps +
5095 HC_LENGTH(fotg210,
5096 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5097 dbg_hcs_params(fotg210, "reset");
5098 dbg_hcc_params(fotg210, "reset");
5099
5100 /* cache this readonly data; minimize chip reads */
5101 fotg210->hcs_params = fotg210_readl(fotg210,
5102 &fotg210->caps->hcs_params);
5103
5104 fotg210->sbrn = HCD_USB2;
5105
5106 /* data structure init */
5107 retval = hcd_fotg210_init(hcd);
5108 if (retval)
5109 return retval;
5110
5111 retval = fotg210_halt(fotg210);
5112 if (retval)
5113 return retval;
5114
5115 fotg210_reset(fotg210);
5116
5117 return 0;
5118 }
5119
fotg210_irq(struct usb_hcd * hcd)5120 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5121 {
5122 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5123 u32 status, masked_status, pcd_status = 0, cmd;
5124 int bh;
5125
5126 spin_lock(&fotg210->lock);
5127
5128 status = fotg210_readl(fotg210, &fotg210->regs->status);
5129
5130 /* e.g. cardbus physical eject */
5131 if (status == ~(u32) 0) {
5132 fotg210_dbg(fotg210, "device removed\n");
5133 goto dead;
5134 }
5135
5136 /*
5137 * We don't use STS_FLR, but some controllers don't like it to
5138 * remain on, so mask it out along with the other status bits.
5139 */
5140 masked_status = status & (INTR_MASK | STS_FLR);
5141
5142 /* Shared IRQ? */
5143 if (!masked_status ||
5144 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5145 spin_unlock(&fotg210->lock);
5146 return IRQ_NONE;
5147 }
5148
5149 /* clear (just) interrupts */
5150 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5151 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5152 bh = 0;
5153
5154 /* unrequested/ignored: Frame List Rollover */
5155 dbg_status(fotg210, "irq", status);
5156
5157 /* INT, ERR, and IAA interrupt rates can be throttled */
5158
5159 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5160 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5161 if (likely((status & STS_ERR) == 0))
5162 INCR(fotg210->stats.normal);
5163 else
5164 INCR(fotg210->stats.error);
5165 bh = 1;
5166 }
5167
5168 /* complete the unlinking of some qh [4.15.2.3] */
5169 if (status & STS_IAA) {
5170
5171 /* Turn off the IAA watchdog */
5172 fotg210->enabled_hrtimer_events &=
5173 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5174
5175 /*
5176 * Mild optimization: Allow another IAAD to reset the
5177 * hrtimer, if one occurs before the next expiration.
5178 * In theory we could always cancel the hrtimer, but
5179 * tests show that about half the time it will be reset
5180 * for some other event anyway.
5181 */
5182 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5183 ++fotg210->next_hrtimer_event;
5184
5185 /* guard against (alleged) silicon errata */
5186 if (cmd & CMD_IAAD)
5187 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5188 if (fotg210->async_iaa) {
5189 INCR(fotg210->stats.iaa);
5190 end_unlink_async(fotg210);
5191 } else
5192 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5193 }
5194
5195 /* remote wakeup [4.3.1] */
5196 if (status & STS_PCD) {
5197 int pstatus;
5198 u32 __iomem *status_reg = &fotg210->regs->port_status;
5199
5200 /* kick root hub later */
5201 pcd_status = status;
5202
5203 /* resume root hub? */
5204 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5205 usb_hcd_resume_root_hub(hcd);
5206
5207 pstatus = fotg210_readl(fotg210, status_reg);
5208
5209 if (test_bit(0, &fotg210->suspended_ports) &&
5210 ((pstatus & PORT_RESUME) ||
5211 !(pstatus & PORT_SUSPEND)) &&
5212 (pstatus & PORT_PE) &&
5213 fotg210->reset_done[0] == 0) {
5214
5215 /* start 20 msec resume signaling from this port,
5216 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5217 * stop that signaling. Use 5 ms extra for safety,
5218 * like usb_port_resume() does.
5219 */
5220 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5221 set_bit(0, &fotg210->resuming_ports);
5222 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5223 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5224 }
5225 }
5226
5227 /* PCI errors [4.15.2.4] */
5228 if (unlikely((status & STS_FATAL) != 0)) {
5229 fotg210_err(fotg210, "fatal error\n");
5230 dbg_cmd(fotg210, "fatal", cmd);
5231 dbg_status(fotg210, "fatal", status);
5232 dead:
5233 usb_hc_died(hcd);
5234
5235 /* Don't let the controller do anything more */
5236 fotg210->shutdown = true;
5237 fotg210->rh_state = FOTG210_RH_STOPPING;
5238 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5239 fotg210_writel(fotg210, fotg210->command,
5240 &fotg210->regs->command);
5241 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5242 fotg210_handle_controller_death(fotg210);
5243
5244 /* Handle completions when the controller stops */
5245 bh = 0;
5246 }
5247
5248 if (bh)
5249 fotg210_work(fotg210);
5250 spin_unlock(&fotg210->lock);
5251 if (pcd_status)
5252 usb_hcd_poll_rh_status(hcd);
5253 return IRQ_HANDLED;
5254 }
5255
5256 /* non-error returns are a promise to giveback() the urb later
5257 * we drop ownership so next owner (or urb unlink) can get it
5258 *
5259 * urb + dev is in hcd.self.controller.urb_list
5260 * we're queueing TDs onto software and hardware lists
5261 *
5262 * hcd-specific init for hcpriv hasn't been done yet
5263 *
5264 * NOTE: control, bulk, and interrupt share the same code to append TDs
5265 * to a (possibly active) QH, and the same QH scanning code.
5266 */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5267 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5268 gfp_t mem_flags)
5269 {
5270 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5271 struct list_head qtd_list;
5272
5273 INIT_LIST_HEAD(&qtd_list);
5274
5275 switch (usb_pipetype(urb->pipe)) {
5276 case PIPE_CONTROL:
5277 /* qh_completions() code doesn't handle all the fault cases
5278 * in multi-TD control transfers. Even 1KB is rare anyway.
5279 */
5280 if (urb->transfer_buffer_length > (16 * 1024))
5281 return -EMSGSIZE;
5282 /* FALLTHROUGH */
5283 /* case PIPE_BULK: */
5284 default:
5285 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286 return -ENOMEM;
5287 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5288
5289 case PIPE_INTERRUPT:
5290 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5291 return -ENOMEM;
5292 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5293
5294 case PIPE_ISOCHRONOUS:
5295 return itd_submit(fotg210, urb, mem_flags);
5296 }
5297 }
5298
5299 /* remove from hardware lists
5300 * completions normally happen asynchronously
5301 */
5302
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5303 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5304 {
5305 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5306 struct fotg210_qh *qh;
5307 unsigned long flags;
5308 int rc;
5309
5310 spin_lock_irqsave(&fotg210->lock, flags);
5311 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5312 if (rc)
5313 goto done;
5314
5315 switch (usb_pipetype(urb->pipe)) {
5316 /* case PIPE_CONTROL: */
5317 /* case PIPE_BULK:*/
5318 default:
5319 qh = (struct fotg210_qh *) urb->hcpriv;
5320 if (!qh)
5321 break;
5322 switch (qh->qh_state) {
5323 case QH_STATE_LINKED:
5324 case QH_STATE_COMPLETING:
5325 start_unlink_async(fotg210, qh);
5326 break;
5327 case QH_STATE_UNLINK:
5328 case QH_STATE_UNLINK_WAIT:
5329 /* already started */
5330 break;
5331 case QH_STATE_IDLE:
5332 /* QH might be waiting for a Clear-TT-Buffer */
5333 qh_completions(fotg210, qh);
5334 break;
5335 }
5336 break;
5337
5338 case PIPE_INTERRUPT:
5339 qh = (struct fotg210_qh *) urb->hcpriv;
5340 if (!qh)
5341 break;
5342 switch (qh->qh_state) {
5343 case QH_STATE_LINKED:
5344 case QH_STATE_COMPLETING:
5345 start_unlink_intr(fotg210, qh);
5346 break;
5347 case QH_STATE_IDLE:
5348 qh_completions(fotg210, qh);
5349 break;
5350 default:
5351 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5352 qh, qh->qh_state);
5353 goto done;
5354 }
5355 break;
5356
5357 case PIPE_ISOCHRONOUS:
5358 /* itd... */
5359
5360 /* wait till next completion, do it then. */
5361 /* completion irqs can wait up to 1024 msec, */
5362 break;
5363 }
5364 done:
5365 spin_unlock_irqrestore(&fotg210->lock, flags);
5366 return rc;
5367 }
5368
5369 /* bulk qh holds the data toggle */
5370
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5371 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5372 struct usb_host_endpoint *ep)
5373 {
5374 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5375 unsigned long flags;
5376 struct fotg210_qh *qh, *tmp;
5377
5378 /* ASSERT: any requests/urbs are being unlinked */
5379 /* ASSERT: nobody can be submitting urbs for this any more */
5380
5381 rescan:
5382 spin_lock_irqsave(&fotg210->lock, flags);
5383 qh = ep->hcpriv;
5384 if (!qh)
5385 goto done;
5386
5387 /* endpoints can be iso streams. for now, we don't
5388 * accelerate iso completions ... so spin a while.
5389 */
5390 if (qh->hw == NULL) {
5391 struct fotg210_iso_stream *stream = ep->hcpriv;
5392
5393 if (!list_empty(&stream->td_list))
5394 goto idle_timeout;
5395
5396 /* BUG_ON(!list_empty(&stream->free_list)); */
5397 kfree(stream);
5398 goto done;
5399 }
5400
5401 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5402 qh->qh_state = QH_STATE_IDLE;
5403 switch (qh->qh_state) {
5404 case QH_STATE_LINKED:
5405 case QH_STATE_COMPLETING:
5406 for (tmp = fotg210->async->qh_next.qh;
5407 tmp && tmp != qh;
5408 tmp = tmp->qh_next.qh)
5409 continue;
5410 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5411 * may already be unlinked.
5412 */
5413 if (tmp)
5414 start_unlink_async(fotg210, qh);
5415 /* FALL THROUGH */
5416 case QH_STATE_UNLINK: /* wait for hw to finish? */
5417 case QH_STATE_UNLINK_WAIT:
5418 idle_timeout:
5419 spin_unlock_irqrestore(&fotg210->lock, flags);
5420 schedule_timeout_uninterruptible(1);
5421 goto rescan;
5422 case QH_STATE_IDLE: /* fully unlinked */
5423 if (qh->clearing_tt)
5424 goto idle_timeout;
5425 if (list_empty(&qh->qtd_list)) {
5426 qh_destroy(fotg210, qh);
5427 break;
5428 }
5429 /* fall through */
5430 default:
5431 /* caller was supposed to have unlinked any requests;
5432 * that's not our job. just leak this memory.
5433 */
5434 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5435 qh, ep->desc.bEndpointAddress, qh->qh_state,
5436 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5437 break;
5438 }
5439 done:
5440 ep->hcpriv = NULL;
5441 spin_unlock_irqrestore(&fotg210->lock, flags);
5442 }
5443
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5444 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5445 struct usb_host_endpoint *ep)
5446 {
5447 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5448 struct fotg210_qh *qh;
5449 int eptype = usb_endpoint_type(&ep->desc);
5450 int epnum = usb_endpoint_num(&ep->desc);
5451 int is_out = usb_endpoint_dir_out(&ep->desc);
5452 unsigned long flags;
5453
5454 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5455 return;
5456
5457 spin_lock_irqsave(&fotg210->lock, flags);
5458 qh = ep->hcpriv;
5459
5460 /* For Bulk and Interrupt endpoints we maintain the toggle state
5461 * in the hardware; the toggle bits in udev aren't used at all.
5462 * When an endpoint is reset by usb_clear_halt() we must reset
5463 * the toggle bit in the QH.
5464 */
5465 if (qh) {
5466 usb_settoggle(qh->dev, epnum, is_out, 0);
5467 if (!list_empty(&qh->qtd_list)) {
5468 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5469 } else if (qh->qh_state == QH_STATE_LINKED ||
5470 qh->qh_state == QH_STATE_COMPLETING) {
5471
5472 /* The toggle value in the QH can't be updated
5473 * while the QH is active. Unlink it now;
5474 * re-linking will call qh_refresh().
5475 */
5476 if (eptype == USB_ENDPOINT_XFER_BULK)
5477 start_unlink_async(fotg210, qh);
5478 else
5479 start_unlink_intr(fotg210, qh);
5480 }
5481 }
5482 spin_unlock_irqrestore(&fotg210->lock, flags);
5483 }
5484
fotg210_get_frame(struct usb_hcd * hcd)5485 static int fotg210_get_frame(struct usb_hcd *hcd)
5486 {
5487 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5488
5489 return (fotg210_read_frame_index(fotg210) >> 3) %
5490 fotg210->periodic_size;
5491 }
5492
5493 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5494 * because its registers (and irq) are shared between host/gadget/otg
5495 * functions and in order to facilitate role switching we cannot
5496 * give the fotg210 driver exclusive access to those.
5497 */
5498 MODULE_DESCRIPTION(DRIVER_DESC);
5499 MODULE_AUTHOR(DRIVER_AUTHOR);
5500 MODULE_LICENSE("GPL");
5501
5502 static const struct hc_driver fotg210_fotg210_hc_driver = {
5503 .description = hcd_name,
5504 .product_desc = "Faraday USB2.0 Host Controller",
5505 .hcd_priv_size = sizeof(struct fotg210_hcd),
5506
5507 /*
5508 * generic hardware linkage
5509 */
5510 .irq = fotg210_irq,
5511 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5512
5513 /*
5514 * basic lifecycle operations
5515 */
5516 .reset = hcd_fotg210_init,
5517 .start = fotg210_run,
5518 .stop = fotg210_stop,
5519 .shutdown = fotg210_shutdown,
5520
5521 /*
5522 * managing i/o requests and associated device resources
5523 */
5524 .urb_enqueue = fotg210_urb_enqueue,
5525 .urb_dequeue = fotg210_urb_dequeue,
5526 .endpoint_disable = fotg210_endpoint_disable,
5527 .endpoint_reset = fotg210_endpoint_reset,
5528
5529 /*
5530 * scheduling support
5531 */
5532 .get_frame_number = fotg210_get_frame,
5533
5534 /*
5535 * root hub support
5536 */
5537 .hub_status_data = fotg210_hub_status_data,
5538 .hub_control = fotg210_hub_control,
5539 .bus_suspend = fotg210_bus_suspend,
5540 .bus_resume = fotg210_bus_resume,
5541
5542 .relinquish_port = fotg210_relinquish_port,
5543 .port_handed_over = fotg210_port_handed_over,
5544
5545 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5546 };
5547
fotg210_init(struct fotg210_hcd * fotg210)5548 static void fotg210_init(struct fotg210_hcd *fotg210)
5549 {
5550 u32 value;
5551
5552 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5553 &fotg210->regs->gmir);
5554
5555 value = ioread32(&fotg210->regs->otgcsr);
5556 value &= ~OTGCSR_A_BUS_DROP;
5557 value |= OTGCSR_A_BUS_REQ;
5558 iowrite32(value, &fotg210->regs->otgcsr);
5559 }
5560
5561 /**
5562 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5563 *
5564 * Allocates basic resources for this USB host controller, and
5565 * then invokes the start() method for the HCD associated with it
5566 * through the hotplug entry's driver_data.
5567 */
fotg210_hcd_probe(struct platform_device * pdev)5568 static int fotg210_hcd_probe(struct platform_device *pdev)
5569 {
5570 struct device *dev = &pdev->dev;
5571 struct usb_hcd *hcd;
5572 struct resource *res;
5573 int irq;
5574 int retval = -ENODEV;
5575 struct fotg210_hcd *fotg210;
5576
5577 if (usb_disabled())
5578 return -ENODEV;
5579
5580 pdev->dev.power.power_state = PMSG_ON;
5581
5582 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5583 if (!res) {
5584 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5585 dev_name(dev));
5586 return -ENODEV;
5587 }
5588
5589 irq = res->start;
5590
5591 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5592 dev_name(dev));
5593 if (!hcd) {
5594 dev_err(dev, "failed to create hcd with err %d\n", retval);
5595 retval = -ENOMEM;
5596 goto fail_create_hcd;
5597 }
5598
5599 hcd->has_tt = 1;
5600
5601 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5602 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5603 if (IS_ERR(hcd->regs)) {
5604 retval = PTR_ERR(hcd->regs);
5605 goto failed_put_hcd;
5606 }
5607
5608 hcd->rsrc_start = res->start;
5609 hcd->rsrc_len = resource_size(res);
5610
5611 fotg210 = hcd_to_fotg210(hcd);
5612
5613 fotg210->caps = hcd->regs;
5614
5615 /* It's OK not to supply this clock */
5616 fotg210->pclk = clk_get(dev, "PCLK");
5617 if (!IS_ERR(fotg210->pclk)) {
5618 retval = clk_prepare_enable(fotg210->pclk);
5619 if (retval) {
5620 dev_err(dev, "failed to enable PCLK\n");
5621 goto failed_put_hcd;
5622 }
5623 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5624 /*
5625 * Percolate deferrals, for anything else,
5626 * just live without the clocking.
5627 */
5628 retval = PTR_ERR(fotg210->pclk);
5629 goto failed_dis_clk;
5630 }
5631
5632 retval = fotg210_setup(hcd);
5633 if (retval)
5634 goto failed_dis_clk;
5635
5636 fotg210_init(fotg210);
5637
5638 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5639 if (retval) {
5640 dev_err(dev, "failed to add hcd with err %d\n", retval);
5641 goto failed_dis_clk;
5642 }
5643 device_wakeup_enable(hcd->self.controller);
5644 platform_set_drvdata(pdev, hcd);
5645
5646 return retval;
5647
5648 failed_dis_clk:
5649 if (!IS_ERR(fotg210->pclk))
5650 clk_disable_unprepare(fotg210->pclk);
5651 failed_put_hcd:
5652 usb_put_hcd(hcd);
5653 fail_create_hcd:
5654 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5655 return retval;
5656 }
5657
5658 /**
5659 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5660 * @dev: USB Host Controller being removed
5661 *
5662 */
fotg210_hcd_remove(struct platform_device * pdev)5663 static int fotg210_hcd_remove(struct platform_device *pdev)
5664 {
5665 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5666 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5667
5668 if (!IS_ERR(fotg210->pclk))
5669 clk_disable_unprepare(fotg210->pclk);
5670
5671 usb_remove_hcd(hcd);
5672 usb_put_hcd(hcd);
5673
5674 return 0;
5675 }
5676
5677 #ifdef CONFIG_OF
5678 static const struct of_device_id fotg210_of_match[] = {
5679 { .compatible = "faraday,fotg210" },
5680 {},
5681 };
5682 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5683 #endif
5684
5685 static struct platform_driver fotg210_hcd_driver = {
5686 .driver = {
5687 .name = "fotg210-hcd",
5688 .of_match_table = of_match_ptr(fotg210_of_match),
5689 },
5690 .probe = fotg210_hcd_probe,
5691 .remove = fotg210_hcd_remove,
5692 };
5693
fotg210_hcd_init(void)5694 static int __init fotg210_hcd_init(void)
5695 {
5696 int retval = 0;
5697
5698 if (usb_disabled())
5699 return -ENODEV;
5700
5701 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5702 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5703 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5704 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5705 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5706
5707 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5708 hcd_name, sizeof(struct fotg210_qh),
5709 sizeof(struct fotg210_qtd),
5710 sizeof(struct fotg210_itd));
5711
5712 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5713
5714 retval = platform_driver_register(&fotg210_hcd_driver);
5715 if (retval < 0)
5716 goto clean;
5717 return retval;
5718
5719 clean:
5720 debugfs_remove(fotg210_debug_root);
5721 fotg210_debug_root = NULL;
5722
5723 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5724 return retval;
5725 }
5726 module_init(fotg210_hcd_init);
5727
fotg210_hcd_cleanup(void)5728 static void __exit fotg210_hcd_cleanup(void)
5729 {
5730 platform_driver_unregister(&fotg210_hcd_driver);
5731 debugfs_remove(fotg210_debug_root);
5732 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5733 }
5734 module_exit(fotg210_hcd_cleanup);
5735