1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/clk.h>
36 
37 #include <asm/byteorder.h>
38 #include <asm/irq.h>
39 #include <asm/unaligned.h>
40 
41 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
42 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
43 static const char hcd_name[] = "fotg210_hcd";
44 
45 #undef FOTG210_URB_TRACE
46 #define FOTG210_STATS
47 
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT	0
52 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT	1
54 
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56  * ms into the future (partly as a result of an old bug in the scheduling
57  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
58  * length of 512 frames instead of 256.
59  */
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61 
62 /* Initial IRQ latency:  faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66 
67 /* initial park setting:  slower than hw default */
68 static unsigned park;
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71 
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76 
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78 
79 #include "fotg210.h"
80 
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89 
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91  * parameters) see EHCI spec, Table 2-4 for each value
92  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 {
95 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96 
97 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98 			HCS_N_PORTS(params));
99 }
100 
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102  * parameters) see EHCI Spec, Table 2-5 for each value
103  */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107 
108 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109 			params,
110 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111 			HCC_CANPARK(params) ? " park" : "");
112 }
113 
114 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 {
117 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118 			hc32_to_cpup(fotg210, &qtd->hw_next),
119 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120 			hc32_to_cpup(fotg210, &qtd->hw_token),
121 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122 	if (qtd->hw_buf[1])
123 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 }
129 
130 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 {
133 	struct fotg210_qh_hw *hw = qh->hw;
134 
135 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136 			hw->hw_next, hw->hw_info1, hw->hw_info2,
137 			hw->hw_current);
138 
139 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 }
141 
142 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 {
145 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147 			itd->urb);
148 
149 	fotg210_dbg(fotg210,
150 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159 
160 	fotg210_dbg(fotg210,
161 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
162 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169 
170 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
171 			itd->index[0], itd->index[1], itd->index[2],
172 			itd->index[3], itd->index[4], itd->index[5],
173 			itd->index[6], itd->index[7]);
174 }
175 
176 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 {
179 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 			label, label[0] ? " " : "", status,
181 			(status & STS_ASS) ? " Async" : "",
182 			(status & STS_PSS) ? " Periodic" : "",
183 			(status & STS_RECL) ? " Recl" : "",
184 			(status & STS_HALT) ? " Halt" : "",
185 			(status & STS_IAA) ? " IAA" : "",
186 			(status & STS_FATAL) ? " FATAL" : "",
187 			(status & STS_FLR) ? " FLR" : "",
188 			(status & STS_PCD) ? " PCD" : "",
189 			(status & STS_ERR) ? " ERR" : "",
190 			(status & STS_INT) ? " INT" : "");
191 }
192 
193 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 {
196 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197 			label, label[0] ? " " : "", enable,
198 			(enable & STS_IAA) ? " IAA" : "",
199 			(enable & STS_FATAL) ? " FATAL" : "",
200 			(enable & STS_FLR) ? " FLR" : "",
201 			(enable & STS_PCD) ? " PCD" : "",
202 			(enable & STS_ERR) ? " ERR" : "",
203 			(enable & STS_INT) ? " INT" : "");
204 }
205 
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
209 		u32 command)
210 {
211 	return scnprintf(buf, len,
212 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 			label, label[0] ? " " : "", command,
214 			(command & CMD_PARK) ? " park" : "(park)",
215 			CMD_PARK_CNT(command),
216 			(command >> 16) & 0x3f,
217 			(command & CMD_IAAD) ? " IAAD" : "",
218 			(command & CMD_ASE) ? " Async" : "",
219 			(command & CMD_PSE) ? " Periodic" : "",
220 			fls_strings[(command >> 2) & 0x3],
221 			(command & CMD_RESET) ? " Reset" : "",
222 			(command & CMD_RUN) ? "RUN" : "HALT");
223 }
224 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226 		u32 status)
227 {
228 	char *sig;
229 
230 	/* signaling state */
231 	switch (status & (3 << 10)) {
232 	case 0 << 10:
233 		sig = "se0";
234 		break;
235 	case 1 << 10:
236 		sig = "k";
237 		break; /* low speed */
238 	case 2 << 10:
239 		sig = "j";
240 		break;
241 	default:
242 		sig = "?";
243 		break;
244 	}
245 
246 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 			label, label[0] ? " " : "", port, status,
248 			status >> 25, /*device address */
249 			sig,
250 			(status & PORT_RESET) ? " RESET" : "",
251 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
252 			(status & PORT_RESUME) ? " RESUME" : "",
253 			(status & PORT_PEC) ? " PEC" : "",
254 			(status & PORT_PE) ? " PE" : "",
255 			(status & PORT_CSC) ? " CSC" : "",
256 			(status & PORT_CONNECT) ? " CONNECT" : "");
257 
258 	return buf;
259 }
260 
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) {			\
263 	char _buf[80];						\
264 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
265 	fotg210_dbg(fotg210, "%s\n", _buf);			\
266 }
267 
268 #define dbg_cmd(fotg210, label, command) {			\
269 	char _buf[80];						\
270 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
271 	fotg210_dbg(fotg210, "%s\n", _buf);			\
272 }
273 
274 #define dbg_port(fotg210, label, port, status) {			       \
275 	char _buf[80];							       \
276 	fotg210_dbg(fotg210, "%s\n",					       \
277 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 }
279 
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
285 
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
288 
289 static const struct file_operations debug_async_fops = {
290 	.owner		= THIS_MODULE,
291 	.open		= debug_async_open,
292 	.read		= debug_output,
293 	.release	= debug_close,
294 	.llseek		= default_llseek,
295 };
296 static const struct file_operations debug_periodic_fops = {
297 	.owner		= THIS_MODULE,
298 	.open		= debug_periodic_open,
299 	.read		= debug_output,
300 	.release	= debug_close,
301 	.llseek		= default_llseek,
302 };
303 static const struct file_operations debug_registers_fops = {
304 	.owner		= THIS_MODULE,
305 	.open		= debug_registers_open,
306 	.read		= debug_output,
307 	.release	= debug_close,
308 	.llseek		= default_llseek,
309 };
310 
311 static struct dentry *fotg210_debug_root;
312 
313 struct debug_buffer {
314 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
315 	struct usb_bus *bus;
316 	struct mutex mutex;	/* protect filling of buffer */
317 	size_t count;		/* number of characters filled into buffer */
318 	char *output_buf;
319 	size_t alloc_size;
320 };
321 
speed_char(u32 scratch)322 static inline char speed_char(u32 scratch)
323 {
324 	switch (scratch & (3 << 12)) {
325 	case QH_FULL_SPEED:
326 		return 'f';
327 
328 	case QH_LOW_SPEED:
329 		return 'l';
330 
331 	case QH_HIGH_SPEED:
332 		return 'h';
333 
334 	default:
335 		return '?';
336 	}
337 }
338 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 {
341 	__u32 v = hc32_to_cpu(fotg210, token);
342 
343 	if (v & QTD_STS_ACTIVE)
344 		return '*';
345 	if (v & QTD_STS_HALT)
346 		return '-';
347 	if (!IS_SHORT_READ(v))
348 		return ' ';
349 	/* tries to advance through hw_alt_next */
350 	return '/';
351 }
352 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354 		char **nextp, unsigned *sizep)
355 {
356 	u32 scratch;
357 	u32 hw_curr;
358 	struct fotg210_qtd *td;
359 	unsigned temp;
360 	unsigned size = *sizep;
361 	char *next = *nextp;
362 	char mark;
363 	__le32 list_end = FOTG210_LIST_END(fotg210);
364 	struct fotg210_qh_hw *hw = qh->hw;
365 
366 	if (hw->hw_qtd_next == list_end) /* NEC does this */
367 		mark = '@';
368 	else
369 		mark = token_mark(fotg210, hw->hw_token);
370 	if (mark == '/') { /* qh_alt_next controls qh advance? */
371 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372 		    fotg210->async->hw->hw_alt_next)
373 			mark = '#'; /* blocked */
374 		else if (hw->hw_alt_next == list_end)
375 			mark = '.'; /* use hw_qtd_next */
376 		/* else alt_next points to some other qtd */
377 	}
378 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380 	temp = scnprintf(next, size,
381 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 			qh, scratch & 0x007f,
383 			speed_char(scratch),
384 			(scratch >> 8) & 0x000f,
385 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
387 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388 				? "data1" : "data0",
389 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390 	size -= temp;
391 	next += temp;
392 
393 	/* hc may be modifying the list as we read it ... */
394 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
396 		mark = ' ';
397 		if (hw_curr == td->qtd_dma)
398 			mark = '*';
399 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400 			mark = '+';
401 		else if (QTD_LENGTH(scratch)) {
402 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403 				mark = '#';
404 			else if (td->hw_alt_next != list_end)
405 				mark = '/';
406 		}
407 		temp = snprintf(next, size,
408 				"\n\t%p%c%s len=%d %08x urb %p",
409 				td, mark, ({ char *tmp;
410 				 switch ((scratch>>8)&0x03) {
411 				 case 0:
412 					tmp = "out";
413 					break;
414 				 case 1:
415 					tmp = "in";
416 					break;
417 				 case 2:
418 					tmp = "setup";
419 					break;
420 				 default:
421 					tmp = "?";
422 					break;
423 				 } tmp; }),
424 				(scratch >> 16) & 0x7fff,
425 				scratch,
426 				td->urb);
427 		if (size < temp)
428 			temp = size;
429 		size -= temp;
430 		next += temp;
431 		if (temp == size)
432 			goto done;
433 	}
434 
435 	temp = snprintf(next, size, "\n");
436 	if (size < temp)
437 		temp = size;
438 
439 	size -= temp;
440 	next += temp;
441 
442 done:
443 	*sizep = size;
444 	*nextp = next;
445 }
446 
fill_async_buffer(struct debug_buffer * buf)447 static ssize_t fill_async_buffer(struct debug_buffer *buf)
448 {
449 	struct usb_hcd *hcd;
450 	struct fotg210_hcd *fotg210;
451 	unsigned long flags;
452 	unsigned temp, size;
453 	char *next;
454 	struct fotg210_qh *qh;
455 
456 	hcd = bus_to_hcd(buf->bus);
457 	fotg210 = hcd_to_fotg210(hcd);
458 	next = buf->output_buf;
459 	size = buf->alloc_size;
460 
461 	*next = 0;
462 
463 	/* dumps a snapshot of the async schedule.
464 	 * usually empty except for long-term bulk reads, or head.
465 	 * one QH per line, and TDs we know about
466 	 */
467 	spin_lock_irqsave(&fotg210->lock, flags);
468 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
469 			qh = qh->qh_next.qh)
470 		qh_lines(fotg210, qh, &next, &size);
471 	if (fotg210->async_unlink && size > 0) {
472 		temp = scnprintf(next, size, "\nunlink =\n");
473 		size -= temp;
474 		next += temp;
475 
476 		for (qh = fotg210->async_unlink; size > 0 && qh;
477 				qh = qh->unlink_next)
478 			qh_lines(fotg210, qh, &next, &size);
479 	}
480 	spin_unlock_irqrestore(&fotg210->lock, flags);
481 
482 	return strlen(buf->output_buf);
483 }
484 
485 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
487 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
488 {
489 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
490 	struct fotg210_qtd *qtd;
491 	char *type = "";
492 	unsigned temp = 0;
493 
494 	/* count tds, get ep direction */
495 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
496 		temp++;
497 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
498 		case 0:
499 			type = "out";
500 			continue;
501 		case 1:
502 			type = "in";
503 			continue;
504 		}
505 	}
506 
507 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
508 			speed_char(scratch), scratch & 0x007f,
509 			(scratch >> 8) & 0x000f, type, qh->usecs,
510 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 }
512 
513 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
515 {
516 	struct usb_hcd *hcd;
517 	struct fotg210_hcd *fotg210;
518 	unsigned long flags;
519 	union fotg210_shadow p, *seen;
520 	unsigned temp, size, seen_count;
521 	char *next;
522 	unsigned i;
523 	__hc32 tag;
524 
525 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
526 	if (!seen)
527 		return 0;
528 
529 	seen_count = 0;
530 
531 	hcd = bus_to_hcd(buf->bus);
532 	fotg210 = hcd_to_fotg210(hcd);
533 	next = buf->output_buf;
534 	size = buf->alloc_size;
535 
536 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
537 	size -= temp;
538 	next += temp;
539 
540 	/* dump a snapshot of the periodic schedule.
541 	 * iso changes, interrupt usually doesn't.
542 	 */
543 	spin_lock_irqsave(&fotg210->lock, flags);
544 	for (i = 0; i < fotg210->periodic_size; i++) {
545 		p = fotg210->pshadow[i];
546 		if (likely(!p.ptr))
547 			continue;
548 
549 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
550 
551 		temp = scnprintf(next, size, "%4d: ", i);
552 		size -= temp;
553 		next += temp;
554 
555 		do {
556 			struct fotg210_qh_hw *hw;
557 
558 			switch (hc32_to_cpu(fotg210, tag)) {
559 			case Q_TYPE_QH:
560 				hw = p.qh->hw;
561 				temp = scnprintf(next, size, " qh%d-%04x/%p",
562 						p.qh->period,
563 						hc32_to_cpup(fotg210,
564 							&hw->hw_info2)
565 							/* uframe masks */
566 							& (QH_CMASK | QH_SMASK),
567 						p.qh);
568 				size -= temp;
569 				next += temp;
570 				/* don't repeat what follows this qh */
571 				for (temp = 0; temp < seen_count; temp++) {
572 					if (seen[temp].ptr != p.ptr)
573 						continue;
574 					if (p.qh->qh_next.ptr) {
575 						temp = scnprintf(next, size,
576 								" ...");
577 						size -= temp;
578 						next += temp;
579 					}
580 					break;
581 				}
582 				/* show more info the first time around */
583 				if (temp == seen_count) {
584 					temp = output_buf_tds_dir(next,
585 							fotg210, hw,
586 							p.qh, size);
587 
588 					if (seen_count < DBG_SCHED_LIMIT)
589 						seen[seen_count++].qh = p.qh;
590 				} else
591 					temp = 0;
592 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
593 				p = p.qh->qh_next;
594 				break;
595 			case Q_TYPE_FSTN:
596 				temp = scnprintf(next, size,
597 						" fstn-%8x/%p",
598 						p.fstn->hw_prev, p.fstn);
599 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
600 				p = p.fstn->fstn_next;
601 				break;
602 			case Q_TYPE_ITD:
603 				temp = scnprintf(next, size,
604 						" itd/%p", p.itd);
605 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
606 				p = p.itd->itd_next;
607 				break;
608 			}
609 			size -= temp;
610 			next += temp;
611 		} while (p.ptr);
612 
613 		temp = scnprintf(next, size, "\n");
614 		size -= temp;
615 		next += temp;
616 	}
617 	spin_unlock_irqrestore(&fotg210->lock, flags);
618 	kfree(seen);
619 
620 	return buf->alloc_size - size;
621 }
622 #undef DBG_SCHED_LIMIT
623 
rh_state_string(struct fotg210_hcd * fotg210)624 static const char *rh_state_string(struct fotg210_hcd *fotg210)
625 {
626 	switch (fotg210->rh_state) {
627 	case FOTG210_RH_HALTED:
628 		return "halted";
629 	case FOTG210_RH_SUSPENDED:
630 		return "suspended";
631 	case FOTG210_RH_RUNNING:
632 		return "running";
633 	case FOTG210_RH_STOPPING:
634 		return "stopping";
635 	}
636 	return "?";
637 }
638 
fill_registers_buffer(struct debug_buffer * buf)639 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
640 {
641 	struct usb_hcd *hcd;
642 	struct fotg210_hcd *fotg210;
643 	unsigned long flags;
644 	unsigned temp, size, i;
645 	char *next, scratch[80];
646 	static const char fmt[] = "%*s\n";
647 	static const char label[] = "";
648 
649 	hcd = bus_to_hcd(buf->bus);
650 	fotg210 = hcd_to_fotg210(hcd);
651 	next = buf->output_buf;
652 	size = buf->alloc_size;
653 
654 	spin_lock_irqsave(&fotg210->lock, flags);
655 
656 	if (!HCD_HW_ACCESSIBLE(hcd)) {
657 		size = scnprintf(next, size,
658 				"bus %s, device %s\n"
659 				"%s\n"
660 				"SUSPENDED(no register access)\n",
661 				hcd->self.controller->bus->name,
662 				dev_name(hcd->self.controller),
663 				hcd->product_desc);
664 		goto done;
665 	}
666 
667 	/* Capability Registers */
668 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
669 			&fotg210->caps->hc_capbase));
670 	temp = scnprintf(next, size,
671 			"bus %s, device %s\n"
672 			"%s\n"
673 			"EHCI %x.%02x, rh state %s\n",
674 			hcd->self.controller->bus->name,
675 			dev_name(hcd->self.controller),
676 			hcd->product_desc,
677 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
678 	size -= temp;
679 	next += temp;
680 
681 	/* FIXME interpret both types of params */
682 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
683 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
684 	size -= temp;
685 	next += temp;
686 
687 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
688 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
689 	size -= temp;
690 	next += temp;
691 
692 	/* Operational Registers */
693 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
694 			fotg210_readl(fotg210, &fotg210->regs->status));
695 	temp = scnprintf(next, size, fmt, temp, scratch);
696 	size -= temp;
697 	next += temp;
698 
699 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
700 			fotg210_readl(fotg210, &fotg210->regs->command));
701 	temp = scnprintf(next, size, fmt, temp, scratch);
702 	size -= temp;
703 	next += temp;
704 
705 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
706 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
707 	temp = scnprintf(next, size, fmt, temp, scratch);
708 	size -= temp;
709 	next += temp;
710 
711 	temp = scnprintf(next, size, "uframe %04x\n",
712 			fotg210_read_frame_index(fotg210));
713 	size -= temp;
714 	next += temp;
715 
716 	if (fotg210->async_unlink) {
717 		temp = scnprintf(next, size, "async unlink qh %p\n",
718 				fotg210->async_unlink);
719 		size -= temp;
720 		next += temp;
721 	}
722 
723 #ifdef FOTG210_STATS
724 	temp = scnprintf(next, size,
725 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
726 			fotg210->stats.normal, fotg210->stats.error,
727 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
728 	size -= temp;
729 	next += temp;
730 
731 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
732 			fotg210->stats.complete, fotg210->stats.unlink);
733 	size -= temp;
734 	next += temp;
735 #endif
736 
737 done:
738 	spin_unlock_irqrestore(&fotg210->lock, flags);
739 
740 	return buf->alloc_size - size;
741 }
742 
743 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
745 {
746 	struct debug_buffer *buf;
747 
748 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
749 
750 	if (buf) {
751 		buf->bus = bus;
752 		buf->fill_func = fill_func;
753 		mutex_init(&buf->mutex);
754 		buf->alloc_size = PAGE_SIZE;
755 	}
756 
757 	return buf;
758 }
759 
fill_buffer(struct debug_buffer * buf)760 static int fill_buffer(struct debug_buffer *buf)
761 {
762 	int ret = 0;
763 
764 	if (!buf->output_buf)
765 		buf->output_buf = vmalloc(buf->alloc_size);
766 
767 	if (!buf->output_buf) {
768 		ret = -ENOMEM;
769 		goto out;
770 	}
771 
772 	ret = buf->fill_func(buf);
773 
774 	if (ret >= 0) {
775 		buf->count = ret;
776 		ret = 0;
777 	}
778 
779 out:
780 	return ret;
781 }
782 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)783 static ssize_t debug_output(struct file *file, char __user *user_buf,
784 		size_t len, loff_t *offset)
785 {
786 	struct debug_buffer *buf = file->private_data;
787 	int ret = 0;
788 
789 	mutex_lock(&buf->mutex);
790 	if (buf->count == 0) {
791 		ret = fill_buffer(buf);
792 		if (ret != 0) {
793 			mutex_unlock(&buf->mutex);
794 			goto out;
795 		}
796 	}
797 	mutex_unlock(&buf->mutex);
798 
799 	ret = simple_read_from_buffer(user_buf, len, offset,
800 			buf->output_buf, buf->count);
801 
802 out:
803 	return ret;
804 
805 }
806 
debug_close(struct inode * inode,struct file * file)807 static int debug_close(struct inode *inode, struct file *file)
808 {
809 	struct debug_buffer *buf = file->private_data;
810 
811 	if (buf) {
812 		vfree(buf->output_buf);
813 		kfree(buf);
814 	}
815 
816 	return 0;
817 }
debug_async_open(struct inode * inode,struct file * file)818 static int debug_async_open(struct inode *inode, struct file *file)
819 {
820 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
821 
822 	return file->private_data ? 0 : -ENOMEM;
823 }
824 
debug_periodic_open(struct inode * inode,struct file * file)825 static int debug_periodic_open(struct inode *inode, struct file *file)
826 {
827 	struct debug_buffer *buf;
828 
829 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
830 	if (!buf)
831 		return -ENOMEM;
832 
833 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
834 	file->private_data = buf;
835 	return 0;
836 }
837 
debug_registers_open(struct inode * inode,struct file * file)838 static int debug_registers_open(struct inode *inode, struct file *file)
839 {
840 	file->private_data = alloc_buffer(inode->i_private,
841 			fill_registers_buffer);
842 
843 	return file->private_data ? 0 : -ENOMEM;
844 }
845 
create_debug_files(struct fotg210_hcd * fotg210)846 static inline void create_debug_files(struct fotg210_hcd *fotg210)
847 {
848 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
849 	struct dentry *root;
850 
851 	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
852 	fotg210->debug_dir = root;
853 
854 	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
855 	debugfs_create_file("periodic", S_IRUGO, root, bus,
856 			    &debug_periodic_fops);
857 	debugfs_create_file("registers", S_IRUGO, root, bus,
858 			    &debug_registers_fops);
859 }
860 
remove_debug_files(struct fotg210_hcd * fotg210)861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
862 {
863 	debugfs_remove_recursive(fotg210->debug_dir);
864 }
865 
866 /* handshake - spin reading hc until handshake completes or fails
867  * @ptr: address of hc register to be read
868  * @mask: bits to look at in result of read
869  * @done: value of those bits when handshake succeeds
870  * @usec: timeout in microseconds
871  *
872  * Returns negative errno, or zero on success
873  *
874  * Success happens when the "mask" bits have the specified value (hardware
875  * handshake done).  There are two failure modes:  "usec" have passed (major
876  * hardware flakeout), or the register reads as all-ones (hardware removed).
877  *
878  * That last failure should_only happen in cases like physical cardbus eject
879  * before driver shutdown. But it also seems to be caused by bugs in cardbus
880  * bridge shutdown:  shutting down the bridge before the devices using it.
881  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)882 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
883 		u32 mask, u32 done, int usec)
884 {
885 	u32 result;
886 
887 	do {
888 		result = fotg210_readl(fotg210, ptr);
889 		if (result == ~(u32)0)		/* card removed */
890 			return -ENODEV;
891 		result &= mask;
892 		if (result == done)
893 			return 0;
894 		udelay(1);
895 		usec--;
896 	} while (usec > 0);
897 	return -ETIMEDOUT;
898 }
899 
900 /* Force HC to halt state from unknown (EHCI spec section 2.3).
901  * Must be called with interrupts enabled and the lock not held.
902  */
fotg210_halt(struct fotg210_hcd * fotg210)903 static int fotg210_halt(struct fotg210_hcd *fotg210)
904 {
905 	u32 temp;
906 
907 	spin_lock_irq(&fotg210->lock);
908 
909 	/* disable any irqs left enabled by previous code */
910 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
911 
912 	/*
913 	 * This routine gets called during probe before fotg210->command
914 	 * has been initialized, so we can't rely on its value.
915 	 */
916 	fotg210->command &= ~CMD_RUN;
917 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
918 	temp &= ~(CMD_RUN | CMD_IAAD);
919 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
920 
921 	spin_unlock_irq(&fotg210->lock);
922 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
923 
924 	return handshake(fotg210, &fotg210->regs->status,
925 			STS_HALT, STS_HALT, 16 * 125);
926 }
927 
928 /* Reset a non-running (STS_HALT == 1) controller.
929  * Must be called with interrupts enabled and the lock not held.
930  */
fotg210_reset(struct fotg210_hcd * fotg210)931 static int fotg210_reset(struct fotg210_hcd *fotg210)
932 {
933 	int retval;
934 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
935 
936 	/* If the EHCI debug controller is active, special care must be
937 	 * taken before and after a host controller reset
938 	 */
939 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
940 		fotg210->debug = NULL;
941 
942 	command |= CMD_RESET;
943 	dbg_cmd(fotg210, "reset", command);
944 	fotg210_writel(fotg210, command, &fotg210->regs->command);
945 	fotg210->rh_state = FOTG210_RH_HALTED;
946 	fotg210->next_statechange = jiffies;
947 	retval = handshake(fotg210, &fotg210->regs->command,
948 			CMD_RESET, 0, 250 * 1000);
949 
950 	if (retval)
951 		return retval;
952 
953 	if (fotg210->debug)
954 		dbgp_external_startup(fotg210_to_hcd(fotg210));
955 
956 	fotg210->port_c_suspend = fotg210->suspended_ports =
957 			fotg210->resuming_ports = 0;
958 	return retval;
959 }
960 
961 /* Idle the controller (turn off the schedules).
962  * Must be called with interrupts enabled and the lock not held.
963  */
fotg210_quiesce(struct fotg210_hcd * fotg210)964 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
965 {
966 	u32 temp;
967 
968 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
969 		return;
970 
971 	/* wait for any schedule enables/disables to take effect */
972 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
973 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
974 			16 * 125);
975 
976 	/* then disable anything that's still active */
977 	spin_lock_irq(&fotg210->lock);
978 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
979 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
980 	spin_unlock_irq(&fotg210->lock);
981 
982 	/* hardware can take 16 microframes to turn off ... */
983 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
984 			16 * 125);
985 }
986 
987 static void end_unlink_async(struct fotg210_hcd *fotg210);
988 static void unlink_empty_async(struct fotg210_hcd *fotg210);
989 static void fotg210_work(struct fotg210_hcd *fotg210);
990 static void start_unlink_intr(struct fotg210_hcd *fotg210,
991 			      struct fotg210_qh *qh);
992 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
993 
994 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)995 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
996 {
997 	fotg210->command |= bit;
998 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
999 
1000 	/* unblock posted write */
1001 	fotg210_readl(fotg210, &fotg210->regs->command);
1002 }
1003 
1004 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1005 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006 {
1007 	fotg210->command &= ~bit;
1008 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009 
1010 	/* unblock posted write */
1011 	fotg210_readl(fotg210, &fotg210->regs->command);
1012 }
1013 
1014 /* EHCI timer support...  Now using hrtimers.
1015  *
1016  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1017  * the timer routine runs, it checks each possible event; events that are
1018  * currently enabled and whose expiration time has passed get handled.
1019  * The set of enabled events is stored as a collection of bitflags in
1020  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021  * increasing delay values (ranging between 1 ms and 100 ms).
1022  *
1023  * Rather than implementing a sorted list or tree of all pending events,
1024  * we keep track only of the lowest-numbered pending event, in
1025  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1026  * expiration time is set to the timeout value for this event.
1027  *
1028  * As a result, events might not get handled right away; the actual delay
1029  * could be anywhere up to twice the requested delay.  This doesn't
1030  * matter, because none of the events are especially time-critical.  The
1031  * ones that matter most all have a delay of 1 ms, so they will be
1032  * handled after 2 ms at most, which is okay.  In addition to this, we
1033  * allow for an expiration range of 1 ms.
1034  */
1035 
1036 /* Delay lengths for the hrtimer event types.
1037  * Keep this list sorted by delay length, in the same order as
1038  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039  */
1040 static unsigned event_delays_ns[] = {
1041 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1042 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1043 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1044 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1045 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1046 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1048 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1050 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1051 };
1052 
1053 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1054 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1055 		bool resched)
1056 {
1057 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1058 
1059 	if (resched)
1060 		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061 	fotg210->enabled_hrtimer_events |= (1 << event);
1062 
1063 	/* Track only the lowest-numbered pending event */
1064 	if (event < fotg210->next_hrtimer_event) {
1065 		fotg210->next_hrtimer_event = event;
1066 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1068 	}
1069 }
1070 
1071 
1072 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1073 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074 {
1075 	unsigned actual, want;
1076 
1077 	/* Don't enable anything if the controller isn't running (e.g., died) */
1078 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1079 		return;
1080 
1081 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083 
1084 	if (want != actual) {
1085 
1086 		/* Poll again later, but give up after about 20 ms */
1087 		if (fotg210->ASS_poll_count++ < 20) {
1088 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1089 					true);
1090 			return;
1091 		}
1092 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093 				want, actual);
1094 	}
1095 	fotg210->ASS_poll_count = 0;
1096 
1097 	/* The status is up-to-date; restart or stop the schedule as needed */
1098 	if (want == 0) {	/* Stopped */
1099 		if (fotg210->async_count > 0)
1100 			fotg210_set_command_bit(fotg210, CMD_ASE);
1101 
1102 	} else {		/* Running */
1103 		if (fotg210->async_count == 0) {
1104 
1105 			/* Turn off the schedule after a while */
1106 			fotg210_enable_event(fotg210,
1107 					FOTG210_HRTIMER_DISABLE_ASYNC,
1108 					true);
1109 		}
1110 	}
1111 }
1112 
1113 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1114 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115 {
1116 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1117 }
1118 
1119 
1120 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1121 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122 {
1123 	unsigned actual, want;
1124 
1125 	/* Don't do anything if the controller isn't running (e.g., died) */
1126 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1127 		return;
1128 
1129 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131 
1132 	if (want != actual) {
1133 
1134 		/* Poll again later, but give up after about 20 ms */
1135 		if (fotg210->PSS_poll_count++ < 20) {
1136 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1137 					true);
1138 			return;
1139 		}
1140 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141 				want, actual);
1142 	}
1143 	fotg210->PSS_poll_count = 0;
1144 
1145 	/* The status is up-to-date; restart or stop the schedule as needed */
1146 	if (want == 0) {	/* Stopped */
1147 		if (fotg210->periodic_count > 0)
1148 			fotg210_set_command_bit(fotg210, CMD_PSE);
1149 
1150 	} else {		/* Running */
1151 		if (fotg210->periodic_count == 0) {
1152 
1153 			/* Turn off the schedule after a while */
1154 			fotg210_enable_event(fotg210,
1155 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1156 					true);
1157 		}
1158 	}
1159 }
1160 
1161 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1162 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163 {
1164 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1165 }
1166 
1167 
1168 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1169 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170 {
1171 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172 
1173 		/* Give up after a few milliseconds */
1174 		if (fotg210->died_poll_count++ < 5) {
1175 			/* Try again later */
1176 			fotg210_enable_event(fotg210,
1177 					FOTG210_HRTIMER_POLL_DEAD, true);
1178 			return;
1179 		}
1180 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181 	}
1182 
1183 	/* Clean up the mess */
1184 	fotg210->rh_state = FOTG210_RH_HALTED;
1185 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186 	fotg210_work(fotg210);
1187 	end_unlink_async(fotg210);
1188 
1189 	/* Not in process context, so don't try to reset the controller */
1190 }
1191 
1192 
1193 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1194 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195 {
1196 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197 
1198 	/*
1199 	 * Process all the QHs on the intr_unlink list that were added
1200 	 * before the current unlink cycle began.  The list is in
1201 	 * temporal order, so stop when we reach the first entry in the
1202 	 * current cycle.  But if the root hub isn't running then
1203 	 * process all the QHs on the list.
1204 	 */
1205 	fotg210->intr_unlinking = true;
1206 	while (fotg210->intr_unlink) {
1207 		struct fotg210_qh *qh = fotg210->intr_unlink;
1208 
1209 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210 			break;
1211 		fotg210->intr_unlink = qh->unlink_next;
1212 		qh->unlink_next = NULL;
1213 		end_unlink_intr(fotg210, qh);
1214 	}
1215 
1216 	/* Handle remaining entries later */
1217 	if (fotg210->intr_unlink) {
1218 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219 				true);
1220 		++fotg210->intr_unlink_cycle;
1221 	}
1222 	fotg210->intr_unlinking = false;
1223 }
1224 
1225 
1226 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1227 static void start_free_itds(struct fotg210_hcd *fotg210)
1228 {
1229 	if (!(fotg210->enabled_hrtimer_events &
1230 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231 		fotg210->last_itd_to_free = list_entry(
1232 				fotg210->cached_itd_list.prev,
1233 				struct fotg210_itd, itd_list);
1234 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1235 	}
1236 }
1237 
1238 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1239 static void end_free_itds(struct fotg210_hcd *fotg210)
1240 {
1241 	struct fotg210_itd *itd, *n;
1242 
1243 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244 		fotg210->last_itd_to_free = NULL;
1245 
1246 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247 		list_del(&itd->itd_list);
1248 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249 		if (itd == fotg210->last_itd_to_free)
1250 			break;
1251 	}
1252 
1253 	if (!list_empty(&fotg210->cached_itd_list))
1254 		start_free_itds(fotg210);
1255 }
1256 
1257 
1258 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1259 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260 {
1261 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1262 		return;
1263 
1264 	/*
1265 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266 	 * So we need this watchdog, but must protect it against both
1267 	 * (a) SMP races against real IAA firing and retriggering, and
1268 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1269 	 */
1270 	if (fotg210->async_iaa) {
1271 		u32 cmd, status;
1272 
1273 		/* If we get here, IAA is *REALLY* late.  It's barely
1274 		 * conceivable that the system is so busy that CMD_IAAD
1275 		 * is still legitimately set, so let's be sure it's
1276 		 * clear before we read STS_IAA.  (The HC should clear
1277 		 * CMD_IAAD when it sets STS_IAA.)
1278 		 */
1279 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280 
1281 		/*
1282 		 * If IAA is set here it either legitimately triggered
1283 		 * after the watchdog timer expired (_way_ late, so we'll
1284 		 * still count it as lost) ... or a silicon erratum:
1285 		 * - VIA seems to set IAA without triggering the IRQ;
1286 		 * - IAAD potentially cleared without setting IAA.
1287 		 */
1288 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1289 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290 			INCR(fotg210->stats.lost_iaa);
1291 			fotg210_writel(fotg210, STS_IAA,
1292 					&fotg210->regs->status);
1293 		}
1294 
1295 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296 				status, cmd);
1297 		end_unlink_async(fotg210);
1298 	}
1299 }
1300 
1301 
1302 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1303 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304 {
1305 	/* Not needed if the controller isn't running or it's already enabled */
1306 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307 			(fotg210->enabled_hrtimer_events &
1308 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1309 		return;
1310 
1311 	/*
1312 	 * Isochronous transfers always need the watchdog.
1313 	 * For other sorts we use it only if the flag is set.
1314 	 */
1315 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316 			fotg210->async_count + fotg210->intr_count > 0))
1317 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1318 				true);
1319 }
1320 
1321 
1322 /* Handler functions for the hrtimer event types.
1323  * Keep this array in the same order as the event types indexed by
1324  * enum fotg210_hrtimer_event in fotg210.h.
1325  */
1326 static void (*event_handlers[])(struct fotg210_hcd *) = {
1327 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1328 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1329 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1330 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1331 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1332 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1334 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1336 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1337 };
1338 
fotg210_hrtimer_func(struct hrtimer * t)1339 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340 {
1341 	struct fotg210_hcd *fotg210 =
1342 			container_of(t, struct fotg210_hcd, hrtimer);
1343 	ktime_t now;
1344 	unsigned long events;
1345 	unsigned long flags;
1346 	unsigned e;
1347 
1348 	spin_lock_irqsave(&fotg210->lock, flags);
1349 
1350 	events = fotg210->enabled_hrtimer_events;
1351 	fotg210->enabled_hrtimer_events = 0;
1352 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353 
1354 	/*
1355 	 * Check each pending event.  If its time has expired, handle
1356 	 * the event; otherwise re-enable it.
1357 	 */
1358 	now = ktime_get();
1359 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360 		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361 			event_handlers[e](fotg210);
1362 		else
1363 			fotg210_enable_event(fotg210, e, false);
1364 	}
1365 
1366 	spin_unlock_irqrestore(&fotg210->lock, flags);
1367 	return HRTIMER_NORESTART;
1368 }
1369 
1370 #define fotg210_bus_suspend NULL
1371 #define fotg210_bus_resume NULL
1372 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1373 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374 		u32 __iomem *status_reg, int port_status)
1375 {
1376 	if (!(port_status & PORT_CONNECT))
1377 		return port_status;
1378 
1379 	/* if reset finished and it's still not enabled -- handoff */
1380 	if (!(port_status & PORT_PE))
1381 		/* with integrated TT, there's nobody to hand it to! */
1382 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1383 				index + 1);
1384 	else
1385 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1386 				index + 1);
1387 
1388 	return port_status;
1389 }
1390 
1391 
1392 /* build "status change" packet (one or two bytes) from HC registers */
1393 
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1394 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395 {
1396 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1397 	u32 temp, status;
1398 	u32 mask;
1399 	int retval = 1;
1400 	unsigned long flags;
1401 
1402 	/* init status to no-changes */
1403 	buf[0] = 0;
1404 
1405 	/* Inform the core about resumes-in-progress by returning
1406 	 * a non-zero value even if there are no status changes.
1407 	 */
1408 	status = fotg210->resuming_ports;
1409 
1410 	mask = PORT_CSC | PORT_PEC;
1411 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412 
1413 	/* no hub change reports (bit 0) for now (power, ...) */
1414 
1415 	/* port N changes (bit N)? */
1416 	spin_lock_irqsave(&fotg210->lock, flags);
1417 
1418 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419 
1420 	/*
1421 	 * Return status information even for ports with OWNER set.
1422 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1423 	 * high-speed device is switched over to the companion
1424 	 * controller by the user.
1425 	 */
1426 
1427 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428 			(fotg210->reset_done[0] &&
1429 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1430 		buf[0] |= 1 << 1;
1431 		status = STS_PCD;
1432 	}
1433 	/* FIXME autosuspend idle root hubs */
1434 	spin_unlock_irqrestore(&fotg210->lock, flags);
1435 	return status ? retval : 0;
1436 }
1437 
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1438 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439 		struct usb_hub_descriptor *desc)
1440 {
1441 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1442 	u16 temp;
1443 
1444 	desc->bDescriptorType = USB_DT_HUB;
1445 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1446 	desc->bHubContrCurrent = 0;
1447 
1448 	desc->bNbrPorts = ports;
1449 	temp = 1 + (ports / 8);
1450 	desc->bDescLength = 7 + 2 * temp;
1451 
1452 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455 
1456 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1457 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1458 	desc->wHubCharacteristics = cpu_to_le16(temp);
1459 }
1460 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1461 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462 		u16 wIndex, char *buf, u16 wLength)
1463 {
1464 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1467 	u32 temp, temp1, status;
1468 	unsigned long flags;
1469 	int retval = 0;
1470 	unsigned selector;
1471 
1472 	/*
1473 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475 	 * (track current state ourselves) ... blink for diagnostics,
1476 	 * power, "this is the one", etc.  EHCI spec supports this.
1477 	 */
1478 
1479 	spin_lock_irqsave(&fotg210->lock, flags);
1480 	switch (typeReq) {
1481 	case ClearHubFeature:
1482 		switch (wValue) {
1483 		case C_HUB_LOCAL_POWER:
1484 		case C_HUB_OVER_CURRENT:
1485 			/* no hub-wide feature/status flags */
1486 			break;
1487 		default:
1488 			goto error;
1489 		}
1490 		break;
1491 	case ClearPortFeature:
1492 		if (!wIndex || wIndex > ports)
1493 			goto error;
1494 		wIndex--;
1495 		temp = fotg210_readl(fotg210, status_reg);
1496 		temp &= ~PORT_RWC_BITS;
1497 
1498 		/*
1499 		 * Even if OWNER is set, so the port is owned by the
1500 		 * companion controller, hub_wq needs to be able to clear
1501 		 * the port-change status bits (especially
1502 		 * USB_PORT_STAT_C_CONNECTION).
1503 		 */
1504 
1505 		switch (wValue) {
1506 		case USB_PORT_FEAT_ENABLE:
1507 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508 			break;
1509 		case USB_PORT_FEAT_C_ENABLE:
1510 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511 			break;
1512 		case USB_PORT_FEAT_SUSPEND:
1513 			if (temp & PORT_RESET)
1514 				goto error;
1515 			if (!(temp & PORT_SUSPEND))
1516 				break;
1517 			if ((temp & PORT_PE) == 0)
1518 				goto error;
1519 
1520 			/* resume signaling for 20 msec */
1521 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522 			fotg210->reset_done[wIndex] = jiffies
1523 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524 			break;
1525 		case USB_PORT_FEAT_C_SUSPEND:
1526 			clear_bit(wIndex, &fotg210->port_c_suspend);
1527 			break;
1528 		case USB_PORT_FEAT_C_CONNECTION:
1529 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530 			break;
1531 		case USB_PORT_FEAT_C_OVER_CURRENT:
1532 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1533 					&fotg210->regs->otgisr);
1534 			break;
1535 		case USB_PORT_FEAT_C_RESET:
1536 			/* GetPortStatus clears reset */
1537 			break;
1538 		default:
1539 			goto error;
1540 		}
1541 		fotg210_readl(fotg210, &fotg210->regs->command);
1542 		break;
1543 	case GetHubDescriptor:
1544 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1545 				buf);
1546 		break;
1547 	case GetHubStatus:
1548 		/* no hub-wide feature/status flags */
1549 		memset(buf, 0, 4);
1550 		/*cpu_to_le32s ((u32 *) buf); */
1551 		break;
1552 	case GetPortStatus:
1553 		if (!wIndex || wIndex > ports)
1554 			goto error;
1555 		wIndex--;
1556 		status = 0;
1557 		temp = fotg210_readl(fotg210, status_reg);
1558 
1559 		/* wPortChange bits */
1560 		if (temp & PORT_CSC)
1561 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1562 		if (temp & PORT_PEC)
1563 			status |= USB_PORT_STAT_C_ENABLE << 16;
1564 
1565 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566 		if (temp1 & OTGISR_OVC)
1567 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568 
1569 		/* whoever resumes must GetPortStatus to complete it!! */
1570 		if (temp & PORT_RESUME) {
1571 
1572 			/* Remote Wakeup received? */
1573 			if (!fotg210->reset_done[wIndex]) {
1574 				/* resume signaling for 20 msec */
1575 				fotg210->reset_done[wIndex] = jiffies
1576 						+ msecs_to_jiffies(20);
1577 				/* check the port again */
1578 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579 						fotg210->reset_done[wIndex]);
1580 			}
1581 
1582 			/* resume completed? */
1583 			else if (time_after_eq(jiffies,
1584 					fotg210->reset_done[wIndex])) {
1585 				clear_bit(wIndex, &fotg210->suspended_ports);
1586 				set_bit(wIndex, &fotg210->port_c_suspend);
1587 				fotg210->reset_done[wIndex] = 0;
1588 
1589 				/* stop resume signaling */
1590 				temp = fotg210_readl(fotg210, status_reg);
1591 				fotg210_writel(fotg210, temp &
1592 						~(PORT_RWC_BITS | PORT_RESUME),
1593 						status_reg);
1594 				clear_bit(wIndex, &fotg210->resuming_ports);
1595 				retval = handshake(fotg210, status_reg,
1596 						PORT_RESUME, 0, 2000);/* 2ms */
1597 				if (retval != 0) {
1598 					fotg210_err(fotg210,
1599 							"port %d resume error %d\n",
1600 							wIndex + 1, retval);
1601 					goto error;
1602 				}
1603 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1604 			}
1605 		}
1606 
1607 		/* whoever resets must GetPortStatus to complete it!! */
1608 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609 				fotg210->reset_done[wIndex])) {
1610 			status |= USB_PORT_STAT_C_RESET << 16;
1611 			fotg210->reset_done[wIndex] = 0;
1612 			clear_bit(wIndex, &fotg210->resuming_ports);
1613 
1614 			/* force reset to complete */
1615 			fotg210_writel(fotg210,
1616 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1617 					status_reg);
1618 			/* REVISIT:  some hardware needs 550+ usec to clear
1619 			 * this bit; seems too long to spin routinely...
1620 			 */
1621 			retval = handshake(fotg210, status_reg,
1622 					PORT_RESET, 0, 1000);
1623 			if (retval != 0) {
1624 				fotg210_err(fotg210, "port %d reset error %d\n",
1625 						wIndex + 1, retval);
1626 				goto error;
1627 			}
1628 
1629 			/* see what we found out */
1630 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1631 					fotg210_readl(fotg210, status_reg));
1632 
1633 			/* restart schedule */
1634 			fotg210->command |= CMD_RUN;
1635 			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636 		}
1637 
1638 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1639 			fotg210->reset_done[wIndex] = 0;
1640 			clear_bit(wIndex, &fotg210->resuming_ports);
1641 		}
1642 
1643 		/* transfer dedicated ports to the companion hc */
1644 		if ((temp & PORT_CONNECT) &&
1645 				test_bit(wIndex, &fotg210->companion_ports)) {
1646 			temp &= ~PORT_RWC_BITS;
1647 			fotg210_writel(fotg210, temp, status_reg);
1648 			fotg210_dbg(fotg210, "port %d --> companion\n",
1649 					wIndex + 1);
1650 			temp = fotg210_readl(fotg210, status_reg);
1651 		}
1652 
1653 		/*
1654 		 * Even if OWNER is set, there's no harm letting hub_wq
1655 		 * see the wPortStatus values (they should all be 0 except
1656 		 * for PORT_POWER anyway).
1657 		 */
1658 
1659 		if (temp & PORT_CONNECT) {
1660 			status |= USB_PORT_STAT_CONNECTION;
1661 			status |= fotg210_port_speed(fotg210, temp);
1662 		}
1663 		if (temp & PORT_PE)
1664 			status |= USB_PORT_STAT_ENABLE;
1665 
1666 		/* maybe the port was unsuspended without our knowledge */
1667 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1668 			status |= USB_PORT_STAT_SUSPEND;
1669 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1670 			clear_bit(wIndex, &fotg210->suspended_ports);
1671 			clear_bit(wIndex, &fotg210->resuming_ports);
1672 			fotg210->reset_done[wIndex] = 0;
1673 			if (temp & PORT_PE)
1674 				set_bit(wIndex, &fotg210->port_c_suspend);
1675 		}
1676 
1677 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1678 		if (temp1 & OTGISR_OVC)
1679 			status |= USB_PORT_STAT_OVERCURRENT;
1680 		if (temp & PORT_RESET)
1681 			status |= USB_PORT_STAT_RESET;
1682 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1683 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1684 
1685 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1686 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1687 		put_unaligned_le32(status, buf);
1688 		break;
1689 	case SetHubFeature:
1690 		switch (wValue) {
1691 		case C_HUB_LOCAL_POWER:
1692 		case C_HUB_OVER_CURRENT:
1693 			/* no hub-wide feature/status flags */
1694 			break;
1695 		default:
1696 			goto error;
1697 		}
1698 		break;
1699 	case SetPortFeature:
1700 		selector = wIndex >> 8;
1701 		wIndex &= 0xff;
1702 
1703 		if (!wIndex || wIndex > ports)
1704 			goto error;
1705 		wIndex--;
1706 		temp = fotg210_readl(fotg210, status_reg);
1707 		temp &= ~PORT_RWC_BITS;
1708 		switch (wValue) {
1709 		case USB_PORT_FEAT_SUSPEND:
1710 			if ((temp & PORT_PE) == 0
1711 					|| (temp & PORT_RESET) != 0)
1712 				goto error;
1713 
1714 			/* After above check the port must be connected.
1715 			 * Set appropriate bit thus could put phy into low power
1716 			 * mode if we have hostpc feature
1717 			 */
1718 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719 					status_reg);
1720 			set_bit(wIndex, &fotg210->suspended_ports);
1721 			break;
1722 		case USB_PORT_FEAT_RESET:
1723 			if (temp & PORT_RESUME)
1724 				goto error;
1725 			/* line status bits may report this as low speed,
1726 			 * which can be fine if this root hub has a
1727 			 * transaction translator built in.
1728 			 */
1729 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730 			temp |= PORT_RESET;
1731 			temp &= ~PORT_PE;
1732 
1733 			/*
1734 			 * caller must wait, then call GetPortStatus
1735 			 * usb 2.0 spec says 50 ms resets on root
1736 			 */
1737 			fotg210->reset_done[wIndex] = jiffies
1738 					+ msecs_to_jiffies(50);
1739 			fotg210_writel(fotg210, temp, status_reg);
1740 			break;
1741 
1742 		/* For downstream facing ports (these):  one hub port is put
1743 		 * into test mode according to USB2 11.24.2.13, then the hub
1744 		 * must be reset (which for root hub now means rmmod+modprobe,
1745 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1746 		 * about the EHCI-specific stuff.
1747 		 */
1748 		case USB_PORT_FEAT_TEST:
1749 			if (!selector || selector > 5)
1750 				goto error;
1751 			spin_unlock_irqrestore(&fotg210->lock, flags);
1752 			fotg210_quiesce(fotg210);
1753 			spin_lock_irqsave(&fotg210->lock, flags);
1754 
1755 			/* Put all enabled ports into suspend */
1756 			temp = fotg210_readl(fotg210, status_reg) &
1757 				~PORT_RWC_BITS;
1758 			if (temp & PORT_PE)
1759 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1760 						status_reg);
1761 
1762 			spin_unlock_irqrestore(&fotg210->lock, flags);
1763 			fotg210_halt(fotg210);
1764 			spin_lock_irqsave(&fotg210->lock, flags);
1765 
1766 			temp = fotg210_readl(fotg210, status_reg);
1767 			temp |= selector << 16;
1768 			fotg210_writel(fotg210, temp, status_reg);
1769 			break;
1770 
1771 		default:
1772 			goto error;
1773 		}
1774 		fotg210_readl(fotg210, &fotg210->regs->command);
1775 		break;
1776 
1777 	default:
1778 error:
1779 		/* "stall" on error */
1780 		retval = -EPIPE;
1781 	}
1782 	spin_unlock_irqrestore(&fotg210->lock, flags);
1783 	return retval;
1784 }
1785 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1786 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1787 		int portnum)
1788 {
1789 	return;
1790 }
1791 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1792 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1793 		int portnum)
1794 {
1795 	return 0;
1796 }
1797 
1798 /* There's basically three types of memory:
1799  *	- data used only by the HCD ... kmalloc is fine
1800  *	- async and periodic schedules, shared by HC and HCD ... these
1801  *	  need to use dma_pool or dma_alloc_coherent
1802  *	- driver buffers, read/written by HC ... single shot DMA mapped
1803  *
1804  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1805  * No memory seen by this driver is pageable.
1806  */
1807 
1808 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1809 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1810 		struct fotg210_qtd *qtd, dma_addr_t dma)
1811 {
1812 	memset(qtd, 0, sizeof(*qtd));
1813 	qtd->qtd_dma = dma;
1814 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1815 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1816 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1817 	INIT_LIST_HEAD(&qtd->qtd_list);
1818 }
1819 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1820 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1821 		gfp_t flags)
1822 {
1823 	struct fotg210_qtd *qtd;
1824 	dma_addr_t dma;
1825 
1826 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827 	if (qtd != NULL)
1828 		fotg210_qtd_init(fotg210, qtd, dma);
1829 
1830 	return qtd;
1831 }
1832 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1833 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1834 		struct fotg210_qtd *qtd)
1835 {
1836 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1837 }
1838 
1839 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1840 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841 {
1842 	/* clean qtds first, and know this is not linked */
1843 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1844 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1845 		BUG();
1846 	}
1847 	if (qh->dummy)
1848 		fotg210_qtd_free(fotg210, qh->dummy);
1849 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1850 	kfree(qh);
1851 }
1852 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1853 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1854 		gfp_t flags)
1855 {
1856 	struct fotg210_qh *qh;
1857 	dma_addr_t dma;
1858 
1859 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1860 	if (!qh)
1861 		goto done;
1862 	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863 	if (!qh->hw)
1864 		goto fail;
1865 	qh->qh_dma = dma;
1866 	INIT_LIST_HEAD(&qh->qtd_list);
1867 
1868 	/* dummy td enables safe urb queuing */
1869 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870 	if (qh->dummy == NULL) {
1871 		fotg210_dbg(fotg210, "no dummy td\n");
1872 		goto fail1;
1873 	}
1874 done:
1875 	return qh;
1876 fail1:
1877 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878 fail:
1879 	kfree(qh);
1880 	return NULL;
1881 }
1882 
1883 /* The queue heads and transfer descriptors are managed from pools tied
1884  * to each of the "per device" structures.
1885  * This is the initialisation and cleanup code.
1886  */
1887 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1888 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889 {
1890 	if (fotg210->async)
1891 		qh_destroy(fotg210, fotg210->async);
1892 	fotg210->async = NULL;
1893 
1894 	if (fotg210->dummy)
1895 		qh_destroy(fotg210, fotg210->dummy);
1896 	fotg210->dummy = NULL;
1897 
1898 	/* DMA consistent memory and pools */
1899 	dma_pool_destroy(fotg210->qtd_pool);
1900 	fotg210->qtd_pool = NULL;
1901 
1902 	dma_pool_destroy(fotg210->qh_pool);
1903 	fotg210->qh_pool = NULL;
1904 
1905 	dma_pool_destroy(fotg210->itd_pool);
1906 	fotg210->itd_pool = NULL;
1907 
1908 	if (fotg210->periodic)
1909 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910 				fotg210->periodic_size * sizeof(u32),
1911 				fotg210->periodic, fotg210->periodic_dma);
1912 	fotg210->periodic = NULL;
1913 
1914 	/* shadow periodic table */
1915 	kfree(fotg210->pshadow);
1916 	fotg210->pshadow = NULL;
1917 }
1918 
1919 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1920 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921 {
1922 	int i;
1923 
1924 	/* QTDs for control/bulk/intr transfers */
1925 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926 			fotg210_to_hcd(fotg210)->self.controller,
1927 			sizeof(struct fotg210_qtd),
1928 			32 /* byte alignment (for hw parts) */,
1929 			4096 /* can't cross 4K */);
1930 	if (!fotg210->qtd_pool)
1931 		goto fail;
1932 
1933 	/* QHs for control/bulk/intr transfers */
1934 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935 			fotg210_to_hcd(fotg210)->self.controller,
1936 			sizeof(struct fotg210_qh_hw),
1937 			32 /* byte alignment (for hw parts) */,
1938 			4096 /* can't cross 4K */);
1939 	if (!fotg210->qh_pool)
1940 		goto fail;
1941 
1942 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943 	if (!fotg210->async)
1944 		goto fail;
1945 
1946 	/* ITD for high speed ISO transfers */
1947 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948 			fotg210_to_hcd(fotg210)->self.controller,
1949 			sizeof(struct fotg210_itd),
1950 			64 /* byte alignment (for hw parts) */,
1951 			4096 /* can't cross 4K */);
1952 	if (!fotg210->itd_pool)
1953 		goto fail;
1954 
1955 	/* Hardware periodic table */
1956 	fotg210->periodic = (__le32 *)
1957 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958 				fotg210->periodic_size * sizeof(__le32),
1959 				&fotg210->periodic_dma, 0);
1960 	if (fotg210->periodic == NULL)
1961 		goto fail;
1962 
1963 	for (i = 0; i < fotg210->periodic_size; i++)
1964 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965 
1966 	/* software shadow of hardware table */
1967 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968 			flags);
1969 	if (fotg210->pshadow != NULL)
1970 		return 0;
1971 
1972 fail:
1973 	fotg210_dbg(fotg210, "couldn't init memory\n");
1974 	fotg210_mem_cleanup(fotg210);
1975 	return -ENOMEM;
1976 }
1977 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1978  *
1979  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1980  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981  * buffers needed for the larger number).  We use one QH per endpoint, queue
1982  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1983  *
1984  * ISO traffic uses "ISO TD" (itd) records, and (along with
1985  * interrupts) needs careful scheduling.  Performance improvements can be
1986  * an ongoing challenge.  That's in "ehci-sched.c".
1987  *
1988  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1991  * buffer low/full speed data so the host collects it at high speed.
1992  */
1993 
1994 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1995 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996 		dma_addr_t buf, size_t len, int token, int maxpacket)
1997 {
1998 	int i, count;
1999 	u64 addr = buf;
2000 
2001 	/* one buffer entry per 4K ... first might be short or unaligned */
2002 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2005 	if (likely(len < count))		/* ... iff needed */
2006 		count = len;
2007 	else {
2008 		buf +=  0x1000;
2009 		buf &= ~0x0fff;
2010 
2011 		/* per-qtd limit: from 16K to 20K (best alignment) */
2012 		for (i = 1; count < len && i < 5; i++) {
2013 			addr = buf;
2014 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016 					(u32)(addr >> 32));
2017 			buf += 0x1000;
2018 			if ((count + 0x1000) < len)
2019 				count += 0x1000;
2020 			else
2021 				count = len;
2022 		}
2023 
2024 		/* short packets may only terminate transfers */
2025 		if (count != len)
2026 			count -= (count % maxpacket);
2027 	}
2028 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029 	qtd->length = count;
2030 
2031 	return count;
2032 }
2033 
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2034 static inline void qh_update(struct fotg210_hcd *fotg210,
2035 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036 {
2037 	struct fotg210_qh_hw *hw = qh->hw;
2038 
2039 	/* writes to an active overlay are unsafe */
2040 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041 
2042 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044 
2045 	/* Except for control endpoints, we make hardware maintain data
2046 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048 	 * ever clear it.
2049 	 */
2050 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051 		unsigned is_out, epnum;
2052 
2053 		is_out = qh->is_out;
2054 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057 			usb_settoggle(qh->dev, epnum, is_out, 1);
2058 		}
2059 	}
2060 
2061 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062 }
2063 
2064 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2065  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066  * recovery (including urb dequeue) would need software changes to a QH...
2067  */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2068 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069 {
2070 	struct fotg210_qtd *qtd;
2071 
2072 	if (list_empty(&qh->qtd_list))
2073 		qtd = qh->dummy;
2074 	else {
2075 		qtd = list_entry(qh->qtd_list.next,
2076 				struct fotg210_qtd, qtd_list);
2077 		/*
2078 		 * first qtd may already be partially processed.
2079 		 * If we come here during unlink, the QH overlay region
2080 		 * might have reference to the just unlinked qtd. The
2081 		 * qtd is updated in qh_completions(). Update the QH
2082 		 * overlay here.
2083 		 */
2084 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085 			qh->hw->hw_qtd_next = qtd->hw_next;
2086 			qtd = NULL;
2087 		}
2088 	}
2089 
2090 	if (qtd)
2091 		qh_update(fotg210, qh, qtd);
2092 }
2093 
2094 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2096 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097 		struct usb_host_endpoint *ep)
2098 {
2099 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100 	struct fotg210_qh *qh = ep->hcpriv;
2101 	unsigned long flags;
2102 
2103 	spin_lock_irqsave(&fotg210->lock, flags);
2104 	qh->clearing_tt = 0;
2105 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2107 		qh_link_async(fotg210, qh);
2108 	spin_unlock_irqrestore(&fotg210->lock, flags);
2109 }
2110 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2111 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2113 {
2114 
2115 	/* If an async split transaction gets an error or is unlinked,
2116 	 * the TT buffer may be left in an indeterminate state.  We
2117 	 * have to clear the TT buffer.
2118 	 *
2119 	 * Note: this routine is never called for Isochronous transfers.
2120 	 */
2121 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122 		struct usb_device *tt = urb->dev->tt->hub;
2123 
2124 		dev_dbg(&tt->dev,
2125 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2126 				urb->dev->ttport, urb->dev->devnum,
2127 				usb_pipeendpoint(urb->pipe), token);
2128 
2129 		if (urb->dev->tt->hub !=
2130 				fotg210_to_hcd(fotg210)->self.root_hub) {
2131 			if (usb_hub_clear_tt_buffer(urb) == 0)
2132 				qh->clearing_tt = 1;
2133 		}
2134 	}
2135 }
2136 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2137 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138 		size_t length, u32 token)
2139 {
2140 	int status = -EINPROGRESS;
2141 
2142 	/* count IN/OUT bytes, not SETUP (even short packets) */
2143 	if (likely(QTD_PID(token) != 2))
2144 		urb->actual_length += length - QTD_LENGTH(token);
2145 
2146 	/* don't modify error codes */
2147 	if (unlikely(urb->unlinked))
2148 		return status;
2149 
2150 	/* force cleanup after short read; not always an error */
2151 	if (unlikely(IS_SHORT_READ(token)))
2152 		status = -EREMOTEIO;
2153 
2154 	/* serious "can't proceed" faults reported by the hardware */
2155 	if (token & QTD_STS_HALT) {
2156 		if (token & QTD_STS_BABBLE) {
2157 			/* FIXME "must" disable babbling device's port too */
2158 			status = -EOVERFLOW;
2159 		/* CERR nonzero + halt --> stall */
2160 		} else if (QTD_CERR(token)) {
2161 			status = -EPIPE;
2162 
2163 		/* In theory, more than one of the following bits can be set
2164 		 * since they are sticky and the transaction is retried.
2165 		 * Which to test first is rather arbitrary.
2166 		 */
2167 		} else if (token & QTD_STS_MMF) {
2168 			/* fs/ls interrupt xfer missed the complete-split */
2169 			status = -EPROTO;
2170 		} else if (token & QTD_STS_DBE) {
2171 			status = (QTD_PID(token) == 1) /* IN ? */
2172 				? -ENOSR  /* hc couldn't read data */
2173 				: -ECOMM; /* hc couldn't write data */
2174 		} else if (token & QTD_STS_XACT) {
2175 			/* timeout, bad CRC, wrong PID, etc */
2176 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177 					urb->dev->devpath,
2178 					usb_pipeendpoint(urb->pipe),
2179 					usb_pipein(urb->pipe) ? "in" : "out");
2180 			status = -EPROTO;
2181 		} else {	/* unknown */
2182 			status = -EPROTO;
2183 		}
2184 
2185 		fotg210_dbg(fotg210,
2186 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2187 				usb_pipedevice(urb->pipe),
2188 				usb_pipeendpoint(urb->pipe),
2189 				usb_pipein(urb->pipe) ? "in" : "out",
2190 				token, status);
2191 	}
2192 
2193 	return status;
2194 }
2195 
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2196 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197 		int status)
2198 __releases(fotg210->lock)
2199 __acquires(fotg210->lock)
2200 {
2201 	if (likely(urb->hcpriv != NULL)) {
2202 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203 
2204 		/* S-mask in a QH means it's an interrupt urb */
2205 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206 
2207 			/* ... update hc-wide periodic stats (for usbfs) */
2208 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209 		}
2210 	}
2211 
2212 	if (unlikely(urb->unlinked)) {
2213 		INCR(fotg210->stats.unlink);
2214 	} else {
2215 		/* report non-error and short read status as zero */
2216 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2217 			status = 0;
2218 		INCR(fotg210->stats.complete);
2219 	}
2220 
2221 #ifdef FOTG210_URB_TRACE
2222 	fotg210_dbg(fotg210,
2223 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2224 			__func__, urb->dev->devpath, urb,
2225 			usb_pipeendpoint(urb->pipe),
2226 			usb_pipein(urb->pipe) ? "in" : "out",
2227 			status,
2228 			urb->actual_length, urb->transfer_buffer_length);
2229 #endif
2230 
2231 	/* complete() can reenter this HCD */
2232 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233 	spin_unlock(&fotg210->lock);
2234 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235 	spin_lock(&fotg210->lock);
2236 }
2237 
2238 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239 
2240 /* Process and free completed qtds for a qh, returning URBs to drivers.
2241  * Chases up to qh->hw_current.  Returns number of completions called,
2242  * indicating how much "real" work we did.
2243  */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2244 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245 		struct fotg210_qh *qh)
2246 {
2247 	struct fotg210_qtd *last, *end = qh->dummy;
2248 	struct fotg210_qtd *qtd, *tmp;
2249 	int last_status;
2250 	int stopped;
2251 	unsigned count = 0;
2252 	u8 state;
2253 	struct fotg210_qh_hw *hw = qh->hw;
2254 
2255 	if (unlikely(list_empty(&qh->qtd_list)))
2256 		return count;
2257 
2258 	/* completions (or tasks on other cpus) must never clobber HALT
2259 	 * till we've gone through and cleaned everything up, even when
2260 	 * they add urbs to this qh's queue or mark them for unlinking.
2261 	 *
2262 	 * NOTE:  unlinking expects to be done in queue order.
2263 	 *
2264 	 * It's a bug for qh->qh_state to be anything other than
2265 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2266 	 * scan_intr().
2267 	 */
2268 	state = qh->qh_state;
2269 	qh->qh_state = QH_STATE_COMPLETING;
2270 	stopped = (state == QH_STATE_IDLE);
2271 
2272 rescan:
2273 	last = NULL;
2274 	last_status = -EINPROGRESS;
2275 	qh->needs_rescan = 0;
2276 
2277 	/* remove de-activated QTDs from front of queue.
2278 	 * after faults (including short reads), cleanup this urb
2279 	 * then let the queue advance.
2280 	 * if queue is stopped, handles unlinks.
2281 	 */
2282 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283 		struct urb *urb;
2284 		u32 token = 0;
2285 
2286 		urb = qtd->urb;
2287 
2288 		/* clean up any state from previous QTD ...*/
2289 		if (last) {
2290 			if (likely(last->urb != urb)) {
2291 				fotg210_urb_done(fotg210, last->urb,
2292 						last_status);
2293 				count++;
2294 				last_status = -EINPROGRESS;
2295 			}
2296 			fotg210_qtd_free(fotg210, last);
2297 			last = NULL;
2298 		}
2299 
2300 		/* ignore urbs submitted during completions we reported */
2301 		if (qtd == end)
2302 			break;
2303 
2304 		/* hardware copies qtd out of qh overlay */
2305 		rmb();
2306 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2307 
2308 		/* always clean up qtds the hc de-activated */
2309 retry_xacterr:
2310 		if ((token & QTD_STS_ACTIVE) == 0) {
2311 
2312 			/* Report Data Buffer Error: non-fatal but useful */
2313 			if (token & QTD_STS_DBE)
2314 				fotg210_dbg(fotg210,
2315 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316 					urb, usb_endpoint_num(&urb->ep->desc),
2317 					usb_endpoint_dir_in(&urb->ep->desc)
2318 						? "in" : "out",
2319 					urb->transfer_buffer_length, qtd, qh);
2320 
2321 			/* on STALL, error, and short reads this urb must
2322 			 * complete and all its qtds must be recycled.
2323 			 */
2324 			if ((token & QTD_STS_HALT) != 0) {
2325 
2326 				/* retry transaction errors until we
2327 				 * reach the software xacterr limit
2328 				 */
2329 				if ((token & QTD_STS_XACT) &&
2330 						QTD_CERR(token) == 0 &&
2331 						++qh->xacterrs < QH_XACTERR_MAX &&
2332 						!urb->unlinked) {
2333 					fotg210_dbg(fotg210,
2334 						"detected XactErr len %zu/%zu retry %d\n",
2335 						qtd->length - QTD_LENGTH(token),
2336 						qtd->length,
2337 						qh->xacterrs);
2338 
2339 					/* reset the token in the qtd and the
2340 					 * qh overlay (which still contains
2341 					 * the qtd) so that we pick up from
2342 					 * where we left off
2343 					 */
2344 					token &= ~QTD_STS_HALT;
2345 					token |= QTD_STS_ACTIVE |
2346 						 (FOTG210_TUNE_CERR << 10);
2347 					qtd->hw_token = cpu_to_hc32(fotg210,
2348 							token);
2349 					wmb();
2350 					hw->hw_token = cpu_to_hc32(fotg210,
2351 							token);
2352 					goto retry_xacterr;
2353 				}
2354 				stopped = 1;
2355 
2356 			/* magic dummy for some short reads; qh won't advance.
2357 			 * that silicon quirk can kick in with this dummy too.
2358 			 *
2359 			 * other short reads won't stop the queue, including
2360 			 * control transfers (status stage handles that) or
2361 			 * most other single-qtd reads ... the queue stops if
2362 			 * URB_SHORT_NOT_OK was set so the driver submitting
2363 			 * the urbs could clean it up.
2364 			 */
2365 			} else if (IS_SHORT_READ(token) &&
2366 					!(qtd->hw_alt_next &
2367 					FOTG210_LIST_END(fotg210))) {
2368 				stopped = 1;
2369 			}
2370 
2371 		/* stop scanning when we reach qtds the hc is using */
2372 		} else if (likely(!stopped
2373 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374 			break;
2375 
2376 		/* scan the whole queue for unlinks whenever it stops */
2377 		} else {
2378 			stopped = 1;
2379 
2380 			/* cancel everything if we halt, suspend, etc */
2381 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382 				last_status = -ESHUTDOWN;
2383 
2384 			/* this qtd is active; skip it unless a previous qtd
2385 			 * for its urb faulted, or its urb was canceled.
2386 			 */
2387 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2388 				continue;
2389 
2390 			/* qh unlinked; token in overlay may be most current */
2391 			if (state == QH_STATE_IDLE &&
2392 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2393 					== hw->hw_current) {
2394 				token = hc32_to_cpu(fotg210, hw->hw_token);
2395 
2396 				/* An unlink may leave an incomplete
2397 				 * async transaction in the TT buffer.
2398 				 * We have to clear it.
2399 				 */
2400 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2401 						token);
2402 			}
2403 		}
2404 
2405 		/* unless we already know the urb's status, collect qtd status
2406 		 * and update count of bytes transferred.  in common short read
2407 		 * cases with only one data qtd (including control transfers),
2408 		 * queue processing won't halt.  but with two or more qtds (for
2409 		 * example, with a 32 KB transfer), when the first qtd gets a
2410 		 * short read the second must be removed by hand.
2411 		 */
2412 		if (last_status == -EINPROGRESS) {
2413 			last_status = qtd_copy_status(fotg210, urb,
2414 					qtd->length, token);
2415 			if (last_status == -EREMOTEIO &&
2416 					(qtd->hw_alt_next &
2417 					FOTG210_LIST_END(fotg210)))
2418 				last_status = -EINPROGRESS;
2419 
2420 			/* As part of low/full-speed endpoint-halt processing
2421 			 * we must clear the TT buffer (11.17.5).
2422 			 */
2423 			if (unlikely(last_status != -EINPROGRESS &&
2424 					last_status != -EREMOTEIO)) {
2425 				/* The TT's in some hubs malfunction when they
2426 				 * receive this request following a STALL (they
2427 				 * stop sending isochronous packets).  Since a
2428 				 * STALL can't leave the TT buffer in a busy
2429 				 * state (if you believe Figures 11-48 - 11-51
2430 				 * in the USB 2.0 spec), we won't clear the TT
2431 				 * buffer in this case.  Strictly speaking this
2432 				 * is a violation of the spec.
2433 				 */
2434 				if (last_status != -EPIPE)
2435 					fotg210_clear_tt_buffer(fotg210, qh,
2436 							urb, token);
2437 			}
2438 		}
2439 
2440 		/* if we're removing something not at the queue head,
2441 		 * patch the hardware queue pointer.
2442 		 */
2443 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444 			last = list_entry(qtd->qtd_list.prev,
2445 					struct fotg210_qtd, qtd_list);
2446 			last->hw_next = qtd->hw_next;
2447 		}
2448 
2449 		/* remove qtd; it's recycled after possible urb completion */
2450 		list_del(&qtd->qtd_list);
2451 		last = qtd;
2452 
2453 		/* reinit the xacterr counter for the next qtd */
2454 		qh->xacterrs = 0;
2455 	}
2456 
2457 	/* last urb's completion might still need calling */
2458 	if (likely(last != NULL)) {
2459 		fotg210_urb_done(fotg210, last->urb, last_status);
2460 		count++;
2461 		fotg210_qtd_free(fotg210, last);
2462 	}
2463 
2464 	/* Do we need to rescan for URBs dequeued during a giveback? */
2465 	if (unlikely(qh->needs_rescan)) {
2466 		/* If the QH is already unlinked, do the rescan now. */
2467 		if (state == QH_STATE_IDLE)
2468 			goto rescan;
2469 
2470 		/* Otherwise we have to wait until the QH is fully unlinked.
2471 		 * Our caller will start an unlink if qh->needs_rescan is
2472 		 * set.  But if an unlink has already started, nothing needs
2473 		 * to be done.
2474 		 */
2475 		if (state != QH_STATE_LINKED)
2476 			qh->needs_rescan = 0;
2477 	}
2478 
2479 	/* restore original state; caller must unlink or relink */
2480 	qh->qh_state = state;
2481 
2482 	/* be sure the hardware's done with the qh before refreshing
2483 	 * it after fault cleanup, or recovering from silicon wrongly
2484 	 * overlaying the dummy qtd (which reduces DMA chatter).
2485 	 */
2486 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487 		switch (state) {
2488 		case QH_STATE_IDLE:
2489 			qh_refresh(fotg210, qh);
2490 			break;
2491 		case QH_STATE_LINKED:
2492 			/* We won't refresh a QH that's linked (after the HC
2493 			 * stopped the queue).  That avoids a race:
2494 			 *  - HC reads first part of QH;
2495 			 *  - CPU updates that first part and the token;
2496 			 *  - HC reads rest of that QH, including token
2497 			 * Result:  HC gets an inconsistent image, and then
2498 			 * DMAs to/from the wrong memory (corrupting it).
2499 			 *
2500 			 * That should be rare for interrupt transfers,
2501 			 * except maybe high bandwidth ...
2502 			 */
2503 
2504 			/* Tell the caller to start an unlink */
2505 			qh->needs_rescan = 1;
2506 			break;
2507 		/* otherwise, unlink already started */
2508 		}
2509 	}
2510 
2511 	return count;
2512 }
2513 
2514 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2515 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2516 /* ... and packet size, for any kind of endpoint descriptor */
2517 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2518 
2519 /* reverse of qh_urb_transaction:  free a list of TDs.
2520  * used for cleanup after errors, before HC sees an URB's TDs.
2521  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2522 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2523 		struct list_head *head)
2524 {
2525 	struct fotg210_qtd *qtd, *temp;
2526 
2527 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2528 		list_del(&qtd->qtd_list);
2529 		fotg210_qtd_free(fotg210, qtd);
2530 	}
2531 }
2532 
2533 /* create a list of filled qtds for this URB; won't link into qh.
2534  */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2535 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2536 		struct urb *urb, struct list_head *head, gfp_t flags)
2537 {
2538 	struct fotg210_qtd *qtd, *qtd_prev;
2539 	dma_addr_t buf;
2540 	int len, this_sg_len, maxpacket;
2541 	int is_input;
2542 	u32 token;
2543 	int i;
2544 	struct scatterlist *sg;
2545 
2546 	/*
2547 	 * URBs map to sequences of QTDs:  one logical transaction
2548 	 */
2549 	qtd = fotg210_qtd_alloc(fotg210, flags);
2550 	if (unlikely(!qtd))
2551 		return NULL;
2552 	list_add_tail(&qtd->qtd_list, head);
2553 	qtd->urb = urb;
2554 
2555 	token = QTD_STS_ACTIVE;
2556 	token |= (FOTG210_TUNE_CERR << 10);
2557 	/* for split transactions, SplitXState initialized to zero */
2558 
2559 	len = urb->transfer_buffer_length;
2560 	is_input = usb_pipein(urb->pipe);
2561 	if (usb_pipecontrol(urb->pipe)) {
2562 		/* SETUP pid */
2563 		qtd_fill(fotg210, qtd, urb->setup_dma,
2564 				sizeof(struct usb_ctrlrequest),
2565 				token | (2 /* "setup" */ << 8), 8);
2566 
2567 		/* ... and always at least one more pid */
2568 		token ^= QTD_TOGGLE;
2569 		qtd_prev = qtd;
2570 		qtd = fotg210_qtd_alloc(fotg210, flags);
2571 		if (unlikely(!qtd))
2572 			goto cleanup;
2573 		qtd->urb = urb;
2574 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2575 		list_add_tail(&qtd->qtd_list, head);
2576 
2577 		/* for zero length DATA stages, STATUS is always IN */
2578 		if (len == 0)
2579 			token |= (1 /* "in" */ << 8);
2580 	}
2581 
2582 	/*
2583 	 * data transfer stage:  buffer setup
2584 	 */
2585 	i = urb->num_mapped_sgs;
2586 	if (len > 0 && i > 0) {
2587 		sg = urb->sg;
2588 		buf = sg_dma_address(sg);
2589 
2590 		/* urb->transfer_buffer_length may be smaller than the
2591 		 * size of the scatterlist (or vice versa)
2592 		 */
2593 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2594 	} else {
2595 		sg = NULL;
2596 		buf = urb->transfer_dma;
2597 		this_sg_len = len;
2598 	}
2599 
2600 	if (is_input)
2601 		token |= (1 /* "in" */ << 8);
2602 	/* else it's already initted to "out" pid (0 << 8) */
2603 
2604 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605 
2606 	/*
2607 	 * buffer gets wrapped in one or more qtds;
2608 	 * last one may be "short" (including zero len)
2609 	 * and may serve as a control status ack
2610 	 */
2611 	for (;;) {
2612 		int this_qtd_len;
2613 
2614 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2615 				maxpacket);
2616 		this_sg_len -= this_qtd_len;
2617 		len -= this_qtd_len;
2618 		buf += this_qtd_len;
2619 
2620 		/*
2621 		 * short reads advance to a "magic" dummy instead of the next
2622 		 * qtd ... that forces the queue to stop, for manual cleanup.
2623 		 * (this will usually be overridden later.)
2624 		 */
2625 		if (is_input)
2626 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2627 
2628 		/* qh makes control packets use qtd toggle; maybe switch it */
2629 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2630 			token ^= QTD_TOGGLE;
2631 
2632 		if (likely(this_sg_len <= 0)) {
2633 			if (--i <= 0 || len <= 0)
2634 				break;
2635 			sg = sg_next(sg);
2636 			buf = sg_dma_address(sg);
2637 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2638 		}
2639 
2640 		qtd_prev = qtd;
2641 		qtd = fotg210_qtd_alloc(fotg210, flags);
2642 		if (unlikely(!qtd))
2643 			goto cleanup;
2644 		qtd->urb = urb;
2645 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2646 		list_add_tail(&qtd->qtd_list, head);
2647 	}
2648 
2649 	/*
2650 	 * unless the caller requires manual cleanup after short reads,
2651 	 * have the alt_next mechanism keep the queue running after the
2652 	 * last data qtd (the only one, for control and most other cases).
2653 	 */
2654 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2655 			usb_pipecontrol(urb->pipe)))
2656 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657 
2658 	/*
2659 	 * control requests may need a terminating data "status" ack;
2660 	 * other OUT ones may need a terminating short packet
2661 	 * (zero length).
2662 	 */
2663 	if (likely(urb->transfer_buffer_length != 0)) {
2664 		int one_more = 0;
2665 
2666 		if (usb_pipecontrol(urb->pipe)) {
2667 			one_more = 1;
2668 			token ^= 0x0100;	/* "in" <--> "out"  */
2669 			token |= QTD_TOGGLE;	/* force DATA1 */
2670 		} else if (usb_pipeout(urb->pipe)
2671 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2672 				&& !(urb->transfer_buffer_length % maxpacket)) {
2673 			one_more = 1;
2674 		}
2675 		if (one_more) {
2676 			qtd_prev = qtd;
2677 			qtd = fotg210_qtd_alloc(fotg210, flags);
2678 			if (unlikely(!qtd))
2679 				goto cleanup;
2680 			qtd->urb = urb;
2681 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2682 			list_add_tail(&qtd->qtd_list, head);
2683 
2684 			/* never any data in such packets */
2685 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2686 		}
2687 	}
2688 
2689 	/* by default, enable interrupt on urb completion */
2690 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2691 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2692 	return head;
2693 
2694 cleanup:
2695 	qtd_list_free(fotg210, urb, head);
2696 	return NULL;
2697 }
2698 
2699 /* Would be best to create all qh's from config descriptors,
2700  * when each interface/altsetting is established.  Unlink
2701  * any previous qh and cancel its urbs first; endpoints are
2702  * implicitly reset then (data toggle too).
2703  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2704 */
2705 
2706 
2707 /* Each QH holds a qtd list; a QH is used for everything except iso.
2708  *
2709  * For interrupt urbs, the scheduler must set the microframe scheduling
2710  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2711  * just one microframe in the s-mask.  For split interrupt transactions
2712  * there are additional complications: c-mask, maybe FSTNs.
2713  */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2714 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2715 		gfp_t flags)
2716 {
2717 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2718 	u32 info1 = 0, info2 = 0;
2719 	int is_input, type;
2720 	int maxp = 0;
2721 	struct usb_tt *tt = urb->dev->tt;
2722 	struct fotg210_qh_hw *hw;
2723 
2724 	if (!qh)
2725 		return qh;
2726 
2727 	/*
2728 	 * init endpoint/device data for this QH
2729 	 */
2730 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2731 	info1 |= usb_pipedevice(urb->pipe) << 0;
2732 
2733 	is_input = usb_pipein(urb->pipe);
2734 	type = usb_pipetype(urb->pipe);
2735 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2736 
2737 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2738 	 * acts like up to 3KB, but is built from smaller packets.
2739 	 */
2740 	if (max_packet(maxp) > 1024) {
2741 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742 				max_packet(maxp));
2743 		goto done;
2744 	}
2745 
2746 	/* Compute interrupt scheduling parameters just once, and save.
2747 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2748 	 * - split transactions need a second CSPLIT uframe; same question
2749 	 * - splits also need a schedule gap (for full/low speed I/O)
2750 	 * - qh has a polling interval
2751 	 *
2752 	 * For control/bulk requests, the HC or TT handles these.
2753 	 */
2754 	if (type == PIPE_INTERRUPT) {
2755 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2756 				is_input, 0,
2757 				hb_mult(maxp) * max_packet(maxp)));
2758 		qh->start = NO_FRAME;
2759 
2760 		if (urb->dev->speed == USB_SPEED_HIGH) {
2761 			qh->c_usecs = 0;
2762 			qh->gap_uf = 0;
2763 
2764 			qh->period = urb->interval >> 3;
2765 			if (qh->period == 0 && urb->interval != 1) {
2766 				/* NOTE interval 2 or 4 uframes could work.
2767 				 * But interval 1 scheduling is simpler, and
2768 				 * includes high bandwidth.
2769 				 */
2770 				urb->interval = 1;
2771 			} else if (qh->period > fotg210->periodic_size) {
2772 				qh->period = fotg210->periodic_size;
2773 				urb->interval = qh->period << 3;
2774 			}
2775 		} else {
2776 			int think_time;
2777 
2778 			/* gap is f(FS/LS transfer times) */
2779 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2780 					is_input, 0, maxp) / (125 * 1000);
2781 
2782 			/* FIXME this just approximates SPLIT/CSPLIT times */
2783 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2784 				qh->c_usecs = qh->usecs + HS_USECS(0);
2785 				qh->usecs = HS_USECS(1);
2786 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2787 				qh->usecs += HS_USECS(1);
2788 				qh->c_usecs = HS_USECS(0);
2789 			}
2790 
2791 			think_time = tt ? tt->think_time : 0;
2792 			qh->tt_usecs = NS_TO_US(think_time +
2793 					usb_calc_bus_time(urb->dev->speed,
2794 					is_input, 0, max_packet(maxp)));
2795 			qh->period = urb->interval;
2796 			if (qh->period > fotg210->periodic_size) {
2797 				qh->period = fotg210->periodic_size;
2798 				urb->interval = qh->period;
2799 			}
2800 		}
2801 	}
2802 
2803 	/* support for tt scheduling, and access to toggles */
2804 	qh->dev = urb->dev;
2805 
2806 	/* using TT? */
2807 	switch (urb->dev->speed) {
2808 	case USB_SPEED_LOW:
2809 		info1 |= QH_LOW_SPEED;
2810 		/* FALL THROUGH */
2811 
2812 	case USB_SPEED_FULL:
2813 		/* EPS 0 means "full" */
2814 		if (type != PIPE_INTERRUPT)
2815 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2816 		if (type == PIPE_CONTROL) {
2817 			info1 |= QH_CONTROL_EP;		/* for TT */
2818 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2819 		}
2820 		info1 |= maxp << 16;
2821 
2822 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2823 
2824 		/* Some Freescale processors have an erratum in which the
2825 		 * port number in the queue head was 0..N-1 instead of 1..N.
2826 		 */
2827 		if (fotg210_has_fsl_portno_bug(fotg210))
2828 			info2 |= (urb->dev->ttport-1) << 23;
2829 		else
2830 			info2 |= urb->dev->ttport << 23;
2831 
2832 		/* set the address of the TT; for TDI's integrated
2833 		 * root hub tt, leave it zeroed.
2834 		 */
2835 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2836 			info2 |= tt->hub->devnum << 16;
2837 
2838 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2839 
2840 		break;
2841 
2842 	case USB_SPEED_HIGH:		/* no TT involved */
2843 		info1 |= QH_HIGH_SPEED;
2844 		if (type == PIPE_CONTROL) {
2845 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2846 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2847 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2848 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2849 		} else if (type == PIPE_BULK) {
2850 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2851 			/* The USB spec says that high speed bulk endpoints
2852 			 * always use 512 byte maxpacket.  But some device
2853 			 * vendors decided to ignore that, and MSFT is happy
2854 			 * to help them do so.  So now people expect to use
2855 			 * such nonconformant devices with Linux too; sigh.
2856 			 */
2857 			info1 |= max_packet(maxp) << 16;
2858 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2859 		} else {		/* PIPE_INTERRUPT */
2860 			info1 |= max_packet(maxp) << 16;
2861 			info2 |= hb_mult(maxp) << 30;
2862 		}
2863 		break;
2864 	default:
2865 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866 				urb->dev->speed);
2867 done:
2868 		qh_destroy(fotg210, qh);
2869 		return NULL;
2870 	}
2871 
2872 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2873 
2874 	/* init as live, toggle clear, advance to dummy */
2875 	qh->qh_state = QH_STATE_IDLE;
2876 	hw = qh->hw;
2877 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2878 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2879 	qh->is_out = !is_input;
2880 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2881 	qh_refresh(fotg210, qh);
2882 	return qh;
2883 }
2884 
enable_async(struct fotg210_hcd * fotg210)2885 static void enable_async(struct fotg210_hcd *fotg210)
2886 {
2887 	if (fotg210->async_count++)
2888 		return;
2889 
2890 	/* Stop waiting to turn off the async schedule */
2891 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2892 
2893 	/* Don't start the schedule until ASS is 0 */
2894 	fotg210_poll_ASS(fotg210);
2895 	turn_on_io_watchdog(fotg210);
2896 }
2897 
disable_async(struct fotg210_hcd * fotg210)2898 static void disable_async(struct fotg210_hcd *fotg210)
2899 {
2900 	if (--fotg210->async_count)
2901 		return;
2902 
2903 	/* The async schedule and async_unlink list are supposed to be empty */
2904 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2905 
2906 	/* Don't turn off the schedule until ASS is 1 */
2907 	fotg210_poll_ASS(fotg210);
2908 }
2909 
2910 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2911 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2912 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2913 {
2914 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2915 	struct fotg210_qh *head;
2916 
2917 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2918 	if (unlikely(qh->clearing_tt))
2919 		return;
2920 
2921 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2922 
2923 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2924 	qh_refresh(fotg210, qh);
2925 
2926 	/* splice right after start */
2927 	head = fotg210->async;
2928 	qh->qh_next = head->qh_next;
2929 	qh->hw->hw_next = head->hw->hw_next;
2930 	wmb();
2931 
2932 	head->qh_next.qh = qh;
2933 	head->hw->hw_next = dma;
2934 
2935 	qh->xacterrs = 0;
2936 	qh->qh_state = QH_STATE_LINKED;
2937 	/* qtd completions reported later by interrupt */
2938 
2939 	enable_async(fotg210);
2940 }
2941 
2942 /* For control/bulk/interrupt, return QH with these TDs appended.
2943  * Allocates and initializes the QH if necessary.
2944  * Returns null if it can't allocate a QH it needs to.
2945  * If the QH has TDs (urbs) already, that's great.
2946  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2947 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2948 		struct urb *urb, struct list_head *qtd_list,
2949 		int epnum, void **ptr)
2950 {
2951 	struct fotg210_qh *qh = NULL;
2952 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2953 
2954 	qh = (struct fotg210_qh *) *ptr;
2955 	if (unlikely(qh == NULL)) {
2956 		/* can't sleep here, we have fotg210->lock... */
2957 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958 		*ptr = qh;
2959 	}
2960 	if (likely(qh != NULL)) {
2961 		struct fotg210_qtd *qtd;
2962 
2963 		if (unlikely(list_empty(qtd_list)))
2964 			qtd = NULL;
2965 		else
2966 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967 					qtd_list);
2968 
2969 		/* control qh may need patching ... */
2970 		if (unlikely(epnum == 0)) {
2971 			/* usb_reset_device() briefly reverts to address 0 */
2972 			if (usb_pipedevice(urb->pipe) == 0)
2973 				qh->hw->hw_info1 &= ~qh_addr_mask;
2974 		}
2975 
2976 		/* just one way to queue requests: swap with the dummy qtd.
2977 		 * only hc or qh_refresh() ever modify the overlay.
2978 		 */
2979 		if (likely(qtd != NULL)) {
2980 			struct fotg210_qtd *dummy;
2981 			dma_addr_t dma;
2982 			__hc32 token;
2983 
2984 			/* to avoid racing the HC, use the dummy td instead of
2985 			 * the first td of our list (becomes new dummy).  both
2986 			 * tds stay deactivated until we're done, when the
2987 			 * HC is allowed to fetch the old dummy (4.10.2).
2988 			 */
2989 			token = qtd->hw_token;
2990 			qtd->hw_token = HALT_BIT(fotg210);
2991 
2992 			dummy = qh->dummy;
2993 
2994 			dma = dummy->qtd_dma;
2995 			*dummy = *qtd;
2996 			dummy->qtd_dma = dma;
2997 
2998 			list_del(&qtd->qtd_list);
2999 			list_add(&dummy->qtd_list, qtd_list);
3000 			list_splice_tail(qtd_list, &qh->qtd_list);
3001 
3002 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003 			qh->dummy = qtd;
3004 
3005 			/* hc must see the new dummy at list end */
3006 			dma = qtd->qtd_dma;
3007 			qtd = list_entry(qh->qtd_list.prev,
3008 					struct fotg210_qtd, qtd_list);
3009 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3010 
3011 			/* let the hc process these next qtds */
3012 			wmb();
3013 			dummy->hw_token = token;
3014 
3015 			urb->hcpriv = qh;
3016 		}
3017 	}
3018 	return qh;
3019 }
3020 
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3021 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3022 		struct list_head *qtd_list, gfp_t mem_flags)
3023 {
3024 	int epnum;
3025 	unsigned long flags;
3026 	struct fotg210_qh *qh = NULL;
3027 	int rc;
3028 
3029 	epnum = urb->ep->desc.bEndpointAddress;
3030 
3031 #ifdef FOTG210_URB_TRACE
3032 	{
3033 		struct fotg210_qtd *qtd;
3034 
3035 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3036 		fotg210_dbg(fotg210,
3037 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3038 				__func__, urb->dev->devpath, urb,
3039 				epnum & 0x0f, (epnum & USB_DIR_IN)
3040 					? "in" : "out",
3041 				urb->transfer_buffer_length,
3042 				qtd, urb->ep->hcpriv);
3043 	}
3044 #endif
3045 
3046 	spin_lock_irqsave(&fotg210->lock, flags);
3047 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3048 		rc = -ESHUTDOWN;
3049 		goto done;
3050 	}
3051 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3052 	if (unlikely(rc))
3053 		goto done;
3054 
3055 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3056 	if (unlikely(qh == NULL)) {
3057 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058 		rc = -ENOMEM;
3059 		goto done;
3060 	}
3061 
3062 	/* Control/bulk operations through TTs don't need scheduling,
3063 	 * the HC and TT handle it when the TT has a buffer ready.
3064 	 */
3065 	if (likely(qh->qh_state == QH_STATE_IDLE))
3066 		qh_link_async(fotg210, qh);
3067 done:
3068 	spin_unlock_irqrestore(&fotg210->lock, flags);
3069 	if (unlikely(qh == NULL))
3070 		qtd_list_free(fotg210, urb, qtd_list);
3071 	return rc;
3072 }
3073 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3074 static void single_unlink_async(struct fotg210_hcd *fotg210,
3075 		struct fotg210_qh *qh)
3076 {
3077 	struct fotg210_qh *prev;
3078 
3079 	/* Add to the end of the list of QHs waiting for the next IAAD */
3080 	qh->qh_state = QH_STATE_UNLINK;
3081 	if (fotg210->async_unlink)
3082 		fotg210->async_unlink_last->unlink_next = qh;
3083 	else
3084 		fotg210->async_unlink = qh;
3085 	fotg210->async_unlink_last = qh;
3086 
3087 	/* Unlink it from the schedule */
3088 	prev = fotg210->async;
3089 	while (prev->qh_next.qh != qh)
3090 		prev = prev->qh_next.qh;
3091 
3092 	prev->hw->hw_next = qh->hw->hw_next;
3093 	prev->qh_next = qh->qh_next;
3094 	if (fotg210->qh_scan_next == qh)
3095 		fotg210->qh_scan_next = qh->qh_next.qh;
3096 }
3097 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3098 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099 {
3100 	/*
3101 	 * Do nothing if an IAA cycle is already running or
3102 	 * if one will be started shortly.
3103 	 */
3104 	if (fotg210->async_iaa || fotg210->async_unlinking)
3105 		return;
3106 
3107 	/* Do all the waiting QHs at once */
3108 	fotg210->async_iaa = fotg210->async_unlink;
3109 	fotg210->async_unlink = NULL;
3110 
3111 	/* If the controller isn't running, we don't have to wait for it */
3112 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3113 		if (!nested)		/* Avoid recursion */
3114 			end_unlink_async(fotg210);
3115 
3116 	/* Otherwise start a new IAA cycle */
3117 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3118 		/* Make sure the unlinks are all visible to the hardware */
3119 		wmb();
3120 
3121 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3122 				&fotg210->regs->command);
3123 		fotg210_readl(fotg210, &fotg210->regs->command);
3124 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125 				true);
3126 	}
3127 }
3128 
3129 /* the async qh for the qtds being unlinked are now gone from the HC */
3130 
end_unlink_async(struct fotg210_hcd * fotg210)3131 static void end_unlink_async(struct fotg210_hcd *fotg210)
3132 {
3133 	struct fotg210_qh *qh;
3134 
3135 	/* Process the idle QHs */
3136 restart:
3137 	fotg210->async_unlinking = true;
3138 	while (fotg210->async_iaa) {
3139 		qh = fotg210->async_iaa;
3140 		fotg210->async_iaa = qh->unlink_next;
3141 		qh->unlink_next = NULL;
3142 
3143 		qh->qh_state = QH_STATE_IDLE;
3144 		qh->qh_next.qh = NULL;
3145 
3146 		qh_completions(fotg210, qh);
3147 		if (!list_empty(&qh->qtd_list) &&
3148 				fotg210->rh_state == FOTG210_RH_RUNNING)
3149 			qh_link_async(fotg210, qh);
3150 		disable_async(fotg210);
3151 	}
3152 	fotg210->async_unlinking = false;
3153 
3154 	/* Start a new IAA cycle if any QHs are waiting for it */
3155 	if (fotg210->async_unlink) {
3156 		start_iaa_cycle(fotg210, true);
3157 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158 			goto restart;
3159 	}
3160 }
3161 
unlink_empty_async(struct fotg210_hcd * fotg210)3162 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3163 {
3164 	struct fotg210_qh *qh, *next;
3165 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3166 	bool check_unlinks_later = false;
3167 
3168 	/* Unlink all the async QHs that have been empty for a timer cycle */
3169 	next = fotg210->async->qh_next.qh;
3170 	while (next) {
3171 		qh = next;
3172 		next = qh->qh_next.qh;
3173 
3174 		if (list_empty(&qh->qtd_list) &&
3175 				qh->qh_state == QH_STATE_LINKED) {
3176 			if (!stopped && qh->unlink_cycle ==
3177 					fotg210->async_unlink_cycle)
3178 				check_unlinks_later = true;
3179 			else
3180 				single_unlink_async(fotg210, qh);
3181 		}
3182 	}
3183 
3184 	/* Start a new IAA cycle if any QHs are waiting for it */
3185 	if (fotg210->async_unlink)
3186 		start_iaa_cycle(fotg210, false);
3187 
3188 	/* QHs that haven't been empty for long enough will be handled later */
3189 	if (check_unlinks_later) {
3190 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3191 				true);
3192 		++fotg210->async_unlink_cycle;
3193 	}
3194 }
3195 
3196 /* makes sure the async qh will become idle */
3197 /* caller must own fotg210->lock */
3198 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3199 static void start_unlink_async(struct fotg210_hcd *fotg210,
3200 		struct fotg210_qh *qh)
3201 {
3202 	/*
3203 	 * If the QH isn't linked then there's nothing we can do
3204 	 * unless we were called during a giveback, in which case
3205 	 * qh_completions() has to deal with it.
3206 	 */
3207 	if (qh->qh_state != QH_STATE_LINKED) {
3208 		if (qh->qh_state == QH_STATE_COMPLETING)
3209 			qh->needs_rescan = 1;
3210 		return;
3211 	}
3212 
3213 	single_unlink_async(fotg210, qh);
3214 	start_iaa_cycle(fotg210, false);
3215 }
3216 
scan_async(struct fotg210_hcd * fotg210)3217 static void scan_async(struct fotg210_hcd *fotg210)
3218 {
3219 	struct fotg210_qh *qh;
3220 	bool check_unlinks_later = false;
3221 
3222 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3223 	while (fotg210->qh_scan_next) {
3224 		qh = fotg210->qh_scan_next;
3225 		fotg210->qh_scan_next = qh->qh_next.qh;
3226 rescan:
3227 		/* clean any finished work for this qh */
3228 		if (!list_empty(&qh->qtd_list)) {
3229 			int temp;
3230 
3231 			/*
3232 			 * Unlinks could happen here; completion reporting
3233 			 * drops the lock.  That's why fotg210->qh_scan_next
3234 			 * always holds the next qh to scan; if the next qh
3235 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3236 			 * in single_unlink_async().
3237 			 */
3238 			temp = qh_completions(fotg210, qh);
3239 			if (qh->needs_rescan) {
3240 				start_unlink_async(fotg210, qh);
3241 			} else if (list_empty(&qh->qtd_list)
3242 					&& qh->qh_state == QH_STATE_LINKED) {
3243 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3244 				check_unlinks_later = true;
3245 			} else if (temp != 0)
3246 				goto rescan;
3247 		}
3248 	}
3249 
3250 	/*
3251 	 * Unlink empty entries, reducing DMA usage as well
3252 	 * as HCD schedule-scanning costs.  Delay for any qh
3253 	 * we just scanned, there's a not-unusual case that it
3254 	 * doesn't stay idle for long.
3255 	 */
3256 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3257 			!(fotg210->enabled_hrtimer_events &
3258 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3259 		fotg210_enable_event(fotg210,
3260 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3261 		++fotg210->async_unlink_cycle;
3262 	}
3263 }
3264 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3265  * These are called "periodic" transactions in the EHCI spec.
3266  *
3267  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3268  * with the "asynchronous" transaction support (control/bulk transfers).
3269  * The only real difference is in how interrupt transfers are scheduled.
3270  *
3271  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3272  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3273  * pre-calculated schedule data to make appending to the queue be quick.
3274  */
3275 static int fotg210_get_frame(struct usb_hcd *hcd);
3276 
3277 /* periodic_next_shadow - return "next" pointer on shadow list
3278  * @periodic: host pointer to qh/itd
3279  * @tag: hardware tag for type of this record
3280  */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3281 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3282 		union fotg210_shadow *periodic, __hc32 tag)
3283 {
3284 	switch (hc32_to_cpu(fotg210, tag)) {
3285 	case Q_TYPE_QH:
3286 		return &periodic->qh->qh_next;
3287 	case Q_TYPE_FSTN:
3288 		return &periodic->fstn->fstn_next;
3289 	default:
3290 		return &periodic->itd->itd_next;
3291 	}
3292 }
3293 
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3294 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3295 		union fotg210_shadow *periodic, __hc32 tag)
3296 {
3297 	switch (hc32_to_cpu(fotg210, tag)) {
3298 	/* our fotg210_shadow.qh is actually software part */
3299 	case Q_TYPE_QH:
3300 		return &periodic->qh->hw->hw_next;
3301 	/* others are hw parts */
3302 	default:
3303 		return periodic->hw_next;
3304 	}
3305 }
3306 
3307 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3308 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309 		void *ptr)
3310 {
3311 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3312 	__hc32 *hw_p = &fotg210->periodic[frame];
3313 	union fotg210_shadow here = *prev_p;
3314 
3315 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3316 	while (here.ptr && here.ptr != ptr) {
3317 		prev_p = periodic_next_shadow(fotg210, prev_p,
3318 				Q_NEXT_TYPE(fotg210, *hw_p));
3319 		hw_p = shadow_next_periodic(fotg210, &here,
3320 				Q_NEXT_TYPE(fotg210, *hw_p));
3321 		here = *prev_p;
3322 	}
3323 	/* an interrupt entry (at list end) could have been shared */
3324 	if (!here.ptr)
3325 		return;
3326 
3327 	/* update shadow and hardware lists ... the old "next" pointers
3328 	 * from ptr may still be in use, the caller updates them.
3329 	 */
3330 	*prev_p = *periodic_next_shadow(fotg210, &here,
3331 			Q_NEXT_TYPE(fotg210, *hw_p));
3332 
3333 	*hw_p = *shadow_next_periodic(fotg210, &here,
3334 			Q_NEXT_TYPE(fotg210, *hw_p));
3335 }
3336 
3337 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3338 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3339 		unsigned frame, unsigned uframe)
3340 {
3341 	__hc32 *hw_p = &fotg210->periodic[frame];
3342 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3343 	unsigned usecs = 0;
3344 	struct fotg210_qh_hw *hw;
3345 
3346 	while (q->ptr) {
3347 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348 		case Q_TYPE_QH:
3349 			hw = q->qh->hw;
3350 			/* is it in the S-mask? */
3351 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3352 				usecs += q->qh->usecs;
3353 			/* ... or C-mask? */
3354 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3355 					1 << (8 + uframe)))
3356 				usecs += q->qh->c_usecs;
3357 			hw_p = &hw->hw_next;
3358 			q = &q->qh->qh_next;
3359 			break;
3360 		/* case Q_TYPE_FSTN: */
3361 		default:
3362 			/* for "save place" FSTNs, count the relevant INTR
3363 			 * bandwidth from the previous frame
3364 			 */
3365 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3366 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3367 
3368 			hw_p = &q->fstn->hw_next;
3369 			q = &q->fstn->fstn_next;
3370 			break;
3371 		case Q_TYPE_ITD:
3372 			if (q->itd->hw_transaction[uframe])
3373 				usecs += q->itd->stream->usecs;
3374 			hw_p = &q->itd->hw_next;
3375 			q = &q->itd->itd_next;
3376 			break;
3377 		}
3378 	}
3379 	if (usecs > fotg210->uframe_periodic_max)
3380 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3381 				frame * 8 + uframe, usecs);
3382 	return usecs;
3383 }
3384 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3385 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3386 {
3387 	if (!dev1->tt || !dev2->tt)
3388 		return 0;
3389 	if (dev1->tt != dev2->tt)
3390 		return 0;
3391 	if (dev1->tt->multi)
3392 		return dev1->ttport == dev2->ttport;
3393 	else
3394 		return 1;
3395 }
3396 
3397 /* return true iff the device's transaction translator is available
3398  * for a periodic transfer starting at the specified frame, using
3399  * all the uframes in the mask.
3400  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3401 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3402 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3403 {
3404 	if (period == 0)	/* error */
3405 		return 0;
3406 
3407 	/* note bandwidth wastage:  split never follows csplit
3408 	 * (different dev or endpoint) until the next uframe.
3409 	 * calling convention doesn't make that distinction.
3410 	 */
3411 	for (; frame < fotg210->periodic_size; frame += period) {
3412 		union fotg210_shadow here;
3413 		__hc32 type;
3414 		struct fotg210_qh_hw *hw;
3415 
3416 		here = fotg210->pshadow[frame];
3417 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3418 		while (here.ptr) {
3419 			switch (hc32_to_cpu(fotg210, type)) {
3420 			case Q_TYPE_ITD:
3421 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3422 				here = here.itd->itd_next;
3423 				continue;
3424 			case Q_TYPE_QH:
3425 				hw = here.qh->hw;
3426 				if (same_tt(dev, here.qh->dev)) {
3427 					u32 mask;
3428 
3429 					mask = hc32_to_cpu(fotg210,
3430 							hw->hw_info2);
3431 					/* "knows" no gap is needed */
3432 					mask |= mask >> 8;
3433 					if (mask & uf_mask)
3434 						break;
3435 				}
3436 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3437 				here = here.qh->qh_next;
3438 				continue;
3439 			/* case Q_TYPE_FSTN: */
3440 			default:
3441 				fotg210_dbg(fotg210,
3442 						"periodic frame %d bogus type %d\n",
3443 						frame, type);
3444 			}
3445 
3446 			/* collision or error */
3447 			return 0;
3448 		}
3449 	}
3450 
3451 	/* no collision */
3452 	return 1;
3453 }
3454 
enable_periodic(struct fotg210_hcd * fotg210)3455 static void enable_periodic(struct fotg210_hcd *fotg210)
3456 {
3457 	if (fotg210->periodic_count++)
3458 		return;
3459 
3460 	/* Stop waiting to turn off the periodic schedule */
3461 	fotg210->enabled_hrtimer_events &=
3462 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3463 
3464 	/* Don't start the schedule until PSS is 0 */
3465 	fotg210_poll_PSS(fotg210);
3466 	turn_on_io_watchdog(fotg210);
3467 }
3468 
disable_periodic(struct fotg210_hcd * fotg210)3469 static void disable_periodic(struct fotg210_hcd *fotg210)
3470 {
3471 	if (--fotg210->periodic_count)
3472 		return;
3473 
3474 	/* Don't turn off the schedule until PSS is 1 */
3475 	fotg210_poll_PSS(fotg210);
3476 }
3477 
3478 /* periodic schedule slots have iso tds (normal or split) first, then a
3479  * sparse tree for active interrupt transfers.
3480  *
3481  * this just links in a qh; caller guarantees uframe masks are set right.
3482  * no FSTN support (yet; fotg210 0.96+)
3483  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3484 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485 {
3486 	unsigned i;
3487 	unsigned period = qh->period;
3488 
3489 	dev_dbg(&qh->dev->dev,
3490 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3491 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3492 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493 			qh->c_usecs);
3494 
3495 	/* high bandwidth, or otherwise every microframe */
3496 	if (period == 0)
3497 		period = 1;
3498 
3499 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3500 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3501 		__hc32 *hw_p = &fotg210->periodic[i];
3502 		union fotg210_shadow here = *prev;
3503 		__hc32 type = 0;
3504 
3505 		/* skip the iso nodes at list head */
3506 		while (here.ptr) {
3507 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3508 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3509 				break;
3510 			prev = periodic_next_shadow(fotg210, prev, type);
3511 			hw_p = shadow_next_periodic(fotg210, &here, type);
3512 			here = *prev;
3513 		}
3514 
3515 		/* sorting each branch by period (slow-->fast)
3516 		 * enables sharing interior tree nodes
3517 		 */
3518 		while (here.ptr && qh != here.qh) {
3519 			if (qh->period > here.qh->period)
3520 				break;
3521 			prev = &here.qh->qh_next;
3522 			hw_p = &here.qh->hw->hw_next;
3523 			here = *prev;
3524 		}
3525 		/* link in this qh, unless some earlier pass did that */
3526 		if (qh != here.qh) {
3527 			qh->qh_next = here;
3528 			if (here.qh)
3529 				qh->hw->hw_next = *hw_p;
3530 			wmb();
3531 			prev->qh = qh;
3532 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533 		}
3534 	}
3535 	qh->qh_state = QH_STATE_LINKED;
3536 	qh->xacterrs = 0;
3537 
3538 	/* update per-qh bandwidth for usbfs */
3539 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3540 		? ((qh->usecs + qh->c_usecs) / qh->period)
3541 		: (qh->usecs * 8);
3542 
3543 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3544 
3545 	/* maybe enable periodic schedule processing */
3546 	++fotg210->intr_count;
3547 	enable_periodic(fotg210);
3548 }
3549 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3550 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3551 		struct fotg210_qh *qh)
3552 {
3553 	unsigned i;
3554 	unsigned period;
3555 
3556 	/*
3557 	 * If qh is for a low/full-speed device, simply unlinking it
3558 	 * could interfere with an ongoing split transaction.  To unlink
3559 	 * it safely would require setting the QH_INACTIVATE bit and
3560 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3561 	 *
3562 	 * We won't bother with any of this.  Instead, we assume that the
3563 	 * only reason for unlinking an interrupt QH while the current URB
3564 	 * is still active is to dequeue all the URBs (flush the whole
3565 	 * endpoint queue).
3566 	 *
3567 	 * If rebalancing the periodic schedule is ever implemented, this
3568 	 * approach will no longer be valid.
3569 	 */
3570 
3571 	/* high bandwidth, or otherwise part of every microframe */
3572 	period = qh->period;
3573 	if (!period)
3574 		period = 1;
3575 
3576 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3577 		periodic_unlink(fotg210, i, qh);
3578 
3579 	/* update per-qh bandwidth for usbfs */
3580 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3581 		? ((qh->usecs + qh->c_usecs) / qh->period)
3582 		: (qh->usecs * 8);
3583 
3584 	dev_dbg(&qh->dev->dev,
3585 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3586 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3587 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588 			qh->c_usecs);
3589 
3590 	/* qh->qh_next still "live" to HC */
3591 	qh->qh_state = QH_STATE_UNLINK;
3592 	qh->qh_next.ptr = NULL;
3593 
3594 	if (fotg210->qh_scan_next == qh)
3595 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3596 				struct fotg210_qh, intr_node);
3597 	list_del(&qh->intr_node);
3598 }
3599 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3600 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3601 		struct fotg210_qh *qh)
3602 {
3603 	/* If the QH isn't linked then there's nothing we can do
3604 	 * unless we were called during a giveback, in which case
3605 	 * qh_completions() has to deal with it.
3606 	 */
3607 	if (qh->qh_state != QH_STATE_LINKED) {
3608 		if (qh->qh_state == QH_STATE_COMPLETING)
3609 			qh->needs_rescan = 1;
3610 		return;
3611 	}
3612 
3613 	qh_unlink_periodic(fotg210, qh);
3614 
3615 	/* Make sure the unlinks are visible before starting the timer */
3616 	wmb();
3617 
3618 	/*
3619 	 * The EHCI spec doesn't say how long it takes the controller to
3620 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3621 	 * 9 uframes; presumably that will be long enough.
3622 	 */
3623 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3624 
3625 	/* New entries go at the end of the intr_unlink list */
3626 	if (fotg210->intr_unlink)
3627 		fotg210->intr_unlink_last->unlink_next = qh;
3628 	else
3629 		fotg210->intr_unlink = qh;
3630 	fotg210->intr_unlink_last = qh;
3631 
3632 	if (fotg210->intr_unlinking)
3633 		;	/* Avoid recursive calls */
3634 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3635 		fotg210_handle_intr_unlinks(fotg210);
3636 	else if (fotg210->intr_unlink == qh) {
3637 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3638 				true);
3639 		++fotg210->intr_unlink_cycle;
3640 	}
3641 }
3642 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3643 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644 {
3645 	struct fotg210_qh_hw *hw = qh->hw;
3646 	int rc;
3647 
3648 	qh->qh_state = QH_STATE_IDLE;
3649 	hw->hw_next = FOTG210_LIST_END(fotg210);
3650 
3651 	qh_completions(fotg210, qh);
3652 
3653 	/* reschedule QH iff another request is queued */
3654 	if (!list_empty(&qh->qtd_list) &&
3655 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3656 		rc = qh_schedule(fotg210, qh);
3657 
3658 		/* An error here likely indicates handshake failure
3659 		 * or no space left in the schedule.  Neither fault
3660 		 * should happen often ...
3661 		 *
3662 		 * FIXME kill the now-dysfunctional queued urbs
3663 		 */
3664 		if (rc != 0)
3665 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3666 					qh, rc);
3667 	}
3668 
3669 	/* maybe turn off periodic schedule */
3670 	--fotg210->intr_count;
3671 	disable_periodic(fotg210);
3672 }
3673 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3674 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3675 		unsigned uframe, unsigned period, unsigned usecs)
3676 {
3677 	int claimed;
3678 
3679 	/* complete split running into next frame?
3680 	 * given FSTN support, we could sometimes check...
3681 	 */
3682 	if (uframe >= 8)
3683 		return 0;
3684 
3685 	/* convert "usecs we need" to "max already claimed" */
3686 	usecs = fotg210->uframe_periodic_max - usecs;
3687 
3688 	/* we "know" 2 and 4 uframe intervals were rejected; so
3689 	 * for period 0, check _every_ microframe in the schedule.
3690 	 */
3691 	if (unlikely(period == 0)) {
3692 		do {
3693 			for (uframe = 0; uframe < 7; uframe++) {
3694 				claimed = periodic_usecs(fotg210, frame,
3695 						uframe);
3696 				if (claimed > usecs)
3697 					return 0;
3698 			}
3699 		} while ((frame += 1) < fotg210->periodic_size);
3700 
3701 	/* just check the specified uframe, at that period */
3702 	} else {
3703 		do {
3704 			claimed = periodic_usecs(fotg210, frame, uframe);
3705 			if (claimed > usecs)
3706 				return 0;
3707 		} while ((frame += period) < fotg210->periodic_size);
3708 	}
3709 
3710 	/* success! */
3711 	return 1;
3712 }
3713 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3714 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3715 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3716 {
3717 	int retval = -ENOSPC;
3718 	u8 mask = 0;
3719 
3720 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3721 		goto done;
3722 
3723 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3724 		goto done;
3725 	if (!qh->c_usecs) {
3726 		retval = 0;
3727 		*c_maskp = 0;
3728 		goto done;
3729 	}
3730 
3731 	/* Make sure this tt's buffer is also available for CSPLITs.
3732 	 * We pessimize a bit; probably the typical full speed case
3733 	 * doesn't need the second CSPLIT.
3734 	 *
3735 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3736 	 * one smart pass...
3737 	 */
3738 	mask = 0x03 << (uframe + qh->gap_uf);
3739 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3740 
3741 	mask |= 1 << uframe;
3742 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3743 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3744 				qh->period, qh->c_usecs))
3745 			goto done;
3746 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3747 				qh->period, qh->c_usecs))
3748 			goto done;
3749 		retval = 0;
3750 	}
3751 done:
3752 	return retval;
3753 }
3754 
3755 /* "first fit" scheduling policy used the first time through,
3756  * or when the previous schedule slot can't be re-used.
3757  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3758 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759 {
3760 	int status;
3761 	unsigned uframe;
3762 	__hc32 c_mask;
3763 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3764 	struct fotg210_qh_hw *hw = qh->hw;
3765 
3766 	qh_refresh(fotg210, qh);
3767 	hw->hw_next = FOTG210_LIST_END(fotg210);
3768 	frame = qh->start;
3769 
3770 	/* reuse the previous schedule slots, if we can */
3771 	if (frame < qh->period) {
3772 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3773 		status = check_intr_schedule(fotg210, frame, --uframe,
3774 				qh, &c_mask);
3775 	} else {
3776 		uframe = 0;
3777 		c_mask = 0;
3778 		status = -ENOSPC;
3779 	}
3780 
3781 	/* else scan the schedule to find a group of slots such that all
3782 	 * uframes have enough periodic bandwidth available.
3783 	 */
3784 	if (status) {
3785 		/* "normal" case, uframing flexible except with splits */
3786 		if (qh->period) {
3787 			int i;
3788 
3789 			for (i = qh->period; status && i > 0; --i) {
3790 				frame = ++fotg210->random_frame % qh->period;
3791 				for (uframe = 0; uframe < 8; uframe++) {
3792 					status = check_intr_schedule(fotg210,
3793 							frame, uframe, qh,
3794 							&c_mask);
3795 					if (status == 0)
3796 						break;
3797 				}
3798 			}
3799 
3800 		/* qh->period == 0 means every uframe */
3801 		} else {
3802 			frame = 0;
3803 			status = check_intr_schedule(fotg210, 0, 0, qh,
3804 					&c_mask);
3805 		}
3806 		if (status)
3807 			goto done;
3808 		qh->start = frame;
3809 
3810 		/* reset S-frame and (maybe) C-frame masks */
3811 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3812 		hw->hw_info2 |= qh->period
3813 			? cpu_to_hc32(fotg210, 1 << uframe)
3814 			: cpu_to_hc32(fotg210, QH_SMASK);
3815 		hw->hw_info2 |= c_mask;
3816 	} else
3817 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3818 
3819 	/* stuff into the periodic schedule */
3820 	qh_link_periodic(fotg210, qh);
3821 done:
3822 	return status;
3823 }
3824 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3825 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3826 		struct list_head *qtd_list, gfp_t mem_flags)
3827 {
3828 	unsigned epnum;
3829 	unsigned long flags;
3830 	struct fotg210_qh *qh;
3831 	int status;
3832 	struct list_head empty;
3833 
3834 	/* get endpoint and transfer/schedule data */
3835 	epnum = urb->ep->desc.bEndpointAddress;
3836 
3837 	spin_lock_irqsave(&fotg210->lock, flags);
3838 
3839 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3840 		status = -ESHUTDOWN;
3841 		goto done_not_linked;
3842 	}
3843 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3844 	if (unlikely(status))
3845 		goto done_not_linked;
3846 
3847 	/* get qh and force any scheduling errors */
3848 	INIT_LIST_HEAD(&empty);
3849 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850 	if (qh == NULL) {
3851 		status = -ENOMEM;
3852 		goto done;
3853 	}
3854 	if (qh->qh_state == QH_STATE_IDLE) {
3855 		status = qh_schedule(fotg210, qh);
3856 		if (status)
3857 			goto done;
3858 	}
3859 
3860 	/* then queue the urb's tds to the qh */
3861 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862 	BUG_ON(qh == NULL);
3863 
3864 	/* ... update usbfs periodic stats */
3865 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866 
3867 done:
3868 	if (unlikely(status))
3869 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3870 done_not_linked:
3871 	spin_unlock_irqrestore(&fotg210->lock, flags);
3872 	if (status)
3873 		qtd_list_free(fotg210, urb, qtd_list);
3874 
3875 	return status;
3876 }
3877 
scan_intr(struct fotg210_hcd * fotg210)3878 static void scan_intr(struct fotg210_hcd *fotg210)
3879 {
3880 	struct fotg210_qh *qh;
3881 
3882 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3883 			&fotg210->intr_qh_list, intr_node) {
3884 rescan:
3885 		/* clean any finished work for this qh */
3886 		if (!list_empty(&qh->qtd_list)) {
3887 			int temp;
3888 
3889 			/*
3890 			 * Unlinks could happen here; completion reporting
3891 			 * drops the lock.  That's why fotg210->qh_scan_next
3892 			 * always holds the next qh to scan; if the next qh
3893 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3894 			 * in qh_unlink_periodic().
3895 			 */
3896 			temp = qh_completions(fotg210, qh);
3897 			if (unlikely(qh->needs_rescan ||
3898 					(list_empty(&qh->qtd_list) &&
3899 					qh->qh_state == QH_STATE_LINKED)))
3900 				start_unlink_intr(fotg210, qh);
3901 			else if (temp != 0)
3902 				goto rescan;
3903 		}
3904 	}
3905 }
3906 
3907 /* fotg210_iso_stream ops work with both ITD and SITD */
3908 
iso_stream_alloc(gfp_t mem_flags)3909 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3910 {
3911 	struct fotg210_iso_stream *stream;
3912 
3913 	stream = kzalloc(sizeof(*stream), mem_flags);
3914 	if (likely(stream != NULL)) {
3915 		INIT_LIST_HEAD(&stream->td_list);
3916 		INIT_LIST_HEAD(&stream->free_list);
3917 		stream->next_uframe = -1;
3918 	}
3919 	return stream;
3920 }
3921 
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3922 static void iso_stream_init(struct fotg210_hcd *fotg210,
3923 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3924 		int pipe, unsigned interval)
3925 {
3926 	u32 buf1;
3927 	unsigned epnum, maxp;
3928 	int is_input;
3929 	long bandwidth;
3930 	unsigned multi;
3931 
3932 	/*
3933 	 * this might be a "high bandwidth" highspeed endpoint,
3934 	 * as encoded in the ep descriptor's wMaxPacket field
3935 	 */
3936 	epnum = usb_pipeendpoint(pipe);
3937 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3938 	maxp = usb_maxpacket(dev, pipe, !is_input);
3939 	if (is_input)
3940 		buf1 = (1 << 11);
3941 	else
3942 		buf1 = 0;
3943 
3944 	maxp = max_packet(maxp);
3945 	multi = hb_mult(maxp);
3946 	buf1 |= maxp;
3947 	maxp *= multi;
3948 
3949 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3950 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3951 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3952 
3953 	/* usbfs wants to report the average usecs per frame tied up
3954 	 * when transfers on this endpoint are scheduled ...
3955 	 */
3956 	if (dev->speed == USB_SPEED_FULL) {
3957 		interval <<= 3;
3958 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3959 				is_input, 1, maxp));
3960 		stream->usecs /= 8;
3961 	} else {
3962 		stream->highspeed = 1;
3963 		stream->usecs = HS_USECS_ISO(maxp);
3964 	}
3965 	bandwidth = stream->usecs * 8;
3966 	bandwidth /= interval;
3967 
3968 	stream->bandwidth = bandwidth;
3969 	stream->udev = dev;
3970 	stream->bEndpointAddress = is_input | epnum;
3971 	stream->interval = interval;
3972 	stream->maxp = maxp;
3973 }
3974 
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3975 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3976 		struct urb *urb)
3977 {
3978 	unsigned epnum;
3979 	struct fotg210_iso_stream *stream;
3980 	struct usb_host_endpoint *ep;
3981 	unsigned long flags;
3982 
3983 	epnum = usb_pipeendpoint(urb->pipe);
3984 	if (usb_pipein(urb->pipe))
3985 		ep = urb->dev->ep_in[epnum];
3986 	else
3987 		ep = urb->dev->ep_out[epnum];
3988 
3989 	spin_lock_irqsave(&fotg210->lock, flags);
3990 	stream = ep->hcpriv;
3991 
3992 	if (unlikely(stream == NULL)) {
3993 		stream = iso_stream_alloc(GFP_ATOMIC);
3994 		if (likely(stream != NULL)) {
3995 			ep->hcpriv = stream;
3996 			stream->ep = ep;
3997 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3998 					urb->interval);
3999 		}
4000 
4001 	/* if dev->ep[epnum] is a QH, hw is set */
4002 	} else if (unlikely(stream->hw != NULL)) {
4003 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4004 				urb->dev->devpath, epnum,
4005 				usb_pipein(urb->pipe) ? "in" : "out");
4006 		stream = NULL;
4007 	}
4008 
4009 	spin_unlock_irqrestore(&fotg210->lock, flags);
4010 	return stream;
4011 }
4012 
4013 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014 
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4015 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4016 		gfp_t mem_flags)
4017 {
4018 	struct fotg210_iso_sched *iso_sched;
4019 	int size = sizeof(*iso_sched);
4020 
4021 	size += packets * sizeof(struct fotg210_iso_packet);
4022 	iso_sched = kzalloc(size, mem_flags);
4023 	if (likely(iso_sched != NULL))
4024 		INIT_LIST_HEAD(&iso_sched->td_list);
4025 
4026 	return iso_sched;
4027 }
4028 
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4029 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4030 		struct fotg210_iso_sched *iso_sched,
4031 		struct fotg210_iso_stream *stream, struct urb *urb)
4032 {
4033 	unsigned i;
4034 	dma_addr_t dma = urb->transfer_dma;
4035 
4036 	/* how many uframes are needed for these transfers */
4037 	iso_sched->span = urb->number_of_packets * stream->interval;
4038 
4039 	/* figure out per-uframe itd fields that we'll need later
4040 	 * when we fit new itds into the schedule.
4041 	 */
4042 	for (i = 0; i < urb->number_of_packets; i++) {
4043 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044 		unsigned length;
4045 		dma_addr_t buf;
4046 		u32 trans;
4047 
4048 		length = urb->iso_frame_desc[i].length;
4049 		buf = dma + urb->iso_frame_desc[i].offset;
4050 
4051 		trans = FOTG210_ISOC_ACTIVE;
4052 		trans |= buf & 0x0fff;
4053 		if (unlikely(((i + 1) == urb->number_of_packets))
4054 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4055 			trans |= FOTG210_ITD_IOC;
4056 		trans |= length << 16;
4057 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4058 
4059 		/* might need to cross a buffer page within a uframe */
4060 		uframe->bufp = (buf & ~(u64)0x0fff);
4061 		buf += length;
4062 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063 			uframe->cross = 1;
4064 	}
4065 }
4066 
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4067 static void iso_sched_free(struct fotg210_iso_stream *stream,
4068 		struct fotg210_iso_sched *iso_sched)
4069 {
4070 	if (!iso_sched)
4071 		return;
4072 	/* caller must hold fotg210->lock!*/
4073 	list_splice(&iso_sched->td_list, &stream->free_list);
4074 	kfree(iso_sched);
4075 }
4076 
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4077 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4078 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079 {
4080 	struct fotg210_itd *itd;
4081 	dma_addr_t itd_dma;
4082 	int i;
4083 	unsigned num_itds;
4084 	struct fotg210_iso_sched *sched;
4085 	unsigned long flags;
4086 
4087 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4088 	if (unlikely(sched == NULL))
4089 		return -ENOMEM;
4090 
4091 	itd_sched_init(fotg210, sched, stream, urb);
4092 
4093 	if (urb->interval < 8)
4094 		num_itds = 1 + (sched->span + 7) / 8;
4095 	else
4096 		num_itds = urb->number_of_packets;
4097 
4098 	/* allocate/init ITDs */
4099 	spin_lock_irqsave(&fotg210->lock, flags);
4100 	for (i = 0; i < num_itds; i++) {
4101 
4102 		/*
4103 		 * Use iTDs from the free list, but not iTDs that may
4104 		 * still be in use by the hardware.
4105 		 */
4106 		if (likely(!list_empty(&stream->free_list))) {
4107 			itd = list_first_entry(&stream->free_list,
4108 					struct fotg210_itd, itd_list);
4109 			if (itd->frame == fotg210->now_frame)
4110 				goto alloc_itd;
4111 			list_del(&itd->itd_list);
4112 			itd_dma = itd->itd_dma;
4113 		} else {
4114 alloc_itd:
4115 			spin_unlock_irqrestore(&fotg210->lock, flags);
4116 			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4117 					&itd_dma);
4118 			spin_lock_irqsave(&fotg210->lock, flags);
4119 			if (!itd) {
4120 				iso_sched_free(stream, sched);
4121 				spin_unlock_irqrestore(&fotg210->lock, flags);
4122 				return -ENOMEM;
4123 			}
4124 		}
4125 
4126 		itd->itd_dma = itd_dma;
4127 		list_add(&itd->itd_list, &sched->td_list);
4128 	}
4129 	spin_unlock_irqrestore(&fotg210->lock, flags);
4130 
4131 	/* temporarily store schedule info in hcpriv */
4132 	urb->hcpriv = sched;
4133 	urb->error_count = 0;
4134 	return 0;
4135 }
4136 
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4137 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138 		u8 usecs, u32 period)
4139 {
4140 	uframe %= period;
4141 	do {
4142 		/* can't commit more than uframe_periodic_max usec */
4143 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144 				> (fotg210->uframe_periodic_max - usecs))
4145 			return 0;
4146 
4147 		/* we know urb->interval is 2^N uframes */
4148 		uframe += period;
4149 	} while (uframe < mod);
4150 	return 1;
4151 }
4152 
4153 /* This scheduler plans almost as far into the future as it has actual
4154  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4155  * "as small as possible" to be cache-friendlier.)  That limits the size
4156  * transfers you can stream reliably; avoid more than 64 msec per urb.
4157  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159  * and other factors); or more than about 230 msec total (for portability,
4160  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4161  */
4162 
4163 #define SCHEDULE_SLOP 80 /* microframes */
4164 
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4165 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166 		struct fotg210_iso_stream *stream)
4167 {
4168 	u32 now, next, start, period, span;
4169 	int status;
4170 	unsigned mod = fotg210->periodic_size << 3;
4171 	struct fotg210_iso_sched *sched = urb->hcpriv;
4172 
4173 	period = urb->interval;
4174 	span = sched->span;
4175 
4176 	if (span > mod - SCHEDULE_SLOP) {
4177 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178 		status = -EFBIG;
4179 		goto fail;
4180 	}
4181 
4182 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4183 
4184 	/* Typical case: reuse current schedule, stream is still active.
4185 	 * Hopefully there are no gaps from the host falling behind
4186 	 * (irq delays etc), but if there are we'll take the next
4187 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4188 	 */
4189 	if (likely(!list_empty(&stream->td_list))) {
4190 		u32 excess;
4191 
4192 		/* For high speed devices, allow scheduling within the
4193 		 * isochronous scheduling threshold.  For full speed devices
4194 		 * and Intel PCI-based controllers, don't (work around for
4195 		 * Intel ICH9 bug).
4196 		 */
4197 		if (!stream->highspeed && fotg210->fs_i_thresh)
4198 			next = now + fotg210->i_thresh;
4199 		else
4200 			next = now;
4201 
4202 		/* Fell behind (by up to twice the slop amount)?
4203 		 * We decide based on the time of the last currently-scheduled
4204 		 * slot, not the time of the next available slot.
4205 		 */
4206 		excess = (stream->next_uframe - period - next) & (mod - 1);
4207 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4208 			start = next + excess - mod + period *
4209 					DIV_ROUND_UP(mod - excess, period);
4210 		else
4211 			start = next + excess + period;
4212 		if (start - now >= mod) {
4213 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214 					urb, start - now - period, period,
4215 					mod);
4216 			status = -EFBIG;
4217 			goto fail;
4218 		}
4219 	}
4220 
4221 	/* need to schedule; when's the next (u)frame we could start?
4222 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4223 	 * isn't free, the slop should handle reasonably slow cpus.  it
4224 	 * can also help high bandwidth if the dma and irq loads don't
4225 	 * jump until after the queue is primed.
4226 	 */
4227 	else {
4228 		int done = 0;
4229 
4230 		start = SCHEDULE_SLOP + (now & ~0x07);
4231 
4232 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4233 
4234 		/* find a uframe slot with enough bandwidth.
4235 		 * Early uframes are more precious because full-speed
4236 		 * iso IN transfers can't use late uframes,
4237 		 * and therefore they should be allocated last.
4238 		 */
4239 		next = start;
4240 		start += period;
4241 		do {
4242 			start--;
4243 			/* check schedule: enough space? */
4244 			if (itd_slot_ok(fotg210, mod, start,
4245 					stream->usecs, period))
4246 				done = 1;
4247 		} while (start > next && !done);
4248 
4249 		/* no room in the schedule */
4250 		if (!done) {
4251 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252 					urb, now, now + mod);
4253 			status = -ENOSPC;
4254 			goto fail;
4255 		}
4256 	}
4257 
4258 	/* Tried to schedule too far into the future? */
4259 	if (unlikely(start - now + span - period >=
4260 			mod - 2 * SCHEDULE_SLOP)) {
4261 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262 				urb, start - now, span - period,
4263 				mod - 2 * SCHEDULE_SLOP);
4264 		status = -EFBIG;
4265 		goto fail;
4266 	}
4267 
4268 	stream->next_uframe = start & (mod - 1);
4269 
4270 	/* report high speed start in uframes; full speed, in frames */
4271 	urb->start_frame = stream->next_uframe;
4272 	if (!stream->highspeed)
4273 		urb->start_frame >>= 3;
4274 
4275 	/* Make sure scan_isoc() sees these */
4276 	if (fotg210->isoc_count == 0)
4277 		fotg210->next_frame = now >> 3;
4278 	return 0;
4279 
4280 fail:
4281 	iso_sched_free(stream, sched);
4282 	urb->hcpriv = NULL;
4283 	return status;
4284 }
4285 
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4286 static inline void itd_init(struct fotg210_hcd *fotg210,
4287 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4288 {
4289 	int i;
4290 
4291 	/* it's been recently zeroed */
4292 	itd->hw_next = FOTG210_LIST_END(fotg210);
4293 	itd->hw_bufp[0] = stream->buf0;
4294 	itd->hw_bufp[1] = stream->buf1;
4295 	itd->hw_bufp[2] = stream->buf2;
4296 
4297 	for (i = 0; i < 8; i++)
4298 		itd->index[i] = -1;
4299 
4300 	/* All other fields are filled when scheduling */
4301 }
4302 
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4303 static inline void itd_patch(struct fotg210_hcd *fotg210,
4304 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305 		unsigned index, u16 uframe)
4306 {
4307 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308 	unsigned pg = itd->pg;
4309 
4310 	uframe &= 0x07;
4311 	itd->index[uframe] = index;
4312 
4313 	itd->hw_transaction[uframe] = uf->transaction;
4314 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4317 
4318 	/* iso_frame_desc[].offset must be strictly increasing */
4319 	if (unlikely(uf->cross)) {
4320 		u64 bufp = uf->bufp + 4096;
4321 
4322 		itd->pg = ++pg;
4323 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4325 	}
4326 }
4327 
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4328 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329 		struct fotg210_itd *itd)
4330 {
4331 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332 	__hc32 *hw_p = &fotg210->periodic[frame];
4333 	union fotg210_shadow here = *prev;
4334 	__hc32 type = 0;
4335 
4336 	/* skip any iso nodes which might belong to previous microframes */
4337 	while (here.ptr) {
4338 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4339 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4340 			break;
4341 		prev = periodic_next_shadow(fotg210, prev, type);
4342 		hw_p = shadow_next_periodic(fotg210, &here, type);
4343 		here = *prev;
4344 	}
4345 
4346 	itd->itd_next = here;
4347 	itd->hw_next = *hw_p;
4348 	prev->itd = itd;
4349 	itd->frame = frame;
4350 	wmb();
4351 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352 }
4353 
4354 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4355 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356 		unsigned mod, struct fotg210_iso_stream *stream)
4357 {
4358 	int packet;
4359 	unsigned next_uframe, uframe, frame;
4360 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361 	struct fotg210_itd *itd;
4362 
4363 	next_uframe = stream->next_uframe & (mod - 1);
4364 
4365 	if (unlikely(list_empty(&stream->td_list))) {
4366 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367 				+= stream->bandwidth;
4368 		fotg210_dbg(fotg210,
4369 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4372 			urb->interval,
4373 			next_uframe >> 3, next_uframe & 0x7);
4374 	}
4375 
4376 	/* fill iTDs uframe by uframe */
4377 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4378 		if (itd == NULL) {
4379 			/* ASSERT:  we have all necessary itds */
4380 
4381 			/* ASSERT:  no itds for this endpoint in this uframe */
4382 
4383 			itd = list_entry(iso_sched->td_list.next,
4384 					struct fotg210_itd, itd_list);
4385 			list_move_tail(&itd->itd_list, &stream->td_list);
4386 			itd->stream = stream;
4387 			itd->urb = urb;
4388 			itd_init(fotg210, stream, itd);
4389 		}
4390 
4391 		uframe = next_uframe & 0x07;
4392 		frame = next_uframe >> 3;
4393 
4394 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4395 
4396 		next_uframe += stream->interval;
4397 		next_uframe &= mod - 1;
4398 		packet++;
4399 
4400 		/* link completed itds into the schedule */
4401 		if (((next_uframe >> 3) != frame)
4402 				|| packet == urb->number_of_packets) {
4403 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404 					itd);
4405 			itd = NULL;
4406 		}
4407 	}
4408 	stream->next_uframe = next_uframe;
4409 
4410 	/* don't need that schedule data any more */
4411 	iso_sched_free(stream, iso_sched);
4412 	urb->hcpriv = NULL;
4413 
4414 	++fotg210->isoc_count;
4415 	enable_periodic(fotg210);
4416 }
4417 
4418 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419 		FOTG210_ISOC_XACTERR)
4420 
4421 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4422  * and hence its completion callback probably added things to the hardware
4423  * schedule.
4424  *
4425  * Note that we carefully avoid recycling this descriptor until after any
4426  * completion callback runs, so that it won't be reused quickly.  That is,
4427  * assuming (a) no more than two urbs per frame on this endpoint, and also
4428  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4429  * corrupts things if you reuse completed descriptors very quickly...
4430  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4431 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4432 {
4433 	struct urb *urb = itd->urb;
4434 	struct usb_iso_packet_descriptor *desc;
4435 	u32 t;
4436 	unsigned uframe;
4437 	int urb_index = -1;
4438 	struct fotg210_iso_stream *stream = itd->stream;
4439 	struct usb_device *dev;
4440 	bool retval = false;
4441 
4442 	/* for each uframe with a packet */
4443 	for (uframe = 0; uframe < 8; uframe++) {
4444 		if (likely(itd->index[uframe] == -1))
4445 			continue;
4446 		urb_index = itd->index[uframe];
4447 		desc = &urb->iso_frame_desc[urb_index];
4448 
4449 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450 		itd->hw_transaction[uframe] = 0;
4451 
4452 		/* report transfer status */
4453 		if (unlikely(t & ISO_ERRS)) {
4454 			urb->error_count++;
4455 			if (t & FOTG210_ISOC_BUF_ERR)
4456 				desc->status = usb_pipein(urb->pipe)
4457 					? -ENOSR  /* hc couldn't read */
4458 					: -ECOMM; /* hc couldn't write */
4459 			else if (t & FOTG210_ISOC_BABBLE)
4460 				desc->status = -EOVERFLOW;
4461 			else /* (t & FOTG210_ISOC_XACTERR) */
4462 				desc->status = -EPROTO;
4463 
4464 			/* HC need not update length with this error */
4465 			if (!(t & FOTG210_ISOC_BABBLE)) {
4466 				desc->actual_length =
4467 					fotg210_itdlen(urb, desc, t);
4468 				urb->actual_length += desc->actual_length;
4469 			}
4470 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471 			desc->status = 0;
4472 			desc->actual_length = fotg210_itdlen(urb, desc, t);
4473 			urb->actual_length += desc->actual_length;
4474 		} else {
4475 			/* URB was too late */
4476 			desc->status = -EXDEV;
4477 		}
4478 	}
4479 
4480 	/* handle completion now? */
4481 	if (likely((urb_index + 1) != urb->number_of_packets))
4482 		goto done;
4483 
4484 	/* ASSERT: it's really the last itd for this urb
4485 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4486 	 *	BUG_ON (itd->urb == urb);
4487 	 */
4488 
4489 	/* give urb back to the driver; completion often (re)submits */
4490 	dev = urb->dev;
4491 	fotg210_urb_done(fotg210, urb, 0);
4492 	retval = true;
4493 	urb = NULL;
4494 
4495 	--fotg210->isoc_count;
4496 	disable_periodic(fotg210);
4497 
4498 	if (unlikely(list_is_singular(&stream->td_list))) {
4499 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4500 				-= stream->bandwidth;
4501 		fotg210_dbg(fotg210,
4502 			"deschedule devp %s ep%d%s-iso\n",
4503 			dev->devpath, stream->bEndpointAddress & 0x0f,
4504 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505 	}
4506 
4507 done:
4508 	itd->urb = NULL;
4509 
4510 	/* Add to the end of the free list for later reuse */
4511 	list_move_tail(&itd->itd_list, &stream->free_list);
4512 
4513 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4514 	if (list_empty(&stream->td_list)) {
4515 		list_splice_tail_init(&stream->free_list,
4516 				&fotg210->cached_itd_list);
4517 		start_free_itds(fotg210);
4518 	}
4519 
4520 	return retval;
4521 }
4522 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4523 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4524 		gfp_t mem_flags)
4525 {
4526 	int status = -EINVAL;
4527 	unsigned long flags;
4528 	struct fotg210_iso_stream *stream;
4529 
4530 	/* Get iso_stream head */
4531 	stream = iso_stream_find(fotg210, urb);
4532 	if (unlikely(stream == NULL)) {
4533 		fotg210_dbg(fotg210, "can't get iso stream\n");
4534 		return -ENOMEM;
4535 	}
4536 	if (unlikely(urb->interval != stream->interval &&
4537 			fotg210_port_speed(fotg210, 0) ==
4538 			USB_PORT_STAT_HIGH_SPEED)) {
4539 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4540 				stream->interval, urb->interval);
4541 		goto done;
4542 	}
4543 
4544 #ifdef FOTG210_URB_TRACE
4545 	fotg210_dbg(fotg210,
4546 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4547 			__func__, urb->dev->devpath, urb,
4548 			usb_pipeendpoint(urb->pipe),
4549 			usb_pipein(urb->pipe) ? "in" : "out",
4550 			urb->transfer_buffer_length,
4551 			urb->number_of_packets, urb->interval,
4552 			stream);
4553 #endif
4554 
4555 	/* allocate ITDs w/o locking anything */
4556 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4557 	if (unlikely(status < 0)) {
4558 		fotg210_dbg(fotg210, "can't init itds\n");
4559 		goto done;
4560 	}
4561 
4562 	/* schedule ... need to lock */
4563 	spin_lock_irqsave(&fotg210->lock, flags);
4564 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4565 		status = -ESHUTDOWN;
4566 		goto done_not_linked;
4567 	}
4568 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4569 	if (unlikely(status))
4570 		goto done_not_linked;
4571 	status = iso_stream_schedule(fotg210, urb, stream);
4572 	if (likely(status == 0))
4573 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574 	else
4575 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576 done_not_linked:
4577 	spin_unlock_irqrestore(&fotg210->lock, flags);
4578 done:
4579 	return status;
4580 }
4581 
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4582 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4583 		unsigned now_frame, bool live)
4584 {
4585 	unsigned uf;
4586 	bool modified;
4587 	union fotg210_shadow q, *q_p;
4588 	__hc32 type, *hw_p;
4589 
4590 	/* scan each element in frame's queue for completions */
4591 	q_p = &fotg210->pshadow[frame];
4592 	hw_p = &fotg210->periodic[frame];
4593 	q.ptr = q_p->ptr;
4594 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4595 	modified = false;
4596 
4597 	while (q.ptr) {
4598 		switch (hc32_to_cpu(fotg210, type)) {
4599 		case Q_TYPE_ITD:
4600 			/* If this ITD is still active, leave it for
4601 			 * later processing ... check the next entry.
4602 			 * No need to check for activity unless the
4603 			 * frame is current.
4604 			 */
4605 			if (frame == now_frame && live) {
4606 				rmb();
4607 				for (uf = 0; uf < 8; uf++) {
4608 					if (q.itd->hw_transaction[uf] &
4609 							ITD_ACTIVE(fotg210))
4610 						break;
4611 				}
4612 				if (uf < 8) {
4613 					q_p = &q.itd->itd_next;
4614 					hw_p = &q.itd->hw_next;
4615 					type = Q_NEXT_TYPE(fotg210,
4616 							q.itd->hw_next);
4617 					q = *q_p;
4618 					break;
4619 				}
4620 			}
4621 
4622 			/* Take finished ITDs out of the schedule
4623 			 * and process them:  recycle, maybe report
4624 			 * URB completion.  HC won't cache the
4625 			 * pointer for much longer, if at all.
4626 			 */
4627 			*q_p = q.itd->itd_next;
4628 			*hw_p = q.itd->hw_next;
4629 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630 			wmb();
4631 			modified = itd_complete(fotg210, q.itd);
4632 			q = *q_p;
4633 			break;
4634 		default:
4635 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4636 					type, frame, q.ptr);
4637 			/* FALL THROUGH */
4638 		case Q_TYPE_QH:
4639 		case Q_TYPE_FSTN:
4640 			/* End of the iTDs and siTDs */
4641 			q.ptr = NULL;
4642 			break;
4643 		}
4644 
4645 		/* assume completion callbacks modify the queue */
4646 		if (unlikely(modified && fotg210->isoc_count > 0))
4647 			return -EINVAL;
4648 	}
4649 	return 0;
4650 }
4651 
scan_isoc(struct fotg210_hcd * fotg210)4652 static void scan_isoc(struct fotg210_hcd *fotg210)
4653 {
4654 	unsigned uf, now_frame, frame, ret;
4655 	unsigned fmask = fotg210->periodic_size - 1;
4656 	bool live;
4657 
4658 	/*
4659 	 * When running, scan from last scan point up to "now"
4660 	 * else clean up by scanning everything that's left.
4661 	 * Touches as few pages as possible:  cache-friendly.
4662 	 */
4663 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4664 		uf = fotg210_read_frame_index(fotg210);
4665 		now_frame = (uf >> 3) & fmask;
4666 		live = true;
4667 	} else  {
4668 		now_frame = (fotg210->next_frame - 1) & fmask;
4669 		live = false;
4670 	}
4671 	fotg210->now_frame = now_frame;
4672 
4673 	frame = fotg210->next_frame;
4674 	for (;;) {
4675 		ret = 1;
4676 		while (ret != 0)
4677 			ret = scan_frame_queue(fotg210, frame,
4678 					now_frame, live);
4679 
4680 		/* Stop when we have reached the current frame */
4681 		if (frame == now_frame)
4682 			break;
4683 		frame = (frame + 1) & fmask;
4684 	}
4685 	fotg210->next_frame = now_frame;
4686 }
4687 
4688 /* Display / Set uframe_periodic_max
4689  */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4690 static ssize_t uframe_periodic_max_show(struct device *dev,
4691 		struct device_attribute *attr, char *buf)
4692 {
4693 	struct fotg210_hcd *fotg210;
4694 	int n;
4695 
4696 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4697 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698 	return n;
4699 }
4700 
4701 
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4702 static ssize_t uframe_periodic_max_store(struct device *dev,
4703 		struct device_attribute *attr, const char *buf, size_t count)
4704 {
4705 	struct fotg210_hcd *fotg210;
4706 	unsigned uframe_periodic_max;
4707 	unsigned frame, uframe;
4708 	unsigned short allocated_max;
4709 	unsigned long flags;
4710 	ssize_t ret;
4711 
4712 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4713 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4714 		return -EINVAL;
4715 
4716 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4717 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4718 				uframe_periodic_max);
4719 		return -EINVAL;
4720 	}
4721 
4722 	ret = -EINVAL;
4723 
4724 	/*
4725 	 * lock, so that our checking does not race with possible periodic
4726 	 * bandwidth allocation through submitting new urbs.
4727 	 */
4728 	spin_lock_irqsave(&fotg210->lock, flags);
4729 
4730 	/*
4731 	 * for request to decrease max periodic bandwidth, we have to check
4732 	 * every microframe in the schedule to see whether the decrease is
4733 	 * possible.
4734 	 */
4735 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4736 		allocated_max = 0;
4737 
4738 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4739 			for (uframe = 0; uframe < 7; ++uframe)
4740 				allocated_max = max(allocated_max,
4741 						periodic_usecs(fotg210, frame,
4742 						uframe));
4743 
4744 		if (allocated_max > uframe_periodic_max) {
4745 			fotg210_info(fotg210,
4746 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4747 					allocated_max, uframe_periodic_max);
4748 			goto out_unlock;
4749 		}
4750 	}
4751 
4752 	/* increasing is always ok */
4753 
4754 	fotg210_info(fotg210,
4755 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4756 			100 * uframe_periodic_max/125, uframe_periodic_max);
4757 
4758 	if (uframe_periodic_max != 100)
4759 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760 
4761 	fotg210->uframe_periodic_max = uframe_periodic_max;
4762 	ret = count;
4763 
4764 out_unlock:
4765 	spin_unlock_irqrestore(&fotg210->lock, flags);
4766 	return ret;
4767 }
4768 
4769 static DEVICE_ATTR_RW(uframe_periodic_max);
4770 
create_sysfs_files(struct fotg210_hcd * fotg210)4771 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772 {
4773 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774 
4775 	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776 }
4777 
remove_sysfs_files(struct fotg210_hcd * fotg210)4778 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779 {
4780 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781 
4782 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783 }
4784 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4785  * The firmware seems to think that powering off is a wakeup event!
4786  * This routine turns off remote wakeup and everything else, on all ports.
4787  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4788 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789 {
4790 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4791 
4792 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793 }
4794 
4795 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4796  * Must be called with interrupts enabled and the lock not held.
4797  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4798 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799 {
4800 	fotg210_halt(fotg210);
4801 
4802 	spin_lock_irq(&fotg210->lock);
4803 	fotg210->rh_state = FOTG210_RH_HALTED;
4804 	fotg210_turn_off_all_ports(fotg210);
4805 	spin_unlock_irq(&fotg210->lock);
4806 }
4807 
4808 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4809  * This forcibly disables dma and IRQs, helping kexec and other cases
4810  * where the next system software may expect clean state.
4811  */
fotg210_shutdown(struct usb_hcd * hcd)4812 static void fotg210_shutdown(struct usb_hcd *hcd)
4813 {
4814 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815 
4816 	spin_lock_irq(&fotg210->lock);
4817 	fotg210->shutdown = true;
4818 	fotg210->rh_state = FOTG210_RH_STOPPING;
4819 	fotg210->enabled_hrtimer_events = 0;
4820 	spin_unlock_irq(&fotg210->lock);
4821 
4822 	fotg210_silence_controller(fotg210);
4823 
4824 	hrtimer_cancel(&fotg210->hrtimer);
4825 }
4826 
4827 /* fotg210_work is called from some interrupts, timers, and so on.
4828  * it calls driver completion functions, after dropping fotg210->lock.
4829  */
fotg210_work(struct fotg210_hcd * fotg210)4830 static void fotg210_work(struct fotg210_hcd *fotg210)
4831 {
4832 	/* another CPU may drop fotg210->lock during a schedule scan while
4833 	 * it reports urb completions.  this flag guards against bogus
4834 	 * attempts at re-entrant schedule scanning.
4835 	 */
4836 	if (fotg210->scanning) {
4837 		fotg210->need_rescan = true;
4838 		return;
4839 	}
4840 	fotg210->scanning = true;
4841 
4842 rescan:
4843 	fotg210->need_rescan = false;
4844 	if (fotg210->async_count)
4845 		scan_async(fotg210);
4846 	if (fotg210->intr_count > 0)
4847 		scan_intr(fotg210);
4848 	if (fotg210->isoc_count > 0)
4849 		scan_isoc(fotg210);
4850 	if (fotg210->need_rescan)
4851 		goto rescan;
4852 	fotg210->scanning = false;
4853 
4854 	/* the IO watchdog guards against hardware or driver bugs that
4855 	 * misplace IRQs, and should let us run completely without IRQs.
4856 	 * such lossage has been observed on both VT6202 and VT8235.
4857 	 */
4858 	turn_on_io_watchdog(fotg210);
4859 }
4860 
4861 /* Called when the fotg210_hcd module is removed.
4862  */
fotg210_stop(struct usb_hcd * hcd)4863 static void fotg210_stop(struct usb_hcd *hcd)
4864 {
4865 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866 
4867 	fotg210_dbg(fotg210, "stop\n");
4868 
4869 	/* no more interrupts ... */
4870 
4871 	spin_lock_irq(&fotg210->lock);
4872 	fotg210->enabled_hrtimer_events = 0;
4873 	spin_unlock_irq(&fotg210->lock);
4874 
4875 	fotg210_quiesce(fotg210);
4876 	fotg210_silence_controller(fotg210);
4877 	fotg210_reset(fotg210);
4878 
4879 	hrtimer_cancel(&fotg210->hrtimer);
4880 	remove_sysfs_files(fotg210);
4881 	remove_debug_files(fotg210);
4882 
4883 	/* root hub is shut down separately (first, when possible) */
4884 	spin_lock_irq(&fotg210->lock);
4885 	end_free_itds(fotg210);
4886 	spin_unlock_irq(&fotg210->lock);
4887 	fotg210_mem_cleanup(fotg210);
4888 
4889 #ifdef FOTG210_STATS
4890 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4891 			fotg210->stats.normal, fotg210->stats.error,
4892 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4893 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4894 			fotg210->stats.complete, fotg210->stats.unlink);
4895 #endif
4896 
4897 	dbg_status(fotg210, "fotg210_stop completed",
4898 			fotg210_readl(fotg210, &fotg210->regs->status));
4899 }
4900 
4901 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4902 static int hcd_fotg210_init(struct usb_hcd *hcd)
4903 {
4904 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4905 	u32 temp;
4906 	int retval;
4907 	u32 hcc_params;
4908 	struct fotg210_qh_hw *hw;
4909 
4910 	spin_lock_init(&fotg210->lock);
4911 
4912 	/*
4913 	 * keep io watchdog by default, those good HCDs could turn off it later
4914 	 */
4915 	fotg210->need_io_watchdog = 1;
4916 
4917 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4918 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4919 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920 
4921 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922 
4923 	/*
4924 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4925 	 * bandwidth as required by USB 2.0
4926 	 */
4927 	fotg210->uframe_periodic_max = 100;
4928 
4929 	/*
4930 	 * hw default: 1K periodic list heads, one per frame.
4931 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4932 	 */
4933 	fotg210->periodic_size = DEFAULT_I_TDPS;
4934 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4935 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936 
4937 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4938 		/* periodic schedule size can be smaller than default */
4939 		switch (FOTG210_TUNE_FLS) {
4940 		case 0:
4941 			fotg210->periodic_size = 1024;
4942 			break;
4943 		case 1:
4944 			fotg210->periodic_size = 512;
4945 			break;
4946 		case 2:
4947 			fotg210->periodic_size = 256;
4948 			break;
4949 		default:
4950 			BUG();
4951 		}
4952 	}
4953 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4954 	if (retval < 0)
4955 		return retval;
4956 
4957 	/* controllers may cache some of the periodic schedule ... */
4958 	fotg210->i_thresh = 2;
4959 
4960 	/*
4961 	 * dedicate a qh for the async ring head, since we couldn't unlink
4962 	 * a 'real' qh without stopping the async schedule [4.8].  use it
4963 	 * as the 'reclamation list head' too.
4964 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4965 	 * from automatically advancing to the next td after short reads.
4966 	 */
4967 	fotg210->async->qh_next.qh = NULL;
4968 	hw = fotg210->async->hw;
4969 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4970 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4971 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4972 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4973 	fotg210->async->qh_state = QH_STATE_LINKED;
4974 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975 
4976 	/* clear interrupt enables, set irq latency */
4977 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4978 		log2_irq_thresh = 0;
4979 	temp = 1 << (16 + log2_irq_thresh);
4980 	if (HCC_CANPARK(hcc_params)) {
4981 		/* HW default park == 3, on hardware that supports it (like
4982 		 * NVidia and ALI silicon), maximizes throughput on the async
4983 		 * schedule by avoiding QH fetches between transfers.
4984 		 *
4985 		 * With fast usb storage devices and NForce2, "park" seems to
4986 		 * make problems:  throughput reduction (!), data errors...
4987 		 */
4988 		if (park) {
4989 			park = min_t(unsigned, park, 3);
4990 			temp |= CMD_PARK;
4991 			temp |= park << 8;
4992 		}
4993 		fotg210_dbg(fotg210, "park %d\n", park);
4994 	}
4995 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4996 		/* periodic schedule size can be smaller than default */
4997 		temp &= ~(3 << 2);
4998 		temp |= (FOTG210_TUNE_FLS << 2);
4999 	}
5000 	fotg210->command = temp;
5001 
5002 	/* Accept arbitrarily long scatter-gather lists */
5003 	if (!hcd->localmem_pool)
5004 		hcd->self.sg_tablesize = ~0;
5005 	return 0;
5006 }
5007 
5008 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5009 static int fotg210_run(struct usb_hcd *hcd)
5010 {
5011 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5012 	u32 temp;
5013 	u32 hcc_params;
5014 
5015 	hcd->uses_new_polling = 1;
5016 
5017 	/* EHCI spec section 4.1 */
5018 
5019 	fotg210_writel(fotg210, fotg210->periodic_dma,
5020 			&fotg210->regs->frame_list);
5021 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5022 			&fotg210->regs->async_next);
5023 
5024 	/*
5025 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5026 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5027 	 * dma_pool consistent memory always uses segment zero.
5028 	 * streaming mappings for I/O buffers, like pci_map_single(),
5029 	 * can return segments above 4GB, if the device allows.
5030 	 *
5031 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5032 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5033 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5034 	 * host side drivers though.
5035 	 */
5036 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037 
5038 	/*
5039 	 * Philips, Intel, and maybe others need CMD_RUN before the
5040 	 * root hub will detect new devices (why?); NEC doesn't
5041 	 */
5042 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5043 	fotg210->command |= CMD_RUN;
5044 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5045 	dbg_cmd(fotg210, "init", fotg210->command);
5046 
5047 	/*
5048 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5049 	 * are explicitly handed to companion controller(s), so no TT is
5050 	 * involved with the root hub.  (Except where one is integrated,
5051 	 * and there's no companion controller unless maybe for USB OTG.)
5052 	 *
5053 	 * Turning on the CF flag will transfer ownership of all ports
5054 	 * from the companions to the EHCI controller.  If any of the
5055 	 * companions are in the middle of a port reset at the time, it
5056 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5057 	 * guarantees that no resets are in progress.  After we set CF,
5058 	 * a short delay lets the hardware catch up; new resets shouldn't
5059 	 * be started before the port switching actions could complete.
5060 	 */
5061 	down_write(&ehci_cf_port_reset_rwsem);
5062 	fotg210->rh_state = FOTG210_RH_RUNNING;
5063 	/* unblock posted writes */
5064 	fotg210_readl(fotg210, &fotg210->regs->command);
5065 	usleep_range(5000, 10000);
5066 	up_write(&ehci_cf_port_reset_rwsem);
5067 	fotg210->last_periodic_enable = ktime_get_real();
5068 
5069 	temp = HC_VERSION(fotg210,
5070 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5071 	fotg210_info(fotg210,
5072 			"USB %x.%x started, EHCI %x.%02x\n",
5073 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5074 			temp >> 8, temp & 0xff);
5075 
5076 	fotg210_writel(fotg210, INTR_MASK,
5077 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5078 
5079 	/* GRR this is run-once init(), being done every time the HC starts.
5080 	 * So long as they're part of class devices, we can't do it init()
5081 	 * since the class device isn't created that early.
5082 	 */
5083 	create_debug_files(fotg210);
5084 	create_sysfs_files(fotg210);
5085 
5086 	return 0;
5087 }
5088 
fotg210_setup(struct usb_hcd * hcd)5089 static int fotg210_setup(struct usb_hcd *hcd)
5090 {
5091 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5092 	int retval;
5093 
5094 	fotg210->regs = (void __iomem *)fotg210->caps +
5095 			HC_LENGTH(fotg210,
5096 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5097 	dbg_hcs_params(fotg210, "reset");
5098 	dbg_hcc_params(fotg210, "reset");
5099 
5100 	/* cache this readonly data; minimize chip reads */
5101 	fotg210->hcs_params = fotg210_readl(fotg210,
5102 			&fotg210->caps->hcs_params);
5103 
5104 	fotg210->sbrn = HCD_USB2;
5105 
5106 	/* data structure init */
5107 	retval = hcd_fotg210_init(hcd);
5108 	if (retval)
5109 		return retval;
5110 
5111 	retval = fotg210_halt(fotg210);
5112 	if (retval)
5113 		return retval;
5114 
5115 	fotg210_reset(fotg210);
5116 
5117 	return 0;
5118 }
5119 
fotg210_irq(struct usb_hcd * hcd)5120 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5121 {
5122 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5123 	u32 status, masked_status, pcd_status = 0, cmd;
5124 	int bh;
5125 
5126 	spin_lock(&fotg210->lock);
5127 
5128 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5129 
5130 	/* e.g. cardbus physical eject */
5131 	if (status == ~(u32) 0) {
5132 		fotg210_dbg(fotg210, "device removed\n");
5133 		goto dead;
5134 	}
5135 
5136 	/*
5137 	 * We don't use STS_FLR, but some controllers don't like it to
5138 	 * remain on, so mask it out along with the other status bits.
5139 	 */
5140 	masked_status = status & (INTR_MASK | STS_FLR);
5141 
5142 	/* Shared IRQ? */
5143 	if (!masked_status ||
5144 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5145 		spin_unlock(&fotg210->lock);
5146 		return IRQ_NONE;
5147 	}
5148 
5149 	/* clear (just) interrupts */
5150 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5151 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5152 	bh = 0;
5153 
5154 	/* unrequested/ignored: Frame List Rollover */
5155 	dbg_status(fotg210, "irq", status);
5156 
5157 	/* INT, ERR, and IAA interrupt rates can be throttled */
5158 
5159 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5160 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5161 		if (likely((status & STS_ERR) == 0))
5162 			INCR(fotg210->stats.normal);
5163 		else
5164 			INCR(fotg210->stats.error);
5165 		bh = 1;
5166 	}
5167 
5168 	/* complete the unlinking of some qh [4.15.2.3] */
5169 	if (status & STS_IAA) {
5170 
5171 		/* Turn off the IAA watchdog */
5172 		fotg210->enabled_hrtimer_events &=
5173 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5174 
5175 		/*
5176 		 * Mild optimization: Allow another IAAD to reset the
5177 		 * hrtimer, if one occurs before the next expiration.
5178 		 * In theory we could always cancel the hrtimer, but
5179 		 * tests show that about half the time it will be reset
5180 		 * for some other event anyway.
5181 		 */
5182 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5183 			++fotg210->next_hrtimer_event;
5184 
5185 		/* guard against (alleged) silicon errata */
5186 		if (cmd & CMD_IAAD)
5187 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5188 		if (fotg210->async_iaa) {
5189 			INCR(fotg210->stats.iaa);
5190 			end_unlink_async(fotg210);
5191 		} else
5192 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5193 	}
5194 
5195 	/* remote wakeup [4.3.1] */
5196 	if (status & STS_PCD) {
5197 		int pstatus;
5198 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5199 
5200 		/* kick root hub later */
5201 		pcd_status = status;
5202 
5203 		/* resume root hub? */
5204 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5205 			usb_hcd_resume_root_hub(hcd);
5206 
5207 		pstatus = fotg210_readl(fotg210, status_reg);
5208 
5209 		if (test_bit(0, &fotg210->suspended_ports) &&
5210 				((pstatus & PORT_RESUME) ||
5211 				!(pstatus & PORT_SUSPEND)) &&
5212 				(pstatus & PORT_PE) &&
5213 				fotg210->reset_done[0] == 0) {
5214 
5215 			/* start 20 msec resume signaling from this port,
5216 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5217 			 * stop that signaling.  Use 5 ms extra for safety,
5218 			 * like usb_port_resume() does.
5219 			 */
5220 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5221 			set_bit(0, &fotg210->resuming_ports);
5222 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5223 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5224 		}
5225 	}
5226 
5227 	/* PCI errors [4.15.2.4] */
5228 	if (unlikely((status & STS_FATAL) != 0)) {
5229 		fotg210_err(fotg210, "fatal error\n");
5230 		dbg_cmd(fotg210, "fatal", cmd);
5231 		dbg_status(fotg210, "fatal", status);
5232 dead:
5233 		usb_hc_died(hcd);
5234 
5235 		/* Don't let the controller do anything more */
5236 		fotg210->shutdown = true;
5237 		fotg210->rh_state = FOTG210_RH_STOPPING;
5238 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5239 		fotg210_writel(fotg210, fotg210->command,
5240 				&fotg210->regs->command);
5241 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5242 		fotg210_handle_controller_death(fotg210);
5243 
5244 		/* Handle completions when the controller stops */
5245 		bh = 0;
5246 	}
5247 
5248 	if (bh)
5249 		fotg210_work(fotg210);
5250 	spin_unlock(&fotg210->lock);
5251 	if (pcd_status)
5252 		usb_hcd_poll_rh_status(hcd);
5253 	return IRQ_HANDLED;
5254 }
5255 
5256 /* non-error returns are a promise to giveback() the urb later
5257  * we drop ownership so next owner (or urb unlink) can get it
5258  *
5259  * urb + dev is in hcd.self.controller.urb_list
5260  * we're queueing TDs onto software and hardware lists
5261  *
5262  * hcd-specific init for hcpriv hasn't been done yet
5263  *
5264  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5265  * to a (possibly active) QH, and the same QH scanning code.
5266  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5267 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5268 		gfp_t mem_flags)
5269 {
5270 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5271 	struct list_head qtd_list;
5272 
5273 	INIT_LIST_HEAD(&qtd_list);
5274 
5275 	switch (usb_pipetype(urb->pipe)) {
5276 	case PIPE_CONTROL:
5277 		/* qh_completions() code doesn't handle all the fault cases
5278 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5279 		 */
5280 		if (urb->transfer_buffer_length > (16 * 1024))
5281 			return -EMSGSIZE;
5282 		/* FALLTHROUGH */
5283 	/* case PIPE_BULK: */
5284 	default:
5285 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286 			return -ENOMEM;
5287 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5288 
5289 	case PIPE_INTERRUPT:
5290 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5291 			return -ENOMEM;
5292 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5293 
5294 	case PIPE_ISOCHRONOUS:
5295 		return itd_submit(fotg210, urb, mem_flags);
5296 	}
5297 }
5298 
5299 /* remove from hardware lists
5300  * completions normally happen asynchronously
5301  */
5302 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5303 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5304 {
5305 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5306 	struct fotg210_qh *qh;
5307 	unsigned long flags;
5308 	int rc;
5309 
5310 	spin_lock_irqsave(&fotg210->lock, flags);
5311 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5312 	if (rc)
5313 		goto done;
5314 
5315 	switch (usb_pipetype(urb->pipe)) {
5316 	/* case PIPE_CONTROL: */
5317 	/* case PIPE_BULK:*/
5318 	default:
5319 		qh = (struct fotg210_qh *) urb->hcpriv;
5320 		if (!qh)
5321 			break;
5322 		switch (qh->qh_state) {
5323 		case QH_STATE_LINKED:
5324 		case QH_STATE_COMPLETING:
5325 			start_unlink_async(fotg210, qh);
5326 			break;
5327 		case QH_STATE_UNLINK:
5328 		case QH_STATE_UNLINK_WAIT:
5329 			/* already started */
5330 			break;
5331 		case QH_STATE_IDLE:
5332 			/* QH might be waiting for a Clear-TT-Buffer */
5333 			qh_completions(fotg210, qh);
5334 			break;
5335 		}
5336 		break;
5337 
5338 	case PIPE_INTERRUPT:
5339 		qh = (struct fotg210_qh *) urb->hcpriv;
5340 		if (!qh)
5341 			break;
5342 		switch (qh->qh_state) {
5343 		case QH_STATE_LINKED:
5344 		case QH_STATE_COMPLETING:
5345 			start_unlink_intr(fotg210, qh);
5346 			break;
5347 		case QH_STATE_IDLE:
5348 			qh_completions(fotg210, qh);
5349 			break;
5350 		default:
5351 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5352 					qh, qh->qh_state);
5353 			goto done;
5354 		}
5355 		break;
5356 
5357 	case PIPE_ISOCHRONOUS:
5358 		/* itd... */
5359 
5360 		/* wait till next completion, do it then. */
5361 		/* completion irqs can wait up to 1024 msec, */
5362 		break;
5363 	}
5364 done:
5365 	spin_unlock_irqrestore(&fotg210->lock, flags);
5366 	return rc;
5367 }
5368 
5369 /* bulk qh holds the data toggle */
5370 
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5371 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5372 		struct usb_host_endpoint *ep)
5373 {
5374 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5375 	unsigned long flags;
5376 	struct fotg210_qh *qh, *tmp;
5377 
5378 	/* ASSERT:  any requests/urbs are being unlinked */
5379 	/* ASSERT:  nobody can be submitting urbs for this any more */
5380 
5381 rescan:
5382 	spin_lock_irqsave(&fotg210->lock, flags);
5383 	qh = ep->hcpriv;
5384 	if (!qh)
5385 		goto done;
5386 
5387 	/* endpoints can be iso streams.  for now, we don't
5388 	 * accelerate iso completions ... so spin a while.
5389 	 */
5390 	if (qh->hw == NULL) {
5391 		struct fotg210_iso_stream *stream = ep->hcpriv;
5392 
5393 		if (!list_empty(&stream->td_list))
5394 			goto idle_timeout;
5395 
5396 		/* BUG_ON(!list_empty(&stream->free_list)); */
5397 		kfree(stream);
5398 		goto done;
5399 	}
5400 
5401 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5402 		qh->qh_state = QH_STATE_IDLE;
5403 	switch (qh->qh_state) {
5404 	case QH_STATE_LINKED:
5405 	case QH_STATE_COMPLETING:
5406 		for (tmp = fotg210->async->qh_next.qh;
5407 				tmp && tmp != qh;
5408 				tmp = tmp->qh_next.qh)
5409 			continue;
5410 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5411 		 * may already be unlinked.
5412 		 */
5413 		if (tmp)
5414 			start_unlink_async(fotg210, qh);
5415 		/* FALL THROUGH */
5416 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5417 	case QH_STATE_UNLINK_WAIT:
5418 idle_timeout:
5419 		spin_unlock_irqrestore(&fotg210->lock, flags);
5420 		schedule_timeout_uninterruptible(1);
5421 		goto rescan;
5422 	case QH_STATE_IDLE:		/* fully unlinked */
5423 		if (qh->clearing_tt)
5424 			goto idle_timeout;
5425 		if (list_empty(&qh->qtd_list)) {
5426 			qh_destroy(fotg210, qh);
5427 			break;
5428 		}
5429 		/* fall through */
5430 	default:
5431 		/* caller was supposed to have unlinked any requests;
5432 		 * that's not our job.  just leak this memory.
5433 		 */
5434 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5435 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5436 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5437 		break;
5438 	}
5439 done:
5440 	ep->hcpriv = NULL;
5441 	spin_unlock_irqrestore(&fotg210->lock, flags);
5442 }
5443 
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5444 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5445 		struct usb_host_endpoint *ep)
5446 {
5447 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5448 	struct fotg210_qh *qh;
5449 	int eptype = usb_endpoint_type(&ep->desc);
5450 	int epnum = usb_endpoint_num(&ep->desc);
5451 	int is_out = usb_endpoint_dir_out(&ep->desc);
5452 	unsigned long flags;
5453 
5454 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5455 		return;
5456 
5457 	spin_lock_irqsave(&fotg210->lock, flags);
5458 	qh = ep->hcpriv;
5459 
5460 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5461 	 * in the hardware; the toggle bits in udev aren't used at all.
5462 	 * When an endpoint is reset by usb_clear_halt() we must reset
5463 	 * the toggle bit in the QH.
5464 	 */
5465 	if (qh) {
5466 		usb_settoggle(qh->dev, epnum, is_out, 0);
5467 		if (!list_empty(&qh->qtd_list)) {
5468 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5469 		} else if (qh->qh_state == QH_STATE_LINKED ||
5470 				qh->qh_state == QH_STATE_COMPLETING) {
5471 
5472 			/* The toggle value in the QH can't be updated
5473 			 * while the QH is active.  Unlink it now;
5474 			 * re-linking will call qh_refresh().
5475 			 */
5476 			if (eptype == USB_ENDPOINT_XFER_BULK)
5477 				start_unlink_async(fotg210, qh);
5478 			else
5479 				start_unlink_intr(fotg210, qh);
5480 		}
5481 	}
5482 	spin_unlock_irqrestore(&fotg210->lock, flags);
5483 }
5484 
fotg210_get_frame(struct usb_hcd * hcd)5485 static int fotg210_get_frame(struct usb_hcd *hcd)
5486 {
5487 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5488 
5489 	return (fotg210_read_frame_index(fotg210) >> 3) %
5490 		fotg210->periodic_size;
5491 }
5492 
5493 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5494  * because its registers (and irq) are shared between host/gadget/otg
5495  * functions  and in order to facilitate role switching we cannot
5496  * give the fotg210 driver exclusive access to those.
5497  */
5498 MODULE_DESCRIPTION(DRIVER_DESC);
5499 MODULE_AUTHOR(DRIVER_AUTHOR);
5500 MODULE_LICENSE("GPL");
5501 
5502 static const struct hc_driver fotg210_fotg210_hc_driver = {
5503 	.description		= hcd_name,
5504 	.product_desc		= "Faraday USB2.0 Host Controller",
5505 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5506 
5507 	/*
5508 	 * generic hardware linkage
5509 	 */
5510 	.irq			= fotg210_irq,
5511 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5512 
5513 	/*
5514 	 * basic lifecycle operations
5515 	 */
5516 	.reset			= hcd_fotg210_init,
5517 	.start			= fotg210_run,
5518 	.stop			= fotg210_stop,
5519 	.shutdown		= fotg210_shutdown,
5520 
5521 	/*
5522 	 * managing i/o requests and associated device resources
5523 	 */
5524 	.urb_enqueue		= fotg210_urb_enqueue,
5525 	.urb_dequeue		= fotg210_urb_dequeue,
5526 	.endpoint_disable	= fotg210_endpoint_disable,
5527 	.endpoint_reset		= fotg210_endpoint_reset,
5528 
5529 	/*
5530 	 * scheduling support
5531 	 */
5532 	.get_frame_number	= fotg210_get_frame,
5533 
5534 	/*
5535 	 * root hub support
5536 	 */
5537 	.hub_status_data	= fotg210_hub_status_data,
5538 	.hub_control		= fotg210_hub_control,
5539 	.bus_suspend		= fotg210_bus_suspend,
5540 	.bus_resume		= fotg210_bus_resume,
5541 
5542 	.relinquish_port	= fotg210_relinquish_port,
5543 	.port_handed_over	= fotg210_port_handed_over,
5544 
5545 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5546 };
5547 
fotg210_init(struct fotg210_hcd * fotg210)5548 static void fotg210_init(struct fotg210_hcd *fotg210)
5549 {
5550 	u32 value;
5551 
5552 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5553 			&fotg210->regs->gmir);
5554 
5555 	value = ioread32(&fotg210->regs->otgcsr);
5556 	value &= ~OTGCSR_A_BUS_DROP;
5557 	value |= OTGCSR_A_BUS_REQ;
5558 	iowrite32(value, &fotg210->regs->otgcsr);
5559 }
5560 
5561 /**
5562  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5563  *
5564  * Allocates basic resources for this USB host controller, and
5565  * then invokes the start() method for the HCD associated with it
5566  * through the hotplug entry's driver_data.
5567  */
fotg210_hcd_probe(struct platform_device * pdev)5568 static int fotg210_hcd_probe(struct platform_device *pdev)
5569 {
5570 	struct device *dev = &pdev->dev;
5571 	struct usb_hcd *hcd;
5572 	struct resource *res;
5573 	int irq;
5574 	int retval = -ENODEV;
5575 	struct fotg210_hcd *fotg210;
5576 
5577 	if (usb_disabled())
5578 		return -ENODEV;
5579 
5580 	pdev->dev.power.power_state = PMSG_ON;
5581 
5582 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5583 	if (!res) {
5584 		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5585 				dev_name(dev));
5586 		return -ENODEV;
5587 	}
5588 
5589 	irq = res->start;
5590 
5591 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5592 			dev_name(dev));
5593 	if (!hcd) {
5594 		dev_err(dev, "failed to create hcd with err %d\n", retval);
5595 		retval = -ENOMEM;
5596 		goto fail_create_hcd;
5597 	}
5598 
5599 	hcd->has_tt = 1;
5600 
5601 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5602 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5603 	if (IS_ERR(hcd->regs)) {
5604 		retval = PTR_ERR(hcd->regs);
5605 		goto failed_put_hcd;
5606 	}
5607 
5608 	hcd->rsrc_start = res->start;
5609 	hcd->rsrc_len = resource_size(res);
5610 
5611 	fotg210 = hcd_to_fotg210(hcd);
5612 
5613 	fotg210->caps = hcd->regs;
5614 
5615 	/* It's OK not to supply this clock */
5616 	fotg210->pclk = clk_get(dev, "PCLK");
5617 	if (!IS_ERR(fotg210->pclk)) {
5618 		retval = clk_prepare_enable(fotg210->pclk);
5619 		if (retval) {
5620 			dev_err(dev, "failed to enable PCLK\n");
5621 			goto failed_put_hcd;
5622 		}
5623 	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5624 		/*
5625 		 * Percolate deferrals, for anything else,
5626 		 * just live without the clocking.
5627 		 */
5628 		retval = PTR_ERR(fotg210->pclk);
5629 		goto failed_dis_clk;
5630 	}
5631 
5632 	retval = fotg210_setup(hcd);
5633 	if (retval)
5634 		goto failed_dis_clk;
5635 
5636 	fotg210_init(fotg210);
5637 
5638 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5639 	if (retval) {
5640 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5641 		goto failed_dis_clk;
5642 	}
5643 	device_wakeup_enable(hcd->self.controller);
5644 	platform_set_drvdata(pdev, hcd);
5645 
5646 	return retval;
5647 
5648 failed_dis_clk:
5649 	if (!IS_ERR(fotg210->pclk))
5650 		clk_disable_unprepare(fotg210->pclk);
5651 failed_put_hcd:
5652 	usb_put_hcd(hcd);
5653 fail_create_hcd:
5654 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5655 	return retval;
5656 }
5657 
5658 /**
5659  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5660  * @dev: USB Host Controller being removed
5661  *
5662  */
fotg210_hcd_remove(struct platform_device * pdev)5663 static int fotg210_hcd_remove(struct platform_device *pdev)
5664 {
5665 	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5666 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5667 
5668 	if (!IS_ERR(fotg210->pclk))
5669 		clk_disable_unprepare(fotg210->pclk);
5670 
5671 	usb_remove_hcd(hcd);
5672 	usb_put_hcd(hcd);
5673 
5674 	return 0;
5675 }
5676 
5677 #ifdef CONFIG_OF
5678 static const struct of_device_id fotg210_of_match[] = {
5679 	{ .compatible = "faraday,fotg210" },
5680 	{},
5681 };
5682 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5683 #endif
5684 
5685 static struct platform_driver fotg210_hcd_driver = {
5686 	.driver = {
5687 		.name   = "fotg210-hcd",
5688 		.of_match_table = of_match_ptr(fotg210_of_match),
5689 	},
5690 	.probe  = fotg210_hcd_probe,
5691 	.remove = fotg210_hcd_remove,
5692 };
5693 
fotg210_hcd_init(void)5694 static int __init fotg210_hcd_init(void)
5695 {
5696 	int retval = 0;
5697 
5698 	if (usb_disabled())
5699 		return -ENODEV;
5700 
5701 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5702 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5703 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5704 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5705 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5706 
5707 	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5708 			hcd_name, sizeof(struct fotg210_qh),
5709 			sizeof(struct fotg210_qtd),
5710 			sizeof(struct fotg210_itd));
5711 
5712 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5713 
5714 	retval = platform_driver_register(&fotg210_hcd_driver);
5715 	if (retval < 0)
5716 		goto clean;
5717 	return retval;
5718 
5719 clean:
5720 	debugfs_remove(fotg210_debug_root);
5721 	fotg210_debug_root = NULL;
5722 
5723 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5724 	return retval;
5725 }
5726 module_init(fotg210_hcd_init);
5727 
fotg210_hcd_cleanup(void)5728 static void __exit fotg210_hcd_cleanup(void)
5729 {
5730 	platform_driver_unregister(&fotg210_hcd_driver);
5731 	debugfs_remove(fotg210_debug_root);
5732 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5733 }
5734 module_exit(fotg210_hcd_cleanup);
5735