1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARM-specific support for Broadcom STB S2/S3/S5 power management
4  *
5  * S2: clock gate CPUs and as many peripherals as possible
6  * S3: power off all of the chip except the Always ON (AON) island; keep DDR is
7  *     self-refresh
8  * S5: (a.k.a. S3 cold boot) much like S3, except DDR is powered down, so we
9  *     treat this mode like a soft power-off, with wakeup allowed from AON
10  *
11  * Copyright © 2014-2017 Broadcom
12  */
13 
14 #define pr_fmt(fmt) "brcmstb-pm: " fmt
15 
16 #include <linux/bitops.h>
17 #include <linux/compiler.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/ioport.h>
24 #include <linux/kconfig.h>
25 #include <linux/kernel.h>
26 #include <linux/memblock.h>
27 #include <linux/module.h>
28 #include <linux/notifier.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm.h>
33 #include <linux/printk.h>
34 #include <linux/proc_fs.h>
35 #include <linux/sizes.h>
36 #include <linux/slab.h>
37 #include <linux/sort.h>
38 #include <linux/suspend.h>
39 #include <linux/types.h>
40 #include <linux/uaccess.h>
41 #include <linux/soc/brcmstb/brcmstb.h>
42 
43 #include <asm/fncpy.h>
44 #include <asm/setup.h>
45 #include <asm/suspend.h>
46 
47 #include "pm.h"
48 #include "aon_defs.h"
49 
50 #define SHIMPHY_DDR_PAD_CNTRL		0x8c
51 
52 /* Method #0 */
53 #define SHIMPHY_PAD_PLL_SEQUENCE	BIT(8)
54 #define SHIMPHY_PAD_GATE_PLL_S3		BIT(9)
55 
56 /* Method #1 */
57 #define PWRDWN_SEQ_NO_SEQUENCING	0
58 #define PWRDWN_SEQ_HOLD_CHANNEL		1
59 #define	PWRDWN_SEQ_RESET_PLL		2
60 #define PWRDWN_SEQ_POWERDOWN_PLL	3
61 
62 #define SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK	0x00f00000
63 #define SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT	20
64 
65 #define	DDR_FORCE_CKE_RST_N		BIT(3)
66 #define	DDR_PHY_RST_N			BIT(2)
67 #define	DDR_PHY_CKE			BIT(1)
68 
69 #define	DDR_PHY_NO_CHANNEL		0xffffffff
70 
71 #define MAX_NUM_MEMC			3
72 
73 struct brcmstb_memc {
74 	void __iomem *ddr_phy_base;
75 	void __iomem *ddr_shimphy_base;
76 	void __iomem *ddr_ctrl;
77 };
78 
79 struct brcmstb_pm_control {
80 	void __iomem *aon_ctrl_base;
81 	void __iomem *aon_sram;
82 	struct brcmstb_memc memcs[MAX_NUM_MEMC];
83 
84 	void __iomem *boot_sram;
85 	size_t boot_sram_len;
86 
87 	bool support_warm_boot;
88 	size_t pll_status_offset;
89 	int num_memc;
90 
91 	struct brcmstb_s3_params *s3_params;
92 	dma_addr_t s3_params_pa;
93 	int s3entry_method;
94 	u32 warm_boot_offset;
95 	u32 phy_a_standby_ctrl_offs;
96 	u32 phy_b_standby_ctrl_offs;
97 	bool needs_ddr_pad;
98 	struct platform_device *pdev;
99 };
100 
101 enum bsp_initiate_command {
102 	BSP_CLOCK_STOP		= 0x00,
103 	BSP_GEN_RANDOM_KEY	= 0x4A,
104 	BSP_RESTORE_RANDOM_KEY	= 0x55,
105 	BSP_GEN_FIXED_KEY	= 0x63,
106 };
107 
108 #define PM_INITIATE		0x01
109 #define PM_INITIATE_SUCCESS	0x00
110 #define PM_INITIATE_FAIL	0xfe
111 
112 static struct brcmstb_pm_control ctrl;
113 
114 static int (*brcmstb_pm_do_s2_sram)(void __iomem *aon_ctrl_base,
115 		void __iomem *ddr_phy_pll_status);
116 
brcmstb_init_sram(struct device_node * dn)117 static int brcmstb_init_sram(struct device_node *dn)
118 {
119 	void __iomem *sram;
120 	struct resource res;
121 	int ret;
122 
123 	ret = of_address_to_resource(dn, 0, &res);
124 	if (ret)
125 		return ret;
126 
127 	/* Uncached, executable remapping of SRAM */
128 	sram = __arm_ioremap_exec(res.start, resource_size(&res), false);
129 	if (!sram)
130 		return -ENOMEM;
131 
132 	ctrl.boot_sram = sram;
133 	ctrl.boot_sram_len = resource_size(&res);
134 
135 	return 0;
136 }
137 
138 static const struct of_device_id sram_dt_ids[] = {
139 	{ .compatible = "mmio-sram" },
140 	{ /* sentinel */ }
141 };
142 
do_bsp_initiate_command(enum bsp_initiate_command cmd)143 static int do_bsp_initiate_command(enum bsp_initiate_command cmd)
144 {
145 	void __iomem *base = ctrl.aon_ctrl_base;
146 	int ret;
147 	int timeo = 1000 * 1000; /* 1 second */
148 
149 	writel_relaxed(0, base + AON_CTRL_PM_INITIATE);
150 	(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
151 
152 	/* Go! */
153 	writel_relaxed((cmd << 1) | PM_INITIATE, base + AON_CTRL_PM_INITIATE);
154 
155 	/*
156 	 * If firmware doesn't support the 'ack', then just assume it's done
157 	 * after 10ms. Note that this only works for command 0, BSP_CLOCK_STOP
158 	 */
159 	if (of_machine_is_compatible("brcm,bcm74371a0")) {
160 		(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
161 		mdelay(10);
162 		return 0;
163 	}
164 
165 	for (;;) {
166 		ret = readl_relaxed(base + AON_CTRL_PM_INITIATE);
167 		if (!(ret & PM_INITIATE))
168 			break;
169 		if (timeo <= 0) {
170 			pr_err("error: timeout waiting for BSP (%x)\n", ret);
171 			break;
172 		}
173 		timeo -= 50;
174 		udelay(50);
175 	}
176 
177 	return (ret & 0xff) != PM_INITIATE_SUCCESS;
178 }
179 
brcmstb_pm_handshake(void)180 static int brcmstb_pm_handshake(void)
181 {
182 	void __iomem *base = ctrl.aon_ctrl_base;
183 	u32 tmp;
184 	int ret;
185 
186 	/* BSP power handshake, v1 */
187 	tmp = readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
188 	tmp &= ~1UL;
189 	writel_relaxed(tmp, base + AON_CTRL_HOST_MISC_CMDS);
190 	(void)readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
191 
192 	ret = do_bsp_initiate_command(BSP_CLOCK_STOP);
193 	if (ret)
194 		pr_err("BSP handshake failed\n");
195 
196 	/*
197 	 * HACK: BSP may have internal race on the CLOCK_STOP command.
198 	 * Avoid touching the BSP for a few milliseconds.
199 	 */
200 	mdelay(3);
201 
202 	return ret;
203 }
204 
shimphy_set(u32 value,u32 mask)205 static inline void shimphy_set(u32 value, u32 mask)
206 {
207 	int i;
208 
209 	if (!ctrl.needs_ddr_pad)
210 		return;
211 
212 	for (i = 0; i < ctrl.num_memc; i++) {
213 		u32 tmp;
214 
215 		tmp = readl_relaxed(ctrl.memcs[i].ddr_shimphy_base +
216 			SHIMPHY_DDR_PAD_CNTRL);
217 		tmp = value | (tmp & mask);
218 		writel_relaxed(tmp, ctrl.memcs[i].ddr_shimphy_base +
219 			SHIMPHY_DDR_PAD_CNTRL);
220 	}
221 	wmb(); /* Complete sequence in order. */
222 }
223 
ddr_ctrl_set(bool warmboot)224 static inline void ddr_ctrl_set(bool warmboot)
225 {
226 	int i;
227 
228 	for (i = 0; i < ctrl.num_memc; i++) {
229 		u32 tmp;
230 
231 		tmp = readl_relaxed(ctrl.memcs[i].ddr_ctrl +
232 				ctrl.warm_boot_offset);
233 		if (warmboot)
234 			tmp |= 1;
235 		else
236 			tmp &= ~1; /* Cold boot */
237 		writel_relaxed(tmp, ctrl.memcs[i].ddr_ctrl +
238 				ctrl.warm_boot_offset);
239 	}
240 	/* Complete sequence in order */
241 	wmb();
242 }
243 
s3entry_method0(void)244 static inline void s3entry_method0(void)
245 {
246 	shimphy_set(SHIMPHY_PAD_GATE_PLL_S3 | SHIMPHY_PAD_PLL_SEQUENCE,
247 		    0xffffffff);
248 }
249 
s3entry_method1(void)250 static inline void s3entry_method1(void)
251 {
252 	/*
253 	 * S3 Entry Sequence
254 	 * -----------------
255 	 * Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
256 	 * Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 1
257 	 */
258 	shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
259 		    SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
260 		    ~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
261 
262 	ddr_ctrl_set(true);
263 }
264 
s5entry_method1(void)265 static inline void s5entry_method1(void)
266 {
267 	int i;
268 
269 	/*
270 	 * S5 Entry Sequence
271 	 * -----------------
272 	 * Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
273 	 * Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 0
274 	 * Step 3: DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ CKE ] = 0
275 	 *	   DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ RST_N ] = 0
276 	 */
277 	shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
278 		    SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
279 		    ~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
280 
281 	ddr_ctrl_set(false);
282 
283 	for (i = 0; i < ctrl.num_memc; i++) {
284 		u32 tmp;
285 
286 		/* Step 3: Channel A (RST_N = CKE = 0) */
287 		tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
288 				  ctrl.phy_a_standby_ctrl_offs);
289 		tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
290 		writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
291 			     ctrl.phy_a_standby_ctrl_offs);
292 
293 		/* Step 3: Channel B? */
294 		if (ctrl.phy_b_standby_ctrl_offs != DDR_PHY_NO_CHANNEL) {
295 			tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
296 					  ctrl.phy_b_standby_ctrl_offs);
297 			tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
298 			writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
299 				     ctrl.phy_b_standby_ctrl_offs);
300 		}
301 	}
302 	/* Must complete */
303 	wmb();
304 }
305 
306 /*
307  * Run a Power Management State Machine (PMSM) shutdown command and put the CPU
308  * into a low-power mode
309  */
brcmstb_do_pmsm_power_down(unsigned long base_cmd,bool onewrite)310 static void brcmstb_do_pmsm_power_down(unsigned long base_cmd, bool onewrite)
311 {
312 	void __iomem *base = ctrl.aon_ctrl_base;
313 
314 	if ((ctrl.s3entry_method == 1) && (base_cmd == PM_COLD_CONFIG))
315 		s5entry_method1();
316 
317 	/* pm_start_pwrdn transition 0->1 */
318 	writel_relaxed(base_cmd, base + AON_CTRL_PM_CTRL);
319 
320 	if (!onewrite) {
321 		(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
322 
323 		writel_relaxed(base_cmd | PM_PWR_DOWN, base + AON_CTRL_PM_CTRL);
324 		(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
325 	}
326 	wfi();
327 }
328 
329 /* Support S5 cold boot out of "poweroff" */
brcmstb_pm_poweroff(void)330 static void brcmstb_pm_poweroff(void)
331 {
332 	brcmstb_pm_handshake();
333 
334 	/* Clear magic S3 warm-boot value */
335 	writel_relaxed(0, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
336 	(void)readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
337 
338 	/* Skip wait-for-interrupt signal; just use a countdown */
339 	writel_relaxed(0x10, ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
340 	(void)readl_relaxed(ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
341 
342 	if (ctrl.s3entry_method == 1) {
343 		shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
344 			     SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
345 			     ~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
346 		ddr_ctrl_set(false);
347 		brcmstb_do_pmsm_power_down(M1_PM_COLD_CONFIG, true);
348 		return; /* We should never actually get here */
349 	}
350 
351 	brcmstb_do_pmsm_power_down(PM_COLD_CONFIG, false);
352 }
353 
brcmstb_pm_copy_to_sram(void * fn,size_t len)354 static void *brcmstb_pm_copy_to_sram(void *fn, size_t len)
355 {
356 	unsigned int size = ALIGN(len, FNCPY_ALIGN);
357 
358 	if (ctrl.boot_sram_len < size) {
359 		pr_err("standby code will not fit in SRAM\n");
360 		return NULL;
361 	}
362 
363 	return fncpy(ctrl.boot_sram, fn, size);
364 }
365 
366 /*
367  * S2 suspend/resume picks up where we left off, so we must execute carefully
368  * from SRAM, in order to allow DDR to come back up safely before we continue.
369  */
brcmstb_pm_s2(void)370 static int brcmstb_pm_s2(void)
371 {
372 	/* A previous S3 can set a value hazardous to S2, so make sure. */
373 	if (ctrl.s3entry_method == 1) {
374 		shimphy_set((PWRDWN_SEQ_NO_SEQUENCING <<
375 			    SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
376 			    ~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
377 		ddr_ctrl_set(false);
378 	}
379 
380 	brcmstb_pm_do_s2_sram = brcmstb_pm_copy_to_sram(&brcmstb_pm_do_s2,
381 			brcmstb_pm_do_s2_sz);
382 	if (!brcmstb_pm_do_s2_sram)
383 		return -EINVAL;
384 
385 	return brcmstb_pm_do_s2_sram(ctrl.aon_ctrl_base,
386 			ctrl.memcs[0].ddr_phy_base +
387 			ctrl.pll_status_offset);
388 }
389 
390 /*
391  * This function is called on a new stack, so don't allow inlining (which will
392  * generate stack references on the old stack). It cannot be made static because
393  * it is referenced from brcmstb_pm_s3()
394  */
brcmstb_pm_s3_finish(void)395 noinline int brcmstb_pm_s3_finish(void)
396 {
397 	struct brcmstb_s3_params *params = ctrl.s3_params;
398 	dma_addr_t params_pa = ctrl.s3_params_pa;
399 	phys_addr_t reentry = virt_to_phys(&cpu_resume_arm);
400 	enum bsp_initiate_command cmd;
401 	u32 flags;
402 
403 	/*
404 	 * Clear parameter structure, but not DTU area, which has already been
405 	 * filled in. We know DTU is a the end, so we can just subtract its
406 	 * size.
407 	 */
408 	memset(params, 0, sizeof(*params) - sizeof(params->dtu));
409 
410 	flags = readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
411 
412 	flags &= S3_BOOTLOADER_RESERVED;
413 	flags |= S3_FLAG_NO_MEM_VERIFY;
414 	flags |= S3_FLAG_LOAD_RANDKEY;
415 
416 	/* Load random / fixed key */
417 	if (flags & S3_FLAG_LOAD_RANDKEY)
418 		cmd = BSP_GEN_RANDOM_KEY;
419 	else
420 		cmd = BSP_GEN_FIXED_KEY;
421 	if (do_bsp_initiate_command(cmd)) {
422 		pr_info("key loading failed\n");
423 		return -EIO;
424 	}
425 
426 	params->magic = BRCMSTB_S3_MAGIC;
427 	params->reentry = reentry;
428 
429 	/* No more writes to DRAM */
430 	flush_cache_all();
431 
432 	flags |= BRCMSTB_S3_MAGIC_SHORT;
433 
434 	writel_relaxed(flags, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
435 	writel_relaxed(lower_32_bits(params_pa),
436 		       ctrl.aon_sram + AON_REG_CONTROL_LOW);
437 	writel_relaxed(upper_32_bits(params_pa),
438 		       ctrl.aon_sram + AON_REG_CONTROL_HIGH);
439 
440 	switch (ctrl.s3entry_method) {
441 	case 0:
442 		s3entry_method0();
443 		brcmstb_do_pmsm_power_down(PM_WARM_CONFIG, false);
444 		break;
445 	case 1:
446 		s3entry_method1();
447 		brcmstb_do_pmsm_power_down(M1_PM_WARM_CONFIG, true);
448 		break;
449 	default:
450 		return -EINVAL;
451 	}
452 
453 	/* Must have been interrupted from wfi()? */
454 	return -EINTR;
455 }
456 
brcmstb_pm_do_s3(unsigned long sp)457 static int brcmstb_pm_do_s3(unsigned long sp)
458 {
459 	unsigned long save_sp;
460 	int ret;
461 
462 	asm volatile (
463 		"mov	%[save], sp\n"
464 		"mov	sp, %[new]\n"
465 		"bl	brcmstb_pm_s3_finish\n"
466 		"mov	%[ret], r0\n"
467 		"mov	%[new], sp\n"
468 		"mov	sp, %[save]\n"
469 		: [save] "=&r" (save_sp), [ret] "=&r" (ret)
470 		: [new] "r" (sp)
471 	);
472 
473 	return ret;
474 }
475 
brcmstb_pm_s3(void)476 static int brcmstb_pm_s3(void)
477 {
478 	void __iomem *sp = ctrl.boot_sram + ctrl.boot_sram_len;
479 
480 	return cpu_suspend((unsigned long)sp, brcmstb_pm_do_s3);
481 }
482 
brcmstb_pm_standby(bool deep_standby)483 static int brcmstb_pm_standby(bool deep_standby)
484 {
485 	int ret;
486 
487 	if (brcmstb_pm_handshake())
488 		return -EIO;
489 
490 	if (deep_standby)
491 		ret = brcmstb_pm_s3();
492 	else
493 		ret = brcmstb_pm_s2();
494 	if (ret)
495 		pr_err("%s: standby failed\n", __func__);
496 
497 	return ret;
498 }
499 
brcmstb_pm_enter(suspend_state_t state)500 static int brcmstb_pm_enter(suspend_state_t state)
501 {
502 	int ret = -EINVAL;
503 
504 	switch (state) {
505 	case PM_SUSPEND_STANDBY:
506 		ret = brcmstb_pm_standby(false);
507 		break;
508 	case PM_SUSPEND_MEM:
509 		ret = brcmstb_pm_standby(true);
510 		break;
511 	}
512 
513 	return ret;
514 }
515 
brcmstb_pm_valid(suspend_state_t state)516 static int brcmstb_pm_valid(suspend_state_t state)
517 {
518 	switch (state) {
519 	case PM_SUSPEND_STANDBY:
520 		return true;
521 	case PM_SUSPEND_MEM:
522 		return ctrl.support_warm_boot;
523 	default:
524 		return false;
525 	}
526 }
527 
528 static const struct platform_suspend_ops brcmstb_pm_ops = {
529 	.enter		= brcmstb_pm_enter,
530 	.valid		= brcmstb_pm_valid,
531 };
532 
533 static const struct of_device_id aon_ctrl_dt_ids[] = {
534 	{ .compatible = "brcm,brcmstb-aon-ctrl" },
535 	{}
536 };
537 
538 struct ddr_phy_ofdata {
539 	bool supports_warm_boot;
540 	size_t pll_status_offset;
541 	int s3entry_method;
542 	u32 warm_boot_offset;
543 	u32 phy_a_standby_ctrl_offs;
544 	u32 phy_b_standby_ctrl_offs;
545 };
546 
547 static struct ddr_phy_ofdata ddr_phy_71_1 = {
548 	.supports_warm_boot = true,
549 	.pll_status_offset = 0x0c,
550 	.s3entry_method = 1,
551 	.warm_boot_offset = 0x2c,
552 	.phy_a_standby_ctrl_offs = 0x198,
553 	.phy_b_standby_ctrl_offs = DDR_PHY_NO_CHANNEL
554 };
555 
556 static struct ddr_phy_ofdata ddr_phy_72_0 = {
557 	.supports_warm_boot = true,
558 	.pll_status_offset = 0x10,
559 	.s3entry_method = 1,
560 	.warm_boot_offset = 0x40,
561 	.phy_a_standby_ctrl_offs = 0x2a4,
562 	.phy_b_standby_ctrl_offs = 0x8a4
563 };
564 
565 static struct ddr_phy_ofdata ddr_phy_225_1 = {
566 	.supports_warm_boot = false,
567 	.pll_status_offset = 0x4,
568 	.s3entry_method = 0
569 };
570 
571 static struct ddr_phy_ofdata ddr_phy_240_1 = {
572 	.supports_warm_boot = true,
573 	.pll_status_offset = 0x4,
574 	.s3entry_method = 0
575 };
576 
577 static const struct of_device_id ddr_phy_dt_ids[] = {
578 	{
579 		.compatible = "brcm,brcmstb-ddr-phy-v71.1",
580 		.data = &ddr_phy_71_1,
581 	},
582 	{
583 		.compatible = "brcm,brcmstb-ddr-phy-v72.0",
584 		.data = &ddr_phy_72_0,
585 	},
586 	{
587 		.compatible = "brcm,brcmstb-ddr-phy-v225.1",
588 		.data = &ddr_phy_225_1,
589 	},
590 	{
591 		.compatible = "brcm,brcmstb-ddr-phy-v240.1",
592 		.data = &ddr_phy_240_1,
593 	},
594 	{
595 		/* Same as v240.1, for the registers we care about */
596 		.compatible = "brcm,brcmstb-ddr-phy-v240.2",
597 		.data = &ddr_phy_240_1,
598 	},
599 	{}
600 };
601 
602 struct ddr_seq_ofdata {
603 	bool needs_ddr_pad;
604 	u32 warm_boot_offset;
605 };
606 
607 static const struct ddr_seq_ofdata ddr_seq_b22 = {
608 	.needs_ddr_pad = false,
609 	.warm_boot_offset = 0x2c,
610 };
611 
612 static const struct ddr_seq_ofdata ddr_seq = {
613 	.needs_ddr_pad = true,
614 };
615 
616 static const struct of_device_id ddr_shimphy_dt_ids[] = {
617 	{ .compatible = "brcm,brcmstb-ddr-shimphy-v1.0" },
618 	{}
619 };
620 
621 static const struct of_device_id brcmstb_memc_of_match[] = {
622 	{
623 		.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.1",
624 		.data = &ddr_seq,
625 	},
626 	{
627 		.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.2",
628 		.data = &ddr_seq_b22,
629 	},
630 	{
631 		.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.3",
632 		.data = &ddr_seq_b22,
633 	},
634 	{
635 		.compatible = "brcm,brcmstb-memc-ddr-rev-b.3.0",
636 		.data = &ddr_seq_b22,
637 	},
638 	{
639 		.compatible = "brcm,brcmstb-memc-ddr-rev-b.3.1",
640 		.data = &ddr_seq_b22,
641 	},
642 	{
643 		.compatible = "brcm,brcmstb-memc-ddr",
644 		.data = &ddr_seq,
645 	},
646 	{},
647 };
648 
brcmstb_ioremap_match(const struct of_device_id * matches,int index,const void ** ofdata)649 static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
650 					   int index, const void **ofdata)
651 {
652 	struct device_node *dn;
653 	const struct of_device_id *match;
654 
655 	dn = of_find_matching_node_and_match(NULL, matches, &match);
656 	if (!dn)
657 		return ERR_PTR(-EINVAL);
658 
659 	if (ofdata)
660 		*ofdata = match->data;
661 
662 	return of_io_request_and_map(dn, index, dn->full_name);
663 }
664 
brcmstb_pm_panic_notify(struct notifier_block * nb,unsigned long action,void * data)665 static int brcmstb_pm_panic_notify(struct notifier_block *nb,
666 		unsigned long action, void *data)
667 {
668 	writel_relaxed(BRCMSTB_PANIC_MAGIC, ctrl.aon_sram + AON_REG_PANIC);
669 
670 	return NOTIFY_DONE;
671 }
672 
673 static struct notifier_block brcmstb_pm_panic_nb = {
674 	.notifier_call = brcmstb_pm_panic_notify,
675 };
676 
brcmstb_pm_probe(struct platform_device * pdev)677 static int brcmstb_pm_probe(struct platform_device *pdev)
678 {
679 	const struct ddr_phy_ofdata *ddr_phy_data;
680 	const struct ddr_seq_ofdata *ddr_seq_data;
681 	const struct of_device_id *of_id = NULL;
682 	struct device_node *dn;
683 	void __iomem *base;
684 	int ret, i;
685 
686 	/* AON ctrl registers */
687 	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
688 	if (IS_ERR(base)) {
689 		pr_err("error mapping AON_CTRL\n");
690 		return PTR_ERR(base);
691 	}
692 	ctrl.aon_ctrl_base = base;
693 
694 	/* AON SRAM registers */
695 	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
696 	if (IS_ERR(base)) {
697 		/* Assume standard offset */
698 		ctrl.aon_sram = ctrl.aon_ctrl_base +
699 				     AON_CTRL_SYSTEM_DATA_RAM_OFS;
700 	} else {
701 		ctrl.aon_sram = base;
702 	}
703 
704 	writel_relaxed(0, ctrl.aon_sram + AON_REG_PANIC);
705 
706 	/* DDR PHY registers */
707 	base = brcmstb_ioremap_match(ddr_phy_dt_ids, 0,
708 				     (const void **)&ddr_phy_data);
709 	if (IS_ERR(base)) {
710 		pr_err("error mapping DDR PHY\n");
711 		return PTR_ERR(base);
712 	}
713 	ctrl.support_warm_boot = ddr_phy_data->supports_warm_boot;
714 	ctrl.pll_status_offset = ddr_phy_data->pll_status_offset;
715 	/* Only need DDR PHY 0 for now? */
716 	ctrl.memcs[0].ddr_phy_base = base;
717 	ctrl.s3entry_method = ddr_phy_data->s3entry_method;
718 	ctrl.phy_a_standby_ctrl_offs = ddr_phy_data->phy_a_standby_ctrl_offs;
719 	ctrl.phy_b_standby_ctrl_offs = ddr_phy_data->phy_b_standby_ctrl_offs;
720 	/*
721 	 * Slightly grosss to use the phy ver to get a memc,
722 	 * offset but that is the only versioned things so far
723 	 * we can test for.
724 	 */
725 	ctrl.warm_boot_offset = ddr_phy_data->warm_boot_offset;
726 
727 	/* DDR SHIM-PHY registers */
728 	for_each_matching_node(dn, ddr_shimphy_dt_ids) {
729 		i = ctrl.num_memc;
730 		if (i >= MAX_NUM_MEMC) {
731 			pr_warn("too many MEMCs (max %d)\n", MAX_NUM_MEMC);
732 			break;
733 		}
734 
735 		base = of_io_request_and_map(dn, 0, dn->full_name);
736 		if (IS_ERR(base)) {
737 			if (!ctrl.support_warm_boot)
738 				break;
739 
740 			pr_err("error mapping DDR SHIMPHY %d\n", i);
741 			return PTR_ERR(base);
742 		}
743 		ctrl.memcs[i].ddr_shimphy_base = base;
744 		ctrl.num_memc++;
745 	}
746 
747 	/* Sequencer DRAM Param and Control Registers */
748 	i = 0;
749 	for_each_matching_node(dn, brcmstb_memc_of_match) {
750 		base = of_iomap(dn, 0);
751 		if (!base) {
752 			pr_err("error mapping DDR Sequencer %d\n", i);
753 			return -ENOMEM;
754 		}
755 
756 		of_id = of_match_node(brcmstb_memc_of_match, dn);
757 		if (!of_id) {
758 			iounmap(base);
759 			return -EINVAL;
760 		}
761 
762 		ddr_seq_data = of_id->data;
763 		ctrl.needs_ddr_pad = ddr_seq_data->needs_ddr_pad;
764 		/* Adjust warm boot offset based on the DDR sequencer */
765 		if (ddr_seq_data->warm_boot_offset)
766 			ctrl.warm_boot_offset = ddr_seq_data->warm_boot_offset;
767 
768 		ctrl.memcs[i].ddr_ctrl = base;
769 		i++;
770 	}
771 
772 	pr_debug("PM: supports warm boot:%d, method:%d, wboffs:%x\n",
773 		ctrl.support_warm_boot, ctrl.s3entry_method,
774 		ctrl.warm_boot_offset);
775 
776 	dn = of_find_matching_node(NULL, sram_dt_ids);
777 	if (!dn) {
778 		pr_err("SRAM not found\n");
779 		return -EINVAL;
780 	}
781 
782 	ret = brcmstb_init_sram(dn);
783 	if (ret) {
784 		pr_err("error setting up SRAM for PM\n");
785 		return ret;
786 	}
787 
788 	ctrl.pdev = pdev;
789 
790 	ctrl.s3_params = kmalloc(sizeof(*ctrl.s3_params), GFP_KERNEL);
791 	if (!ctrl.s3_params)
792 		return -ENOMEM;
793 	ctrl.s3_params_pa = dma_map_single(&pdev->dev, ctrl.s3_params,
794 					   sizeof(*ctrl.s3_params),
795 					   DMA_TO_DEVICE);
796 	if (dma_mapping_error(&pdev->dev, ctrl.s3_params_pa)) {
797 		pr_err("error mapping DMA memory\n");
798 		ret = -ENOMEM;
799 		goto out;
800 	}
801 
802 	atomic_notifier_chain_register(&panic_notifier_list,
803 				       &brcmstb_pm_panic_nb);
804 
805 	pm_power_off = brcmstb_pm_poweroff;
806 	suspend_set_ops(&brcmstb_pm_ops);
807 
808 	return 0;
809 
810 out:
811 	kfree(ctrl.s3_params);
812 
813 	pr_warn("PM: initialization failed with code %d\n", ret);
814 
815 	return ret;
816 }
817 
818 static struct platform_driver brcmstb_pm_driver = {
819 	.driver = {
820 		.name	= "brcmstb-pm",
821 		.of_match_table = aon_ctrl_dt_ids,
822 	},
823 };
824 
brcmstb_pm_init(void)825 static int __init brcmstb_pm_init(void)
826 {
827 	return platform_driver_probe(&brcmstb_pm_driver,
828 				     brcmstb_pm_probe);
829 }
830 module_init(brcmstb_pm_init);
831