1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale FlexTimer Module (FTM) alarm device driver.
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 * Copyright 2019 NXP
7 *
8 */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/module.h>
20 #include <linux/fsl/ftm.h>
21 #include <linux/rtc.h>
22 #include <linux/time.h>
23
24 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
25
26 /*
27 * Select Fixed frequency clock (32KHz) as clock source
28 * of FlexTimer Module
29 */
30 #define FTM_SC_CLKS_FIXED_FREQ 0x02
31 #define FIXED_FREQ_CLK 32000
32
33 /* Select 128 (2^7) as divider factor */
34 #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
35
36 /* Maximum counter value in FlexTimer's CNT registers */
37 #define MAX_COUNT_VAL 0xffff
38
39 struct ftm_rtc {
40 struct rtc_device *rtc_dev;
41 void __iomem *base;
42 bool big_endian;
43 u32 alarm_freq;
44 };
45
rtc_readl(struct ftm_rtc * dev,u32 reg)46 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
47 {
48 if (dev->big_endian)
49 return ioread32be(dev->base + reg);
50 else
51 return ioread32(dev->base + reg);
52 }
53
rtc_writel(struct ftm_rtc * dev,u32 reg,u32 val)54 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
55 {
56 if (dev->big_endian)
57 iowrite32be(val, dev->base + reg);
58 else
59 iowrite32(val, dev->base + reg);
60 }
61
ftm_counter_enable(struct ftm_rtc * rtc)62 static inline void ftm_counter_enable(struct ftm_rtc *rtc)
63 {
64 u32 val;
65
66 /* select and enable counter clock source */
67 val = rtc_readl(rtc, FTM_SC);
68 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
69 val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
70 rtc_writel(rtc, FTM_SC, val);
71 }
72
ftm_counter_disable(struct ftm_rtc * rtc)73 static inline void ftm_counter_disable(struct ftm_rtc *rtc)
74 {
75 u32 val;
76
77 /* disable counter clock source */
78 val = rtc_readl(rtc, FTM_SC);
79 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
80 rtc_writel(rtc, FTM_SC, val);
81 }
82
ftm_irq_acknowledge(struct ftm_rtc * rtc)83 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
84 {
85 unsigned int timeout = 100;
86
87 /*
88 *Fix errata A-007728 for flextimer
89 * If the FTM counter reaches the FTM_MOD value between
90 * the reading of the TOF bit and the writing of 0 to
91 * the TOF bit, the process of clearing the TOF bit
92 * does not work as expected when FTMx_CONF[NUMTOF] != 0
93 * and the current TOF count is less than FTMx_CONF[NUMTOF].
94 * If the above condition is met, the TOF bit remains set.
95 * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
96 * TOF interrupt also remains asserted.
97 *
98 * Above is the errata discription
99 *
100 * In one word: software clearing TOF bit not works when
101 * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
102 * reaches the FTM_MOD value.
103 *
104 * The workaround is clearing TOF bit until it works
105 * (FTM counter doesn't always reache the FTM_MOD anyway),
106 * which may cost some cycles.
107 */
108 while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
109 rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
110 }
111
ftm_irq_enable(struct ftm_rtc * rtc)112 static inline void ftm_irq_enable(struct ftm_rtc *rtc)
113 {
114 u32 val;
115
116 val = rtc_readl(rtc, FTM_SC);
117 val |= FTM_SC_TOIE;
118 rtc_writel(rtc, FTM_SC, val);
119 }
120
ftm_irq_disable(struct ftm_rtc * rtc)121 static inline void ftm_irq_disable(struct ftm_rtc *rtc)
122 {
123 u32 val;
124
125 val = rtc_readl(rtc, FTM_SC);
126 val &= ~FTM_SC_TOIE;
127 rtc_writel(rtc, FTM_SC, val);
128 }
129
ftm_reset_counter(struct ftm_rtc * rtc)130 static inline void ftm_reset_counter(struct ftm_rtc *rtc)
131 {
132 /*
133 * The CNT register contains the FTM counter value.
134 * Reset clears the CNT register. Writing any value to COUNT
135 * updates the counter with its initial value, CNTIN.
136 */
137 rtc_writel(rtc, FTM_CNT, 0x00);
138 }
139
ftm_clean_alarm(struct ftm_rtc * rtc)140 static void ftm_clean_alarm(struct ftm_rtc *rtc)
141 {
142 ftm_counter_disable(rtc);
143
144 rtc_writel(rtc, FTM_CNTIN, 0x00);
145 rtc_writel(rtc, FTM_MOD, ~0U);
146
147 ftm_reset_counter(rtc);
148 }
149
ftm_rtc_alarm_interrupt(int irq,void * dev)150 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
151 {
152 struct ftm_rtc *rtc = dev;
153
154 ftm_irq_acknowledge(rtc);
155 ftm_irq_disable(rtc);
156 ftm_clean_alarm(rtc);
157
158 return IRQ_HANDLED;
159 }
160
ftm_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)161 static int ftm_rtc_alarm_irq_enable(struct device *dev,
162 unsigned int enabled)
163 {
164 struct ftm_rtc *rtc = dev_get_drvdata(dev);
165
166 if (enabled)
167 ftm_irq_enable(rtc);
168 else
169 ftm_irq_disable(rtc);
170
171 return 0;
172 }
173
174 /*
175 * Note:
176 * The function is not really getting time from the RTC
177 * since FlexTimer is not a RTC device, but we need to
178 * get time to setup alarm, so we are using system time
179 * for now.
180 */
ftm_rtc_read_time(struct device * dev,struct rtc_time * tm)181 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
182 {
183 struct timespec64 ts64;
184
185 ktime_get_real_ts64(&ts64);
186 rtc_time_to_tm(ts64.tv_sec, tm);
187
188 return 0;
189 }
190
ftm_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alm)191 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
192 {
193 return 0;
194 }
195
196 /*
197 * 1. Select fixed frequency clock (32KHz) as clock source;
198 * 2. Select 128 (2^7) as divider factor;
199 * So clock is 250 Hz (32KHz/128).
200 *
201 * 3. FlexTimer's CNT register is a 32bit register,
202 * but the register's 16 bit as counter value,it's other 16 bit
203 * is reserved.So minimum counter value is 0x0,maximum counter
204 * value is 0xffff.
205 * So max alarm value is 262 (65536 / 250) seconds
206 */
ftm_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alm)207 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
208 {
209 struct rtc_time tm;
210 unsigned long now, alm_time, cycle;
211 struct ftm_rtc *rtc = dev_get_drvdata(dev);
212
213 ftm_rtc_read_time(dev, &tm);
214 rtc_tm_to_time(&tm, &now);
215 rtc_tm_to_time(&alm->time, &alm_time);
216
217 ftm_clean_alarm(rtc);
218 cycle = (alm_time - now) * rtc->alarm_freq;
219 if (cycle > MAX_COUNT_VAL) {
220 pr_err("Out of alarm range {0~262} seconds.\n");
221 return -ERANGE;
222 }
223
224 ftm_irq_disable(rtc);
225
226 /*
227 * The counter increments until the value of MOD is reached,
228 * at which point the counter is reloaded with the value of CNTIN.
229 * The TOF (the overflow flag) bit is set when the FTM counter
230 * changes from MOD to CNTIN. So we should using the cycle - 1.
231 */
232 rtc_writel(rtc, FTM_MOD, cycle - 1);
233
234 ftm_counter_enable(rtc);
235 ftm_irq_enable(rtc);
236
237 return 0;
238
239 }
240
241 static const struct rtc_class_ops ftm_rtc_ops = {
242 .read_time = ftm_rtc_read_time,
243 .read_alarm = ftm_rtc_read_alarm,
244 .set_alarm = ftm_rtc_set_alarm,
245 .alarm_irq_enable = ftm_rtc_alarm_irq_enable,
246 };
247
ftm_rtc_probe(struct platform_device * pdev)248 static int ftm_rtc_probe(struct platform_device *pdev)
249 {
250 struct device_node *np = pdev->dev.of_node;
251 struct resource *r;
252 int irq;
253 int ret;
254 struct ftm_rtc *rtc;
255
256 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
257 if (unlikely(!rtc)) {
258 dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
259 return -ENOMEM;
260 }
261
262 platform_set_drvdata(pdev, rtc);
263
264 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
265 if (IS_ERR(rtc->rtc_dev))
266 return PTR_ERR(rtc->rtc_dev);
267
268 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
269 if (!r) {
270 dev_err(&pdev->dev, "cannot get resource for rtc\n");
271 return -ENODEV;
272 }
273
274 rtc->base = devm_ioremap_resource(&pdev->dev, r);
275 if (IS_ERR(rtc->base)) {
276 dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
277 return PTR_ERR(rtc->base);
278 }
279
280 irq = irq_of_parse_and_map(np, 0);
281 if (irq <= 0) {
282 dev_err(&pdev->dev, "unable to get IRQ from DT, %d\n", irq);
283 return -EINVAL;
284 }
285
286 ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
287 IRQF_NO_SUSPEND, dev_name(&pdev->dev), rtc);
288 if (ret < 0) {
289 dev_err(&pdev->dev, "failed to request irq\n");
290 return ret;
291 }
292
293 rtc->big_endian = of_property_read_bool(np, "big-endian");
294 rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
295 rtc->rtc_dev->ops = &ftm_rtc_ops;
296
297 device_init_wakeup(&pdev->dev, true);
298
299 ret = rtc_register_device(rtc->rtc_dev);
300 if (ret) {
301 dev_err(&pdev->dev, "can't register rtc device\n");
302 return ret;
303 }
304
305 return 0;
306 }
307
308 static const struct of_device_id ftm_rtc_match[] = {
309 { .compatible = "fsl,ls1012a-ftm-alarm", },
310 { .compatible = "fsl,ls1021a-ftm-alarm", },
311 { .compatible = "fsl,ls1028a-ftm-alarm", },
312 { .compatible = "fsl,ls1043a-ftm-alarm", },
313 { .compatible = "fsl,ls1046a-ftm-alarm", },
314 { .compatible = "fsl,ls1088a-ftm-alarm", },
315 { .compatible = "fsl,ls208xa-ftm-alarm", },
316 { .compatible = "fsl,lx2160a-ftm-alarm", },
317 { },
318 };
319
320 static struct platform_driver ftm_rtc_driver = {
321 .probe = ftm_rtc_probe,
322 .driver = {
323 .name = "ftm-alarm",
324 .of_match_table = ftm_rtc_match,
325 },
326 };
327
ftm_alarm_init(void)328 static int __init ftm_alarm_init(void)
329 {
330 return platform_driver_register(&ftm_rtc_driver);
331 }
332
333 device_initcall(ftm_alarm_init);
334
335 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
336 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
337 MODULE_LICENSE("GPL");
338